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Abstract—Studies have shown that in places like New York City
drivers often spend over 20min looking for parking, contributing
to as much as 30% of the total traffic. In response, cities
like San Francisco have deployed systems capable of pointing
drivers to the closest available parking spot. Unfortunately, such
systems have gained little traction as they rely on specialized
infrastructure that is expensive to build and maintain.

We present SmartPark, a smartphone based system that
relaxes the requirement for specialized infrastructure by relying
on the smartphone’s sensors and ubiquitous Wi-Fi and cellular
infrastructure. To accomplish this, SmartPark addresses two
major challenges, under the constraint of minimum impact
on battery life: automatic transportation mode detection and
location matching. Solved together, they enable SmartPark to
automatically detect when a user pulls out of a parking spot,
making it available again. It addresses each challenge using a
combination of thorough statistical analysis of the sensor readings
and a novel Random Forest based classification algorithm. Exper-
imental results from 12 volunteers, using 7 different smartphones,
in 3 different cities show that SmartPark can distinguish 9 differ-
ent transportation modes with accuracy between 95.57 − 100%,
enabling it to correctly detect unparking events virtually 100%

of the time. This is accomplished with a minimum impact on
battery life – running SmartPark on a fully charged LG Google
Nexus 5 for 5 h straight caused the battery level to drop only
about 4%.

I. INTRODUCTION

Someone named Bob is driving through downtown looking

for on-street parking. Using an application on his smartphone he

identifies a free spot at the next block, saving him valuable time.

A Parsons Brickerhoff study [1] of New York City’s Chinatown

showed that on weekends 41% of the drivers spend more than

20 minutes looking for on-street parking. This figure increases

to 54% on weekdays. Using this application also reduces Bob’s

carbon footprint; in congested urban areas 30% of the traffic

is due to drivers looking for parking [2] [3]. Once parked,

Bob leaves the vehicle and goes about his business. Upon his

returning to the vehicle and pulling out of the parking spot, the

application computes automatically the time spent parking and

charges Bob’s account. This saves Bob the hassle of having

to anticipate how long he would be away, go to the ticket

machine to pay and place the receipt on the dashboard. At

the same time it saves the city a significant amount of money.

Cincinnati, for example, is owed about $12 million from unpaid

parking tickets dating back to 2005 [4]. Furthermore, as the

application relies on the smartphone’s sensors and infrastructure

already available, cities will not have to invest in building

and maintaining an extensive parking payment infrastructure.

Finally, the application has a negligible effect on the phone

battery.

Unfortunately, such application does not exist. The major

scientific obstacle being that the problem of automatically

identifying when a user returns to her vehicle and pulls

out of the parking spot – the return-to-vehicle problem –

without draining the phone’s battery remains open. One might

be tempted to think that users should just volunteer this

information. However, given that the payment amount depends

on it such system would be vulnerable to abuse. Indeed, even

when parking is free, the Google Open Spot experiment has

shown that most users neglect to inform the system when they

pull out of their spot [5]. GPS-based solution to the return-to-

vehicle problem have been proposed [6], [7], [8] and shown to

be highly accurate. Unfortunately, relying on GPS can quickly

drain the battery, a non-starter for most smartphone users.

ParkSense [2] proposes a solution using only the smartphone’s

wireless interface so as to reduce the energy consumption but

to do so it relaxes the requirement for accuracy. We believe

that for a parking payment infrastructure, with all the financial

implications it entails, to win wide adaptation it will have to

be both accurate and energy efficient.

