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SplatPlanner: Efficient Autonomous Exploration

via Permutohedral Frontier Filtering

Anthony Brunel1,2, Amine Bourki2, Cédric Demonceaux3 and Olivier Strauss1
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Fig. 1: We introduce SplatPlanner, a fast algorithm for jointly mapping and planning a collision-free exploration of an

unknown scene, using an MAV. Here, our method runs online and on-board in real-flight (a) to gradually enrich a volumetric

3D map of the scene at different iterations, at t = 54s (b), t = 169s (c) and t = 347s (d), near completion. Mapped voxels

are colored based on their height, while frontier voxels that bound the known area are in gray, and trajectories in dark blue.

Abstract— We address the problem of autonomous
exploration of unknown environments using a Micro Aerial
Vehicle (MAV) equipped with an active depth sensor. As
such, the task consists in mapping the gradually discovered
environment while planning the envisioned trajectories in
real-time, using on-board computation only. To do so, we
present SplatPlanner, an end-to-end autonomous planner that
is based on a novel Permutohedral Frontier Filtering (PFF)
which relies on a combination of highly efficient operations
stemming from bilateral filtering using permutohedral lattices
to guide the entire exploration. In particular, our PFF is
computationally linear in input size, nearly parameter-free, and
aggregates spatial information about frontier-neighborhoods
into density scores in one single step. Comparative experiments
made on simulated environments of increasing complexity
show our method consistently outperforms recent state-of-the-
art methods in terms of computational efficiency, exploration
speed and qualitative coverage of scenes. Finally, we also
display the practical capabilities of our end-to-end system in
a challenging real-flight scenario.

Index Terms—Aerial Systems: Perception and Autonomy,
Vision-Based Navigation, Motion and Path Planning

I. INTRODUCTION

The safe exploration of unknown environments by un-

manned vehicles is a key requirement to transition into the

long-awaited era of autonomous flying robots. Micro Aerial

Vehicles (MAVs) in particular are often favored thanks to

their agility, form-factor and affordability. However, despite

their perpetually improving hardware capabilities, MAVs still

run on limited resources in terms of on-board computation

and battery-life. This has motivated two orthogonal research

trends to integrate these constraints through collaborative ex-
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ploration [1], [2], and efficiency-oriented mono-agent meth-

ods [3], [4], which falls within our scope.

In this work, we devise a hybrid strategy relying on the

two leading frameworks in autonomous exploration planning,

frontier reasoning [5] and Rapidly-exploring Random Trees

(RRT*s) [6], [7], [8], and advance the current state-of-the-

art in terms of speed and efficiency by a substantial margin.

Our work makes the following main contributions:

• We introduce SplatPlanner, an end-to-end system for

autonomous exploration that simultaneously maps the en-

vironment and plans collision-free trajectories therein.

• The method uses a novel Permutohedral Frontier Filtering

to extract and score promising frontier voxels in terms of

their spatial density using highly efficient bilateral filtering

operations on permutohedral lattices [9].

• Our proposed system advances the state-of-the-

art w.r.t standard criteria of exploration speed and

efficiency, as shown through quantitative and qualitative

experiments in controlled simulated environments.

• The practical robustness of our approach is tested in

a challenging real-flight scenario, also showing superior

performance w.r.t state-of-the-art planners in this regard.

II. RELATED WORK

The task of autonomous exploration planning is a long-

standing problem and was studied for over two decades [5],

[6], [10], [11]. The adopted methods can be categorized into

frontier-based, sampling-based and hybrid strategies.

The first trend builds on the concept of frontiers, which

are interstitial voxels between free- and unknown spaces

(Fig. 1). It requires to re-detect such entities before each

path-planning step. In their seminal work, Yamauchi et al. [5]

target the nearest available frontier to guide the exploration,

eventually leading to a termination when all reachable fron-

tiers are visited. In the same vain, Cieslewski et al. [12]

prioritize frontiers that maintain the velocity of the MAV,

hence limiting visits to positions in opposing directions.



Dornhege et al. [13] adhere to the broader Next-Best-View

(NBV) paradigm [14], i.e., selecting views that maximize a

specific utility function, considering the popular unmapped

volume within the current view frustum while also explicitly

grouping frontiers into cohesive entities. Even though these

two processes have become staple ingredients in frontier-

based techniques [10], they respectively rely on ray-casting

and spatial clustering operations that are computationally

expensive. Other common utility functions include the in-

formation gain [15], Shannon entropy [16], [17], supervised

learning [18], and many other efficient alternatives [19].

