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Sampled-data Control for a Class of Linear Hyperbolic Systens via the
Lyapunov-Razumikhin Technique*

Xinyong Wang Christophe Fiter Ying Tang and Laurentiu Hetél

Abstract— This work investigates the stability for a class of proposed by using Lyapunov-Razumikhin stability criteria
linear hyperbolic systems with distributed sampled-data on-  (e.g. [23], [24]), the estimation of the maximum sampling
trollers. First, we convert the original system into an equvalent interval for the system stability is improved.

system in which the sampling induced error is modeled as a Th is structured foll - Section I ts th
reset integrator. Then by means of an appropriate Lyapunov € paper Is structured as follows. Section Il presents the

function coupled with the Razumikhin technique, sufficient Systems and the problem under study. In Section Ill, we
conditions are given for the Re - stability of the system. Finally, propose the equivalent remodelling of system, followed by

our results are validated by a numerical example. the concrete stability analysis process. A numerical examp
| INTRODUCTION is given to |Ilus_trate the fe_a5|bll|ty of our method in Se@

o o ) IV. The paper is ended with conclusions and perspectives.

The application of digital computer in control system has Notation: N is the set of nonnegative integers from 0
become a general trend, which makes sampled-data contjglinfinity, R, is the set of nonnegative real&” is used

an active field of research in the past decades [1], [2], [21{p denote the set ofi-dimensional Euclidean space with
Stability and control design for finite-dimentional sys&m the norm | - |. £2(0,L) stands for the Hilbert space of

have been considered in many research works: see €.9. §iiare integrable scalar functions ¢h L) with the norm

survey [16], [22], [28]. Compared with the research metho . ;
y 1191, 122], [28]. Somp 00 o0y, defined byl = || 12 = /S |7 () Pda.

of finite dimensional system, the analysis and control i 5 i i
infinite dimensional systems is more challenging. Few tesul | N€ @ssociated norm to Sobolev spa¢e(0, L) is defined

exist for sampled-data infinite dimensional system [25][2 as || 7 || 1, 1)= \/foL (|T @) + |72 (;C)|2) dz. Given a
In general, sampled-data systems can be analyzed us'¥1% .
: L . i unctional vV : H'([0,L];R") — R, such that€y<c =
discrete-time, time-delay and Input-Output methods (46¢ [ r{_y € HY(0, L;R™) : V (y) < C}. The notationi’ < 0

and references therein). For the class of partial differed tes thatl | i 4 i idefinite. Th
tial equations (PDES), using discrete-time finite-dimenal enotes thatl 1S symmetric and hegative semicetinite. The
h%ymmetnc elements are denoted byin the symmetric

approximate models, [34] proposed a methodology for t . . . .
design of sampled-data controller with practical stapilit matrix. The identity matrix is denoted byand A (©) and

guarantees. In references [14], [18], [33], the time-dela m“z".(@g) aég t.hethmmlmum afnd m?xmumfelget_nvalueshof the
approach has been used for the analysis of parabolic PD ?'mih ' IS ? spa:;e 0 clondllrf1fuoust. utr:lc |]E>ns,t_vv ereas
Hold boundary feedback control in one-dimensional linea is the space of continuously differentiable functiofis.

hyperbolic systems were considered in [20]. In [10], [13]!S the ceiling function.

event-triggered sampled-data control with controller ba t Il. SYSTEM DESCRIPTION AND PROBLEM
boundaries was developed. The boundary feedback control of FORMULATION

a2 x 2 hyperbolic system was implemented by backsteppin L

method in [6], [12]. R. System Description

It can be seen from the literature review that the analysis We consider the following sampled-data controlled hyper-
of sampled-data controller for hyperbolic PDEs is a widebolic system (1)
open area of research, and there are still many topics worth

studying. The present paper aims at studying the distribute Oz (t, @) + Apz (t,2) + Tz (t,) +u(t, ) = 0, (18)

sampled-control for a class of hyperbolic PDEs. The idea | u (t,z) = F z (tx, x),Vt € [ty, tp41), k €N, (1b)
is to generalize the Input-Output approach [15], [19], [30] | z(¢,0) = 0, Vt > 0, (1c)
for finite dimensional systems, to the case of hyperbolic 2(0,2) =z(2),Va € [0, L] (1d)

