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ABSTRACT
Function approximation is an important tool that is fre-
quently used in numerical mathematics and engineering. The
most challenging approximation problems arise, when even
the function class is unknown and the surface has to be
approximated online from incoming samples. One way to
achieve good approximations of complex non-linear func-
tions is to cluster the input space into small patches, apply
linear models in each niche, and recombine these models via
a weighted sum. While it is rather simple to optimally fit
a linear model to given data, it is fairly complex to find a
reasonable structuring of the input space in order to exploit
linearities in the underlying function. We compare two algo-
rithms that are able to approximate multi-dimensional, non-
linear functions online. The XCSF Learning Classifier Sys-
tem is a modified version of XCS, which is a genetics-based
machine learning algorithm. Locally Weighted Projection
Regression (LWPR) is a statistics-based machine learning
technique that is widely used for function approximation,
particularly in robotics. The two algorithms are compared
on three benchmark functions by monitoring several perfor-
mance related measures over the learning trials. Moreover,
an illustration of the final input space structuring sheds light
on the clustering capabilities.
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1. INTRODUCTION
When an unknown function over an infinite input space

is iteratively sampled, often generalization (interpolation) is
desired. Such applications can be found in several areas,
including numerical mathematics and robotics. However,
without knowledge about the function class, the classical
function fitting methods cannot be applied.

Alternatively, the input space can be clustered such that
simple linear models suffice to fit the given data in each
niche with sufficient accuracy. In turn, these models are
recombined in a weighted sum to yield a smooth approxi-
mation of the whole function surface. This article compares
two such methods, namely the Locally Weighted Projection
Regression (LWPR) algorithm [12] and the XCSF Learning
Classifier System [15].

While it has been shown that the performance of XCSF is
comparable to LWPR [2], the study was restricted to the fi-
nal prediction error, only. We take the comparison one step
further and analyze learning behavior and population struc-
tures in detail by monitoring the approximation error and



population size during learning. Furthermore, the resulting
input space clustering after learning is visualized and com-
pared directly. A detailed discussion also tackles algorithmic
complexity and emphasizes advantages and disadvantages of
each algorithm.

The remainder of this article is structured as follows. First,
we give a brief overview of the two algorithms in Section 2,
where similarities and differences are highlighted. Section 3
discusses how these techniques can be compared objectively.
Results of the conducted experiments from Section 4 are dis-
cussed in Section 5. The final section concludes this article.

2. LWPR AND XCSF
A detailed description of both algorithms is beyond the

scope of this article—instead we give a rough idea how the
systems approximate functions and highlight similarities and
differences. For a detailed description of XCSF, please refer
to [13, 15]. Details of LWPR and its predecessor can be
found in [7, 11].

Consider an n-dimensional real-valued function

f : Rn → R,

that is sampled iteratively: each time step a sample (~x, y)
is given to the algorithm, where y = f(~x). The goal is
to approximate the whole function surface online from the
given samples. The following section briefly describes the
common workflow that enables both systems to solve this
approximation problem, while the subsequent section in turn
highlights the differences.

2.1 Overview and Similarities
In order to accurately approximate an unknown, non-

linear function1 from a finite number of samples, the input
space can be clustered into smaller subspaces such that sim-
ple linear models yield sufficient accuracy in each subspace.
Consequently, learning takes place at two levels: (a) finding
an appropriate structuring of the input space and (b) fitting
linear models to each subspace. First, the basic representa-
tions are explained briefly before the learning mechanisms
are introduced.

