N

N

Observation of Distributed Computations: a Reflective
Approach for CORBA

Lionel Seinturier, Laurence Duchien

» To cite this version:

Lionel Seinturier, Laurence Duchien. Observation of Distributed Computations: a Reflective Approach
for CORBA. [Research Report] 1ip6.1999.028, LIP6. 1999. hal-02548260

HAL Id: hal-02548260
https://hal.science/hal-02548260
Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02548260
https://hal.archives-ouvertes.fr

Observation of Distributed Computations: a Reflective

Approach for CORBA

Lionel Seinturier* - Laurence Duchien™*

* Univ. Paris 6, Lab. LIP6, 4 place Jussieu, 75252 Paris cedex 05, France
= CEDRIC-CNAM, 292 rue Saint-Martin, 75141 Paris cedex 03, France

Lionel. Seinturier@lip6.fr, Laurence. Duchien@cnam.fr

Abstract

This document describes some reflective programming techniques to observe a distributed
computation in a CORBA environment. First, we propose a new order relation to translate
causal dependencies in a distributed program. We generalize Lamport’s Happened before rela-
tion defined for message passing applications, to an object causal relation between distributed
events in an environment with synchronous and asynchronous method calls, method synchro-
nizations and variable sharings. Second, we propose a reflective approach to observe this
relation. Finally, a tool is provided to display the causal dependencies graph of a distributed
run.

Key Words: Causality, CORBA, Reflection, OpenlJava, Observation.

1 Introduction

With numerous entities distributed over a network, cooperative systems and applications written
with CORBA [OMGY8] are quite complex and often generate a high volume of communication,
numerous concurrent activities, and complex synchronization schemes. Programmers have to
master many different software techniques and the design, the development, the debug and the
observation of these applications become more and mode complex.

In this document, we focus our attention on the observation of distributed runs in CORBA
environments. Like in most existing studies, we do not assume that the system provides a global
clock or some perfectly synchronized local clocks. Hence, the observation of a run requires some
additional techniques to order distributed events. The partially ordered set approach used by
Lamport’s Happened before relation provides a good solution for such a work. Based on this, nu-
merous studies [LMC87][MCS88][CL85][SM92][ACGS91] addressed the issue of the observation of
consistent global states. Nevertheless, this relation mainly translates dependencies that are gen-
erated by asynchronous communications. First, we can argue that environments such as CORBA
rather use synchronous communication schemes. Second, many other sources of dependencies ex-
ist in distributed applications. For instance, the synchronization of concurrent methods introduce
some dependencies that are not captured by the Happened before relation. In this document, we
present an order relation called the object causal order. Its goal is to capture, not only communi-
cation dependencies, but also synchronization dependencies, dependencies generated by dynamic
creations of threads, and transactional dependencies.

This document extends previous works [PDFS95, DJ99], and proposes a reflective approach to
observe the object causal order. [PDFS95] addressed this issue for the GUIDE [BBBT91] language.
[DJ99] was a first study for CORBA /Java environments. This paper addresses the reflective part
of this work. Our target environment is based on the free CORBA ORB JacORB [Bro97], and

on the OpenJava [TC98] reflective language. OpenJava is an extension of the Java language that

provides features (i.e. metaclasses) to introspect and to redefine the default semantics of a Java
program. We use it to transparently add some code to observe the object causal order.

The document is divided as follows. Section 2 presents the background and the context of
our study. Section 3 defines the object causal order. Next, Section 4 gives the architecture of
our tool. Section 5 briefly presents the stamping algorithm and the graphs that are generated.
Finally, Section 6 presents our conclusions and some directions for future works.

2 Background

2.1 Order relations

The field of order relations for distributed computations has been thoroughly studied. In [Lam78§],
Lamport introduces a model of sequential processes communicating by asynchronous point-to-
point messages. The Happened before relation translates causal dependencies in such a model. It
is used for instance, for check-pointing, replaying or debugging distributed computations.

Given a set F of local, send and receive events, the Happened before order relation, denoted
by —, is the smallest transitive' relation satisfying:

e if @ and b are events in the same process, and a was executed before b, then a — b,

e if a 13 a send event by one process and b is the corresponding receive event by another
process, then a — b.

