N
N

N

HAL

open science

Mbolecule: live prototyping with component-oriented
programming

Pierre Laborde, Steven Costiou, Alain Plantec, Eric Le Pors

» To cite this version:

Pierre Laborde, Steven Costiou, Alain Plantec, Eric Le Pors. Molecule: live prototyping with
component-oriented programming: Preprint from IWST20: International Workshop on Smalltalk

Technologies. 2020. hal-02966704

HAL Id: hal-02966704
https://inria.hal.science/hal-02966704

Preprint submitted on 14 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-02966704
https://hal.archives-ouvertes.fr

Molecule: live prototyping with component-oriented
programming

Pierre Laborde
THALES Defense Mission Systems France, 10 Avenue de la
lére DFL, 29200 Brest, France
pierre.laborde@fr.thalesgroup.com

Alain Plantec
Univ. Bretagne Occidentale, Lab-STICC, CNRS, UMR 6285,
F-29200 Brest, France
alain.plantec@univ-brest.fr

Abstract

At Thales Defense Mission Systems, software products first
go through an industrial prototyping phase. Prototyping are
serious applications we experiment with our end-users dur-
ing workshops. End-users have a central role in the design
process of our products. They often ask for software modifi-
cations during demonstrations to experiment new ideas or
to focus the existing design on their needs.

In this paper, we present how we combine Smalltalk’s live-
programming capabilities with software component models
to obtain flexible and modular software designs in our con-
text of live prototyping. We present Molecule, a Trait-based
Lightweight Corba Component Model implementation in
Pharo. Molecule components are standard Pharo classes us-
ing exclusively Traits to become software components.

We benefit from the dynamic run-time modification capa-
bilities of Pharo during demonstrations with our end-users,
where we explore software designs in a lively way.

Keywords: Live Prototyping, Components, LCCM, Traits,
Pharo

ACM Reference Format:

Pierre Laborde, Steven Costiou, Alain Plantec, and Eric Le Pors.
2020. Molecule: live prototyping with component-oriented program-
ming. In IWST20: International Workshop on Smalltalk Technologies,
September 29th and 30th, 2020, Novi Sad, Serbia. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

IWST20, September 29th and 30th, 2020, Novi Sad, Serbia

© 2020 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. .. $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Steven Costiou
Inria, Univ. Lille, CNRS, Centrale Lille, UMR 9189 -
CRIStAL - Centre de Recherche en Informatique Signal et
Automatique de Lille, F-59000 Lille, France

steven.costiou@inria.fr

Eric Le Pors
THALES Defense Mission Systems France, 10 Avenue de la
lére DFL, 29200 Brest, France
eric.lepors@fr.thalesgroup.com

1 Introduction

At Thales Defense Mission Systems, the Human-Machine In-
terface (HMI) industrial prototyping activities are an impor-
tant part of the software production process. HMI industrial
prototyping is the building of software prototypes as close as
possible to real products from the HMI point of view (graph-
ics and ergonomics). Using prototypes, we evaluate software
HMI design and experiment complete use-cases provided by
end-users. This enables early and strong feedback loops to
fulfill users requirements. Using prototypes, we anticipate
architectural needs and problems before development of real
products begin. The prototyping activity is followed by an
industrialization phase, in which we build final products
based on prototypes’ evaluations and feedback.

The dynamic aspects of prototyping requires the capability
to modify code at run time. Evaluations of prototypes take
hours and end-users are rarely available for review meetings.
During a prototype evaluation bugs may appear, and end-
users may request live modifications of the prototype to
experiment ideas. In such cases, it is important to efficiently
benefit from direct feedback. We cannot stop the program
and lose hours of evaluation. We need to modify and to debug
our prototypes without restarting everything.

In this paper, we present Molecule, an open-source
component-oriented programming framework for the build-
ing of modular software architectures. Molecule has been im-
plemented in Pharo [5] to favor changes at run time, during
demonstrations in front of our end-users. Molecule features
a component model based on the Light-weight CORBA Com-
ponent Model (CCM) specification [1]. Molecule is based on
Traits [4, 11, 16] to define component contracts and to define
interfaces’ behavior. The dynamic aspects of Traits in Pharo
allows us to dynamically redefine and change component
architectures at run time. We are thus able to experiment
changes and ideas with end-users during demonstrations:
this is what we call live prototyping.