Concerning the input space structuring, LWPR is equipped
with receptive fields (RFs) that essentially define an ellip-
soidal shape. A receptive field in XCSF is called a classi-
fier and ellipsoidal shapes are one possible choice [2]. From
now on, the term receptive field is also used for XCSF’s
classifiers. Both systems are initialized with empty popula-
tions, and receptive fields are created, when a new input ar-
rives that is not yet covered (so called covering mechanism).
An n-dimensional, not necessarily axis-aligned ellipsoid po-
sitioned at center ~c ∈ Rn can be described by a symmetric,
positive semi-definite matrix D ∈ R(n×n). A quadratic form
specifies the squared distance

d2 = (~x− ~c)T D (~x− ~c) (1)

from a point ~x to the center, where T is the transpose op-
erator. Symmetry and positive semi-definiteness are neces-
sary conditions for an ellipsoidal representation. Solving for
d = 1 yields the points ~x on the surface of the ellipsoid.
The other way around, given a point ~x, the equation may
be used to specify the squared distance of ~x to the center of
the receptive field, which in turn can be used to determine if

1Simple least squares methods suffice if the data is linear.

a receptive field is responsible for an input. Given an eigen-
decomposition of D with eigenvectors ~vi and eigenvalues ei,
the principal axes of the ellipsoid are the eigenvectors and
the corresponding radii are given by ri = 1/

√
ei. The eigen-

decomposition of a symmetric positive semi-definite matrix
always exists and only yields real eigenvalues.

Concerning the linear prediction, each receptive field con-
tains n weights βk and the predicted function value is

p(~x) =

nX
k=1

βkxk + β0, (2)

where β0 is the intercept.
Altogether, given an input ~x both systems scan their pop-

ulation P of receptive fields for those that match the input
best and a weighted sum of individual approximations yields
the final prediction

ŷ =

P
i∈M wipi(~x)P

i∈M wi
, (3)

where M is the set of matching receptive fields and each
receptive field is connected to a weight wi (described later).
Matching and weighting slightly differ in LWPR and XCSF,
but the main idea is that RFs close to the current input
contribute the most to the final prediction.

2.2 Differences
In LWPR all receptive fields in the population are said

to match, but their contribution wi to the final prediction
equals their gaussian activity

ai(~x) = exp(−0.5d2), (4)

where d2 is the squared distance from current input to the
center of the receptive field (Equation 1). For computational
efficiency, only those RFs with an activity ai ≥ 0.001 are in-
cluded in LWPR’s matchset. Furthermore, with wi = ai

only those RFs close to the current input contribute signif-
icantly to the prediction in (3). By contrast, in XCSF only
those RFs with distance d ≤ 1 to the center, that is, those
RFs that contain the input, are said to match. Here, the
weighting is based on a scaled inverse of the prediction er-
ror, that is, accurate RFs contribute more. To sum up, in
both systems the prediction is governed by those RFs close
to the input. While LWPR realizes a smooth transition from
one RF to the other via an exponential weighting, XCSF’s
weighting emphasizes accuracy and less accurate RFs also
contribute less to the prediction.

Up to now, the actual learning mechanisms were not men-
tioned at all. We recall, that locally linear function approx-
imation involves (a) learning the input space structuring,
that is, size and rotation of the RFs and (b) fitting the
data of an RFs subspace to a linear model. Furthermore,
in an online learning environment, the first step can only be
achieved when enough information about the linearity of the
data that one receptive field receives is available.

Fitting a linear model to given data can be achieved easily
with classical least squares methods and fast online versions
of such algorithms are available as well. XCSF uses the re-
cursive least squares (RLS) algorithm, which has been shown
to yield good approximations fast [6]. The predecessor of
LWPR, that is RWFR [7], also uses RLS.

In contrast, LWPR applies an incremental partial least
squares algorithm, which is the incremental version of the



partial least squares (PLS) method [4]. The PLS technique
is especially useful in high-dimensional problems with even-
tually irrelevant dimensions. Based on the direction of high-
est correlation of inputs and prediction error, PLS fits one
gradient for the first projection. Further projections are
added based on the correlation of the previous projected
input and residual error, until the prediction error is not af-
fected by additional projections. This way, the incremental
PLS only picks relevant dimensions. Again, the updates to
the incremental PLS model in LWPR are weighted with the
activity ai of each receptive field. Thus, not only the RFs
contribution to the prediction is modified by its distance
to the input, but also the update rate of the linear predic-
tion. In sum, both methods yield reliable linear predictions
and apart from computational complexity, the differences
are negligible in the context of this article. Now, one im-
portant question is left: How is the locality learned, that is,
how is the shape and size of the RFs adapted?