The notions of concurrent events and of consistent cuts can be defined according to this relation
(the reader should refer, for instance, to [SM92] for more details). Most of the existing techniques
to compute causal dependencies and consistent cuts use vector stamps [Fid88][Mat88].

2.2 CORBA
CORBA [OMG98], the standard Object Request Broker (ORB) from the OMG, proposes an archi-

tecture that enables objects to transparently make and receive requests and replies in a distributed
object environment. It provides asynchronous (oneway) and synchronous remote method invoca-
tions on objects via the ORB. Each object owns an interface described in the Interface Description
Language (IDL) and can be implemented in different languages. On the object server side, the
Object Adapter (OA) performs two tasks: (1) it dispatches the incoming method calls to their
server objects and, (2) it provides several object activation policies that modify the way methods
are executed. For instance, multiple active objects can share the same servant, or only one object
at a time can be active on one servant, or each method invocation may be executed by a separate
servant.

Few CORBA environments offer tools to correctly observe distributed computations. Projects
such as MAScOTTE [MAS97], products such as IONA’s OrbixOTM management services [Ton98]
and Inprise’s AppCenter [Inp99], or protocol analyzers such as [Tre99], propose some features to
observe requests and replies of remote method. GoodeWatch [GMG99] provides mechanisms to
grab events occuring at the ORB level. Our tool goes a step further and, not only grabs ORB
related events, but also provides a smart display through the detections of causal dependencies
between these events. As far as we know, none of the above mentioned tools perform such a work.

2.3 Reflection

P. Maes in [Mae87], defines reflection as the ability of a system ”to reason and to act upon itself”.
Reflective programming languages such as CLOS [KdRB91], OpenC++ [Chi95], OpenJava [TC98]
or Iguana [GC96] distinguish two levels of code: the base level that defines the basic functionalities
of an application, and the meta level that provides a way to introspect the base level code and

e ifa —band b — ¢ thena — ¢

to modify its default semantics. The base and the meta levels interact through interfaces and a
protocol called a metaobject protocol (MOP for short). The elements of the base level that can be
accessed and modified at the meta level are said to be reified. Most existing reflective languages
reify method calls. Their default behaviors can then be extended to support for instance, local
and remote calls. The extension is transparent to the base level which is unchanged. MOPs can
be classified in two categories: compile time and run time. In the former case, the semantics
extension defined by the meta levels occurs during the compilation of the program, while in the
latter case, it occurs during its execution. Compile time MOPs such as OpenC++ v2 or OpenJava
provide better performances, while programs developed with run time MOPs such as CLOS or
Iguana are more adaptable and flexible.

In the last few years reflection has become popular in distributed computing as it provides a
clear way to handle separation of concerns. Indeed, the numerous functionalities of a distributed
program (e.g., communication, concurrency, replication, mobility) can be addressed separately in
different meta levels. In this paper, we use reflection to transparently implement an observation
service for CORBA applications.

3 Object causal order

As pointed out in the introduction, we define the object causal order (denoted by —,) as an exten-
sion of Lamport’s Happened before relation. The object causal order translates dependencies gen-
erated by (1) sequential executions of operations, called local dependencies, (2) synchronous and
asynchronous communications, called interaction dependencies, (3) dynamic creations of threads,
called thread management dependencies, (4) method synchronizations, called intra-object depen-
dencies, and (5) transactional orderings of read and write operations, called transactional de-
pendencies. Paragraph 3.1 presents our system model. Next, Paragraph 3.2 defines the causal
dependencies that we consider in such a system.

3.1 Model

We consider a system model of multi-threaded objets communicating through a CORBA ORB.
We assume that these objects do not share any memory. We also assume that the system does
not provide any global clock, nor any perfectly synchronized local clocks. The events that may be
generated by such a system are listed below:

1. communication events: objects interact through remote method calls, either synchronous
(two ways, blocking), or asynchronous (one way, non blocking). Six events are associated
with these operations: method call, send, return, arrival, start, and end. The method call
event is the synchronous call of a method. The method return event is the return associated
with such a call. The method send event is the asynchronous call of a method. The method
arrival event is generated when a method is received on the called object side. The method
start event is generated when a called method starts. Finally, the method end event is
generated when a method ends.