PDEs. An interconnected equivalent system consisting of a

continuous-time PDE and a reset-integral operator is ddrivwherez : [0, +00) x [0, L] = R"™, A = diag { 1, A2, ..., A}

from the original system. In our previous work [11], thewith Ay, Ao, ..., A, > 0, I" and f are realn x n constants
stability of linear hyperbolic systems with sampled-datamatrices. The sampling instants are defined as a sequence
controller has been ensured for a sufficiently small sargplin{t; }xen Where

eriod. In the present paper, new stability conditions are _
p p p p y tO = O7t/€+1 - tk € [ﬁa h]a (2)

lUniv. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F- = . . .
50000 Lille, Francexi nyong.wang, christophe.fiter, and h, h are the given bounds of the sampling intervals

ying.tang, laurentiu.hetel @niv-lille.fr satisfyingh > h > 0.



To address the issue under consideration, we need the
compatibility condition given below: ) v
Condition 1.The initial conditionzy(x), satisfies

Y

20(0) = 0,Vx € [0, L]. 3)
Remark 1We explain the concept of the solution and rewrite w 7 ’
the system (1)-(2) as a first order system
dz(t) _
Tt T Tz (t) +f (Z (tk)) S [tk’ tk“‘l) kEN, Fig. 1. Alternative representation of the closed-loop ayst
z(0) = 2o,
where f(z(tx)) = —F z(tx), and T is an operator defined

Define the functiony (¢, x) = %,Vt >0,z €0,L].
Note that for allt € [ty,tx+1),k € N,z € [0, L], we have

D(Y)={z€ H'(0,L;R")| 2(0)=0. 4) s (0. 3
{ | i w(tax)_/ta(e,)

A stable C, semigroup is produced by the operatbr(see 90
the proof of theorem A.1. in [3]). Moreover, the fact is thatTherefore, the closed-loop system can be seen as the inter-
fe : HY(0,L) — H'(0,L) is continuously differentiable connection of two systent® and.7 shown in Fig. 1, where

for t € [tr,tre1). If 20 € D(Y), then in the light of the operatofP : L?(0, L) — L?(0, L) is defined by

Theorem 6.1.5 of [31], there is a classical solution for each

t € [tr,tri1), k € N. Consequently, a solution can be con- Oz (t,x) = =Adpz (t,) = (D + F) 2 (1, 2)

by Tz = —A0,z (t,z) — T'z (¢, x), with domain

d9——/tcp(9,a¢)d9. @)

k ty

structed by selecting the last value of the previous samgplin o Fw(t ),
interval as the initial condition for the next sampling irvi! P 2(t,0) =0t 2 0, (8)
2(0,x) =zo(x),Vz € [0, L],

so that it is continuous at each sampling instant.
Ping ot x) = —A0zz (t,x) — (F +T) z (¢, x)

B. Problem Formulation —Fw(t,z) =0z (t,x),

In the present work, we adopt thesRtability for the and the operatoy : L*(0, L) — L*(0, L) is defined by
system (1)-(2), which is defined as follows. _ _ t

Definition 1.Re-stability [32] Consider positive scalars R~ J : { th(t’? ; (jz)](f’xl)\l_ ﬁ()k i(e’x) a0, (9)
ande, such that) < ¢ < R, and a Lyapunov functioft’ : € [brstir) K €N,z € [0, L]
H([0, L];R™) — R.. If for all solutions of system (1) with Remark 2 The operatorP is a nominal continuous-time
20(z) € Lv<r, the trajectory of the state(t,z) converges control-loop since we use continuous-time sampling error
to £y <. ast goes to infinity, then, system (1) is called-R instead of sampled-data controller in the system (B)is

stable from&y < to Ly <.. an integral operator representing the sampling error. fer t
Our main goal is to ensure that the closed-loop systesimplicity of the closed-loop system structure, we choose
(1)-(2) is Re-stable due to Input-Output method. this form of 7 so that we need one outputinstead of two

z(t,x) and z(tx, x), which is why we wrote (6) as (7).