It is non-trivial to find an input space clustering that al-
lows for locally linear approximation and that’s where the
systems are very different. While XCSF builds on a steady
state genetic algorithm (GA), the updates of the distance
metric in LWPR are realized by pure statical gradient de-
scent. XCSF has a maximum population size that allows for
evolutionary competition between RFs, whereas LWPR’s re-
ceptive fields are completely local and do not interact except
for the final prediction. A detailed description is not pos-
sible in this context, but the rough idea is sketched in the
following paragraphs.

Input Space Structuring in XCSF.
Each receptive field has an estimate of its current abso-

lute prediction error, which is the basis of a sophisticated
fitness scheme that also includes fitness sharing. Receptive
fields with a low prediction error get a higher fitness value
and if few receptive fields cover the same input, these re-
ceptive fields get a large share of the available fitness [13].
Based on the fitness value, a steady state GA reproduces two
receptive fields using tournament selection. Crossover and
mutation operators are applied to the location c, stretch,
and rotation (defined by D) of these receptive fields, which
are in turn inserted back into the population. When the
maximum population size is reached, a deletion mechanism
kicks in and removes RFs from overcrowded regions using a
proportionate selection probability. In order to allow for an
accurate fitness evaluation, young RFs remain untouched.
Another important detail is that fitness is flattened, when
a maximum accuracy (as defined by the user) is achieved.
Consequently, XCSF strives to evolve more accurate RFs
until a given threshold is reached—thereupon, a generaliza-
tion pressure pushes RFs to span larger areas as long as they
are sufficiently accurate.

With the GA “working” on the population, there is al-
ways an evolutionary overhead of RFs that are freshly mu-
tated but not yet evaluated. This dirty “workspace” can
be purged towards the end of learning by either condensa-
tion [14] or greedy compaction [2]. Both mechanisms reduce
the population size by up to 90% and accurate RFs are left.

The clear advantage of an evolutionary mechanism is that
the optimal structure for any shape or function can be found
without knowledge of the fitness gradient. The disadvantage
is an overhead in the number of receptive fields during learn-
ing and consequently higher computational cost. Further-

more, the fitness signal might get lost in high-dimensional
spaces due to a large number of mutation and crossover al-
ternatives that do not improve the fitness significantly.

LWPR’s Structuring Capability.
Once a receptive field in LWPR has seen enough inputs,

its distance metric D is optimized by using an incremental
gradient descent based on stochastic leave-one-out cross val-
idation [12]. In contrast to XCSF, the center c is not mod-
ified. The high-level updates rules can be written in two
steps, where a subscript t indicates the current iteration.

Dt = MT
t Mt, where M is upper-triangular, (5)

Mt = Mt−1 + α
∂J

∂Mt−1
, (6)

where the upper-triangular matrix M, which can be ob-
tained by a cholesky decomposition of D, ensures that the
distance metric stays positive semi-definite, α is the learning
rate, and J is a sophisticated cost function to be minimized.
The cost function includes the activity weighted errors and a
penalty term that prevents RFs from indefinitely shrinking,
because LWPR does not have a fixed target error. Details
can be found in [7, 11]. In sum, LWPR tries to modify the
distance metric such that the prediction error is minimized
while indefinite shrinkage is prevented. When the residual
errors have less influence than the penalty term, RFs can
also enlarge.

