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ABSTRACT
The vulnerability window of a hypervisor regarding a given secu-
rity flaw is the time between the identification of the flaw and the
integration of a correction/patch in the running hypervisor. Most
vulnerability windows, regardless of severity, are long enough (sev-
eral days) that attackers have time to perform exploits. Neverthe-
less, the number of critical vulnerabilities per year is low enough
to allow an exceptional solution. This paper introduces hypervisor
transplant, a solution for addressing vulnerability window of criti-
cal flaws. It involves temporarily replacing the current datacenter
hypervisor (e.g., Xen) which is subject to a critical security flaw, by
a different hypervisor (e.g., KVM) which is not subject to the same
vulnerability.

We build HyperTP, a generic framework which combines in a
unified way two approaches: in-place server micro-reboot-based
hypervisor transplant (noted InPlaceTP) and live VM migration-
based hypervisor transplant (noted MigrationTP). We describe the
implementation of HyperTP and its extension for transplanting Xen
with KVM and vice versa. We also show that HyperTP is easy to
integrate with the OpenStack cloud computing platform. Our evalu-
ation results show that HyperTP delivers satisfactory performance:
(1) MigrationTP takes the same time and impacts virtual machines
(VMs) with the same performance degradation as normal live mi-
gration. (2) the downtime imposed by InPlaceTP on VMs is in the
same order of magnitude (1.7 seconds for a VM with 1 vCPU and
1 GB of RAM) as in-place upgrade of homogeneous hypervisors
based on server micro-reboot.

CCS CONCEPTS
• Security and privacy→ Virtualization and security.

1 INTRODUCTION
As with any software, popular hypervisors are continuously subject
to multiple security vulnerabilities [19, 21, 41, 51]. A Hypervisor
vulnerability window regarding a given security flaw is defined
as the time between the identification of said flaw (whether by
a good or bad guy) and the integration of a correction/patch in
the running hypervisor (see the red zone in Fig. 1.a). In fact, the
vulnerability window is the sum of two durations: (1) the time
required to propose a patch once the vulnerability is discovered
and (2) the time to apply this patch in the system (see Fig 1.a). The
time to release a patch is highly dependent on the vulnerability’s
severity and can vary from one week with vulnerabilities such
as the MD5 collision attack [54], to 7 months with vulnerabilities

such as Spectre and Meltdown [25, 32]1. The time to apply the
patch mainly depends on the datacenter operators’ patching policy.
Together, this timeframe leaves plenty of time to launch an attack
against a vulnerable installation.

Figure 1: (a) Traditional vulnerabilitymitigation in data cen-
ters and (b) our hypervisor transplantation-based solution.

In this paper, we want to address the following question: If a
datacenter uses a hypervisor affected by a critical vulnerability/flaw2,
how to protect the datacenter during the vulnerability window? To
this end, we introduce hypervisor transplant, a novel solution that
involves a temporary replacement of the normal datacenter hyper-
visor (e.g., Xen) with a different hypervisor (e.g., KVM) which is
immune to the aforementioned vulnerability (see Fig. 1.b). Once
the operators are informed of said vulnerabilities, they can apply
hypervisor transplant to effectively mitigate this flaw across their
systems.

In our vision, each hypervisor vulnerability should be inves-
tigated for its impact on various other hypervisors. Hypervisor
transplant is beneficial in two cases: either when (i) there exists
another hypervisor which is not known to be vulnerable to any
flaw at the time of discovery, in which case the vulnerability can be
disclosed immediately to the datacenter operators; or (ii) a patch
solving the vulnerability can be developed in a shorter amount of
time for an alternate hypervisor than the one used in the datacen-
ter, in which case the vulnerability can be disclosed as soon as the
alternate hypervisor has been patched. In fact, if there are multiple
choices of target hypervisors for transplant, the datacenter operator

1Note that Spectre and Meltdown are CPU-specific vulnerabilities with CVEs declared
on Intel products. Hypervisors and operating systems were not directly concerned by
the CVE declaration.
2A flaw is considered as critical when its Common Vulnerability Scoring System (CVSS)
v2.0 Rating is higher than 7 [53].



Tu Dinh Ngoc, Boris Teabe, Alain Tchana, Gilles Muller, and Daniel Hagimont

will have more choices in terms of replacement even when some
candidate hypervisors in the hypervisor pool prove to be vulnerable.
As long as an alternative exists that is not vulnerable to any flaw,
HyperTP can be used to ensure the security of the system.

To investigate the viability of hypervisor transplant, we collected
a list of medium3 and critical-rated vulnerabilities over the last 7
years for Xen and KVM (see Section 2). Over that period, we found
only three common vulnerabilities shared by Xen and KVM: one
rated critical and two rated medium. This low number supports our
starting assumption that a safe alternate hypervisor exists. Overall,
if HyperTP is reserved for mitigating critical vulnerabilities, the
number of transplants required per year remains low; this means
even if hypervisor transplant cannot be done too frequently, it
would still bring an improvement in security.

Implementing hypervisor transplant raises several challenges
in terms of dealing with hypervisor heterogenity and minimizing
VM downtime. We address these challenges by proposing HyperTP,
a framework which combines in a unified way two approaches:
(i) live VM migration based transplant (noted MigrationTP) which
offers almost no downtime but requires spare network and machine
resources, and (ii) in-place micro-reboot based transplant (noted
InPlaceTP) which does not require additional resources at the cost
of a few seconds of downtime.

MigrationTP alone does not perform well at the size of a com-
plete datacenter, since the need for spare machines and network
bandwidth limits the number of VMs that can be simultaneously
reconfigured. Additionally, live VM migration is only possible be-
tween homogeneous hardware, whereas datacenters use a wide
range of heterogeneous hardware [15], which further reduces the
number of destination servers. As an example, Alibaba reported
that the migration of 45,000 VMs from a couple of clusters took 15
days of maintenance [59].

In HyperTP, InPlaceTP is preferable to MigrationTP when VMs
can tolerate a few seconds of downtime. Microsoft Azure [36] an-
nounces downtimes of up to 30 seconds for maintenance operations;
we therefore use this value as an acceptable upper bound for down-
time.In our current prototype, it is up to the datacenter operator
to decide which transplant approach is the most appropriate for
reducing vulnerability windows, since equivalent policies are al-
ready provided for dealing with periodic platform updates [36]. Our
evaluations on a small cluster in Section 5.4 show that the total
reconfiguration time can be reduced by up to 80% when 80% of the
VMs use InPlaceTP. We expect similar results at a larger scale since
InPlaceTP avoid using network and machine resources.

While live migration and micro-reboot are known approaches,
the main novelty in designing HyperTP is to ease the support of het-
erogeneous hypervisors without compromising performance. We
buildHyperTP around two principles, Unified Intermediate State Rep-
resentation (UISR), andmemory separation. UISR defines a hypervisor-
independent state representation whose main benefit is to simplify
the re-engineering of a hypervisor into a HyperTP-compliant one.
Memory separationminimizes downtime during InPlaceTP and aims
to identify parts of the VM state which are hypervisor-independent
and do not need to be converted when launching the target hyper-
visor.

3A vulnerability is considered medium if its CVSS v2 score is ≥ 4 and < 7.