2. thread management events: a distributed program is inherently concurrent. It dynamically
create and join threads. Four events are considered with these operations: thread start, run,
end, and join. The thread start event is generated when a thread is created. The thread
run event is generated when a thread run begins. The thread end event is generated when
a thread ends. Finally, the thread join event is generated when a thread join operation is
performed.

3. synchronization events: multi-threaded objects may need to perform some synchronizations.
For instance, when Java objects are considered, these synchronizations occur when a thread
needs to enter a synchronized method or a synchronized block of code, or when the wait and
notify method of the java.lang. Thread class are called. In our current model, only the first

case (synchronized method) is addressed. We leave the other cases for future works. Three
events (already mentioned above) are associated with these operations: method arrival, start,
and end. Paragraph 3.2.4 defines how dependencies generated by synchronized methods can
be detected with these three events.

4. read/write operations on shared variables: each of these operations is associated with an
event.

3.2 Causal dependencies

Causal dependencies record order relations between events. These relations are needed when, for
instance, a replay service is to be applied to a distributed run. They are also used to construct
a logical time for the system. As we do not assume any global clock, this logical clock stamps
distributed events. The Happened before relation performs such a work, but we argue that other
causal dependencies are needed. For instance, consider the case when two executions of a synchro-
nized method are performed concurrently, and when one of these executions is delayed due to the
other. If a replay service needs to rerun these executions in the same order, the causal dependency
generated by the delay must be recorded.

The object causal order, denoted by —,, is the smallest transitive relation satisfying the next
five definitions. Figure 1 illustrates these definitions.

3.2.1 Local dependencies

This first source of dependencies comes from the sequential execution of events within a thread.
The definition is the same as in Happened before.

Definition 1

e Ifer and es are two events that belong to the same thread, and ey is executed before es, then
€1 —Fo €9.

3.2.2 Interaction dependencies

The interaction source of order translates dependencies created by point-to-point, synchronous and
asynchronous communications, between local and remote objects. It defines a property similar to
Lamport’s Happened-before relation which assumes that ”a message can not be delivered before
its sending” [Lam?78]. Here, the idea is that each event that is executed before a method call,
happens before the execution of the called method. On the same way, each event that is executed
after a synchronous method call, happens after the execution of the called method.

Definition 2

e If esc 1s a synchronous method call event, and eqq its corresponding method arrival event,
then ege — €ma-

e Ifeqe is an asynchronous method call event, and e, its corresponding method arrival event,
then ege =0 €ma-

e If eme ts a method end event, and e, its corresponding method return event, then ep,e —,

Emp -

3.2.3 Thread management dependencies

Thread management dependencies create a link between a thread and its child threads, and be-
tween a thread and a joined thread.

Definition 3

Synchronous method call Asynchronous method call

sync. call return async. call
arrival start end arrival start end
Thread management
join

\/

Method synchronization

arrival start end
s r

arrival start end

Read/write operations

read write

®
read write

Figure 1: Causal dependencies defined in our system model

e Ifeis 1s a thread start event and ey its corresponding thread run event, then e;s —, €.

o Ifeie ts a thread end event and e;; a thread join event waiting for this thread end event, then
€te 7o €tj-

3.2.4 Synchronization dependencies

Synchronization dependencies record links between executions of a synchronized method. A syn-
chronized method 1s allowed an exclusive access to its object. Any other thread that tries to access
this object will be delayed until the previous execution exits the method. This synchronization
scheme introduces a causal dependency between two executions. The dependency can be detected
when a method start event can not be performed until an end event associated with the same
synchronized method is generated.