. MAIN RESULT B. Stability Analysis

This section consists of two parts. Firstly, the sampledda |, the following, we present our primary results.
system is equivalently expressed as a continuous hyperboli Proposition 1.Consider systems (8)-(9) with (2) and a

PDE with sampling induced error as disturbances in thg,ntion v - H! ([0,L]; R*) = R, which is differentiable
input. Secondly, we provide constructive-Rtability criteria ¢ its argument7 and such that there existsc i < u»

based on the provided model. satisfying, HQ”?P?[O,L];R") <V <ea ”QHiﬂ([O,L];Rn) :

Suppose that along the trajectories of the system (8)-(9),

A. System Remodelling the corresponding solution(t, -) satisfiesV (z) 4 26V (z) <

System (1) can be rewritten equivalently as 0, for somed > 0, whenever

1) R > V(z(t,-)) > max{e, V(2(tx, )/}, with some

Oz (t, ) + N0z (t,x2) + (T + F)z (¢, x) a>1,

+ Fw(t,z) =0,Vt € [tg, trt1),k €N, (5a) 2) z(tk,-) € Lyv<rg.

z(t,0) = 0,Vt >0, (5b) Then the system isd&stable fromEy < to Ly <..

20,2) = z(),Vz € [0, L], (5¢) The proof of Propp;ition 1 can be found in the app_en(_:iix.
Remark 3 Proposition 1 is based on the generalization

with the sampling error of the Razumikhin technique to get thes-Rtability for

hyperbolic systems. In the following theorem, we will show
@ (t,x) = 2 (ty, x) = 2 (£, ) - (6)  how it can be used in constructed manner.



—e~2m (F + F)T@1 + @1(F + F):| —6_2“w@1F 0 0

W(z) = * —~I 0 0 (11)
* * —e 2 [FT®2 + O.I" + 5@2] —6_2“$@2F
ES * 7’)/1
(a—1)0, -0, 0 0
_ —2ux * —@1 0 0
N(z)=e * * a9 0 (12)
* * * -0
Theorem 1Consider systems (8)-(9) with (2) and an initial = — [zTAe—ZWG)lz]g + fOL (—zT ((F +D)Te 2@,
condition satisfying (3): —op T T —o
] T r _ nx
1) LetA = ?llin })\i. Assume that there exigt, v, x > O A1) 2 - w FLe O12
1€1,...,n
0, « > 1 and symmetric positive matrice®; € R"*", —2Te O Fw) da —2u/ 2T Ae” 701 zdx. (15)
0, € R™*" satisfying the commutativity conditiond:©, = 0
O;A, AO, = O,A and In order to get the time derivative af, in V5, we refer to
the original system (1). Since: [0, +00) x [0, L] — R™ has
W(0)+ kN(0) <0, W(L)+rN(L) =0, (10) consecutive partial derivatives |, +oc) x [0, L], according

_ ] to Schwartz's theorem [17] we can obtaih € (¢x, trt1)
with W (z) and N (x) defined for allz € [0, L] as (11)-(12).

2) For given decay raté > 0, 3e € R4, R € R, s.t. Optz (8, ) = Oppz (¢, )
0 <e < R and it holds = —ANOyrz (t,x) =Tz (t,x) — F Opz (tg,x).  (16)

v¥3h (|A|2f21 + (\Fl2 + |F|2> Qz) +y1< (20 — B)e —20R, (13)  For the next calculation of the time derivative &f, we use
Lemma 1 in the appendix. According to (16) and Lemma 1,

for some0 < 8 < 20 withQ = x—g5==m. Q2 = we have
Amin(ejl%)eizull 1 0= 'LLA.