To validate the transplant solution, we built a prototype of Hy-
perTP and re-engineered Xen and KVM, the two most popular open
source hypervisors, into HyperTP-compliant hypervisors. Xen and
KVM also represent the two types of hypervisors: type-I hypervi-
sors (Xen) and type-II hypervisors (for KVM), thus demonstrating
the scope of the transplant solution. We have evaluated our pro-
totype both at a machine scale and at a small cluster scale. At the
machine scale, we are concerned with the downtime incurred by
HyperTP when running typical cloud workloads such as SPEC CPU
2017 [8], MySQL [38], Redis [43], and Darknet [44]. At a cluster
scale, we aim at evaluating the time saved by using InPlaceTP trans-
plants instead of MigrationTP transplants when reconfiguring 10
servers, each running 10 VMs which host the above mentioned
benchmarks. For this experiment, we have extended the BtrPlace
VM scheduler [20] to orchestrate the various transplants. Our re-
sults are as follows:

• We conduct a study of vulnerabilities in Xen and KVM over
the last 7 years (see Section 2). We observe that most vulner-
abilities are specific to a single hypervisor and are caused by
wrong implementation choices.

• We present a HyperTP prototype which includes bothMigra-
tionTP and InPlaceTP, therefore demonstrating the feasibility
of heterogeneous transplant from Xen and KVM and vice
versa.

• We describe the integration of HyperTP in OpenStack (see
Section 4.5.2), a popular cloud orchestrator. Following our
conversations with three commercial cloud operators (e.g.
3DSOutscale) and one small scale datacenter operator (Chameleon),
we conclude that HyperTP is not likely to burden sysadmins
as they never directly interact with hypervisors using vendor
libraries, but rather through generic libraries (that we have
adapted) such as libvirt (see Section 4.5.1).

• InPlaceTP from Xen to KVM causes minimal downtime to
running VMs (as low as 1.7 seconds for a VM with 1 vCPU
and 1 GB of RAM), with negligible memory and I/O overhead
and without requiring VM reboots. From KVM to Xen, the
downtime is about 7.8 seconds for the same VM configura-
tion.

• MigrationTP offers similar performance to traditional homo-
geneous VM live migration.

• On a small cluster, upgrading 10 servers each running 10
VMs, using InPlaceTP for 80% of the VMs takes 3 minutes
and 54 seconds while using MigrationTP would take up to
19 minutes.

2 VULNERABILITIES IN XEN AND KVM
We studied critical and medium-rated vulnerabilities in Xen and
KVM over the last 7 years, using data extracted from the NIST NVD
website [53]. A vulnerability is rated critical when its CVSS v2
score is ≥ 7, andmedium when its CVSS v2 score is ≥ 4 and < 7.
Our results are listed in Table 1.

2.1 Global analysis
Critical vulnerabilities. In Xen, 38.4% of critical vulnerabilities
are related to Xen’s PV mechanisms such as event channels and
hypercalls, 28.2% are from resource management mechanisms (e.g
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Year Xen KVM Common
Crit. Medium Crit. Medium Crit. Medium

2013 3 38 3 21 0 0
2014 4 27 1 12 0 0
2015 11 20 1 4 1 2
2016 6 12 3 3 0 0
2017 17 38 1 7 0 0
2018 7 21 2 5 0 0
2019 7 15 2 4 0 0
Total 55 136 13 56 1 2

Table 1: Number of critical and medium vulnerabilities per
year in Xen and KVM

CPU scheduler), 15.3% are due to hardware mishandling (e.g mis-
management of VT-x states), 7.5% are from Xen toolstack (libxl)
and 10.2% are linked to QEMU. Concerning KVM’s critical vulnera-
bilities, 27% are related to ioctls, 36% on hardware mishandling, 36%
are linked to QEMU, and 9% on resource management mechanisms.

We counted only one common critical vulnerability between Xen
and KVM over the studied period. This vulnerability stems from
QEMU, a common component on both systems. The description
of this common critical vulnerability on the National Vulnerability
Database website indicates that it affects QEMU’s virtual floppy
disk controller implementation, namely a lack of bounds checking
leading to a buffer overflow vulnerability.

We additionally note the two hardware-level vulnerabilities Spec-
tre and Meltdown, which affected both Xen and KVM in the same
fashion. Both were originally reported to hardware vendors on June
1st, 2017 [1]; however, the patching and public disclosure took until
January 3rd, 2018; a period of 7 months. Such a period originated
from the need to coordinate patches across multiple vendors and
products, a lengthy, complex and error-prone process that lead to
the vulnerability being leaked ahead of time [2].
Medium vulnerabilities. In this section, we focus our analysis
on common vulnerabilities. Out of 136 medium Xen vulnerabilities
that we studied, only 2 are shared with KVM: CVE-2015-8104 and
CVE-2015-5307, both of which are DoS vulnerabilities caused by
incomplete handling of two hardware exceptions (Alignment Check
and Debug Exception).

2.2 Timeline analysis
We attempted to build the timeline of each vulnerability. This in-
cludes the time of discovery, time of report, time of patch release,
and time before patch application in the datacenter (see Fig. 1).
The time to patch application is specific to each datacenter’s patch
policy, therefore we exclude this datapoint from our studies.
Timeline of Xen vulnerabilities. The easiest method of recon-
structing vulnerability timelines is through analyzing bug trackers.
Unfortunately, Xen has no central vulnerability tracker, as acknowl-
edged by several members of Xen’s security team that we contacted.
Instead, Xen offers an advisory website [3] that only lists the de-
scription of each vulnerability and its associated patch. To recon-
struct the timeline of each vulnerability, we adopted the following
methodology: for each vulnerability, we first searched from various
Xen and security forums the email of the vulnerability discoverers.
We then sent to each researcher an email asking for the timeline,
for a total of 30 emails concerning 191 vulnerabilities, noting that

several vulnerabilities were reported by the same author. From
the 30 authors that we contacted, despite numerous reminders, we
only received answers from 7 authors covering 15 vulnerabilities (7
critical, 8 medium). Unfortunately, none of the authors were
able to remember the exact dates, making building the vul-
nerability timeline impossible. The authors were only able to
estimate the time between the flaw discovered and the release of the
patch. The author of CVE-2016-6258 [4] stated that the associated
patch was publicly released 7 days after it was discovered. The 6
other authors, who are very active contributors to the Xen project
(with more than 2 reported vulnerabilities for each author), stated
that the time between the report and the patch release was 1 to 2
months on average.
Timeline of KVM flaws. KVM is a hypervisor integrated into
Linux, so it is difficult to track hypervisor-specific changes in the
huge bug report flow of Linux. Therefore, to have statistics on
vulnerability timelines, we used Red Hat’s bug tracker [5] which
provides for some KVM vulnerabilities the exact reported date and
the patch release date. We were able to identify 24 vulnerabilities
presented in Table 1. From the extracted data, we observed that
the average duration of the vulnerability window is 71 days, with
60% of the 24 vulnerabilities having a vulnerability window higher
than 60 days. The maximum vulnerability window was 180 days
(for CVE-2017-12188) and the lowest 8 days (for CVE-2013-0311).

3 HYPERVISOR TRANSPLANT
We first present the two main principles, Memory separation and
Unified Intermediate State Representation (UISR) used in design-
ing HyperTP. We then describe in detail the implementations of
InplaceTP and MigrationTP.

3.1 Design principles

Figure 2: Memory separation organizes the content of the
RAM in four categories: Guest State, 𝑉𝑀𝑖 State, VM Manage-
ment State and HV State.

Although the document describes the utilization of HyperTP
with two hypervisors, we underline that the datacenter operators
can have several hypervisors in their repertoire, thus increasing
the chance to find a safe replacement hypervisor when several
hypervisors are vulnerable at the same time, whether to the same or
different flaws. Let us note 𝐻𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝐻𝑡𝑎𝑟𝑔𝑒𝑡 as the current and
substitute hypervisor of the datacenter, respectively. Hypervisor
transplant works as follows: (1) Suspend running VMs; (2) Translate
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VM states into the UISR neutral format; (3) Transfer VM states to
the replacement server in case ofMigrationTP, or micro-reboot into
𝐻𝑡𝑎𝑟𝑔𝑒𝑡 in case of InPlaceTP ; (4) Translate VM states back from
UISR to the 𝐻𝑡𝑎𝑟𝑔𝑒𝑡 format; (5) Resume VMs; and (6) cleanup. We
consider that the VMs’ states include all the data structures in the
hypervisor for themanagement of virtual resources (CPUs, memory,
devices).