One major benefit of statistics-based updates is the low
population size. In contrast to an evolutionary search, no
overhead in the number of RFs is required to evaluate dif-
ferent mutation directions, but instead the statistics should
in theory point to the optimal direction. Given optimal pa-
rameter settings and perfect statistics, the system should
work for any dimension with sufficient learning speed and
an acceptable computational cost. However, incremental up-
date rules can only approximate the statistics available from
batch training and several parameters have to be tuned for
each problem anew in order to achieve good results [5]. The
following section briefly discusses how the machine learning
techniques LWPR and XCSF can be compared objectively.

3. HOW TO GET A FAIR COMPARISON?
It is not trivial to compare LWPR and XCSF, since there

are several relevant, eventually conflicting performance fac-
tors, including

1. learning time in milliseconds,

2. learning time in the number of samples,

3. algorithmic complexity in general,

4. approximation accuracy, or

5. population size.

Although computational time is a major decision variable
in real-world applications, this measure highly depends on
implementation and programming language—a more objec-
tive measure would be the learning time in the number of
samples, which we monitor in our comparison. A detailed
discussion on the complexity of both algorithms goes beyond
this article, however, we also tackle this topic later.

Moreover, the approximation accuracy is an important
factor that is directly connected to the population size. As



a higher population size usually allows for higher accuracy,
these measures cannot be compared individually. However,
LWPR neither allows to fix a target error nor the population
size. In XCSF, a target error and maximum population
size might be specified, but the Learning Classifier System
is not guaranteed to reach the target error, and the final
population size (without the evolutionary overhead) largely
depends on the function structure.

In order to make this comparison fair, we decided to first
tune LWPR until a sufficiently low target error is reached.
Parameter tuning is done manually by decreasing the ini-
tial receptive field size, modifying the learning rate α and
penalty value according to the instructions in [5]. The cho-
sen target error was close to XCSF’s typical performance
with default parameters on the same functions. Next, we
modified XCSF’s maximum population size such that the fi-
nal number of RFs approximately equals LWPR’s number of
RFs (less than ±5% on average). Thus, the number of RFs
and the final prediction error are somewhat similar. This
procedure allows for a fair – albeit not exact – comparison
of the learning behavior, that is, the input space clustering,
which is the major challenge for locally linear function ap-
proximation algorithms. In order to analyze the structuring
capabilities, we plot the final structure of the receptive fields
(consequently, this study is restricted to two-dimensional in-
put spaces) and also measure the average volume of the RFs.
Concerning the computational time, we refrain from measur-
ing it directly and restrict ourselves to a brief excursus on
algorithmic complexity.

Developers of LWPR claim a linear complexity in the
number of inputs [12], however, this is not generally true.
In order to accurately approximate a non-linear function
over an n-dimensional space, the number of receptive fields
required is also exponential in the order n, when the func-
tion does not have irrelevant dimensions [10], which cor-
responds to the curse of dimensionality. Furthermore, the
matching and update procedures involve matrix operations,
which induce a quadratic complexity in the number of in-
puts, when the matrices are non-diagonal. Matrices that
contain non-zero entries only on the diagonal (linear match-
ing complexity) are possible in both systems corresponding
to axis-aligned ellipsoids, which reduces the expressiveness
of the developed solutions and eventually requires higher
population sizes to achieve a similar target error. At best,
the complexity is linear when diagonal-only matrices are
used and the population size is fixed—consequently the pre-
diction error usually strongly increases with increasing di-
mension n. Alternatively, a linear complexity is true for
an n-dimensional function with n − 1 irrelevant, empty di-
mensions. As soon as the input space increases, even with
irrelevant dimensions, this claim does not hold.