We present SmartPark, the first system that solves the return-

to-vehicle challenge with accuracy reaching 100% while having

a negligible impact on battery life. SmartPark addresses the

challenge in two steps: One, it solves the problem of automatic

transportation mode detection. The solution to this problem

enables SmartPark to identify if a user has returned to the

same kind of vehicle as the one she parked. Two, it solves

the problem of identifying a particular location. The solution

to this problem enables SmartPark to identify if a user has

returned to the vehicle she parked instead of just another

vehicle of the same type. To solve these problems, SmartPark

relies on four innovations. First, unlike traditional approaches

that rely on a single sensor, such as the wireless interface or

accelerometer, SmartPark leverages all sensors available on

modern smartphones, including the luminosity and atmospheric

pressure sensors, to detect the transportation mode. Sound, light

and pressure readings inside a subway, for example, may be

different from the readings when riding a motorbike, allowing to

distinguish these two transportation modes. Second, SmartPark

computes an exhaustive number of summary statistics for every

sensor reading, leading to 2880 explanatory variables. Third,

SmartPark uses a Random Forrest [9] based approach for

classifying the sensor readings, in real time, into one of the
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transportation modes one is likely to use in a city: walking,

bicycle, bus, car, subway, motorbike, train, tram, airplane.

Fourth, SmartPark introduces a novel similarity coefficient

for matching two physical locations using Wi-Fi and cellular

base station signals.

In summary, our contributions can be summarized as follows:

• We introduce the first system capable of detecting virtually

every mode of transportation found in modern cities with

accuracy approaching 100% while relying exclusively on the

sensors available on modern smartphones.

• We introduce an algorithm for location matching using

readings from Wi-Fi and cellular base stations.

• Combining the two above, we introduce SmartPark, a

smartphone based system that solves the return-to-vehicle

challenge with accuracy approaching 100% while having a

negligible impact on battery life.

• We implement SmartPark and test it on 7 different smart-

phones with the help of 12 volunteers from 3 different

cities. Over 30 hours of experiments show that: a) SmartPark

correctly detects a return-to-vehicle (unparking event) in 29

of 29 scenarios without any false positives, and b) SmartPark

has a minimal impact on the battery consumption. Running

SmartPark on a fully charged LG Google Nexus 5 for 5 h
straight caused only about 4% drop in battery charge.

The remainder of the paper is organized as follows. Section II

describes the SmartPark architecture while Section III describes

the transportation mode detection algorithm. In Section IV, we

introduce the mechanism for identifying a specific location.

In Section V, we present the performance evaluation. Finally,

Section VII concludes the paper.

II. SYSTEM OVERVIEW

SmartPark enables the automatic detection of a user pulling

out of a parking spot by leveraging the smartphone’s sensors

and ubiquitous Wi-Fi and cellular infrastructure. At the heart of

SmartPark is the ability to mine readings from seven different

sensors so as to identify virtually any transportation mode

available in modern cities. The large number of sensor readings

is necessary for overcoming the inherent erroneous nature of

the inexpensive sensors with which modern smartphones are

equipped. Once the transportation mode is detected, SmartPark

can tell if the user is back in the same kind of vehicle as

when she parked. With a similarity matching on the Wi-Fi

and cellular signals received, SmartPark can finally tell if the

user is back in her vehicle and starting to pull out of the

parking spot and not just any similar vehicle. Figure 1 shows

the architecture of SmartPark. SmartPark can be in one of

the 4 following states: 1) The user is looking for parking:

SmartPark detects automatically the user’s vehicle type and

sends a request to the SmartPark server via the Wi-Fi or cellular

networks asking for the available parking spots in the vicinity.

2) The user parks: SmartPark scans the available Wi-Fi and

cellular base stations available to create a location profile and

saves it for future use. 3) The vehicle is parked: the user can

go about her business, walking around, taking the bus, subway,

tram or any other transportation mode. SmartPark, in the mean

Figure 1. SmartPark Architecture. The database of the available parking
spots is maintained by a central server. When a user parks, SmartPark creates
a profile of the location using readings from Wi-fi and cellular base stations,
and of the vehicle using the Transportation Mode detection module. Once
the user parks, SmartPark checks periodically the transportation mode so as
to detect when she is using again the same kind of vehicle. If that is the
case, SmartPhone runs a location matching and, if positive and the users start
pulling away in the vehicle, it knows the user has unparked and notifies the
server that the spot is available again.

time, triggers a transportation mode detection every 10 s. 4)
The user is unparking: SmartPhone detects this event because

a. the user is using the same transportation mode as when she

parked, and b. she is back at the same location. Once the user

unparks, SmartPark sends a message to the SmartPark server

notifying of the user’s leaving the parking spot.