Memory separation.
The purpose of memory separation is to identify inside the RAM
state which kinds of data are specific to VMs or the hypervisor, and
which memory contents need (or not) to be translated and restored
into the 𝐻𝑡𝑎𝑟𝑔𝑒𝑡 hypervisor. This allows to reduce translations and
therefore the necessary downtime. In addition, HyperTP manages
to keep hypervisor-independent data in-place in case of InPlaceTP
in order to accelerate the transplant process.

Fig. 2 summarizes the RAM organization in a virtualized system,
which can be classified into four categories:

• Guest State corresponds to all the memory managed by the
guest (its address space), including the guest operating sys-
tem and its hosted applications. This memory is hypervisor-
independent and can be kept untouched. It stays as is in the
case of InPlaceTP or is transfered to the destination server
in the case of MigrationTP.

• 𝑉𝑀𝑖 State corresponds to all the data structures which are
specific to the execution of one 𝑉𝑀𝑖 by the hypervisor.
Nested page tables (NPT) or vCPU contexts are examples
of such data structures. This memory is mostly hypervisor-
dependent, and therefore has to be translated and restored
during transplant. For instance, the structure and the con-
tent of the NPT is enforced by processor vendors, yet is
hypervisor-dependent as each hypervisor has its own NPT
management policy.

• VM Management State corresponds to the data structures
which are used for VM management and include references
to 𝑉𝑀𝑖 State. An example is the queues from a vCPU sched-
uler. This state is hypervisor-dependent, but HyperTP does
not have to translate it as it can be reconstructed from the
𝑉𝑀𝑖 State of all the VMs.

• HV State corresponds to the memory managed by the hy-
pervisor which is not linked with any VM. Such state is
reinitialized by the micro-reboot in the case of InPlaceTP,
or already exists on the destination server in the case of
MigrationTP.

Overall, the main state handled by HyperTP is 𝑉𝑀𝑖 State.

Unified Intermediate State Representation.
UISR allows translating the hypervisor-dependent state of each VM
(𝑉𝑀𝑖 State) into a hypervisor-independent intermediate state repre-
sentation. UISR shares the same objectives as XDR [49], a network
neutral data representation. Relying on a neutral format simplifies
the re-engineering of a hypervisors into a HyperTP-compliant one,
since the hypervisor developer only has to understand the UISR for-
mat instead of the representation formats of all existing hypervisors.

UISR describes the structures of a VM which are necessary to
restore it in any hypervisor. It includes the VM state information for
all virtualized resources (CPU, memory, I/O devices ...). UISR con-
struction in HyperTP is done using struct uisr* to_uisr_xxx
functions (e.g., struct uisr* to_uisr_vCPU). The restoration
from UISR representation into 𝐻𝑡𝑎𝑟𝑔𝑒𝑡 ’s format is achieved using
void *from_uisr_xxx functions (e.g., void *from_uisr_vCPU),
which return the address where the corresponding state representa-
tion is stored. The implementation of save and restoration functions
must be done by an expert of each hypervisor since they rely on
each hypervisor’s internal APIs.

Figure 3: InPlaceTP workflow.

3.2 In-place hypervisor transplant
Fig. 3 summarizes the general workflow of InPlaceTP. The binaries
of 𝐻𝑡𝑎𝑟𝑔𝑒𝑡 are loaded ahead of time into the physical RAM (Fig. 3,
❶). Then any running guest VMs are paused (Fig. 3, ❷). The 𝑉𝑀𝑖

States of all VMs are translated into the UISR format using UISR
functions (see Fig. 3, ❸). A micro-reboot of the machine is then
performed using 𝐻𝑡𝑎𝑟𝑔𝑒𝑡 as the new kernel entry point (Fig. 3, ❹).
After reboot, the target hypervisor restores the 𝑉𝑀𝑖 States from
the UISR into the target format, rebuilds the VM Management State
(Fig. 3, ❺), and then links the new 𝑉𝑀𝑖 States for all VMs with the
new hypervisor (Fig. 3, ❻). Finally, the target hypervisor resumes
all guests (Fig. 3, ❼) and the portions of the RAM which were used
to store ephemeral data are freed. Note that Guest States (e.g., guest
physical address spaces) are kept untouched and in-place. This
accelerates the transplant process and minimizes the amount of
additional memory resource needed, since Guest States represent
the largest part of hardware resources consumed by VMs.

3.3 Migration-based hypervisor transplant
MigrationTP mostly follows the same workflow as a normal VM live
migration [12], a pre-copy loop (during which the VM continues to
run) followed by a final suspend-and-copy phase. Once the suspend-
and-copy completes, the source hypervisor signals the destination
to resume the VM and complete the live migration. The novel aspect
in MigrationTP is the introduction of proxies to translate the VMs’
𝑉𝑀𝑖 States into UISR. The UISRs is built by the proxy on the source
machine. On the destination machine, the proxy is responsible
for restoring the state into the 𝐻𝑡𝑎𝑟𝑔𝑒𝑡 format. Note that Guest
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States, which are hypervisor-independent, are not translated by the
proxies.

4 PROTOTYPE
Although our HyperTP prototype allows transplanting a hypervisor
host from Xen onto KVM and vice versa, we focus on the imple-
mentation of Xen to KVM transplant to stay within the page limit.
We organize our description of the prototype as follows: Section 4.1
describes our choice of experimental environment. Section 4.2
presents the implementation of InPlaceTP. Finally, section 4.3 de-
scribes MigrationTP and its differences compared to InPlaceTP.

4.1 Experimental environment
We use Xen 4.12.1 in HVM (Hardware-assisted virtualization) mode
because of its popularity (e.g. Amazon’s recommendation of favor-
ing HVM [6]). 4 On the KVM side, we use Linux 5.3.1 combined
with kvmtool. Table 3 describes the hardware characteristics of
our experimental machines. Following common VM storage de-
sign in datacenters, we use network-based remote storage for the
VM’s root disk. As a result, storage operations are only network
dependent.

The HyperTP prototype is mostly implemented in user-space.
Such an implementation has several advantages: First, it takes ad-
vantage of existing libraries (e.g., libxenctrl [52], a low-level
library for interacting with Xen), thus minimizing the development
effort. Second, it allows easy reuse of our prototype across different
Xen and KVM versions. Last but not least, it facilitates the usage of
HyperTP by sysadmins, as we do not require upgrading the current
hypervisor.

4.2 In-place Xen to KVM transplantation
The transplantation process follows the steps of the HyperTP work-
flow presented in Section 3.1. The implementation of steps (1) (sus-
pension) and (5) (resume) is not detailed because they are natively
provided by all hypervisors. We detail the implementations of steps
(2) (translation) and (4) (restoration) for each type of virtualized
resource: platform (Section 4.2.1), memory (Section 4.2.2) and IO de-
vices (Section 4.2.3). Finally, Section 4.2.4 describes the micro-reboot
process used by step (3).

The translation and restoration of a virtualized resource within
the 𝑉𝑀𝑖 State corresponds to the translation of its state (in Xen
format) to UISR, followed by the saving of the latter in RAM, the
translation from the UISR in RAM to a KVM-understandable format,
and finally the integration of this state into KVM. We use a slight
modification of Xen’s virtual resource state representation as UISR.
This choice is motivated by the fact that Xen is open source and
mature, developed over a period of over 15 years.