Sampling-based strategies on the other hand, randomly

sample seed positions in space then maintain a data structure

that can further be queried to produce a collision-free path

connecting them. Most of the recent competitive methods

rely on Rapidly-exploring Random Trees (RRTs) [6], [7].

The framework uses a tree-structure over the sampled seeds

but can produce jagged trajectories. RRTs* [8] extend RRTs

by biasing the random seed sampling to plan simpler, more

efficient trajectories. RH-NBVP [20] expands RRTs on view-

points that are sampled by means of NBV where the first

node of the utility-maximizing branch is executed. While the

method performs very well in local exploration, it is prone

to local minima leading to a poor global scene coverage.

Witting et al. [21] tackle this by maintaining a history of

previously considered viewpoints to the expense of an addi-

tional cost in computation and storage. Alternatively, AEP [3]

successfully combines RH-NBVP with conventional frontier

reasoning to balance out the poor performance in global

exploration. Although RRTs* are effective for collision-free

planning, they cannot recover from earlier mistakes. They are

also notoriously inefficient as they repeatedly discard-then-

rebuild most of the information from one iteration to another.

To improve efficiency, ESM [22] continuously grows one

single tree and only sporadically queries feasible paths.

More related to our hybrid strategy, FFI [4] uniformly

samples frontiers per octant in an octree structure [23],

then targets views that maximize the map entropy. Despite

achieving a very fast exploration, the strategy can suffer from

quantization effects and induces a trade-off between time-

and memory efficiency.

III. PROBLEM STATEMENT

Given V ⊂ R
3 a voxel-grid occupancy map of the scene,

the goal of our considered MAV is to map every voxel x ∈ V
initially labeled as ‘unknown’, with a final volumetric oc-

cupancy among {‘free’, ‘occupied’} states, while computing

collision-free flight-paths online and on-board. We denote the

pose of the MAV by µ = [p, ψ], where p = [x, y, z]⊤ ∈ R
3

is a 3D position and ψ ∈ [0, 2π[ a corresponding yaw angle.

We also assume a maximum linear velocity vmax and linear

acceleration amax, as well as a maximum yaw rate ωmax.

Our framework exploits the notion of frontiers [5] which

are ‘unknown’-labeled voxels f ∈ F ⊂ V that are adjacent

to ‘free’ spaces. Our method extracts a set of filtered frontiers

F̃ ⊂ F using scores s(pi) ⊂ S per position pi ∈ F based

on the density of their spatial neighborhoods. The MAV then

repeatedly calculates collision-free paths online, across the

scene until all reachable frontiers are visited.

Fig. 2: SplatPlanner – System overview.

IV. SPLATPLANNER

We propose a hybrid framework that combines the ad-

vantages of frontier-reasoning (i.e., global scene coverage,

natural termination) with the effectiveness of RRTs* in

planning collision-free flight-paths. The number of costly

calls to RRTs* is alleviated by an NBV-sampling based on

our novel Permutohedral Frontier Filtering (PFF) procedure.

Our method relies on two interconnected modules, as de-

tailed below and illustrated in Fig. 2.

A mapping routine continuously integrates depth and

odometry sensor information to update the occupancy map V .

The main loop of the planning unit activates the subsequent

mechanisms: our PFF efficiently associates scores to every

frontier f ∈ F based on their spatial neighborhoods in

V . Next, the most promising goal candidate positions are

extracted from the scored frontiers and are evaluated in

terms of the unknown-labeled volume within corresponding

frustums and the time to execute the corresponding trajectory.

The output trajectory is then selected as the best trade-off

between its associated UV and its execution time, translating

into a natural balance between local and global exploration.

A. Mapping Routine

Occupancy Map and Derived Information. Map updates

occur when new depth measurements are received from the

active sensor (e.g., Kinect, or Intel Realsense D400 series).