SmartPhone relies on two major functionalities:

1) Transportation mode detection.

2) Location matching.

We describe each in detail in the next sections.

III. TRANSPORTATION MODE DETECTION

In this section, we present SmartPark’s module for identi-

fying the transportation mode using a smartphone. Needing

only 2 s of sensor readings, it can decide if a user is using

one of the following transportation modes: walking, bicycle,

bus, car, subway, motorbike, train, tram, airplane. This

unprecedented granularity, speed and accuracy is achieved

thanks to two innovations. One, while previous approaches rely

on a single sensor, usually the accelerometer [2], SmartPark

leverages a combination of sensor readings, including sound,

luminosity and pressure levels, to uniquely profile every

transportation mode. Two, an innovative classification algorithm

based on Random Forest [9] for matching readings to a

transportation mode in real time.

A. Leveraging Multiple Sensors

A key insight underlying SmartPark is that all sensors with

which modern smartphones are equipped can provide useful

information as to what a particular user is doing. Sound and

light levels while riding a motorbike can be very different



Figure 2. Boxplot of sound level readings for the 9 transportation modes. The
motorbike readings show the highest median value and a tight box. However,
the results make it clear that it is impossible to detect all transportation modes
using only this sensor.

Figure 3. Frontal acceleration readings for the 9 transportation modes. The
readings in the subway show the highest median value and a tight box,
consistent with the acceleration one experiences at every stop of a subway.
However, as with the sound, these readings alone cannot enable reliable
transportation mode detection.

from those inside a car or a bus. Pressure levels in a subway

usually running underground may be different from those

inside a tram. At the same time, these are inexpensive and

inherently erroneous sensors and cannot be the lone source for

transportation detection. Fig. 2 shows a boxplot of sound levels

measured using a LG Nexus 5 while using the 9 transportation

modes SmartPark supports. The measurements show that sound

sensor readings might help identify certain transportation

modes. For example, the readings while riding a motorbike

have the highest median value and a tight box. However,

several activities produce sound readings too similar to be

used to distinguish one from the other. A similar phenomena is

observed with the frontal acceleration readings show in Fig. 3.

Here it is the subway producing the highest median value and

a tight box – consistent with the acceleration one experiences

repeatedly at every station. Nonetheless, measurements show

significant overlaps in frontal acceleration readings across the

car, tram and airplane.

To overcome the limitations of using a single sensor,

SmartPark finds a way to combine readings from the entirety

of the sensors available on smartphones. As Fig. 4 shows,

Figure 4. Sound and acceleration readings projected on a pairs plot: max of
frontal acceleration and mean of sound. Combining just two sensor readings
allows the detection of three transportation modes: car, airplane and train.
However, it is impossible to distinguish the other transportation modes,
explaining why SmartPark uses more than two sensors.

using multiple sensor readings can significantly improve our

capability of distinguishing different transportation modes on a

smartphone. Jointly using readings from only two sensors - the

frontal acceleration and sound levels - one can already detect

three transportation modes: car, airplane and train – something

we could not do using only one sensor.

Therefore, SmartPark uses all the sensors available on mod-

ern smartphone to detect the transportation mode. Specifically:

• Accelerometer (three axes).

• Gyroscope (three axes).

• Orientation (three axes).

• Magnetic field sensor (three axes).

• Luminosity sensor.

• Atmospheric pressure sensor.

• Microphone.