Definition 4

e If eme 15 a method end event of a synchronized method, and en,, and ens method arrival
and method start events of the same method, and if for the local object where the methods
are performed, e, occurs between e, and eqps, then eme —o €ms-

3.2.5 Transactional dependencies

The last source of dependencies comes from the sharing of variables. The basic idea is that read and
write operations on a shared variable create dependencies between the threads that perform them.
For instance, a read operation can be said to ”observe” the effect of the previous write operation.
Indeed, the result of the execution would not have been the same if the read had been performed
before the write. The transactional relation translates the following dependencies: read-write,
write-read, and write-write. As pointed out by the serializability theory (see for instance [BHG8T]),
a concurrent execution is legal, 1.e. is equivalent to a sequential one, if and only if, the transactional
dependencies graph deduced from these rules is acyclic.

Definition 5

e Ife, is a read event and e, the next write event on the same variable, then e, —, ey .
o Ifey ts a write operation and e, the next read operation on the same variable, then ey, —, €,

e If ey1 1s a write operation and ey the next write operation on the same variable, then
Cwl ~7o Ew2-

4 QObservation service

In this section we present the prototype of our reflective observation service for CORBA /Java ap-
plications. The target ORB is the free ORB JacORB [Bro97], and the observation is implemented
with the OpenJava [TC98] reflective language.

4.1 Architecture

Our architecture contains two basic components: an observer object, and an observer metaobject
(see figure 2). The third type of components mentioned in the figure, observed objects, are the
application level objects that need to be observed.

The observer object 1s a standard CORBA object. There is one such object for each observed
application. It owns an IDL interface with 11 asynchronous methods where each method records
one of the events mentioned in Paragraph 3.1. The observer is implemented in Java and stores
each received event in a hastable of vectors. There is one vector per observed application level
object, and one vector per shared observed variable.

observer
metaobjects

observed
objects

d CORBA ORB

COSNaming
observer Server

object

Figure 2: Architecture of the observation service

An observer metaobject is associated to each application level object that needs to be observed.
It reifies the elements needed to grab the 11 above mentioned events. Once an event is grabbed,
the observer metaobject sends it to the observer object. The binding process between the observer
metaobjects and the observer object is kept as simple as possible: the observer registers a well-
known name with the CORBA naming service, and each observer metaobject lookups this name.
The communication between the observer metaobjects and the observer object is performed by
some asynchronous method calls. Unless the CORBA specifications state that the semantics of
such calls is ”best effort” (i.e. the calls may not be delivered), this mechanism is faster and less
intruisive than synchronous method calls.

Transmitted data

When an observer metaobject notifies the observer that an event occured, it transmits the CORBA
reference of the observee object, the index of this event in the observee, and the index of the method
execution in which this event occurred (each observer metaobject stores the number of events and
the number of method executions that have been generated so far). The observer object needs the
first index to reconstruct the object local order, and the second one to associate each event to its
method execution (as objects are multi-threaded several executions of the same method may be
performed concurrently). Furthermore, for some events, additional parameters are transmitted to
the observer object (Table 1 summarizes the event types recorded and their additional parameters).

1. An invocation key is recorded for each method call and method arrival event. This key,
which contains the caller object reference, the caller method identifier and an invocation
number, allows the observer object to generate the dependency between the call and the
arrival. This key needs to be piggy-backed on each method invocation between application
level objects (indeed, when the method arrival event is generated at the server side, this
key needs to be sent to the observer). We modified the JacORB client stubs and server
skeletons generation code to transparently add this key. Some future works could tackle the
use of a more generic solution. For instance, the architectural framework of the Jonathan
ORB [DHTS98] provides a mechanism to plug customized stub factories into the ORB.
Another more portable solution could be to use some standard request level interceptor to
perform this piggy-backing process.

2. The parent thread identifier is recorded for each thread run event. This data is needed to
generate a dependency between a thread start event and its corresponding thread run event.

3. Finally, the identifier and the object reference of a shared variable is transmitted to the
observer object each time a read or write operation is performed on a shared variable.