The occupancy values of voxels in V that lie inside the

current view frustum are then directly inserted into V by

using odometry data and assuming a standard probabilistic

occupancy [24], [25]. While most of the mapping methods

use ray-casting operations to maintain occupancy maps [23],

[25], [26], [27], we chose the projection mapping which is

an efficient alternative especially when dealing with regu-

lar grid maps. This is consistent with conclusions drawn

in existing studies on the topic [28]. A simple Euclidean

Distance Transform (EDT) applied to V [27], [29] is also

used to derive a volumetric collision map to handle collision-

checking. This allows efficient O(1) look-ups vs. O(log(N))
for octrees [25]. Each update also leads to re-assessing

frontiers F due to potential changes in unknown- and free

voxels they separate.

Efficient Updates. While V and F need to be updated

each time new depth information is received, the EDT map

is continuously updated at a frequency of 4Hz, which is

sufficient in practice to ensure its relevance when matching

reasonably realistic MAV velocities. All of these updates are

only envisioned within the current view-frustum of the MAV.



Fig. 3: Permutohedral Frontier Filtering – PFF transforms

the frontier voxels through 3 successive bilateral filtering

operations (splat-blur-slice) on permutohedral lattices, and

produces their density scores efficiently.

B. Novel Permutohedral Frontier Filtering (PFF)

Overview and Input to PFF. The exploration planning

process first starts by using our PFF to associate a score of

frontier-neighborhood density to each frontier voxel. This

score is the criterion we use to guide our planning. To

do so, we use permutohedral lattice structures to support

bilateral filtering operations to efficiently approximate this

score. Permutohedral lattices are widely used in 2D image

processing and geometry processing to do high dimensional

filtering [9]. Other recent applications include, e.g., semantic

segmentation of 3D point clouds using Deep Neural Net-

works [30], or fast point cloud registration [31]. A Permu-

tohedral Lattice is composed of identical high-dimensional

tetrahedra named simplices, where the enclosing simplex

(i.e., cell) of any given point in the higher-dimensional space

can be found by a simple rounding algorithm (as illustrated

in Fig. 3). Such structures have been proven to yield very

accurate approximations to expensive filtering problems for

even high d−dimensional inputs by processing them in a

(d+1)−dimensional space. It uses very efficient operations

requiring only a fraction of the computation [32].

As such, our PFF consumes the 3D coordinates of the

frontier set F and goes through three operations, splat, blur

and then slice, each-of-which being supported by a lattice.

Processing Steps and Parameters. Splat first interpolates

the input 3D coordinates onto their enclosing 4D permutohe-

dral simplices using barycentric weights. Blur then applies a

separable Gaussian filter resulting in a weighted combination

of entities with their simplicial neighbors which equates

to an implicit spatial aggregation of features. Slice finally

interpolates the lattice features back onto their original 3D

coordinates with corresponding densities, using the same

weights used in splatting. The only parameter to the method

is a scaling diagonal d × d matrix Λ that controls the

discretization (spacing) of the simplicial cells (here, d = 3).

Formally, the sequence of operations can be written as a

matrix multiplication, as follows:

∆ = EsliceBblurSsplatF, (1)

where ∆ contains per-frontier filtered density scores, F is

the N × 3 matrix version of frontiers F and is transformed

through three N × 4 matrices in higher dimensional space

Eslice, Bblur, Ssplat respectively supporting slice, blur, splat

operations, and N = card(F).
Advantages of our PFF. The procedure has the following

main benefits.

• Splat, blur and slice are linear in frontier inputs and their

combination amounts to multiplying sparse matrices.

• Through the Blur operation in particular, the process seam-

lessly generates an implicit grouping, i.e., a neighborhood

aggregation of frontiers in linear time. Splat and Slice are

just means to interact with the initial 3D space and amount

to a basic linear interpolation each. This avoids the costly

spatial clustering used by several frontier-based planners

altogether [13], [33].

• PFF is only parametrized by the scaling matrix Λ which is

a diagonal matrix of inverse values of the desired standard

deviations (stds) per spatial coordinate. Throughout our

experiments, we consider one common std for all three

coordinates as σxyz = 1m.

• The framework allows to handle much more complex

features in dimensionality on top of the 3D coordinates

we consider [30]. We leave this avenue as future work,

e.g., to integrate semantics to our exploration formulation.

Additional details and advantages regarding the general per-

mutohedral filtering framework can be found in the dedicated

study of Baek et al. [32].

C. Goal Extraction and Path Sampling

The output of the preceding PFF scoring is used to extract

a list of promising goal positions to visit. To do so, the

goal extraction aims at favoring areas with high density

scores evenly spread across the space to ultimately bound the

computed feasible RRT*-paths from sparsely-sampled goals.