In this paper, we present the following contributions:

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

109
110

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

IWST20, September 29th and 30th, 2020, Novi Sad, Serbia

o We exhibit the benefits of Pharo in an industrial con-
text where we use live prototyping intensively to elab-
orate complex systems,

e an overview of Molecule, our Trait-based component
framework which brings a clear separation of con-
cerns to our prototypes implementation and facilitates
updates at run time.

The paper is organized as follows. We explain our require-
ments for live prototyping and how components help for the
elaboration of complex prototypes in Section 2. We present
an overview of Molecule in Section 3, and illustrate its usage
through examples in Section 4. We study related work in
Section 5 and conclude the paper in Section 6.

2 Live prototyping in the defense industry

In the defense industry, we obtain high value feedback from
prototypes demonstrations with end-users. During a demon-
stration, we need to quickly and efficiently capture users’
needs to elaborate Graphical User Interface (GUI) prototypes.
This work cannot be done remotely. It requires presence, ob-
servation and feelings from users in front of their application.
However, there are strong constraints from our end-users’
availability:

e We might only see end-users during a few days once
a year for a prototype demonstration,

e during demonstrations, users always have requests
and ideas they want to experiment,

e we need to take advantage of the users’ presence to
experiment those ideas and benefit from live feedback
loops.

Therefore, a strong requirement of our prototyping activ-
ity is the ability to change pieces of software at run time
to adapt prototypes according to the end-users’s feedback.
Thus, a prototype implementation is expected to evolve of-
ten and quickly during a demonstration. As we learn during
our meetings with end-users, the architecture as well as the
implementation of the software change many times.

=A.. v
T

DEVELOPER

COMPONENTS

Figure 1. Live prototyping with Components

2.1 The importance of live prototyping

Imagine a moving train (Figure 1) and imagine that workers
are changing the rails path without stopping the train. In
practice, this is what we expect during workshops and evalu-
ations: the running prototype is halted on the fly, its code is

Pierre Laborde, Steven Costiou, Alain Plantec, and Eric Le Pors

updated in front of our end-users and then restarted without
stopping the running demonstration. This is particularly im-
portant when we need to choose one solution among several
design candidates. In that case, we evaluate alternatives by
changing the prototype code on-the-fly.

Live code modification gives us the ability to understand
constraints in a given context, and to experiment code alter-
native without losing this context. Indeed, a demonstration
scenario may last hours, and users perform lots of actions
and configurations. If we have to restart demonstrations each
time we change the software, we lose the execution context,
the scenarios’ data and the measured metrics. Complex user
interactions inputs are hard to reproduce, e.g., mouse events
sequences or touch finger gestures. We cannot guarantee
that users will do the same actions again and that they will
reproduce the same execution context. In addition, end-users’
availability is limited and we cannot afford to replay hours-
long scenarios to experiment variations.

When live prototyping with end-users, we dynamically
change the running software to experiment new solutions
without restarting the entire evaluation scenario and losing
measured metrics. To users, these changes are done trans-
parently: they do not lose their configurations, their data nor
the state of the running scenario.

2.2 Enabling live prototyping: an industrial context

Since 15 years, the Thales Defense Mission Systems proto-
typing team uses Smalltalk for prototyping. The motivation
behind the choice of Smalltalk is its dynamic capabilities
which enable live changes of a design in the front of cus-
tomers. From 2005 to 2016, the VisualWorks! system was
used. Since 2016, we integrate also Pharo [5] as a program-
ming environment solution.

However, these technical capabilities for live program-
ming are not enough in our context. Let us come back to
the illustration of Figure 1. Developers are changing pre-
assembled rails. They do not have to build them on the fly
with wood and steel. They dynamically switch one code
portion implementing a particular functional solution by
another in few editing steps. Similarly, we need to clearly
separate the code portions that are updated on the fly from
the legacy code that must stay unchanged [8].