Event type

| Description

| Additional parameters

Method call

A method 1s called

Invocation key

Method return

A method call 1s returned

Method arrival

A method 1s delivered

Invocation key

Method start

A method begins

Method end The method execution ends

Thread start A thread start is performed

Thread join A thread join is performed

Thread run A thread begins Parent thread id
Thread end A thread ends

Read operation

Read of a shared variable

Id and obj ref of the shared variable

Write operation

Write of a shared variable

Id and obj ref of the shared variable

Table 1: Grabbed events

4.2 Observer metaobjects

4.2.1 OpenJava meta features

The code needed to observe the 11 events of Table 1 is automatically added by some Open-
Java [TC98] metaclasses. Like the Java reflection API [Sun97], OpenJava provides a way to
introspect the components of a base level program. As shown in Figure 3, the root metaclass of
OpenJava 1s OJClass. The instantiates keyword is the only modification needed to specify a
meta link between a base level class and a metaclass.

class myMeta
extends OJClass class 0JClass {
(.} 0JMethod[] getDeclaredMethods();
void addField(0JField field);
ificati void addMethod(OJMethod field);
reification of source-to-source . (N)
meta void translateDefinition();
language dificati . .
o link moditications Expression expandFieldRead(...);
ements Expression expandFieldWrite(...);
Expression expandMethodCall(...);
classfooBasel evel
instantiates myMeta 1
{..}

Figure 3: Meta link with OpenJava and some selected methods from OJClass

Among other things, the interface of OJClass (see Figure 3) provides a getDeclaredMethods
method that returns a description of the base level methods. OpenJava goes a step further than
the Java Reflection APT and provides a way to add methods or fields (addMethod and addField), to
modify the methods body (OJMethod.setBody), or to alter the default semantics of any element in
the base level class (translateDefinition). Finally, ezpand methods (ezpandFieldRead, expandField-
Write and expandMethodCall), are automatically called each time respectively, a field variable is
read, a field variable is written, and a method is called. By this way, OpenJava can be seen as a
Java language source-to-source translator.

4.2.2 Observation process

Our main metaclass (Observer) is the metaclass of any observed base level class. Tt extends
0OJClass and customizes its default behavior by, (1) recording the method start and end events
(translateDefinition), (2) recording the read operation events (expandFieldRead), (3) recording
the write operation events (expandFieldWrite), (4) recording the method call and return events
(exzpandMethodCall). The method arrival event is recorded with a wrapper around any synchro-
nized method. The thread related events are recorded with a wrapper class around the standard
java.lang. Thread class.

The observer metaclass also defines a new keyword: traced. It is used as a modifier for base
level variables and methods that needs to be traced. By this way, programmers can reduce the
volume of trace informations by specifying at compilation time, some relevant elements to trace.
Figure 4 gives the example of an observed class where only fields variables fI and f3, and method
m2 are traced. Events related to the other variables and methods are not grabbed.

class fooToBeObserved instantiates Observer {
traced protected float f1;
float £2;
traced static int £3;
void m1(float x);
traced int m2(float x);

Figure 4: Fields and methods tagged with the traced modifier are observed

The compile time reflective feature of OpenJava is one of its benefits. As stated in Para-
graph 2.3, metaobjects in such languages do not exist during program executions, but only during
compilations. The advantage i1s that there is no execution overhead due to the use of a reflective
language. The only overhead introduced comes from the execution of asynchronous method calls
to the observer object each time an event is generated.

5 Stamping process and graphs

The causal dependencies of a distributed run are computed using vector timestamps. Each element
in a vector translates the ordering of events within an activity. In our model, an activity is an
application level distributed thread of control that can be stretched on several servers when remote
method calls are performed. Activities are created when the application creates threads to carry
out new jobs or perform an asynchronous method call. As a distributed application is inherently
dynamic, the number of activities, and thus the size of the vector timestamps, are unknown until
the end of the run.

Next paragraph describes the way timestamp vectors are constructed. Paragraph 5.2 gives the
update rules for these vectors. Finally, Paragraph 5.3 gives an overview of the graphs that are
generated.

5.1 Timestamp vectors

We define a timestamp vector TE for an event e as TE‘Z = (te‘;l, ...,te‘;n), where n is the total
number of activities, ¢ the identifier of the activity and j the identifier of the event. This vector 1s
updated each time an event is generated in activity ¢. In the following rules, we assume that the
total number of activities n is known.