4.2.1 Platform management. Platform refers to the CPU and other
critical virtual devices necessary for the operation of the guest.
Table 2 shows the mapping between hypervisor state types and the
UISR platform state (which is part of 𝑉𝑀𝑖 𝑆𝑡𝑎𝑡𝑒).
Platform translation and restoration. Xen already contains the

4Xen PV is unsuitable for transplantation between multiple hypervisors due to its
tight coupling to the Xen API.

Xen HVM state UISR KVM
CPU regs CPU (S)REGS, MSRS, FPU
LAPIC LAPIC MSRS
LAPIC regs LAPIC_REGS LAPIC_REGS
MTRR MTRR MSRS
XSAVE XSAVE XCRS, XSAVE
IOAPIC IOAPIC IRQCHIP
PIT PIT PIT2

Table 2: Xen-KVM VM state mapping

necessary functions for saving and loading VM platform states
(xc_domain_hvm_get/setcontext). These functions can be directly
integrated into InPlaceTP as part of the VM save/load process.

On the KVM side, we extended kvmtool to understand and use
UISR states. Upon restoring a VM, the kvmtool process is therefore
responsible for translating each platform device’s state to KVM’s
internal formats, then calling the corresponding KVM IOCTL to
integrate this state into the VM to be restored. During the trans-
lation and restoration processes, several platform states required
compatibility fixes; for example, Xen uses a 48-pin virtual IOAPIC
implementation, compared to KVM’s 24 pins. Right now, for ex-
perimental purposes, our implementation simply disconnects the
higher 24 IOAPIC pins during transplantation (without affecting
the applications we experimented with). However, future imple-
mentations can ensure that the IOAPIC on both hypervisors are
compatible with each other, or expose a way to inform the VM
of any change in IOAPIC topology. While the VM states of Xen
and KVM are largely similar due to both being based on hardware
virtualization, we implemented fixes for specific virtual devices
to ensure that these devices will continue functioning on the new
hypervisor, for both directions of transplantation (Xen↔KVM).

4.2.2 VM memory management. Our goal is to transform the VM’s
memory into a universal format that can be understood by multiple
hypervisors. This format includes the VM’s actual memory con-
tent (which we consider Guest State), but not hypervisor-specific
information stored in 𝑉𝑀𝑖 State (e.g. nested page tables), which is
handled differently by different hypervisors.

File pointer

File pointer

File pointer

File info

File info

File info

File info

File pointer

Page entry

Page entry

Page entry

Page entry

GFN Size

Size Mode Name

PRAM pointer

MFN

Page entry

Page entry

Page entry

Page entry

Figure 4: PRAM structure, used for identifying VM’s mem-
ory pages.

VM memory translation/restoration. In this step, we create a
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memory map of each VM to be integrated in its UISR. Since a
VM’s memory does not form a contiguous region in physical RAM,
but is rather scattered in different random locations,we use a file
system table structure adapted from the PRAM patchset [14] to
represent this information. Fig. 4 shows the detailed description of
our PRAM structure, which consists of metadata pages aligned on a
page boundary (to easily manage PRAM’s memory). The structure
begins with the PRAM pointer, which points to a linked list of root
directory pages (colored red in Fig. 4). Each root directory page
refers to multiple file information pages (colored green), each of
which describe a single VM’s memory using a chain of nodes (col-
ored blue) containing page entries. Each page entry itself contains
the guest frame number of the chunk, its corresponding machine
frame number, and its size (in power-of-2 number of pages) so as to
support hypervisor-side large pages. In short, the PRAM structure
records the memory contents of a VM as a file. This file can later be
used at restoration time to ensure thatGuest State is kept untouched,
and to restore a consistent𝑉𝑀𝑖 State (e.g. NPT). For InPlaceTP with
Xen→KVM, at restoration time, we simply map the VM’s memory
into the VMM using mmap, and pass the resulting memory address
to KVM to be used as guest memory. For KVM→Xen, we imple-
mented a PRAM filesystem API into Xen to allow integration of
each VM’s memory into the new hypervisor.

4.2.3 IO device management. We considered two types of virtual
devices, pass-through and emulated. With pass-through devices,
each VM has direct access to the hardware device at near native
performance, but it forbids the use of VMmigration. With emulated
devices, the VMM (QEMU or kvmtool) provides a hardware device
using the trap-and-emulate technique to simulate a real hardware
device or to provide a paravirtualization API. One noticeable differ-
ence between these two types of devices is that with pass-through
devices, the (hardware) device is still the same after transplanta-
tion; whereas with emulated devices, the emulation software may
change with the hypervisor replacement. In both cases, we rely on
notifying the guest to prepare before the transplantation, similarly
to what is done on Azure with the Scheduled Events API [36].

In the case of pass-through devices, we request the guest driver
to pause the device, therefore putting both the device and its driver
into a consistent state. Afterwards, as the state of the driver is
stored inside the guest memory (Guest State), it is preserved during
transplantation; the restoration consists of simply notifying the
guest to resume the device.

In the case of emulated devices, after pausing the device, we
copy and translate its emulation state for use in the target hyper-
visor. With certain devices (e.g. networking devices), we choose a
different approach: notifying the guest to unplug the device before
transplantation, then rescanning and reinstalling the device during
restoration. We observed that this service interruption has negligi-
ble impact on VMs as it does not break existing TCP connections.

4.2.4 Micro-reboot. Both Linux andXen implementKexec, a method
for booting a new kernel on top of a running system. Kexec is anal-
ogous to a bootloader which can be invoked at any time, allowing
quick booting of new OS kernels without reinitializing most hard-
ware state. We inform the target hypervisor of any existing VM
memory maps by passing the PRAM pointer through the target’s
boot command line. The target hypervisor reserves any memory

pages with PRAM information, and constructs a virtual filesystem
containing each VM’s memory for later use. Additionally, we im-
plemented logic into both Xen and KVM to ensure that the VM
memory regions managed by PRAM are not accidentally erased or
modified during the transplant process.

4.2.5 Optimizations. In order to optimize the transplantation pro-
cess, we implemented the following four techniques:

• Preparation work without pausing the guest. Some of the trans-
lation works can be performed before pausing the VMs, akin
to the pre-copy step during live migration.

• Parallelization. We parallelized 𝑉𝑀𝑖 State translations and
restorations, where each VM is translated by a different
thread. This offers a significant reduction on the downtime
and transplantation time, especially during PRAM handling.

• Huge page support. We adapted the PRAM patchset to sup-
port huge pages (2MB). This reduces the memory footprint
of the PRAM structures, and increases performance when
reading/writing PRAM structures.

• Early restoration. In order to speed up the restoration process,
we adapted Linux/KVM so that VM creations and restora-
tions can be initiated earlier, as soon as all services used by
KVM VMs have started.

4.3 VM migration-based Xen-to-KVM
transplantation

The implementation ofMigrationTP is almost the same as InPlaceTP
presented above, with two significant differences: (1) UISRs are not
saved in the source machine’s RAM, but are rather sent over the
network to the destination machine with the target hypervisor; and
(2) only parts of the UISR information have to be transferred, as
described below.

VM state transfer from Xen to KVM follows the same workflow
as a traditional live migration between two Xen hypervisor hosts.
To minimize VM downtime during migration, Xen implements
the pre-copy approach [12], which consists of two main phases:
Pre-copy, where memory pages of the VM in the source host are
copied/sent to the target in a loop; and Stop-and-copy, where the
target hypervisor finalizes the memory copy process and resumes
the VM.

To implementMigrationTP, we adapted the transfer of𝑉𝑀𝑖 State
so that they are translated and restored following the client-server
design presented in Section 3.3. The translation is otherwise identi-
cal to InPlaceTP. Note that PRAM is not necessary withMigrationTP,
as guest pages are copied to the target VM and memory maps are
implicitly rebuilt.