Our final products are component-based architectures,
and we need prototypes and final products to share similar
architecture principles. This guarantees equivalent levels of
services, and precise evaluations of development costs of
final products. Therefore, we also decided to base the pro-
totyping step on component-oriented development to bring
consistency in the whole product life-cycle from the proto-
typing to the final product. In this context, we developed

!http://www.cincomsmalltalk.com/main/products/visualworks/ — accessed
July, 27th, 2020

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

Molecule: live prototyping with component-oriented programming

Molecule, our component-oriented programming framework
for Pharo. The rest of this Paper describes Molecule.

3 Molecule overview

Molecule is a Light-weight implementation of the Corba
Component Model (LCCM) [1]. It allows for the specification
of components as in the Corba standard: provided and used
services, produced and consumed events. However, Molecule
components are only specified and instantiated locally. They
are not exchanged nor shared through a standard object bus.
The rest of this section briefly presents what is a Molecule
component and how it is dynamically managed.

3.1 Molecule, a component framework

Similarly to the LCCM, a component’s business contract is ex-
posed through its component Type (Figure 2). The Type spec-
ifies what a component has to offer to others components
(namely, provided services and produced events) and what that
component requires from others components (namely, used
services and consumed events).

Used Provided
Services Services
A
Molecule
Component
Consumed Produced
Events Events

Used Provided

Parameters Parameters

Figure 2. Public view of a Molecule component.

Thus, the main role of the Type is to implement the ser-
vices that the component provides and that are callable
by other components. Other components use this interface
through their Used Services interface. Produced Events repre-
sent the receivable events interface of the component. Other
components listen to this interface through their Consumed
Events interface. They subscribe and unsubscribe to their
event interface to start and stop receiving notifications. Pa-
rameters are used to control the component’s state. Parame-
ters can only be used once at the component’s initialization.
The light-weight CCM model does not define Parameters,
but instead it allows direct access to public attributes. We in-
troduced the Provided Parameters as an interface to explicitly
define how the state of a component can be initialized. Other
components use this interface through their Used Parameters
interface.

IWST20, September 29th and 30th, 2020, Novi Sad, Serbia

A Molecule component definition is based on Traits [4,
11, 16]. The Type, as well as the services, the events and
the parameters parts are all defined as Traits. A Molecule
component is an instance of a standard class which uses
Molecule traits.

3.2 Live update of components

When a Type is modified, a mechanism automatically up-
dates the component classes implementing this Type. A Mol-
ecule Type is defined by a set of related Traits. A Molecule
component is made of a class which uses a Type Trait. A Type
can be modified either by modifying the Trait aggregation
or the Traits themselves.

For example, adding a particular method in a service Trait
implies updating the related methods in the class that is using
the component Type. In that case, some methods have to be
implemented by hand to plug in the services, and then to
turn the component into a fully usable one at run time. Recall
that during a demonstration, switching from one component
to another must be doable as fast as possible to benefit from
a live demonstration flow.

aProvidedServices1

newMethod
aType1
|
Add &
Edit | methods Uses trait
Remove | Add
interfaces
Remove
Uses trait

aType1 aType1
aComponentA aComponentB
newMethod newMethod

Figure 3. Components automatic modifications using Traits.

Upon the modification of a Type, an additional mecha-
nism automatically implements changes into component
classes using this Type (Figure 3). Adding or removing Traits
(services, events or parameters) in a Type is automatically
detected and all classes using the updated Type are them-
selves updated accordingly. This mechanism is implemented
using the Pragma [3] infrastructure of Pharo.

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

IWST20, September 29th and 30th, 2020, Novi Sad, Serbia

3.3 Run-time management of components

All components are managed by the ComponentManager
object. It maintains the list of component instances currently
alive in the system. It is currently handled as a singleton. The
ComponentManager class implements an API to instantiate
and to remove each component, to associate them, to connect
events, etc. This API is used to manage each component life

cycle programmatically.