For each shared variable, we manage two vectors TW and TR: TW, = (twg 1, ..., tws ») and
TRy = (trga,...,tre n). These are respectively, the timestamp vector of the last write and the
timestamp vector of the last read on variable x.

5.2 Rules to update timestamp vectors

This paragraph gives the rules to update timestamp vectors. We assume that the execution order
of each activity and the sequential order of read and write operations on each shared variable are
known.

Rule 1 thread start event and asynchronous method call event: let e, a thread start event or an
asynchronous method call event, be the j-th event in activity i. Let ¢ be the identifier of the
created thread or method call activity. The ¢-th element of TE; is set to 1. To translate the

dependency the other elements of TE; are set to the values of corresponding elements of TE‘Z
k:q:te;kzl '

k#£q: te;/,c = te‘;/,C

Rule 2 thread join event: let e, a thread join event, be the j-th event in activity 7. Let ¢ be the

identifier of the thread, ¢ is waiting for to die. The dependency generated by the last event of
thread ¢ must be taken into account.

k=1: te‘;/,C = te‘;;l +1

k#1: te‘;k = Max(teg(fzt,te‘;;l)

Vkel[l,...,n] {

Rule 3 method start event: let a, a method start event, be the j-th event in activity ¢. If the
considered method is synchronized, and if there exists a method end event e,,. whose timestamp

vector 1s T'EY, and a method arrival event ey, of the same method, and if for the local objects
where the events are generated, e, occurs between e,,, and e, then the ¢-th element of TE‘Z? 1s

increased, and its other elements are set to the maximum of the corresponding elements of TE‘Z?_1
and T'EY.

o -
k=x :te‘Z»J/,C = te‘;/,C +1
k#1: te‘;k = Max(te‘;;l,tegyk)

Vkel[l,...,n] {

Rule 4 read event: let e, a read event on variable z, be the j-th event in activity i. The ¢-th
element of T'EY is increased and its other elements are set to the maximum of corresponding

elements of vectors TE‘Z?_1 and TW,. TR, is also updated to record the read dependency for the
next write operation.

k=1: te‘;/,€ =tryp = te‘;;l + 1
k#1i: te‘;k =tryr = Max(te‘;;l,thyk)

Vkell,..., n] {

Rule 5 write event: let e, a write event on variable r, be the j-th event in activity 7. The i-
th element of TEY is increased and its other elements are set to the maximum of corresponding

elements of vectors TEg_l, TW, and T'R,. TW, records the timestamp of the last write operation
and TR, 1s cleared to avoid redundant transitive dependencies.

k:i:te‘gk:thyk:te‘ﬁl—l—l
Vee[l,..,n]{ k#i:tel, =tw,) = Max(te‘ﬁl,thyk,trxyk)
trx,k =0

Rule 6 other events: let E be the j-th event in activity ¢. We increase the ¢-th element of TE‘Z

k:i:te‘gk:te‘ﬁl—l—l
Yk el, ...,n]{ ki te‘?yk _ tef;l

10

5.3 Graphs

Based on the information sent by the observer metaobjects, a causal dependencies graph is gen-
erated online by the observer object. Tt is then displayed with the VGJ [McC98] tool which is a
graph viewer application. VGJ provides a framework to plug customized graph manipulation al-
gorithms. We designed such an algorithm for our observation process: it instanciates the CORBA
observer object, records the events, and generates the graph. The graph is updated as new events
are sent to the observer object, and as some new dependencies are detected. When a new activity
is detected, either through a thread start event or an asynchronous method call, the timestamp
vector size of all previously received events is increased by one.