The goal extraction operation assumes positions within the

frontier set, ranked in decreasing density scores and iterates

over frontiers by only retaining points that are far enough

from previously retained positions (up to a radius threshold

rthresh). The detailed algorithm is provided in Algo. 1.

Finally, the set of retained goals is formed by considering

a uniform sampling of Nuniform extracted frontiers across

the space, augmented by the top Nscores scored entities

remaining after the aforementioned spatial filtering to prevent

near-duplicates to occur. Our random selection criterion en-

sures an even distribution of goals and secures the inclination

towards global exploration. The density-favoring criterion on

the other hand, guarantees that the most promising areas are

not left out, regardless of their spatial distribution. In our

experience, this yields a much better trade-off in practice

between local- and global exploration than pure uniform

sampling [4] or pure local development [3].

Once the limited set of promising goals G is computed,

we plan their feasible trajectories Pi = [p, ...,pi] stemming

from the current MAV position using RRT* [8] with path

simplification, as implemented in the Open Motion Planning

Library (OMPL) [34]. A standard collision checking is also



Algorithm 1: Goal Candidate Extraction

Input: P : list of position / score pairs (pi, si) in

decreasing scores, rthresh : radius threshold

Output: G : set of goal candidates

foreach position pi ∈ P do

discarded← False;
foreach pj ∈ G do

if ‖pi − pj‖ < rthresh then

discarded← True;
break;

end

end

if not discarded then
G← (pi, si)

end

end

applied throughout the linear segments of the computed paths

with a safety bounding radius R centered on the MAV. An

occlusion checking by casting a ray from the current position

to the goal candidates ensures mutual visibility between end-

points. An additional time-out forces the RRT* to provide

viable solutions within a limited time (set to 5 ms), for

maintaining the overall pace of the exploration.

D. Viewpoint Evaluation, Yaw Angles and Gain Function

At this stage, the promising goals resulting from previous

steps are guaranteed by construction to be valid and reach-

able. Next, we describe how we prioritize the exploration

to maximize its efficiency by evaluating the volumetric gain

relative to the time it costs to execute the associated trajecto-

ries. This consists in estimating through ray-casting the view-

dependent Unmapped Volume (UV) intersecting the frustum

bounded between distances to the camera center dmin and

dmax. α (resp. β) is the horizontal (resp. vertical) angular

increment used in ray-casting (typically, α = β = 1◦). Thus,

a 360◦ horizontal UV-sweep produces a view-independent

estimate of the volume assuming a fixed (sensor-specific)

vertical fov, as follows:

V (dmin, dmax, α, β) = 4 tan (
α

2
) tan (

β

2
)

∫ dmax

dmin

r2dr

=
4

3
tan (

α

2
) tan (

β

2
)(d3max − d

3

min)

(2)

Yaw Optimization. Yaw values ψi are associated to the

positions pi encompassing goal candidates and intermediate

waypoints alike, by retaining the horizontal orientation that

maximizes its view-dependent UV within the computation of

the volume. Please note that the optimal yaws are retained

while calculating the volume with no additional post-process.

Gain Function. Finally, the gain function explicitly opti-

mizes the volumetric exploration speed in m3/s, to execute

the path Pi that maximizes the following expression:

g(µi, Pi) =
U(µi)

T (Pi)
, (3)

TABLE I: Experimental settings and parameters.

Method Parameter MAZE POWERPLANT FACILITY

All

res. (m) 0.1 0.2 0.1
R (m) 0.5 0.5 0.5
vmax (m/s) 1.5 0.7, 1.5, 2.5 1.5
amax (m/s2) 2.5 2.5 2.5
ωmax (rad/s) 1.57 0.75, 1.57 1.57
dmax (m) 5 7 5
fov [h, v] [90◦, 60◦] [115◦, 60◦] [90◦, 75◦]

Ours
rthresh (m) 2.5 2.5 2.5
σxyz (m) 1.0 1.0 1.0

AEP [3]

N 30 50 30
gzero 2 2 2
λ 0.5 0.75 0.5
σ2

tresh
0.2 0.2 0.2

lmax (m) 1.5 3 1.5

ESM [22]

nlocal 30 50 30
rlocal (m) 1.5 3.0 1.5
rupdate (m) 3. 6. 3.0
lmax (m) 1.5 3 1.5

where U(µi) is the UV of the destination pose at position pi

and Pi its connecting path to current MAV position p with

pose µ. In turn, T (Pi) is the total travel time to execute Pi

assuming a constant acceleration amax.