ComponentManager

B, &

< &

Figure 4. The ComponentManager manage all components.

3.4 The component states

The activity of a component depends on contextual con-
straints such as the availability of a resource, the physical
state of hardware elements, etc. To manage consumed re-
sources accordingly, the life-cycle of a component has four
possible states: Initialized, Activated, Passivated and Removed
(Figure 5). After its initialization, a component can switch
from an Activated state to a Passivated state and conversely.
When the life-cycle of a component is over, then it switches
to the Removed state.

Let us details each state of a component life-cycle. When a
component is switched to the Initialized state, it is configured
through its provided parameters. If a component depends
on another component through its interfaces (used services,
consumed events or used parameters), these components are
associated during this state.

The Activated state is the nominal state of a component.
When a component is switched to this state, it subscribes to
each consumed events that are produced by the components
that have been associated with it during the Initialized state.
After this subscription step, the component is able to receive
and react accordingly to any of its consumed events.

When a component is paused, it switches to the Passivated
state. Then, the component unsubscribes to its subscribed
events and all its required resources are set in waiting mode.
As an example, a hardware can be set in its sleeping mode,
it can also be asked to free its Graphics Processing Unit
memory. The idea behind this state is to avoid consuming
resources if not needed, and to be able to switch back as
quickly as possible to the Activated state.

Pierre Laborde, Steven Costiou, Alain Plantec, and Eric Le Pors

The terminal state of a component is the Removed state.
When a component switches to this state, all of it resources
are released. The ComponentManager removes that compo-
nent from its list of alive components.

Let us illustrate the use of these states with the example
of a GUI window handled as a component. First, the window
is instantiated by the component. Then the component state
switches to Initialized. When the window is displayed on the
desktop, the component’s state switches to Activated. When
the window is reduced and its icon is stored into a task-bar,
then the component switches to the Passivated state. As the
window is only reduced, it can be re-opened very quickly.
Finally, when the user closes the window. The component is
first switched to the Passivated, then to the Removed state.

Initialized

Activated

Figure 5. Molecule components life-cycle.

4 Molecule by example

In this section, we give an overview of Molecule through two
examples. As depicted in Figure 6, in the first example, we
program a component application that connects to a Global
Positioning System (GPS) hardware and displays the GPS
data on a view map. In the second example, we reuse an
existing non-component class in our Molecule application.
To do so, we augment this class with component behavior.

4.1 The GPS map and data provider example

In this example, we create two Molecule components with
their Types. We show how we define the components events
and services and how these components interact with each
other (Figure 7).

We create a first component, its job is to manage and pro-
vide datas from a GPS hardware (as the current geographic
position). Listing 1 shows an example of component imple-
mentation. To develop a new component from scratch, de-
velopers subclass the MolAbstractComponentimpl abstract
class. In fact, MolAbstractComponentlmpl is a syntactic
sugar directly using the default Molecule trait which injects

386
387
388
389
390
391
392
393
394
395
39
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

1

2

1

2

4

Molecule: live prototyping with component-oriented programming

position
accuracy

GPS Data

Figure 6. Examples with a GPS application.

component shared behavior into classes. The component
Type is implemented through a Trait. In our example GPS-
Data is the Type Trait and GPSDatalmpl is the component
class which uses it.

| MolAbstractComponentlmpl subclass: #GPSDatalmpl
| uses: GPSData.

Listing 1. Creation of GPSDatalmpl component class.

We define the GPSData Type as a Trait which itself uses
the Molecule base Type MolComponentType (Listing 2). This
base Type provides the skeleton methods providedCompo-
nentServices and producedComponentEvents. Developers
have to complete these methods by hand to declare the pro-
vided services and the produced events.

Trait named: #GPSData uses: MolComponentType.
GPSData class>>providedComponentServices
<componentContract>
T{ GPSDataServices }
GPSData class>>producedComponentEvents
<componentContract>
T{ GPSDataEvents }

Listing 2. Declaring the GPSData Type with one provided
services interface and one produced events interface.