We provide a panel with buttons to control the display of the graph. It can be paused,
resumed and moved forward or backward. Note that this panel only controls the display, not
the computation itself. Even if the display is paused, the computation keeps running. Figure 5
gives a screen snapshot of our tool?. A text description of the graphs can be generated in the
GML [Him97] markup language (this is a built-in feature of VGJ). Each node in the graph is an
event. Each event is labelled with its timestamp vector. Edges are causal dependencies. They
are labelled with the source event type, and the target event type. Event types are two letters
words (except for asynchronous method calls which are simply labelled with the letter s). The
first letter translates the event category: ¢for thread, m for method and v for variable. The second
one translates the event type in its category: for instance, ¢ stands for thread join, ma stands
for method arrival, vw stands for variable write, etc. Each called method or created thread is
displayed with a new line in the graph. This line is labelled with either the Java object reference
of the created thread, or the CORBA TOR (server IP address and port number) and the identifier
of the called method.

6 Conclusion

This document presents a causality relation called the object causal order, for distributed ap-
plications in a CORBA environment. This relation extends Lamport’s Happened before relation
by (1) considering both synchronous and asynchronous communications (Lamport only considers
asynchronous ones), and (2) incorporating dependencies generated by communications, method
synchronizations and variable sharings (Lamport only considers communications). By this way,
we think that the object causal relation provides a better understanding of the semantics of dis-
tributed applications.

The second main point of our paper is that the relation i1s observed by taking advantage
of the features of a reflective language. As stated in Section 4, our target CORBA ORB is
JacORB [Bro97] and our target reflective language is OpenJava [TC98]. We developed some
OpenJava metaclasses to transparently add the code needed to record our causal dependencies.
These metaclasses reify events related to method calls and processings, thread management and
read /write operations on shared variables. Events generated by the application are sent by these
metaclasses to a global observer. Next, we define vector timestamps for the generated events and
we provide an algorithm to compute the causal dependencies graph. Finally, our tool, which is an
extension of the existing VGJ [McC98] viewer, displays this graph. It is updated online as new
events are sent to the observer.

Several extensions can be considered for this work. First, algorithms could be added to check
global predicates (with techniques described for instance in [CG98] and [Gar97]). Second, some
tools could be developed to filter and to analyze more precisely the traces.

2Our tool and some technical informations can be downloaded from our Web page: Attp://www-

src.lip6.fr/homepages/Lionel.Seinturier/RCO/

11

CVGEd g

gml

File Algorithmz Edit Properties

clientThread
@1fadel7Z (11

y tr-mcl
.._”_.._”_ ._.....

clientThread i
@1fadelds [20,1.0

getDate

163.173.136.67:1065

163173136 67:1065
getDate

¢.a.6,0 2,6

2,030

ping

163.173.136.67:1065

1.7.01 1,7.0,2 Ahwwghw

L0 2,8,8,0

L-|

]

| W &GJObserver Control Panel

[=I[=[x]

Play| &

sia0 | Backward|

Forward |

Fast backward |

Fast forward| First|

Last| Exit]

Figure 5: Screen snapshot of our tool

12

References

[ACGS91]

[BBB*91]

[BHGST]

[Bro97]

[CGS]

[Chi95]

[C1.85]

[DHTSY8]

[DJ99]

[Fidss]

[Gar9T]

[GC96]

[GMGO9]

[Him97]

[Tnp99]
[Ton98]

[KARBY1]

[Lam78]

[LMCS87]

M. Ahuja, T. Carlson, A. Gahlot, and D. Shands. Timestamping events for inferring
affects relation and potential causality. In Proc. of COMPSAC’91, pages 606-611, 1991.

R. Balter, R. Balter, J. Bernadat, D. Decouchant, A. Duda, A. Freyssinet,
S. Krakowiak, P. Le Dot, M. Meysembourg, H. Nguyen, E. Paire, M. Riveill, C. Roisin,
X. Rousset de Pina, R. Scioville, and G. Vandome. Architecture and implementation of
GUIDE, an object-oriented distributed system. Computing Systems, 4(1):31-67, 1991.

P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery
wn Database Systems. Addison-Wesley, 1987.

G. Brose. JacORB: Implementation and design of a Java ORB. In Proc. of DAIS’97,
September 1997. http://www.inf. fu-berlin.de/ “brose/jacorb.

C.M. Chase and V. K. Garg. Detection of global predicates: Techniques and their
limitations. Distributed Computing, 11, 1998.