4.4 Impact of HyperTP on hypervisors’ trusted
computing base

The Trusted Computing Base (TCB) of a system is defined as the
minimum set of components that must be trusted in said system.
In the context of virtualization, Zhang et al. [58] defines the TCB
as both the hypervisor and the management VM, the total of which
is in the scale of millions of LOCs.

HyperTP contributes a comparatively minimal amount of code,
totaling 15 KLOCs in size. Of these 15 KLOCs, 2.2 KLOCs belong to
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Figure 5: Overview of a KVM/Xen server’s components. A
dotted line indicates when the sysadmin directly uses a hy-
pervisor vendor’s library.

the hypervisors, 5.2 KLOCs are added in userspace management
tools (libxl for Xen, kvmtool for KVM, as well as PRAM/Kexec code),
1.1 KLOCs are for HyperTP orchestration purposes, and finally 6.1
KLOCs are for testing, utilities and evaluation. Thus, 8.5 KLOCs of
which contribute to HyperTP’s TCB, of which nearly 90% is situated
in userspace. In addition, HyperTP code is activated only during the
transplant process. It is furthermore isolated between different VMs,
and does not process VM inputs. In conclusion, HyperTP does not
considerably increase the TCB of current hypervisors. Moreover,
HyperTP mainly relies on existing functionalities in hypervisors.
Therefore, we believe that HyperTP presents a minimal increase in
attack surface.

4.5 Integration in datacenters
HyperTP requires the administration of several hypervisors in the
same datacenter. We show in this section that a slight adaptation
of the cloud orchestrator is sufficient to easily integrate HyperTP
into a datacenter. Note that the utilization of several hypervisors in
the same datacenter through an abstraction layer is well known,
as seen in existing products (OpenStack, Nutanix [42]) or research
(Xen-Blanket [55]).

4.5.1 Potential administrative burden of HyperTP. To answer this
question, we contacted and analyzed the administration practices
of several cloud orchestrator products and cloud service providers
(Apache CloudStack, OpenNebula, Proxmox VE and OpenStack).
These products were chosen because of their support for multiple
hypervisors.

We classify each cloud orchestrator’s interactions with the hy-
pervisor into two categories: (G1) those that directly use specific
hypervisor libraries (e.g., xl for Xen) and (G2) those that call the
hypervisor via a generic VM management library (e.g., libvirt).
We found that all cloud orchestrators interact with the hypervisor
using (G2), namely libvirt.

Concerning cloud providers practices, we contacted three large
scale commercial clouds (3DS Outscale5, cloud A and cloud B6) and
5https://en.outscale.com/
6We didn’t obtain the authorization to name these two cloud operators.

Chameleon7, a cloud-scale datacenter dedicated to researchers. Out
of these providers, 3DS Outscale, Cloud A and parts of Chameleon
are virtualized with KVM. Outscale uses a homemade cloud or-
chestrator8, Cloud A uses a commercial cloud orchestrator, while
Chameleon relies on OpenStack for its operations. Cloud B is vir-
tualized with VMware ESXi and is orcherstrated by vCenter. We
asked each operator to provide us the ratio of administration tasks
their sysadmins perform using (G1) and (G2). We found that no
sysadmin in these clouds use (G1). For example, 3DS Outscale stated
that: “In a large scale cloud, the daily work of sysadmins must limit
actions on hypervisors as much as possible, because they are very time-
consuming, with a high risk of error and difficult to generalize.” 3DS
Outscale expressed a reservation for small scale clusters, in which
direct interactions with the hypervisor could make sense. However,
our conversation with Chameleon’s operators revealed that even
in a small scale cloud, sysadmins do not use (G1). In particular, the
chief sysadmin of Chameleon stated that “I use OpenStack, I don’t
directly operate the hosts’ hypervisors. The Nova service is configured
to use libvirt, and the rest of the OpenStack system manages the rest.”

Following our inquiries, we can reasonably say that the integra-
tion of HyperTP into the datacenter only requires the adaptation of
the cloud orcherstrator, without requiring sysadmins to administer
each hypervisor type separately.

4.5.2 Integration onto OpenStack. We want to automate the chang-
ing of hypervisors into a “one-click” procedure that can be quickly
deployed by cloud administrators. We do this using existing mech-
anisms built into OpenStack Nova. Namely, Nova’s API already
include the necessary functionalities for managing the host and its
guest VMs, including rebooting the host, reconfiguring network,
managing shared storage, etc. In this instance, we can add an addi-
tional “host live upgrade” operation that performs the operations
belonging to the HyperTP workflow.

In particular, the addition of HyperTP to OpenStack spans the
following components. (1) Extend Nova’s ComputeDriver inter-
face to add HyperTP-related operations: guest state saving (akin
to the existing suspend operation), loading and executing the new
hypervisor kernel, and guest state restoring (akin to the existing
resume operation). (2) Implement HyperTP into each compute dri-
ver (libvirt, Xen interface, KVM interface in Fig. 5), so that they
support the previously-mentioned HyperTP operations. (3) Extend
Nova’s compute API interface to enable automatic upgrading of a
host using HyperTP (e.g. similar to the existing Evacuate API): all
VMs not supporting HyperTP are migrated away from the affected
host using the existing ComputeDriver’s live_migration operation,
Nova manager saves all VM on affected host using the new guest
state saving operation, Nova manager triggers host upgrade and
updates its internal database to reflect the change in hypervisor,
and Nova manager waits for successful host upgrade and restores
all VM onto the newly-upgraded host; (4) Extend Nova scheduler
with additional filters for HyperTP-aware consolidation of VMs, by
keeping transplantable VMs together so that they can be upgraded
with a single operation. (5) Update relevant OpenStack interfaces
to support calling HyperTP API.

7https://www.chameleoncloud.org/
8https://fr.outscale.com/pourquoi-outscale/tina-os-orchestrateur-cloud/
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Server name Characteristics

M1
Intel(R) i5-8400H
4 cores/8 threads 2.5GHz, 16GB RAM
256GB SSD, 1 Gbps Ethernet

M2
2xIntel(R) Xeon(R) CPU E5-2650L v4
14 cores/28 threads 1.7GHz, 64GB RAM
4x111GB SSD, 1 Gbps Ethernet

Benchmark (metric) Description
SPECrate 2017 Int/FP 23 CPU- and memory-intensive
(execution time) workloads
MySQL 5.7 and Sysbench Stressing a relational database
(QPS and latency) with a SQL load injector
Redis and redis-benchmark Stressing an in-memory key-value store
(QPS) with its included load injector
Darknet Training a neural network
(iteration time) using the MNIST dataset

Table 3: Description of the experimental environment.

5 EVALUATIONS
This section presents the performance evaluations of HyperTP, in-
cluding both approaches (InPlaceTP and MigrationTP). Our evalua-
tions aim to answer the following questions:

• What are the costs incurred by each transplantation step in
each approach?

• What is the total transplantation time? This for InplaceTP
and MigrationTP for both Xen→KVM and KVM→Xen.

• What is the downtime imposed on VMs by each approach?
• What is the performance gain from each optimization?
• What is the performance impact of each approach on user
VMs?

• How scalable is each approach with varying sizes and num-
ber of VMs?

• What is the overhead of HyperTP?
• How does HyperTP perform at the cluster scale?

5.1 Experimental setup
Hardware. To realize the micro-evaluations, we use two kinds of
machines: two M1 machines and one M2 machine, whose character-
istics are presented in Table 3.We carried out InPlaceTP experiments
on both machine types, whileMigrationTP is only performed on M1
machines because live migration requires homogeneous hardware.
The two M1 machines are linked with a 1 Gbps Ethernet connec-
tion. The software versions used in these machines are presented
in Section 4. We reserved 2 CPUs for the administration OS (dom0
in Xen and host Linux in KVM). We configured guest OSes to use 2
MB huge pages for memory allocation.