Thus, the computational time for learning largely depends
on the actual population size (exponential in n) and less on
the complexity of update rules, which ranges from constant
to polynomial complexity in n depending on the representa-
tional complexity (e.g. constant for spherical RFs that only
modify the radius in conjunction with a simple prediction
that resembles the average of seen samples). The popula-
tion size, in turn, mainly depends on the required target
error and the receptive field’s ability to structurally align its
shape to the structure of the underlying function. To sum
up, as both systems use the same geometric structure, the
complexity in terms of required population size is at least

Table 1: LWPR’s parameters after manual tuning.
Parameter Value Meaning

init_D 500 initial (inverse quadratic) size
of RFs

alpha 1000 learning rate for the distance
metric

penalty 10−9 penalty term to avoid indefi-
nite shrinking

w_gen 0.2 threshold that specifies, when
to create new RFs

in the same order. Admittedly, the required number of RFs
is by a constant larger for XCSF due to evolutionary over-
head [10].

4. EXPERIMENTS
In the following experiments, the up-to-date implementa-

tions of both systems are used, that is, the current version of
the original C implementation of LWPR [1] and a Java im-
plementation of XCSF [9]. We compare the machine learn-
ing algorithms on three typical benchmark problems, where
one is taken from the LWPR side and two are taken from
XCSF’s benchmark repertoire. In order to visualize the pop-
ulation structure, this study is restricted to two-dimensional
functions. Furthermore, we are not interested in noisy func-
tions as this goes beyond the scope of this article. For al-
gorithmic reasons, the functions are defined in the interval
[−1, 1]2 for LWPR, whereas for XCSF, the input space is
normalized to [0, 1]2.

1. The Crossed Ridge function contains a mix of linear
and non-linear subspaces.

f1(x1, x2) = max
ˆ

exp(−10x2
1), exp(−50x2

2),

1.25 exp(−5(x2
1 + x2

2))
˜

2. The Sine function is constant in the (1,−1) direction
but highly non-linear in the perpendicular (1, 1) direc-
tion.

f2(x1, x2) = sin (2π(x1 + x2))

3. The Sine-in-Sine function is completely non-linear and
a high curvature makes f3 a challenging problem.

f3(x1, x2) = sin

„
4π

„
x1 + 1

2
+ sin

„
π
x2 + 1

2

«««

Figure 1 includes surface plots of these functions to illustrate
the corresponding learning task.

According to the previous section, we manually tune both
machine learning algorithms such that the final prediction
error and population size are in similar bounds. For LWPR,
we activate the distance metric learning (update_D=1), allow
rotation of ellipsoids (diag_only=0), but deactivate second
order learning (meta=0) since the achieved prediction error
is worse using meta learning. The resulting parameters from
manual tuning according to instructions from the authors [5]
are summarized in Table 1.
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Figure 1: Surface plots of (a) the Crossed Ridge function f1, (b) the Sine function f2, and (c) the Sine-in-Sine
function f3.

Table 2: Rounded prediction error and population
size measures (E ± σ) after learning.

f1 MAE Number of RFs
LWPR 0.0055± 0.0004 439.2± 8.35
XCSF 0.0053± 0.0008 434.5± 17.45

f2 MAE Number of RFs
LWPR 0.0124± 0.0004 460.8± 4.54
XCSF 0.0045± 0.0011 462.4± 13.32

f3 MAE Number of RFs
LWPR 0.0352± 0.0009 534.9± 6.40
XCSF 0.0259± 0.0013 543.1± 10.14

Concerning XCSF, we mostly used the default parame-
ters2, and only modify the maximum population size such
that the final number of RFs after condensation approxi-
mately matches the number of RFs in LWPR. In particular,
the maximum population size is set to 2500 for functions f1
and f2, while N = 3950 is used for f3. We conducted ten
independent runs for both systems on each function over
100000 learning iterations, each. The mean absolute pre-
diction error (MAE) and number of RFs after learning are
contained in Table 2. The settings result in very similar
population sizes for LWPR and XCSF and a reasonable pre-
diction error is achieved. It seems that XCSF achieves bet-
ter prediction performance on functions f2 and f3, which is
analyzed in depth now.