V. IMPLEMENTATION DETAILS

Simulation Framework. Except where stated otherwise,

throughout our experiments we consider a common testbed

built on the Robot Operating System (ROS Kinetic) li-

brary [35] on a laptop equipped with an Intel Core i7 CPU,

16GB RAM. We simulate a FireFly hexacopter MAV model

from Ascending Technologies and its physics are modeled

by the popular Gazebo-based RotorS simulator [36]. The

control is insured by a multi-rotor Model Predictive Control

(MPC) [37]. Standard collision-checking is done within a

sphere of radius R centered at the MAV’s position. As the

computed trajectories are typically piecewise-linear displace-

ments, we use a polynomial trajectory optimization [38]

to send graceful paths to the MPC. The final rendering

uses the Vulkan API1, assuming perfect poses from RotorS.

It simulates a 30Hz DepthVision camera. All considered

datasets were integrated as standard meshes into Gazebo.

Parameter Settings and Reproducibility. The parameters

to all our experiments are provided in Table I, including ones

that were originally omitted by the referenced competition.

VI. RESULTS

In this section, we analyze the performance of our Splat-

Planner system and its relative positioning w.r.t the state-of-

the-art through quantitative and qualitative experiments.

A. Datasets and Baselines

In our comparative experiments, we consider the recent

state-of-the-art planners ESM [22], AEP [3] and FFI [4].

ESM is the current top-performing pure sampling-based

method [22] while AEP and FFI are among the best hybrid

systems for autonomous exploration.

We first consider 3 challenging synthetic datasets of in-

creasing complexity and size.

1https://www.khronos.org/vulkan/
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Fig. 4: Comparative evaluation vs. FFI [4] on the POW-

ERPLANT simulation in terms of exploration speed (a–b),

corresponding trajectories and produced maps (c–d). Our

SplatPlanner achieves faster explorations throughout the con-

sidered maximum exploration velocities vmax.

Fig. 5: Exploration of the MAZE after 250s using our

approach. Voxels are colored based on their height, while

the trajectory ranges progressively from white to blue.

• MAZE – A hand-crafted scene of 20m x 20m x 2.5m typi-

cally used to study exploration systems by narrowing down

their behaviors to their most basic expression (Fig. 5).

• POWERPLANT – A large outdoor of 33m x 31m x 26m. It

is publicly available and was used by FFI [4] in particular.

In absence of a public code of their method it is a common

test-bed to compare our performances (Fig. 4c).

• COMPLEX FACILITY – An original challenging CAD

model we are sharing publicly. It covers 20m x 20m x

4.6m amounting to a 185m2 area and depicts a very geo-

metrically complex industrial scene that has been modeled

by a human expert (Fig. 6a).

Please note that in terms of datasets, our experimental

setup is at least on par quantity-wise with the most rigorously

evaluated works in the field (e.g., [12], [3]). Our COMPLEX

FACILITY however, is significantly more complex and chal-

lenging than commonly envisioned datasets [3], [4], [20].

B. Comparative Setup and Evaluation Criteria

Autonomous exploration algorithms are typically evaluated

on synthetic datasets in controlled simulated environments.

This allows for a more fair comparison in terms of ex-

perimental conditions and also avoids the expensive failure

cases in real flights. A detailed description of the simulation

framework is provided in Section V. First, we analyze

performance vs. ESM [22] and AEP [3] by integrating their

respective public implementations2 to our experimental setup

to allow for a fair comparison, as previously discussed.

Next, in absence of a public implementation for FFI [4],

we modify our experimental setup to match the assumptions

they disclose in the corresponding paper, and propose a fair

side-by-side comparison on the public POWERPLANT dataset

using the authors’ reported performances and illustrations

(Fig. 4b, 4d). In particular, we replace our MPC by its

RotorS-based counterpart and use the reported parameters

(Fig. 4a, 4c, Table I).

Performance is evaluated w.r.t to the following criteria.