B. Summary Statistics

Table I shows the summary statistics we compute for the

temporal, frequency and wavelet transform of every sensor

reading. We have erred on the side of being exhaustive and

selected the majority of the commonly used summary statistics

for a total of 64. In Section III-C, we present an algorithm

that automatically selects the statistics best at identifying the

9 transportation modes SmartPark supports. Note that, this

computation is done once offline and the results are included

in SmartPark. At run time, SmartPark simply collects sensor

readings and uses the decision trees, as shown in Section III-C,

to make a decision as to the transportation mode.

C. Classification

We collect 15 sensor readings for which we calculate the

FFT and the wavelet transform. For each of the three versions



Domains Temporal, Frequential, Wavelets

Location statistics Mean, Median, Harmonic & geometric mean, RMS

Spread statistics STD, Var,1st-Q, 3rd-Q

Shape statistics Kurtosis, Skewness, Entropy

Integral and derivative Surface, growth rate

5 Peaks and 5 Valleys Value, magnitude, FHWM, 2 inter-distances

Table I
STATISTICS EXTRACTED FROM EACH SENSOR TO CREATE THE MODEL

VARIABLES.

of the signal – temporal, frequency and wavelet transform – we

compute the 64 summary statistics, as shown in Table I. That

gives us a total of 15× 3× 64 = 2880 explanatory variables.

The challenge we address in this section is using this significant

amount of information for classifying sensor readings into one

the 9 transportation modes, the target variables.

Several classification models have been proposed in literature

with the Partial Least Squares (PLS) [10] (itself a major

evolution of Principal Component Analysis (PCA)) one of

the more popular. It tries to find a linear regression model

by creating a new plane from the explanatory and target

variables [11]. PLS components are selected so that their

covariance with the target variable is maximum. Thus from a

list of predictors, PLS extracts the linear combinations of the

predictors - also called latent factors - to classify the target

variables. PLS regression is particularly efficient in cases such

as ours where the explanatory variable space is significantly

bigger than the target variable space. However, as PLS is

based on a linear approach, it needs to compute many linear

combinations of the explanatory variables so as to predict

one or more transportation modes [12]. Given the variety of

explanatory variables SmartPark uses, this would result in a

very high number of computations making it a poor choice for a

smartphone based solution. Therefore, we opted for tree-based

classifiers.

Classification trees are hierarchical structures separating

experiments from each transportation mode according to

splitting rules on the observed variables. At each node, the

algorithm finds the explanatory variable and the threshold for

this variable that partitions the observations into two branches

such that the disorder in each branch is minimized. In this

context, disorder is defined as having few explanatory variables

per target variable. To quantify the disorder we use the entropy,

calculated at each node, i, as follows:

Di = −
∑

m∈∀modes

nm,i

Ni

log(
nm,i

Ni

)

where Ni is the number of individuals in the i-th node and nm,i

the number of individuals corresponding to the m-th mode in

the i-th node. Finally, the tree leaves correspond to the most

likely transportation modes, as shown in Fig. 5.

While a single tree can work well, it is not optimal due to the

potential correlation between the large number of explanatory

variables SmartPark uses. To minimize the effects of correlation,

we build a Random Forest (RF) [9]. It consists of selecting

Figure 5. One ending branch of one of the trees computed by SmartPark RF
model.

the best explanatory variable at every branch of the tree by

considering only a randomly selected subset of the total of

the explanatory variables. We use this approach and compute

500 such trees offline. The trees are loaded into SmartPark

which simply needs to “browse" them when trying to detect

a transportation mode – a step well within the computation

capabilities of modern smartphones.

IV. LOCATION MATCHING: IS THIS MY VEHICLE ?

When a user parks her vehicle (car/motorbike/bicycle), she

enters the parking spot number in the SmartPark applica-

tion. Automatically, SmartPark creates a location profile by

leveraging the ubiquitous Wi-Fi and cellular infrastructure. In

particular, the location profile is computed as follows:

S1 = (S1(1), S1(2), ..., S1(a))

Ws1 = (Ws1(1),Ws1(2), ...,Ws1(a))

C1 = (C1(1), C1(2), ..., C1(b))

Wc1 = (Wc1(1),Wc1(2), ...,Wc1(b))

where S1 represents the SSIDs of the a access points, Ws1

the RSSIs of the corresponding APs, C1 the Cell ID of the b

stations and Wc1 the RSSIs of the corresponding stations.