Then the considered system (1) is-Rable fromg&y -5 {812(7; 0)=0,t & [th, thr1), k €N, (172)
to £y <. for any sampling sequence satisfying (2), with the 29(0) =0, 0520(0) = 0. (17b)

Lyapunov function defined b .
yap y Similarly to the computation o¥;, by using the commuta-

V(z) = Vi(2) 4 Va(2), (14) tivity condition: A©2 = ©2A, the time derivative ofi2(z)
along the solutions to (16)-(17¥t € [tk,tkt1),k € N is
where Vi(z) = fOL 2Te 2@ zdx, Va(z) = shown as follows

L 7 —oux .
Jo 22 €7 Orzode. _ Va(2) = — [0,2T Ae™@50, 2]
Proof. Consider the Lyapunov function (14). I

It can be bounded as?® |z (t, )”i]l( 0.I;RY) S+ (=0.2" (TTe™27 04 + e 2 O,T") 9,2

V(z(t,)) < V|2 (¢, o,y Where 0
® _ min{)\min (91) - Amin (@2([)]16];2;1%7 U _ —aTZT (tk, ) FT€72“1928,TZ —aTZT672”x®2FaTZ (tk, )) dz
maX{Amax (91) ) )\max (92)} L T —2px

Step 1In this step, we clarify that the functiori defined 2“/ 0oz Ae 20, 2dz. (18)
in (14) is continuous by using the construction method [11]. ) )

Remark 4.V; is used to bound, andV; is used to deal Adding [l (s, )220, -y — Y@ (5,22 (j0, 00 mm)
with the termz, that appears in the derivative of. to (15) and [0z (L, ')Hiz([O’L];Rn)

Step 2:In this step we study the time derivative Bf(z)  ~||0,z (1, ')Hiz([o,L];Rn)’ B[ e 20,z dr —

defined in (14). Thanks to commutativity conditioh©®; = ﬂfoL 2Te=207Q, 2, dx to (18) for somey > 0,3 > 0, and

O:A, we first compute the time derivative df(z) along using boundary condition (5b) and (17a) we have
the solutions to (8)-(Mt € [tk, tkt1), k €N,

L V(z) =Vi(2) + Va(2)
Vi(z) = / (6tzT672“m®12 + zTefz“m®18tz) dz < —20Vi(z) — (20 — B)Va(z)
0 L
L T 2
- / ((—Aﬁzz —(F+D)z—Fw) e 270,z * /0 - Wlznde + 1@ (s, )22 o, )
0

2
+ 277270, (=Ad,z — (F + 1)z — Fw)) da 711022 (s )22 o, ) - (19)



with o = p), n = [T @b (0,2)T (0.2(tk,-))T]*, and
W (z) defined in (11).

Step 3:In this step, we show thalf (z) + 26V (z) < 0,
whenever

{R > V(z(t,-)) > max{e, V(z(tx, ")) /a},
2(0,-) € Ly<gr,V0 € [tg,t),k € N.

(20a)
(20b)

Let us assume that conditions (20) hold. Since conditiol (1

is linear ine~2** and0 < = < L, by convexity, we have
W(x)+ &N(z) <0, for z € [0, L]. Therefore, we get

L
/O 0T (W () + 5N (z))ndz <0, (21)

with W (x) and N(z) given in (11) and (12).

Now, considert € [t;,tx+1) and a trajectory satisfying
(20). Since condition (20a) is satisfied, we hale:(t,-)) >
V(z(tx,-)) /o with somea > 1, which can be rewritten as

/L nT N (z)ndz > 0. (22)
0

In view of (21), (22) andk > 0, by S-procedure, it implies

/L nTW(x)nd:v <0. (23)
0

According to condition (20b), the following inequalitiesea
further derived for alb € [tg, t]:

R
2
HZ (9, ')HLZ([O,L];R") < m = Al,
R
1022 (6, ')H2L2([0,L];Rn) < = Ay. (24)

Amin (62) e—QML

Using (7) and (24) fot € [tk, tx+1), k € N, the upper bound
of || (s, )12 0.15:z=) CaN be calculated

[ (s, ')||iz([o,L];Rn)
/t 0z (0,x)