Concerning cluster scale evaluations, we use 10 machines from
a public research infrastructure. Each machine has 2x Intel Xeon
E5-2630 v3 and 96 GB of RAM. They are interconnected using a 10
Gbps network.

Applications.We aim to evaluate HyperTP using several applica-
tion types, including CPU-, memory- and IO-intensive applications,
thus covering typical datacenter workloads. The benchmark list
as described in Table 3 includes SPEC CPU2017 [8], MySQL [26],
Redis [43] and Darknet [44].

M1 M2
Machines
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Figure 6: InPlaceTP time breakdown on amachine hosting a
single VM for Xen→KVM.

Xen to Xen MigrationTP (Xen to KVM)
Downtime 133.59 ms 4.96 ms
Migration time 9.564 sec 9.63 sec

Table 4: MigrationTP for Xen→KVM and Xen VM live mi-
gration - Downtime and migration time.

5.2 Time breakdown
Our experiments in Fig. 6 aim to analyze the duration of each
phase of HyperTP. We focused on Xen→KVM transplantation in
this section. We used idle VMs for this evaluation since VM activity
does not impact the transplantation time.

For InPlaceTP, the time breakdown consists of the PRAM struc-
ture construction (noted PRAM in Fig. 6), UISR translation (noted
Translation), server micro-reboot (noted Reboot), and UISR restora-
tion (noted Restoration). Reboot includes the time for booting the
new hypervisor plus PRAM structure parsing time during the early
boot phase (to preserve memory from guests). In fact, we were not
able to measure the time of these steps separately because monitor-
ing tools are not available during the early boot phase. Since PRAM
construction is performed before pausing VMs, the downtime for
VMs is𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛+𝑅𝑒𝑏𝑜𝑜𝑡 +𝑅𝑒𝑠𝑡𝑜𝑟𝑎𝑡𝑖𝑜𝑛. Notice that the horizon-
tal axis (time = 0) corresponds to the pause of VMs, therefore PRAM
is always below this axis. Since network service is not mandatory
for all application types, we present its initialization time separately
from the overall transplant time (noted 𝑁𝑒𝑡𝑤𝑜𝑟𝑘). Therefore, this
time will not be counted in the downtime of network-independent
applications, such as the SPEC CPU2017 benchmark, but counted
for network-dependent applications.

For MigrationTP, we show the duration that the VM is paused
(also called downtime) and the total migration time. Note that VM
live migration has been subject of many works, and that Migra-
tionTP and migration between homogeneous hypervisors follow
almost the same procedure.

5.2.1 Basic evaluations. In this experiment, the machine runs a sin-
gle VM configured with 1 GB of memory and 1 vCPU. This VM size
is representative of cloud workloads such as Microsoft Azure [13].
With this VM size, our smallest machine (M1) can host up to 12 VMs.
This basic scenario allows us to understand the performance of each
phase of HyperTP. We repeat each experiment 5 times. We present
average figures when standard deviation is very low, and box plots
otherwise. Except for the scalability experiments (Section 5.2.2), we
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Figure 7: Scalability of InPlaceTP for Xen→KVM transplantation.

focused on Xen→KVM transplantation. Note that only InPlaceTP
will lead to different results in the case of KVM→Xen. In Migra-
tionTP Xen→KVM and KVM→Xen are interchangeable.

InPlaceTP: Xen→KVM (Fig. 6). The total transplantation time is
2.15 and 3.56 seconds on M1 and M2 respectively, of which 0.45/0.5
seconds on PRAM; 0.08/0.24 seconds are spent on Translation;
1.52/2.40 seconds on Reboot; and 0.12/0.34 seconds on Restoration.
Reboot is evidently the dominant step of the process, representing
respectively 71% and 69% of the total transplantation time on M1
andM2. The downtime is 1.7 seconds onM1 and 3.01 seconds onM2.
When networking is taken into account, the process takes 8.1 sec-
onds on M1 (of which 6.6 seconds is spent waiting for the network
card) and 5.9 seconds on M2 (of which network card initialization
takes 2.3 seconds). We observe below that these interruptions do
not affect the operation of network-intensive applications.

MigrationTP: Xen→KVM (Table. 4). We demonstrated the re-
sults of live migration between two Xen hosts to establish a baseline
for analyzing the performance of MigrationTP. First, we observe
that the total migration time is almost the same, about 9.5 seconds
(dominated by memory page copies). Second, the downtime in Mi-
grationTP is 27× lower than in live migration between two Xen
hosts. The reason is that on the destination host, MigrationTP uses
kvmtool which is lightweight compared to Xen.

5.2.2 Scalability. We evaluated each solution while varying the
VM size (number of vCPUs and memory size), the number of VMs
running on each machine and the transplantation direction, i.e
Xen→KVM and KVM→Xen. We only analyzed our results on M1
for readability reasons, but results for M2 are also shown in the
figures.

InPlaceTP: Xen→KVM (Fig. 7). Firstly, the number of vCPUs
has no impact on the transplantation time (Fig. 7a). Secondly, we
observe that the evolution of PRAM time on M1 and M2 when
varying the number of VMs (Fig. 7c and 7f) shows the benefits of
parallelizing the construction of PRAM structures. In fact, the time
taken by the PRAM step increases much more quickly on M1 than
on M2. This is because M1 has fewer cores than M2, and cannot
benefit as much from parallelization. Thirdly, Translation (the first
step above the horizontal axis) slightly increases in respect to the

VM size and the number of VMs. This is because this step involves
finalizing the PRAM structure before it can be used by the target
hypervisor. Reboot slightly increases (from 1.55 seconds up to 2.46
seconds for M1) when varying either the VM memory size or the
number of VMs (Fig. 7b and 7c). This is due to sequential PRAM
structure parsing at early boot. Finally, Restoration is quite constant
regardless the situation. In summary, thanks to the fact that we
build PRAM ahead before pausing VMs, the downtime remains min-
imal, within 1.7 seconds and 3.6 seconds for M1; and within 2.94
and 4.28 seconds for M2. This result is very promising if we com-
pare them with those obtained by Alibaba [59] (from 0.48 seconds
up to 9.8 seconds) for live upgrade of the KVM module, without
rebooting the physical machine.

MigrationTP: Xen→KVM (Fig. 8 and 9). Fig. 8 presents the re-
sults for the downtime caused by migration. Generally, the down-
time for MigrationTP is lower than that of Xen→Xen migration
because of kvmtool’s more efficient stop-and-copy step. Addition-
ally, this downtime increases slightly with increasing numbers of
vCPUs, but is impacted minimally by the VM’s memory size. We
use box plots in the last subfigure because of the high variation
in downtime induced by Xen when migrating several VMs at the
same time. This variation is explained by the sequentiality of Xen’s
migration process (which migrates multiple VMs in parallel on the
sending side, but not on the receiving side [39]). In particular, the
downtime for the first migrated VM will be lower than the down-
time of the second VM, etc. MigrationTP in comparison offers a
constant downtime on each VM.