When SmartPark detects that the user is using the same

transportation mode as the one she did when she parked, it

checks whether the location is also the same1. For this, it

computes a profile of the current location and compares it

to the one stored at the time of parking. The two profiles

are compared and a similarity coefficient, C, is computed as

follows:

C =
1

a∑
i=1

Ws1(i)

a∑

i=1

Ws1(i)(1− |
Ws1(i)−Ws2(i)

Ws1(i)
|)

(1)

+
1

b∑
i=1

Wc1(i)

b∑

i=1

Wc1(i)(1− |
Wc1(i)−Wc2(i)

Wc1(i)
|)

1After a user parks her car, for example, there is a possibility that she meets
a friend who offers her a ride in her car.



where Ws2(i) and Wc2(i) represent the RSSIs of the second

scan corresponding to APs S1(i) and C1(i) - 0 if not found.

In selecting Eq.(1) we were driven by three principles:

• Proportion of APs found: we take into account the proportion

of APs in common between the two location profiles by

assigning "0" to Ws2(i) for any mismatch.

• Compare raw RSSIs values: instead of a binary model, we

compare the RSSI values of the two respective profiles. The

smaller the difference, the higher the similarity coefficient.

• Favor the highest RSSI values: the main novelty of our

coefficient is that we add a weight to favor the APs/BSs

with the highest RSSI values. The idea being that APs/BSs

with stronger RSSI are more likely to be closer to the actual

parking location.

V. PERFORMANCE EVALUATION

In this section, we evaluate SmartPark in terms of accuracy at

detecting the transportation mode, identifying a specific vehicle,

energy consumption and its overall capability of identifying

when a user parks/unparks her vehicle. All the data are from

real experiments carried in 3 different cities, using 7 different

smartphones and 12 volunteers.

A. Classification Accuracy

Method: Twelve volunteers are given one of the 7 smart

devices, Sony Xperia E3, LG Google Nexus 5, LG Google

Nexus 6, LG G2, Huawei Honor 4X, Samsung Galaxy S5,

Samsung Galaxy S3 mini, and are asked to enter regularly

their transportation mode as they go about their normal daily

lives. SmartPark records the 15 sensor readings, as described

in Section III, with the highest frequency rate available, often

200Hz, computes the explanatory variables and makes its own

decisions about the transportation mode using the 500 pre-

computed classification trees2. In the end, we collect data from

about 28 hours of experiments during which SmartPark makes

10282 decisions as to the transportation mode. To measure

the accuracy we compare what the user entered with the

transportation mode computed by SmartPark. Furthermore,

to exclude the element of chance from the results we compute

Cohen’s kappa criteria:

κ =
po − pe

1− pe

where po represents the observed agreement between real

transportation mode and predicted transportation mode and

pe represents the probability of randomly correct detection.

Results: At first we investigate whether choosing the

Random Forest approach over PLS or a single tree was the

right decision. Table II shows that indeed Random Forest,

as implemented by SmartPark, is by far the most accurate

approach, almost doubling the accuracy of a single tree and

PLS.

2The 500 trees are pre-computed using a different set of experiments. This
is a one time computation and the results are entered into SmartPhone which
uses them as longs as it is in use.

Method Accuracy Kappa

PLS 0.69 0.67

Single Tree 0.54 0.53

Random Forest 0.99 0.98

Table II
RANDOM FOREST WITH 500 TREES ACHIEVES 98.72% ACCURACY IN

TRANSPORTATION MODE DETECTION.

Next, we evaluate the accuracy of SmartPark at detecting

each of the 9 transportation modes it supports. Table III shows

the confusion matrix of the 10282 transportation mode decisions

SmartPark took. The data shows SmartPark detects every

transportation mode with accuracy that never drops below 95%.