The method providedComponentServices (or produced-
ComponentEvents for events) return the array of Traits
that implement the specific provided services (or produced
events for events). Specific services and events are imple-
mented in their own trait, namely, GPSDataServices and
GPSDataEvents (Listing 3). In these traits, we add methods
that the GPSData component Type has to implement.

| Trait named: #GPSDataEvents.

| GPSDataEvents>>currentPositionChanged: aGeoPosition
| "Notify the current geographic position of the GPS

| receiver when changed”

| Trait named: #GPSDataServices.

5 |
‘ |

IWST20, September 29th and 30th, 2020, Novi Sad, Serbia

GPSDataServices>>getAccuracyRadiusInMeters
"Get and return the accuracy of the GPS depending
quality of signal and quantity of connected satellites"

Listing 3. Defining the GPSData Type content.

We create a second component to display a GPS position
on a map. The map displays a circle around the position
whose radius represents the accuracy of the GPS. The sec-
ond component needs to be connected with an existing GPS
data provider component. In Listing 4, we add a new com-
ponent class GPSMaplmpl (lines 1-2) with a new GPSMap
Type (line 3). The Type GPSMap requires to consume ser-
vices of the GPSDataServices interface (lines 4-6) and to use
events of the GPSDataEvents interface (lines 7-9). Note that
these interfaces are already defined and used by our first
component GPSDatalmpl.

MolAbstractComponentImpl subclass: #GPSMaplmpl
uses: GPSMap.

Trait named: #GPSMap uses: MolComponentType.

GPSMap class>>usedComponentServices
<componentContract>
T{ GPSDataServices }

GPSMap class>>consumedComponentEvents
<componentContract>
T{ GPSDataEvents }

Listing 4. Creating GPSMaplmpl component class that uses
GPSMap Type with one used services interface and one
consumed events interface.

As explained in Section 3.2, some methods are automati-
cally generated to plug the services in the component class.
Declaring the uses of GPSDataServices automatically gener-
ates the corresponding accessor getGPSDataServices which
allows the GPSMapImpl component to call the services meth-
ods. Declaring the consumption of GPSDataEvents automat-
ically generates a skeleton implementation of the interface
in the component class GPSMaplmpl (Listing 5). Developers
have to complete generated methods with their application
code.

GPSMaplmpl>>currentPositionChanged: aGeoPosition

| radius

radius := self getGPSDataServices
getAccuracyRadiusinMeters.

"Display a circle on the ma |p view at the current
position”

self updatePositionCircleOnMap: aGeoPosition radius:
radius.

Listing 5. Consumed event generated method.

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
5

sy

6
5

o)

7
568
569
570
571
572
573
574
575
576
577
5

3
3

579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

IWST20, September 29th and 30th, 2020, Novi Sad, Serbia

A component is expected to implement a particular
method for each state introduced in Section 3.4. These meth-
ods are called when the component is switched to the cor-
responding state. In our example, regarding the Activated
state, the corresponding method is componentActivate. This
method is completed by hand with the subscription code
shown in Listing 6 to enable events reception management.

In this example, the subscriber does not specify which
instance of the event provider is required. In that case, the
GPSMaplmpl component subscribes to the first available
event provider. When GPSMaplmpl is activated, it subscribes
to the GPSDataEvents event provider. After the subscription,
a GPSMaplmpl is able to receive the position change events
to update its view accordingly.

1 | GPSMaplmpl>>componentActivate

self getGPSDataEventsSubscriber subscribe: self

Listing 6. Subscription of GPSMaplmpl receives to
GPSDataEvents.

As shown in Listing 7, components instances are created
and activated by the ComponentManager which has the
responsibility to connect them each other lazily.

1 | MolComponentManager

instanciateComponent: GPSMaplmpl.

3 | MolComponentManager

activateComponent: GPSMaplmpl.

Listing 7. Instanciating and activated components.

4.2 Reusing existing code as Molecule components

Imagine that we want to reuse an open-source library that
implements the driver for the GPS hardware that we use. We
want to reuse a class from this existing implementation in our
application to add the capability to use this GPS hardware.