L L
:/ | (s,gc)|2d:v=/
0 0 k
Lt
<o [ [ (1AP0e 0.00F + 10712 0.0)
0 Ju,

+|F 2z (tk,:c)|2) dfdz
SW&MR%+ON%HHﬂAQ=w-

2

df| dx

(25)
In addition, since condition (20a) is satisfied, we have

—20V1(2) = (20 — B)V2(z) < —(20 = B)(Vi(2) + Va(2))
< —(20 = P)e. (26)

Therefore, substituting (23), (25) and (26) into (19), weeha
for all ¢ € [tg,tpt1),k €N,

Since (13) holds, we deduce from (27),
V(z) < —20R < =26V (2). (28)

Therefore, we have shown thid(z)+26V (z) < 0, whenever
conditions (20) are satisfied.

Step 4:In this step, we show that i£(tx,:) € Ly<r,
then z(t,-) € Lv<r,¥t € [tk,tr1). Considerz such
that z(tx,-) € Lyv<gr, assume thaB ¢° € (ty,tx+1) S.t.
V(z(t°,-)) > R. Let us then calll’ the minimum of such
t°, thenVt € [ty, T°), V(2(t,-)) < R. Therefore conditions
§20) are going to be satisfied for artye [tg,T°). From
step 3, we know that” is going to decrease during that
time interval, either continuously, or untif reaches below
max{e, V(z(tx,))/a} and when it reaches that region, it
never gets back out. Therefore, we havgz(7°,-)) <
V(z(tx,-)) < R, which contradicts the assumption that there
existst® € (t,tg4+1) such thatV(z(¢°,-)) > R.

Summary: From step 3 and step 4, it is clear that) +
26V (z) < 0 wherever

{R > V(z(t,)) > max{e, V(z(tx, ")) /a}, (29a)
z(tk, ) € Lv<nr, (29b)

and therefore, the conditions of Theorem 1 are satisfied,
which concludes the proof of Rstability. |

Remark 5.1t is worth pointing out that we use several
parameters and now we summarize each parameter in detail.
For Re-stability, R is the domain of attraction for a given
Lyapunov function,c specifies the positive invariant level
set of V. They satisfy0 < ¢ < R. In this paper, we
can fix R then compute or vice versa.« is a parameter
introduced in the Lyapunov-Razumikhin method to define
level set in which the time derivative df (z(¢,-)) should
be negative between two sampling interval, we choose it
greater than 1. The closeris to 1, the greater the values of
V(z(tx, "))/« are, and the less conservative the conditions
of V-convergence areu is related to the decay rate &f;,
V4, and/ is related to the decay rate bf. ¥ andx are found
by line search to realize the conditions given in Theorem 1.
First, the algorithm of Theorem 1 is implemented in Matlab
using Yalmip [29] to solve the condition 1). Then we use
the same parameters to test the condition 2). Due to (13),
we adjusty, 8 to be the smallest possible apdto be the
largest possible. In the numerical section, we sort out thei
relationship:y > 0, 6 >0, A= min X\, > 0, 0 =

n

ie€{l,...,n}
uA, 0 < B < 20.
IV. NUMERICAL SIMULATION

In this section, we present a numerical example to illus-
trate the method we proposed in Section Il

Consider system (1) wherk = 101 101 , h=0.1,
20 15 2 0
T=log 25| F =5 4 L7h

20 (2) i 0.2(1 — cos27x) sindnx

0.15(1 — cos 4mx) sin 27
According to Remark 5, the parameters in condition (10)
are selected agt = 0.09, k = 1.8, v = 0.001, « = 1.001,
then we chooseg = 0.01, § = 0.001 satisfying condition
(13). We fix R = 20, and choose appropriate;, O, to
observe the evolution of states.



by means of the Lyapunov-Razumikhin method. In the
future, we will consider the global stability with contretl
discretized both in time and in space.

APPENDIX

Lemma 1.Consider the system (1)-(2) with initial condi-
tion zo satisfying Condition 1. Thent € [tx,tx+1),k € N,
0.2(t,0) = 0.