In addition to prediction error and population size, we are
interested in the actual clustering of the input space. Apart
from a visualization that depicts the ellipsoidal structure,
we can measure the average volume of RFs. This measure
reflects the generalization capabilities as more general re-
ceptive fields cover a larger subspace. However, the repre-
sentations are very different for the two algorithms in that
LWPR’s RFs are (almost) always active but the contribu-
tion to the prediction is exponentially scaled by the distance
~x− ~c to its center, while XCSF’s RFs have a specific radius
of activation and either fully contribute or do not contribute

2As in [2], XCSF’s parameters are set to ε0 = 0.01, β = 0.1,
δ = 0.1, α = 1, θGA = 50, θdel = θsub = 20, χ = 1. Mutation
rate is set to µ = 1/n = 0.2. Receptive field’s initial radius
is taken uniformly random from [0.005, 1]. GA subsumption
is applied. Condensation is applied after 90000 iterations.

at all to the prediction. Consequently, there is no compara-
ble volume measurement. However, in order to get an idea
how the distance metric changes over time, we compute an
average volume in LWPR using the radius from the recep-
tive field’s center c to the inflection point of the gaussian
activity function, that is, when ai(~x) = exp(−0.5) ≈ 0.6.

The Crossed Ridge Function.
Figure 2(a) shows the prediction error, the number of al-

located RFs, and the generality as measured by the volume
for both systems over the learning time. By definition of
the experimental setup, the final number of receptive fields
is similar and also the difference in MAE is negligible (see
also Table 2). In contrast to LWPR, the initial prediction
error in XCSF is much higher due to the large initial size of
receptive fields during covering. The population size quickly
increases and the evolutionary search for an optimal cluster-
ing begins. Over time, the MAE reaches a reasonable level
and at iteration 90000 the condensation mechanism kicks in
to remove evolutionary overhead from the population. As
an expected side effect of the evolutionary mechanism, the
variance is higher in all measures for XCSF.

Although the generality measures are not directly compa-
rable, the graph illustrates that XCSF starts with a coarse
clustering and the GA refines the structure until a sufficient
MAE is achieved. Starting at 90000 iterations, the con-
densation technique emphasizes maximally general receptive
fields. In contrast, the volume of LWPR’s receptive fields is
hardly changed at all (initial avg. volume is 0.006283, final
avg. is 0.00623), which also explains the very good predic-
tion performance at the initial stage of learning.

Going one step further, we analyze the actual clustering
of the input space in Figures 2(b) and (c). Again, this vi-
sualization is not exactly comparable, as the RFs in LWPR
have a much larger area of influence than the radius to the
inflection point of the activity function, as depicted in the
graphic. Furthermore, XCSF’s receptive fields are depicted
at 20% of their actual size to highlight the structure. Both
systems develop larger RFs at the edges of the input space
and thin RFs on the “ridges” (compare Figure 1(a)). How-
ever, XCSF’s structure is more pronounced, while almost
spherical RFs suffice in LWPR to reach a similar prediction
error. On the other hand, LWPR develops a rather clean,
non-overlapping structure while XCSF evolves strongly over-
lapping RFs.
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Figure 2: Performance measures and input space
clustering on the Crossed Ridge function f1.
(a) Mean absolute error, number of receptive fields,
and the generality measure (mean plus standard de-
viation; vertical axis is log-scaled). (b) Visualization
of LWPR’s distance metrics D after learning. The
ellipsoidal lines represent the inflection point of the
gaussian activity. (c) Visualization of XCSF’s dis-
tance metrics. RFs are scaled to 20% size in order
to highlight the structure.