Equally important, the number of false positives is negligible.

Finally, we compare SmartPark to 5 different approaches

from the literature, namely Reddy [13], Stenneth [6], Zheng [8],

Wang [14] and Peaks [15]. Table IV shows that: One,

SmartPark is by far the most accurate. Two, SmartPark detects

by far the most modes of transportation. The closest in terms of

modes of transportation supported are Peaks and Wang which

support 5 to SmartPark’s 9.

B. Identifying Own Vehicle

Method: A volunteer is asked to perform a large number

of parking and unparking events with her vehicle in the

course of several days while using SmartPark. Then she is

asked to perform a large number of what we call “false"

parking/unparking events: she parks her vehicle, goes about her

business then takes a ride back in a friend’s vehicle. To create

the ground truth, she inputs on her phone the kind of event

(parking or unparking) she performs every time. By the end of

the experiment, the user performed 29 real parking/unparking

and 27 false parking events.

To quantify the accuracy, we compare what the user declared

with what SmartPark computed. We compare the accuracy of

SmartPark to that of ParkSense (the two versions proposed

in [2]), the traditional and weighted version of Tanimoto

index [16] and the Jaccard Index. For two locations, the Jaccard

Index is computed as J = |S1∩S2|
|S1∪S2|

.

Results: Figure 6 shows the results for different values of

the similarity threshold (Eq.(1), Section IV). The data shows

that the traditional Jaccard index is too conservative, leading to

its missing many real parking/unparking events. Tanimoto and

ParkSense perform much better, however, even for similarity

coefficient 0.5, for which all approaches perform best, they

suffer from a large number of false positives. This is due to

the fact that they do not use RSSI information. SmartPark, on

the other hand, identifies 97% of the real parking/unparking

events and triggers 0 false positives.

C. Energy Consumption

Figure 7 shows what happens to the battery level when

a user starts with a full charge and uses SmartPark. For

comparison, we also include the effect of using the GPS and

Wi-Fi continuously. The data shows that SmartPark has a



Transport Bicycle Bus Car Subway Motorbike Pedestrian Train Tram Airplane Accuracy

Bicycle 802 0 2 0 0 2 0 0 0 99.50%

Bus 0 837 0 0 0 0 0 47 0 97.51%

Car 3 8 1747 0 0 6 0 0 0 99.04%

Subway 0 1 0 583 0 0 0 26 0 95.57%

Motorbike 3 0 7 0 835 7 0 0 0 98.00%

Pedestrian 0 0 0 0 0 973 0 0 0 100.00%

Train 0 0 0 0 0 0 830 0 0 100.00%

Tram 0 7 0 0 0 0 0 1506 0 99.54%

Airplane 0 7 0 0 0 0 0 6 1037 98.76%

Table III
CONFUSION MATRIX OF SMARTPARK FINAL MODEL.

Mode SmartPark Peaks Wang Reddy Zheng Stenneth

Bicycle 99% - 81% 87% 66% 89%

Bus 98% 78% 58% - 67% 88%

Car 99% - 72% - 86% 88%

Subway 96% 65% 53% - - -

Motorbike 98% - - - - -

Pedestrian 100% 95% 81% 95% 89% 98%

Train 100% 68% - - - 98%

Tram 99% 84% - - - -

Airplane 99% - - - - -

Motorized 99% 74% 54% 95% 76% 91%

Latency 2s 4s 8s 1s 2s -

Table IV
SMARTPARK SYSTEM ALLOWS TO LARGELY INCREASE THE PERFORMANCE

OF CURRENT TRANSPORTATION DETECTION SYSTEM, WITHOUT INVOLVING

A HIGH LATENCY.

negligible effect on the battery and significantly lower than

using just the Wi-Fi for example.

To elucidate why SmartPark consumes so little energy,

we analyze the energy needs of its two core functionalities:

detecting the transportation mode and location matching.