Fig. 9 presents the total migration time. MigrationTP and Xen
have almost the same results when migrating a single VM while
varying its memory size (the first two curves in Fig. 9). The number
of vCPUs does not impact the total migration time while the mem-
ory size does because of memory copying. Things are different for
multiple VMs as shown on the last curve in Fig. 9. We observe the
same behavior as described above, where while MigrationTP has a
higher median VM migration time, the variance in migration time
is far less than that of Xen-Xen migration. Nevertheless, the total
migration time on MigrationTP is shorter than that of Xen→Xen
migration.
InPlaceTP: KVM→Xen (Fig 10). We compare these results with
Xen→KVM as presented above (Fig. 7). The main observation is



Tu Dinh Ngoc, Boris Teabe, Alain Tchana, Gilles Muller, and Daniel Hagimont

1 2 4 6 8 10
# vCPUs

40
80

120
160
200
240
280

Ti
m

e 
(m

illi
 se

c)

2 4 6 8 10 12
Memory Size (GBytes)

2 4 6 8 10 12
# VMs

Xen downtime HyperTP downtime

Figure 8: Downtime in MigrationTP for Xen→KVM compared with Xen, which services as a baseline.
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Figure 9: Total migration time in MigrationTP for Xen→KVM and Xen.

that the transplantation time for KVM→Xen is higher compared to
Xen→KVM (7.6 sec vs 1.52 sec on M1; and 17.8 sec vs 3.56 on M2).
This difference is mainly caused by the boot process of Xen. In fact,
being a type-I hypervisor, booting a virtualized machine means
launching two kernels: Xen hypervisor and dom0 Linux kernel.
However, we note that this time is still far from the 30 sec imposed
by Microsoft [36] during maintenance operations.

5.3 Impact on applications
We evaluated HyperTP using macro-benchmarks while focusing
on Xen→KVM transplantation. The evaluation is done on M1 as
follows: each benchmark is launched inside a Xen VMwith 2 vCPUs
and 8 GB of RAM; at the middle of the execution, we trigger the
Xen→KVMHyperTP operation. The metrics provided by the bench-
mark are used for performance analysis. Since HyperTP involves
Xen then KVM during the execution of the benchmark, we decided
to also show (when applicable) the performance of the application
when it performs entirely without transplantation both on Xen
and on KVM. This allows to understand the potential performance
change after the transplantation process.

Redis. We used the redis-benchmark tool included with Redis [43]
to stress the Redis server. Fig. 11 shows the evaluation results. For
InPlaceTP (Fig. 11 left), we can see that the downtime starts at 50
seconds and ends at 59 seconds, representing about 9 seconds. Note
that downtime here includes the time needed to reestablish the
physical network link on the host, which is done in parallel with
the other InPlaceTP phases. We can see that Redis continues to per-
form well after transplantation. However, there is a performance
improvement of about 37% which is explained by the efficiency
of KVM over Xen for this particular workload. Concerning Migra-
tionTP, as well as Xen→Xen migration, (Fig. 11 right): these results
show a “classical” live migration performance pattern, namely a
performance drop during the memory copy phase (from the 46th

second to the 124th second, or 78 seconds in total), followed by a
negligible downtime when the VM is paused, and finally a return
to normal performance.

MySQL.Weused Sysbench forworkload generation. Fig. 12 presents
the results. We observe a similar behavior as with Redis. InPlaceTP
causes service interruption during approximately 9 seconds.Migra-
tionTP, as well as Xen, causes a 252% increase in latency and 68%
decrease in throughput during the migration, which lasts about 76
seconds.

SPEC CPU2017.We run all the 23 applications of SPECrate from
SPEC CPU2017 benchmarks suite. We estimated the performance
degradation caused by HyperTP as the maximum of the degradation
with respect to Xen and KVM, i.e.

𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 =𝑚𝑎𝑥 (𝐻𝑦𝑝𝑒𝑟𝑇𝑃 − 𝑋𝑒𝑛
𝑋𝑒𝑛

,
𝐻𝑦𝑝𝑒𝑟𝑇𝑃 − 𝐾𝑉𝑀

𝐾𝑉𝑀
)

Table 5 presents the obtained results. The maximum degradations
are therefore respectively 4.19% and 4.81% for InPlaceTP and Mi-
grationTP. This impact comes from not only the transplantation
process itself, but also from the native performance difference be-
tween Xen and KVM. Indeed, we can see that these benchmark
applications do not have the same performance in both hypervi-
sors, see Xen and KVM columns in Table 5. Note that since the
degradation caused by HyperTP is quite constant, its percentage on
applications with longer execution time (in the range of hours, e.g.,
scientific simulations) will be invisible.

Darknet.We ran Darknet [44] to train a neural network on MNIST
data-set which requires 100 iterations. We recorded the duration of
each iteration, as reported in Table 6. The average iteration duration
when no migration hypervisor update operation is performed is
about 2.044 seconds; this time rises to 4.97 seconds during one single
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Figure 10: Scalability of InPlaceTP for KVM→Xen.
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KVM Xen InPlaceTP MigrationTP
Benchmarks Time (sec) Time (sec) Time (sec) Deg (%) Time (sec) Deg (%)
perlbench 474.31 477.39 475.42 0.23 474.43 0.02
gcc 345.92 346.24 355.71 2.83 353.54 2.20
bwaves 943.96 941.36 950.29 0.95 944.23 0.30
mcf 466.78 465.83 472.40 1.41 468.57 0.59
cactuBSSN 323.78 325.74 334.54 3.32 334.31 3.25
namd 308.77 310.58 312.53 1.22 311.59 0.91
parest 663.50 666.87 668.50 0.75 669.85 0.96
povray 558.38 550.73 562.22 2.09 567.80 3.10
lbm 308.55 306.27 312.03 1.88 315.97 3.17
omnetpp 557.65 560.94 562.05 0.78 566.54 1.59
wrf 650.81 686.62 655.27 0.68 655.90 0.78
xalancbmk 496.66 488.86 497.06 1.68 491.24 0.49
x264 630.68 634.67 632.37 0.26 631.60 0.15
blender 457.93 456.97 461.57 1.01 457.51 0.12
cam4 539.63 569.20 545.21 1.04 549.78 1.88
deepsjeng 456.65 457.75 475.80 4.19 476.27 4.30
imagick 707.99 712.16 712.25 0.60 721.41 1.90
leela 738.87 741.29 741.51 0.36 741.12 0.30
nab 554.47 570.73 557.18 0.49 557.53 0.55
exchange2 580.84 578.83 582.25 0.59 581.99 0.55
fotonik3d 405.29 398.53 415.84 4.34 417.69 4.81
roms 432.87 442.74 443.10 2.36 449.22 3.78
xz 530.10 527.98 546.68 3.54 537.98 1.89

Table 5: Impact of InPlaceTP and MigrationTP on SPECrate
2017 benchmarks.

iteration for InPlaceTP, because the VM is paused during transplant.
In comparison, MigrationTP’s downtime does not have as much
of an impact on Darknet, with the longest iteration lasting only
2.24 seconds. This is better than the case of Xen→Xen migration,
with around 2.67 seconds for the longest iteration. Note that with
the long execution time of the training phase of AI workloads (in
the range of hours), the impacts of InPlaceTP and MigrationTP are
negligible.

Default Xen migration InPlaceTP MigrationTP
2.044 sec 2.672 sec 4.970 sec 2.244 sec

Table 6: Average duration of Darknet training iterations
with InPlaceTP andMigrationTP. Default means neither mi-
gration nor transplantation has been performed.

5.4 Cluster migration
We evaluated the time taken for upgrading a cluster using the
migration method. We used the BtrPlace VM scheduler framework
[20] to define the structure of a simple server cluster including 10
physical hosts. On each hypervisor host, we ran 10 VMs each with
1 vCPU and 4 GB of RAM. In this group of VMs, we configured
30% to run as a video streaming server (each with a matching client
running outside of the cluster); 30% running a CPU- and memory-
intensive benchmark; and the remaining 40% being idle. We then
simulated an upgrade event by dividing the cluster into smaller
groups, sequentially putting each group offline using BtrPlace’s
constraints (the VMs from the offline group are placed in other
groups), and then recording the resulting migration plans. For the
aforementioned cluster, BtrPlace generated a migration plan with
a total of 154 VM migration operations.