S. Chiba. A metaobject protocol for C4++. In Proc. of OOPSLA’95, volume 30 of
SIGPLAN Notices, pages 285-299, October 1995.

K.M. Chandy and L. Lamport. Distributed snapshots : Determining global states of
distributed systems. ACM Transac. on Computer Systems, 3(1):63-75, February 1985.

B. Dumant, F. Horn, F. Dang Tran, and J.B. Stéfani. Jonathan: an open distributed
processing environment in Java. In Proceedings of Middleware’98, 1998.
hitp: //www.objectweb.org.

L. Duchien and E. Jeury. Observation in CORBA Java applications. In Proc. of the
Session on Coordination at PDPTA’99, June 1999.

C.J. Fidge. Timestamps in message-passing systems that preserve the partial ordering.
In Proc. of the 11th Australian Computing Conf., February 1988.

V.K. Garg. Observation and control for debugging distributed computations. In Proc.
of AADEBUG’97, 1997.

B. Gowing and V. Cahill. Meta-object protocols for C++: The Iguana approach. In
Proc. of Reflection’96, 1996.

C. Gransart, P. Merle, and J.M. Geib. GoodeWatch: Supervision of CORBA appli-
cations. In ECOOP’99 Workshop on Object-Orientation and Operating Systems, June
1999.

M. Himsolt. GML: A portable graph file format. Technical report, Univ. Passau, 1997.
http:/ /www. fmi.uni-passau.de/Graphlet/GML /gml-tr.html.

Inprise. Inprise AppCenter. htip://www.inprise.com/appcenter, 1999.

Iona. OrbixOTM-Management Service.
http:/ /www.iona.com/info/products/orbizenter/orbizotm /index.html, 1998.

G. Kiczales, J. des Rivieres, and D.G. Bobrow. The Art of the Metaobject Protocol.
MIT Press, 1991.

L. Lamport. Time, clocks, and the ordering of events in a distributed system. CACM,
21(7):558-565, July 1978.

T.J. Leblanc and J.M. Mellor-Crummey. Debugging parallel programs with instant
replay. IEEE Transac. on Computers, 36(4):471-482, April 1987.

13

[Mae87] P. Maes. Concepts and experiments in computational reflection. In Proc. of OOP-
SLA’87, volume 22 of SIGPLAN Notices, pages 147-155, December 1987.

[MAS97] Introduction to MAScOTTE, Esprit Project 20804. White paper, May 1997.
http://www.esrin.esa.it/MAScOTTE.

[Mat88] F. Mattern. Virtual time and global states in distributed systems. In Proc. of the Intl
Conf. on Parallel and Distributed Algorithms, pages 215-226, 1988.

[MC88] B.P. Miller and D.J. Choi. Breakpoints and halting in distributed programs. In Proc.
of the 8th Intl Conf. on Distributed Computing Systems, pages 316-323, 1988.

[McC98] C. McCreary. Drawing Graphs with VGJ. Auburn Univ., 1998.
hitp://www.eng.auburn. edu/department /cse /research/graph_drawing/graph_drawing. himl.

[OMG98] OMG. The common object request broker: Architecture and specification. OMG,
February 1998.

[PDFS95] P. Placide, L. Duchien, G. Florin, and L. Seinturier. A consistent global state algorithm
to debug distributed object-oriented applications. In Proc. of AADEBUG 95, May
1995.

[SM92] R. Schwarz and I. Mattern. Detecting causal relationships in distributed computations:
In search of the holy grail. Technical Report SFB 124 - 15/92, Univ. of Kaiserslautern,
December 1992.

[Sun97] Sun Microsystems. Java Core Reflection, API and Specification, February 1997.
hitp: //www.javasoft.com.

[TCI8] M. Tatsubori and S. Chiba. OpenJava 1.0 API and Specification. Programming Lan-
guage Lab., Univ. of Tsukuba, 1998.
hitp://www.softlab.is. tsukuba.ac.jp/ “mich/openjava.

[Tre99] C. Treanor. ITOP Protocol Analyser.
hitp: //www-rst.int-evry.fr/ "defude /analyseur-iiop.html, 1999.

14