Proof: We recall system (1), the time derivative of
the boundary condition leads t0,z(¢,0) = 0,V €
[tk,tk+1), k € N. Then combining (1a) wittd,z (t,0) = 0,

21

we obtain0 = 0:z(¢,0) = —Ad,z(t,0) — 'z (¢,0) —
. F z (tx,0). Sincez(t,0) = 0,Vt > 0, we haved,z(¢,0) =
Fig. 2. R f statg .
9 esponse of stata 0,Vt € [ty tes1), k € N. ]

The proof of Proposition 1: During a sampling interval
[tk, te+1) With initial statez(tg, ):

1) f V(z(tg,-)) < e, V(2(t,-)) will remain in e during
[thy tht1)-

2) If R>V(z(ty,")) > e:

(a) We haveV (z(t,-)) < V(z(tg,-)) during [tx, tkt1)-
(Otherwise, we will haveV/(z) > 0 > —25V(z) at some
point whenV (z(t,-)) > V(z(tg,-)) > V(2(tx,))/o, which
would contradict the proposition in Theorem 1.)

(b)We can further show that durirg, tx+1)

V(z(t,-)) < max{e, L)) o=25(-t)y/ (1, -))}. (30)

Then we will discuss two possibilities in case (b):

22

Fig. 3. Response of state. (b1) If there existd’ € [ty,tr+1) such thatV (z(¢',-)) =

max{e, V(z(tg,-))/a}. If t € [tg, 1), V() + 26V (2) <0

”s | ‘ ‘ holds, and we hav& (z(t,-)) < e 20—tV (z(ty, ), Vt €
- [tr, t'). If t € [t',try1), V(2(¢,-)) cannot go back above
P e =476 max{e, V(z(tx,-))/a} otherwise, according to the same

principle, it would contradict the proposition in Theorem 1
So, over the whole sampling intervak [ty t;+1), we can
get inequality (30).

(b2) WhenV (z(t,-)) > max{e,V(z(t,-))/a},Vt €
[t trt1), SinceV (z) + 26V (z) < 0, we haveV (z(t,-)) <
\ 1 e~ 200tV (2(ty,-)). Then it is not hard to get (30).

Considerz(ty, ) € Lv<gr, t € [tk, trt1), k € N. We have

t ' ' V(2(t,-))< max{e, V(z(tg, ) /a, e 2V (2(t, )}
Fig. 4. Time-evolution of function V. = max{e, {V (2(tx, "))}, (31)
with ¢ = max{1/a,e"20¢=t)} < 1, then we can de-

The simulation results are introduced in Figs. 2-4. Figd!V® ‘1/<Z('5k;'22;)h = lmsg{g’lgv(%(tk—lﬁ'))}}; _Witt:: ? -
2-3 present that both state trajectories converge to near tﬁ’ax{d/olﬁ’t; B <|_ v te \I{ }, whereh is the lower
origin with the controller and the initial conditions sdyisg o;n reocurs?oiaﬁil?gllglw?gvaiﬁe uality holds (o, ) €
the compatibility condition (3). As can be seen from Fig. 4,£ y VEk e N ’ h g Ineq y 0
the time-evolution of Lyapunov functiovi(z(t, -)) decreases ~V <%’ € 1, we have
when R > V(z(t,-)) > max{e,V(z(ts,))/a},a > 1. V(z(tk, ) < max{e, (max{e,(V(z(tp—2,))}}
Please note that using the method proposed in [11] is not max{e, 2V (2(tp_2,))} < --- < max{e, KV (2(to,-))}. (32)

feasible in the case presented here. o
Then combining (31) and (32), we get that
V. CONCLUSIONS

k

The main work of this paper is to use a sampling controller V((t, ) < max{e, (FV (2(to, 1))} = & - (33)
for distributed control of linear hyperbolic balance lawswhen k is large enough. Therefore, theré k =
The closed-loop system is reformulated based on InpuElogCE/V(Z(toj,))], such thatz(t,-) € Ly<.,Vt > t; ,
Output approach. New stability condition has been obtaineshich leads the proof of Rstability. |
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