This class is not a Molecule component, and does not share
the same class hierarchy as Molecule components. There-
fore this class does not answer the Molecule component’s
interface, and cannot be reused directly as a component. To
manually plug this class into a Molecule component, we
have to write glue code for the component to use the API
of this class. This requires an additional effort to write non-
functional code, which introduces noise in the application
code. This makes such architecture less to understandable
and to maintainable.

With Molecule, we reuse any existing class by augmenting
that class with component behavior (Figure 8). This class
becomes seamlessly usable as a component in a Molecule
architecture.

Imagine that we want to reuse a class GPSHardware. This
class is originally used as described in (Listing 8). Developers
must instantiate this class, then interact with its instances
to use the GPS hardware.

Pierre Laborde, Steven Costiou, Alain Plantec, and Eric Le Pors

1 | driver := GPSHardware new.
2 | driver connect.
3 | accuracy := driver accuracy.

Listing 8. A GPSHardware class providing the accuracy of
the GPS.

To use the GPSHardware class as a GPSData Type com-
ponent, we augment that class with Molecule component
behavior and with the GPSData Type (Listing 9). First, we
add the Molecule component interface MolComponentIimpl
to the GPSHardware class. Any class that implements this
interface is usable as a Molecule component. Then, we affect
the GPSData Type component to the GPSHardware class.

The MolComponentImpl interface and GPSData Type are
implemented as Traits. Therefore the GPSHardware class
is augmented just by declaring the use of these Traits (line
2). Traits automatically brings the code for implementing
interfaces.

1 | Object subclass GPSHardware
2 | uses: {MolComponentlmpl + GPSData}

Listing 9. Augmenting the GPSHardware class with
Molecule component behavior and set its Type.

After augmenting the GPSHardware class with compo-
nent behavior, we make sure the class implements the com-
ponent contract in accordance with the GPSData Type. By
default, these methods are automatically generated by Mole-
cule. In this example (Listing 9) as we reuse an existing class,
we adapt the generated interface to fit our needs:

e We implement a call to the behavior provided by the
class,

e we implement in addition a conversion from the feet
to meters unit.

Because of the interface enforced to every Molecule com-
ponent, we are able to directly reuse and specialize an ex-
isting class. We only write domain code to reuse existing
behavior into the component architecture and avoid writing
non-functional code.

1 | GPSHardware>>getAccuracyRadiusInMeters

| "GPSHardware use imperial units, need to convert into
| meters"
| Tself accuracy feetToMeters

Listing 10. Reusing and extending the GPSHardware
implementation in the Molecule component interface.

Finally, we instantiate this class as a Molecule component
and we swap the previous implementation GPSDatalmpl
with our new implementation GPSHardware (Listing 11). We
remove the current component from the application (lines
2-3) and replace it with the new component (lines 5-6).

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678

680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715

Type

trait

GPSData

provides

+providedComponentServices()

+producedComponentEvents()

+Uses trait +Uses trait
MolAbstractComponentimpl
+componentActivate()
GPSDatalmpl syntaxic v\ GPSMaplimpl
sugar
+getAccuracyRadiusInMeters() class +currentPositionChanged(aGeoPosition)

Molecule: live prototyping with component-oriented programming

D

IWST20, September 29th and 30th, 2020, Novi Sad, Serbia

Service
trait GPSDataServices

+getAccuracyRadiusInMeters()

Type

trait

GPSMap

uses

produces

D

(=i GPSDataEvents

+usedComponentServices()
+consumedComponentEvents()

consumes

trait

+currentPositionChanged(aGeoPosition)

Component

Component

Figure 7. The GPS map and data provider example

"Removing old GPSData Type implementation from
example 1"
MolComponentManager
removeComponent: GPSDatalmpl.
"Instanciating new GPSData Type implementation with
our re—use class as a component class"
MolComponentManager
instanciateComponent: GPSHardware.
Listing 11.
implementation.