Transportation Mode Detection: SmartPark uses 2 s of

sensor readings for detecting the transportation mode with

the process repeating every 10 s when the car is parked. We

measured the energy consumed by the 6 sensors SmartPark

exploits and the energy required to calculate the summary

statistics on this 2 s sample. We found it to be around 197mA
for the 7 smartphones used in our experiment. This represents

about 1615mJ every 10 s.
Location Check: We measured the energy consumption of

the Wi-Fi and network passive scans on the 7 smartphones

used in this study and found it to be around 117mA for a

period of 1.07 s, representing about 513mJ per location check.

D. Overall System Performance

We ask 7 volunteers from 3 different cities to use SmartPark

for a period of a few months; the only action asked of them

is to signal on their phones whenever they park and unpark

their vehicles so as to create the ground truth. Five of them

are regular car users while the other 2 usually bike.

Figure 6. Correct Detection proportion (bottom blue) and False Alarms
proportion (top red). SmartPark, using a similarity threshold of 0.5, has 0
false positives over the 27 false unparking events while achieving 97% correct
detection over the 29 real unparking events.

Figure 7. After 5h of using SmartPark, the battery level has dropped only
4%.

At the end of the experiment, the data showed that the

volunteers signaled 27 parking and unparking events while

using a car and 2 parking and unparking events while using

a bicycle. SmartPark managed to correctly detect the parking

and unparking 100% of the time, with zero false positives.



VI. RELATED WORK

Several works have proposed using the various sensors avail-

able on smartphones to identify user activities. Bao et al [17]

proposed to classify user activities using the accelerometer.

In [18] the authors developped a multimodal sensors board

to detect various human activities such as walking, brushing

the teeth, sitting, etc. However, most sensors proposed are

currently present on smartphones, making their board obsolete.

GPS has been considered for detecting transportation mode [8],

however, it has been shown to be inaccurate and energy

hungry. In [6] the authors proposed adding GIS information

to improve the accuracy of transportation mode detection

whereas [14] introduced the accelerometer values. [13] and

[7] propose to combine accelerometer and GPS and achieve

94% accuracy in classifying motions from motorized vehicles,

pedestrian activities and bicycling. A solution based on GSM

and Wi-Fi is proposed in [19] and is shown to be around 85%

accurate. However it relies on an infrastructure and thus needs

recalibration with each minor change.

Most new indoor parking lots install custom infrastructure

allowing users to find free parking spots. Having the same kind

of system for their downtowns has become a major challenge

for cities worldwide [20], [21], [2]. San Francisco, for example,

has installed custom wireless nodes for facilitating on-street

parking [22]. However, custom infrastructures can be expensive

to install and maintain. SmartPark on the other hand relies

exclusively on the smartphones users already own. One solution

proposed to relax the requirement for custom infrastructure is

the crowdsourcing [23]. However, as all crowdsourcing based

solutions, it suffers from a chicken-egg problem: the quality of

the solution hinges on user adaptation while the user adaptation

hinges on the quality of the solution.

VII. CONCLUSIONS

We presented SmartPark, a system that relies exclusively

on the smartphone sensors to automatically point drivers to

the nearest parking spot and bill them for the amount of time

parked. To accomplish this, SmartPark solves the return-to-

vehicle problem by solving the automatic transportation mode

detection and location matching problems. The solution is based

on an exhaustive statistical analysis of the sensor readings,

generating 2880 explanatory variables, and a Random Forest

based approach for classifying the explanatory variables into

one of the 9 supported transportation modes in real time

on a smartphone. We evaluated SmartPark on 7 different

smartphones, in 3 different cities with the help of 12 volunteers

and showed over 95% accuracy in transportation mode detection

and in return-to-vehicle scenarios.

As future work, we plan to negotiate with city halls that

may be interested in adapting SmartPark to handle parking

management for a particular area in experimental form or city

wide.
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