The Oblique Sine Function.
The same measurements are depicted in Figure 3 for the

oblique sine function f2. While the number of receptive
fields is comparable, XCSF reaches on average an MAE of
0.0045 compared to LWPR’s average final prediction error of
0.0124, which is about 2.7 times higher. The optimal struc-
ture on f2 consists of needle-like ellipsoids in parallel to the
(1,−1) axis, since the function is constant in this direction.
High curvature on the orthogonal (1, 1) axis demands small
extent in this direction. While LWPR’s input space cluster-
ing only marginally aligns to the oblique linearity, XCSF’s
clustering is very extreme in that the axis ratio of the el-
lipsoids is on average 27.3315

0.0196
≈ 1390, that is, the ellipsoids

elongated axis is about 1390 times longer than the short
axis. Thus, the ellipsoids appear as thin lines in Figure 3(c)
and reach far beyond the actual input space borders.

LWPR and XCSF on Sine-in-Sine.
Figure 4 reveals a similar scenario with respect to the com-

pletely non-linear function f3. While the number of RFs is
similar, XCSF strongly structures the input space by means
of rotated thin ellipsoids along the curvature of the func-
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Figure 3: Performance measurements and popula-
tion visualizations for the Sine function.

tion. Small spherical RFs suffice to reach the target error
at the center, while thin, elongated ellipsoids are evolved at
the lower and upper borders.

We can only speculate, that in LWPR either the penalty
term prevents the development of such a structure, the statis-
tics-based gradient is not strong enough, or the chosen pa-
rameter settings are not useful. However, manual trial-and-
error with various settings did not yield better results. Set-
ting the penalty to zero disables the ability of RFs to en-
large at all and using initially very large RFs also does not
result in an appropriate structuring in even longer learning
trials. The best“structuring”was found when activating sec-
ond order learning in conjunction with large receptive fields
(cf. Figure 5). It seems that the meta learning modifies
the learning rates α for each matrix entry Dij such that the
oblique structuring of the distance metric D is possible. Un-
fortunately, the effect is lost with smaller RFs and it is not
strong enough to create thin ellipsoids, as XCSF does, to
minimize the prediction error. Surprisingly, the use of meta
learning usually results in a higher prediction error.

5. DISCUSSION
Generally, both systems are well applicable to the bench-

marks problems in this article as an appropriate prediction
error is achieved by LWPR and XCSF as well. However, the
investigated functions only represent a small niche of two-
dimensional problems. From a broader viewpoint on func-
tion approximation, we now outline advantages and disad-
vantages of the genetics-based and the statistics-based ma-
chine learning techniques investigated here.
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Figure 4: Performance measurements and popula-
tion visualizations for the Sine-in-Sine function.

Structuring Capabilities.
The current results suggest that the statistics-based ap-

proach in LWPR does not suffice to reliably find an optimal
structuring for the linear predictor. While LWPR reaches
a low error faster than XCSF, this is due to the fact that
the initial size of receptive fields in LWPR is very small
because of manual tuning. The crossover, mutation, and
selection mechanism of XCSF’s genetic algorithm works in
any complex search space, as long as the fitness gradient is
sufficiently strong. The assumption of smooth functions fits
to the crossover operator, as the crossover distributes use-
ful substructures in the local proximity of a receptive field,
while LWPR’s receptive fields have only local information.
On the other hand, a statistical approach allows for a uni-
form distribution of RFs, which is more efficient than the
evolved, typically overlapping structure in a Learning Clas-
sifier System. However, XCSF is the first choice when a
uniform spherical structure does not suffice—either because
the desired error cannot be reached with a reasonable pop-
ulation size or because the algorithm is applied for the sole
purpose of gaining insights about the structure.

Parameter Sensitivity.
Parameter fine-tuning is usually an art—otherwise the al-

gorithms could implement simple rules-of-thumb or adapta-
tion schemes. Both systems have important parameters that
might be tuned for any problem anew. However, XCSF’s rel-
evant parameters, that is, population size and target error,
can be set intuitively by the user. In contrast, it is not as
simple to determine appropriate learning rates and a suit-
able initial size for receptive fields in LWPR.
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Figure 5: LWPR’s final structure on f3 with different
parameters (init_D=50, alpha=50, penalty=0.000001,
meta=1). Due to the coarse structuring, the final er-
ror is 0.1725.