Dynamically swapping components

Swapping components does not require to restart the
whole application, and can be performed at run time. Be-
tween the removal and replacement of a component, it is
possible that other components continue to access the ser-
vices of the removed component (e.g., in multi-threaded ap-
plications). In that case, Molecule automatically returns a
default instance that corresponds to a non-existing provider.
Components implementations must handle this default in-
stance when they require a service from another component.

5 Related Work

Molecule provides the same well-known architectural and
reuse benefits of software components systems [7, 13-15].
To focus on the live aspect of prototyping, we study related
work on run-time software modification.

Run-time adaptation in component systems has been well
studied. For instance, and non-exhaustively, there is work on
dynamic component modification [6, 9, 18], with safety [17]
and consistency [10] concerns. These systems generally only
provide run-time modification of component-related entities

Service
Type trait |GPSDataServices
trait
GPSData 1 S rs()

provides

+providedComponentServices()
+producedComponentEvents()

Event

produces y GPSDataEvents
trait

+currentPositionChanged(aGeoPosition)

+Uses trait

GPSHardware S

+Uses trait

MolComponentimpl

+getAccuracyRadiusinMeters()

St o
P behavior

Figure 8. Reusing existing code as Molecule components.

such as components, component ports or interconnections.
However, while designing and demonstrating prototypes we
also require to modify code outside components, e.g., to fix
bugs in third party libraries.

Smalltalk-based component models implementations [2,
6, 12] enable run-time modification of both component and
non-component code thanks to Smalltalk’s reflective proper-
ties. Such implementations provide the same dynamic, unan-
ticipated run-time modification capabilities as the Molecule
Pharo implementation.

As far as we know, Molecule is the only implementation
of LCCM relying on Traits.

6 Conclusion

Developing industrial prototypes as close as possible to final
products is tedious. At Thales Defense Mission Systems, we

716
717

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825

IWST20, September 29th and 30th, 2020, Novi Sad, Serbia

build such prototypes before a final version is implemented
by another team. Our prototypes are evaluated not only
through their HMI but also through complete functional use
cases. In order to fulfill the requirements and the actual end-
users expectations, we evaluate prototypes with end-users
and adapt them lively according to their feedback. Thus, we
use Pharo to implement our prototypes because of its dy-
namic capabilities. Because our final product are component
oriented, we use this paradigm for the implementation of
our Pharo prototypes. Regarding the life-cycle of a product,
the direct benefit is the traceability between the prototypes
components and the final products components. Moreover,
the implementation and the lively adaptation of our proto-
types is also facilitated by the component orientation. In
this paper we presented Molecule, a light-weight CORBA
Component Model implementation based on Traits that we
have developed in this context. We presented an overview of
Molecule and illustrated its usage through a simple example.

More and more, our prototypes involve multiple users on
collaborative tasks on interconnected workstations. We will
upgrade the capacity of Molecule to build distributed compo-
nent architectures. In the future, we want to use Molecule in
distributed architectures but keeping all its live prototyping
capabilities. This is challenging as this implies consistent
modifications of remote and distributed run-time architec-
tures.

Acknowledgments

We thanks Thales Defense Mission Systems for their contin-
uous support and for believing in the powers of live proto-
typing, and the Thales technical board who authorized us to
publish our work in the open source world. We thanks also
Nolwenn Fournier and Camille Delloye for their participa-
tion to the elaboration of Molecule.

References

[1] Corba component model specification. https://www.omg.org/spec/
CCM/4.0/PDF, accessed: july 7th, 2020

[2] Bouragadi, N., Fabresse, L.: Clic: a component model symbiotic with
smalltalk. In: Proceedings of the International Workshop on Smalltalk
Technologies. pp. 114-119 (2009)

[3] Ducasse, S., Miranda, E., Plantec, A.: Pragmas: Literal Messages as Pow-
erful Method Annotations. In: International Workshop on Smalltalk
Technologies - IWST 2016. Proceedings of the 11th edition of the
International Workshop on Smalltalk Technologies, Prague, Czech
Republic (Aug 2016). https://doi.org/10.1145/2991041.2991050, https:
//hal.inria.fr/hal-01353592