We repeated the same experiments while varying the percentage
of VMs that are InPlaceTP compatible. Figure 13 shows the number
of migrations and reduction in total migration times for varying pro-
portions of InPlaceTP-compatible VMs. We observe that increasing
the proportion of in-place InPlaceTP-compatible VMs reduces the
number of migrations necessary to upgrade the cluster, and there-
fore the total migration times. With 20% InPlaceTP-compatible VMs,
themigration plan required 109migrations, correspondingwith 17%
shorter total migration duration. With 60% InPlaceTP-compatible
VMs, it took 73% fewer migrations and 68% less migration time, and
with 80% InPlaceTP-compatible VMs, it required only 25 migrations,
resulting in a reduction in total migration time of almost 80%. Cou-
pled with the fact that hypervisor host upgrades using InPlaceTP
takes only seconds to complete, these results show how HyperTP
can substantially speed up a hypervisor cluster’s upgrade process.

5.5 Memory overhead
The memory overhead of HyperTP involves the extra memory re-
quired for storing PRAM structures and virtual resources in UISR
formats (only the latter in the case of MigrationTP). Fig. 14 presents
our overhead measurements for various transplantation scenarios
as explored in Section 5.2.1. We can see that the memory footprint
of PRAM structures increases with the total memory size of VMs,
from 16 KB (for a single 1 GB VM) up to 60 KB (for a 12 GB VM).
In the case of multiple simultaneously-running VMs, the overhead
increases slightly due to additional file info and metadata pages
necessary for separate VMs (see Figure 4); however, these over-
heads remain minimal at only 148 KB for 12 VMs with 1 GB of RAM
each. More generally, PRAM structures consist of 8-byte records
for every VM’s memory page (which can be 4K or 2M in size) in
the worst case, leading to an overhead of 2 megabytes of metadata
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Figure 12: Impact of InPlaceTP and MigrationTP on MySQL. The first two figures respectively present request latency and
Queries-Per-Second (QPS) metrics for InPlaceTP. The last two figures show the results forMigrationTP.
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Figure 13: Evaluating HyperTP improvement on a real clus-
ter update process: a) impact on the number of migrations
and b) impact on the total update time.
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Figure 14: UISRmemory size of InPlaceTP andMigrationTP.

per GB of guest memory (in the case of all-4K guest pages), or 4 KB
per GB of guest memory (in the case of all-2M guest pages).

Concerning the memory footprint of virtual resources in UISR
formats, they increases with the total number of vCPUs, from 5 KB
with 1 vCPU up to 38 KB with 10 vCPUs. In summary, the total
memory overhead of HyperTP varies from 21 KB up to 98 KB per
VM, which is negligible. Notice this extra memory is given back to
the hypervisor after the transplantation or migration process.

6 RELATEDWORK
We classify hypervisor protection strategies in four categories: pre-
ventive (stopping attacks by design), corrective (applying updates),
reparative (restoring consistency), and defensive (protecting during
the vulnerability window).

Preventive approaches, hardening the hypervisor. Many re-
search works advocate a micro-kernel architecture for the hyper-
visor in order to: (1) reduce the Trusted Code Base (TCB), thus
reducing the attack surface [31, 37, 45, 46, 48, 50, 58], (2) formally
verify this TCB to prove the absence of known classes of vulnera-
bilities [24] and (3) isolate buggy or untrusted device drivers of the
hypervisor [37, 46, 58]. Although very interesting, this approach im-
poses a strict implementation of a micro-kernel architecture which

requires considerable efforts in the design of the hypervisor. In ad-
dition, most of the contributions in this approach require hardware
changes that are not yet available [47]. Moreover, no implementa-
tion is 100% sure and such an approach has anyway to be combined
with regular security updates as studied in the next section.

Corrective approaches, applying updates. The common way
to protect a hypervisor is to carry out regular security updates.
The easiest way to update the hypervisor is kernel live patch-
ing [7, 10, 40]. The latter is a lightweight solution to apply simple
temporary patches to a running kernel. Unfortunately, it does not
support patches that may change persistent data structures (i.e.,
data structures which have allocated instances in the kernel heap or
stacks). When simple patches are not sufficient, VM live migration
or in-place hypervisor update (with server reboot) should be used.

Live migration. VM live migration [12, 34] allows the cloud provider
to upgrade almost everything on the origin server (because it no
longer runs VMs), from hardware devices to the hypervisor. Sev-
eral works [17, 22] have investigated downtime reduction during
live migration. To our knowledge, Liu et al. [33] is the only work
which studied VM migrations between heterogeneous hypervisors
as HyperTP. It was not possible for us to quantitatively compare
our MigrationTP solution with Liu et al. [33] because no public
prototype exists. From the design perspective, our UISR principle
facilitates the integration of new hypervisors, making HyperTP
generic. Finally, HyperTP combines live migration with in-place
hypervisor transplantation to address the scalability limitation of
the former [59].

In-place hypervisor update. Xiantao Zhang et al. [59] introduces
Orthus which targets KVM update, including both the emulator
user-space software (qemu) and the kvm kernel module, with min-
imal downtime. Orthus modifies the kvm module to incorporate
state-transition capabilities between two consecutive versions, cou-
pled with a lightweight mechanism to checkpoint/restore VMs.
Orthus is dedicated to KVM, thus does not target heterogeneous hy-
pervisors as HyperTP. Second, Orthus does not target the update of
the entire kernel, which explained their very low downtime (0.48-9
seconds). Other research works such as [18, 28, 57] used nested
virtualization to enable quick and transparent in-place updates.
Nothing is said about the update of that low level hypervisor. In
fact, they just transfer the problem to the latter. HyperTP does not
include this limitation.
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Reparative approaches, consistent state restoration.Thesemainly
rely on fast reboot and restoration, and can be implemented at the
OS or hypervisor level [9, 11, 16, 23, 27, 29, 30, 35, 56, 60]. Works
such as [16, 23, 27, 29] proposed fast loading of a new OS or hy-
pervisor to answer to a system failure. Otherworld [16] restores
applications running on a kernel in the event of a crash by boot-
ing a previously-loaded second kernel image, and restoring the
application from main memory. The authors of [27, 29] went in
the same direction with hypervisors by saving the states of VMs
in memory and restoring them to a new loaded hypervisor on the
same server. Frederico Cerveira et al. [9] proposed to respond to
hypervisor corruption by migrating VMs over the same physical
host instantly and with no overhead, by avoiding memory copy
and taking advantage of Intel EPT’s inner workings.

Defensive approach,during vulnerabilitywindows.The above
approaches have the same limitation which is the fact that they
cannot ensure the hypervisor safety against a flaw as long as
the security patch is not available. As we highlight in Section 1,
several days may go before the security patch is available. HyperTP
allows protecting a datacenter hypervisor during the vulnerability
window (as long as the flaw is not impacting one other hypervisor)
with very little downtime. As far as we know, HyperTP is the first
system to address this issue. To facilitate the utilization of HyperTP,
we build it using existing approaches including VM live migration
and server micro-reboot. We apply the latter on heterogeneous
hypervisors.

7 CONCLUSION
We introduced hypervisor transplant, an idea for minimizing the
vulnerability window of critical flaws by temporarily replacing the
current hypervisor by a different one which is not sensitive to the
vulnerability. We instantiated this idea with HyperTP, a framework
which combines two hypervisor transplantation solutions, namely
InPlaceTP and MigrationTP. We described a working prototype for
transplanting Xen with KVM. We thoroughly evaluated HyperTP
using well know benchmarks. The results demonstrate the viability
of our solution, which introduces a negligible overhead.
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