Computational Effort.
A huge population size is the major reason for slow learn-

ing times in both algorithms. For non-linear n-dimensional
problems the required population size is usually also expo-
nential in n and consequently LWPR’s O(n) claim is ques-
tionable. Given a desired target error, it is crucial to allocate
as few RFs as possible while structuring their shape such
that the data within each receptive field is approximately
linear. Here, XCSF’s drawback is the evolutionary search
that requires an overhead in RFs to evaluate different struc-
tural possibilities. Consequently, the computational time, in
terms of milliseconds, speaks in LWPR’s favor. However, as
XCSF might be able to find a better structure than LWPR,
the same number of receptive fields after learning may result
in a reduced prediction error.

Higher Dimensions, Irrelevant Dimensions.
For high-dimensional problems, the computational effort

is pronounced and dimensionality reduction is non-trivial.
The incremental PLS predictor used with LWPR incremen-
tally adds linear projections, until adding more projections
does not increase the accuracy, and thus enables LWPR to
ignore irrelevant input subspaces in the local linear mod-
els. This reduces the number of weights to be adapted to
the number of required projections. For example, when a
two-dimensional function is twisted into a 20-dimensional
space, LWPR’s linear predictor only requires two projection
directions and two weights, while the other dimensions are
ignored [11].

However, the computational benefit fades, as more dimen-
sions become relevant, because the relevant space has to be
spanned by orthogonal projections. When n projections are
required, the recursive least squares algorithm, which spans
all n dimensions with one projection, as applied in XCSF, is
faster due to less complex update rules. More important, al-
though the linear predictor might ignore certain dimensions,
this is not true for the distance metric. When one dimen-
sion should be ignored by either LWPR or XCSF, this has
to be realized within the distance metric such that the ra-
dius in this dimension is large enough to cover all samples in
this particular direction. Consequently, if the user does not
modify the initial size of the RFs beforehand, LWPR cre-
ates many RFs to cover this dimension although the linear
models ignore it completely.



Although several successful applications of LWPR to so
called “high-dimensional problems” can be found in the lit-
erature [8, 3, 11], these studies actually sample relatively
small trajectories through these spaces. Therefore, the ap-
plicability of both systems to high-dimensional non-linear
problems is an open research topic. From the results in this
study, LWPR’s structuring on high-dimensional functions is
expected to be more or less spherical, which might suffice
for a wide range of functions and a similar behavior can
be produced with XCSF by using axis-parallel ellipsoids or
even spherical receptive fields. The simplified representation
enables XCSF to also work on high-dimensional problems.

However, when a more sophisticated structuring is re-
quired in higher dimensions, both systems reach their lim-
its. XCSF has a hard time to follow the fitness gradient, as
for complex representations such as rotating ellipsoids the
number of elements to mutate is quadratic in n and, ad-
ditionally, the rotation in higher dimensions is not unique.
Consequently, redundant mutation options slow down the
evolutionary search.

6. SUMMARY AND CONCLUSIONS
This study compared the genetics-based XCSF and the

statistics-based LWPR machine learning algorithms for multi-
dimensional real valued function approximation. We high-
lighted algorithmic similarities as well as important differ-
ences and discussed how these systems can be compared
objectively. We monitored mean absolute prediction error,
population size, and receptive field volume on three typical
benchmark problems, namely the Crossed Ridge function
from LWPR’s repertoire and two sinusoidal functions from
XCSF’s side. Additionally, we plotted the final input space
structuring defined by locality and shape of receptive fields.

While both algorithms achieve a suitable performance on
the investigated functions, the results suggest that the evo-
lutionary structuring capability of XCSF is more powerful
than LWPR’s statistical gradient descent. Although LWPR
is said to be well suited for high-dimensional spaces, this
claim remains to be validated in future studies.
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