[4] Ducasse, S., Nierstrasz, O., Scharli, N., Wuyts, R., Black, A.P.: Traits: A
mechanism for fine-grained reuse. ACM Transactions on Programming
Languages and Systems (TOPLAS) 28(2), 331-388 (2006)

[5] Ducasse, S., Zagidulin, D., Hess, N., written by A. Black, D.C.O.,
Ducasse, S., Nierstrasz, O., with D. Cassou, D.P., Denker, M.: Pharo by
Example 5. Square Bracket Associates (2017), http://books.pharo.org

[6] Fabresse, L., Dony, C., Huchard, M.: Unanticipated connection of com-
ponents based on their state changes notifications. In: EECC: Evalua-
tion and Evolution of Component Composition (2006)

Pierre Laborde, Steven Costiou, Alain Plantec, and Eric Le Pors

[7] Lau, KK., Wang, Z.: Software component models. IEEE Transactions
on software engineering 33(10), 709-724 (2007)

[8] Panunzio, M., Vardanega, T.: A component-based process with sepa-

ration of concerns for the development of embedded real-time soft-

ware systems. Journal of Systems and Software 96, 105 — 121 (2014).

https://doi.org/https://doi.org/10.1016/j.jss.2014.05.076, http://www.

sciencedirect.com/science/article/pii/S0164121214001381

Piechnick, C., Richly, S., Gétz, S., Wilke, C., ABmann, U.: Using role-

based composition to support unanticipated, dynamic adaptation-

smart application grids. Proceedings of ADAPTIVE pp. 93-102 (2012)

[10] Rudametkin Ivey, W.A.: Robusta: une approche pour la construction
d’applications dynamiques. Ph.D. thesis, Grenoble (2013)

[11] Schérli, N., Ducasse, S., Nierstrasz, O., Black, A.P.: Traits: Compos-
able units of behaviour. In: European Conference on Object-Oriented
Programming. pp. 248-274. Springer (2003)

[12] Spacek, P., Dony, C., Tibermacine, C.: A component-based meta-
level architecture and prototypical implementation of a reflective
component-based programming and modeling language. In: Proceed-
ings of the 17th international ACM Sigsoft symposium on Component-
based software engineering. pp. 13-22 (2014)

[13] Szyperski, C.: Component technology-what, where, and how? In: 25th
International Conference on Software Engineering, 2003. Proceedings.
Pp. 684-693. IEEE (2003)

[14] Szyperski, C., Bosch, J., Weck, W.: Component-oriented programming.
In: European Conference on Object-Oriented Programming. pp. 184—
192. Springer (1999)

[15] Szyperski, C., Gruntz, D., Murer, S.: Component software: beyond
object-oriented programming. Pearson Education (2002)

[16] Tesone, P., Ducasse, S., Polito, G., Fabresse, L., Bouraqadi, N.: A new
modular implementation for stateful traits. Science of Computer Pro-
gramming (2020)

[17] Vandewoude, Y.: Dynamically updating component-oriented systems
(2007)

[18] Vandewoude, Y., Berbers, Y.: Supporting run-time evolution in seescoa.
Journal of Integrated Design and Process Science 8(1), 77-89 (2004)

[9

—

826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853

855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

https://www.omg.org/spec/CCM/4.0/PDF
https://www.omg.org/spec/CCM/4.0/PDF
https://hal.inria.fr/hal-01353592
https://hal.inria.fr/hal-01353592
http://books.pharo.org
http://www.sciencedirect.com/science/article/pii/S0164121214001381
http://www.sciencedirect.com/science/article/pii/S0164121214001381

	Abstract
	1 Introduction
	2 Live prototyping in the defense industry
	2.1 The importance of live prototyping
	2.2 Enabling live prototyping: an industrial context

	3 Molecule overview
	3.1 Molecule, a component framework
	3.2 Live update of components
	3.3 Run-time management of components
	3.4 The component states

	4 Molecule by example
	4.1 The GPS map and data provider example
	4.2 Reusing existing code as Molecule components

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