• Exploration speed is measured quantitatively by means

of the explored volume over time, averaged over 10 runs

to account for the stochastic nature of the methods. This

is the commonly adopted practice in the field.

• Exploration efficiency assesses the ability of a system to

make the most out of its exploration. Quantitatively this

equates to the final (plateau) volumetric coverage in terms

of mapped volume. Qualitatively, this is assessed visually

by comparing the covered areas.

C. Positioning vs. State-of-the-art

Pure Performance. Our SplatPlanner significantly and con-

sistently exhibits superior performance w.r.t the considered

state-of-the-art methods ESM and AEP throughout the ex-

periments in exploration speed (Fig. 7a, 7b, 6b). The ten-

dency is also confirmed w.r.t the final explored volume

(i.e., efficiency) except on the COMPLEX FACILITY where

ESM seems on par with SplatPlanner. W.r.t FFI on the

POWERPLANT, SplatPlanner also performs consistently bet-

ter throughout different maximum velocities (Fig. 4a, 4b),

except before the 500s mark where the competition is slightly

faster for vmax = 2.5m/s. Beyond this limit, the data favors

the proposed approach leading to a far superior efficiency

(final explored volume). This tendency is confirmed by the

qualitative scene coverage as well (Fig. 4c, 4d).

Parameter Settings and Robustness. Table I discloses all

the parameters used in our experiments, including parameters

from the competition that were unspecified in their respective

papers. SplatPlanner only requires 2 trivial hyper-parameters

2https://github.com/ethz-asl/mav_active_3d_

planning and https://github.com/mseln/aeplanner



(a) CAD Input.

SplatPlanner (Ours) AEP [3] ESM [22]

(b) Qualitative comparison of the maps produced at t = 300s. Voxels are colored based on their height.

Fig. 6: COMPLEX FACILITY – Our SplatPlanner explores this complex environment more efficiently and better retrieves

complex geometric details w.r.t the state-of-the-art competition.
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Fig. 7: Exploration speeds averaged over 10 runs.

(vs. 5–6) that remain stable on all scenes. This supports the

superior robustness of SplatPlanner w.r.t state-of-the-art in

this aspect as well.

Additional Insights. Table II shows comparative exploration

planning statistics w.r.t state-of-the-art. Our method requires

much fewer, but slower planning iterations. Yet, it develops

faster, into a much longer path overall.

TABLE II: COMPLEX FACILITY – Statistics after 300s.

Method #Iterations Per-iter. avg time (ms) Path length (m)

Ours 48 280± 34 157

AEP [3] 90 54± 25 124
ESM [22] 128 N/A 128

Fig. 8: SplatPlanner runs online and on-board from take-

off to termination with no human intervention nor prior

knowledge about this large 15m x 10m x 3.5m WAREHOUSE.

D. Real-Flight Performance

We evaluate the practical robustness of our end-to-end

system on a challenging fully-autonomous flight (Fig. 8).

Our custom MAV flies through a large WAREHOUSE that

is bound at 15m x 10m x 3.5m and runs our SplatPlanner

algorithm online and on-board during 349s. The results of

this experiment are depicted step by step in Fig. 1 and are the

direct output of on-board processing. In comparison to real-

flight experiments provided by top-performing planners [3],

[4], ours takes place in a significantly more complex, larger

indoor environment than the ones referenced. This represents

an improvement in volumetric size of the considered scenes

ranging from 2.75x [4] to 4.66x [3] over the leading competi-

tion. In terms of hardware, the MAV we consider is a custom

quadrotor using a DJI A3 flight controller. The equipped

sensors include an Intel T265 VI-SLAM for odometry, a

D455 depth VGA camera and an Intel NUC with an Intel

Core i7-10710U and 16GB of memory.

Additional detailed information about the real-flight and

simulation experiments are provided in a supplementary

video at https://youtu.be/DCcfA2HB1GI.

VII. CONCLUSION

We have presented SplatPlanner, an end-to-end au-

tonomous system for 3D exploration planning in unknown

environments using an MAV equipped with a depth sensor.

The proposed method improves over recent state-of-the-

art methods in terms of exploration efficiency and speed,

as consistently supported by the considered simulation ex-

periments. An additional real-flight scenario also underlines

the practical robustness of our global solution.

As future work, we plan on integrating semantic reasoning

into our formulation by leveraging the pose and volumetric

occupancy of detected objects of interest.
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