
HAL Id: hal-03295445
https://inria.hal.science/hal-03295445v3

Preprint submitted on 7 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Distributed Evaluation of Graph Queries using
Recursive Relational Algebra

Sarah Chlyah, Pierre Genevès, Nabil Layaïda

To cite this version:
Sarah Chlyah, Pierre Genevès, Nabil Layaïda. Distributed Evaluation of Graph Queries using Recur-
sive Relational Algebra. 2022. �hal-03295445v3�

https://inria.hal.science/hal-03295445v3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Distributed Evaluation of Graph Queries using
Recursive Relational Algebra

Sarah Chlyah∗, Pierre Genevès†, Nabil Layaïda‡
Tyrex team, Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG

38000 Grenoble, France
Email: ∗sarah.chlyah@inria.fr, †pierre.geneves@inria.fr, ‡nabil.layaida@inria.fr,

Abstract—We present a system called Dist-µ-RA for the dis-
tributed evaluation of recursive graph queries. Dist-µ-RA builds
on the recursive relational algebra and extends it with evaluation
plans suited for the distributed setting. The goal is to offer
expressivity for high-level queries while providing efficiency at
scale and reducing communication costs. Experimental results
on both real and synthetic graphs show the effectiveness of the
proposed approach compared to existing systems.

Index Terms—component, formatting, style, styling, insert

With the proliferation of large scale graphs in various do-
mains (such as knowledge representation, social networks,
transportation, biology, property graphs, etc.), the need for
efficiently extracting information from these graphs becomes
increasingly important. This often requires the development
of methods for effectively distributing both data and com-
putations so as to enable scalability. Efforts to address these
challenges over the past few years have led to various systems
such as MapReduce [1], Dryad [2], Spark [3], Flink [4]
and more specialized graph systems like Google Pregel [5],
Giraph [6] and Spark Graphx [7]. While these systems can
handle large amounts of data and allow users to write a broad
range of applications, they still require significant program-
mer expertise. The system programming paradigms and its
underlying configuration tuning must be highly mastered. This
includes for example figuring out how to (re)partition data on
the cluster, when to broadcast data, in which order to apply
operations for reducing data transfers between nodes of the
cluster, as well as other platform-specific performance tuning
techniques [8].

To facilitate large-scale graph querying, it is important to
relieve users from having to worry about optimization in the
distributed setting, so that they can focus only on formulating
domain-specific queries in a declarative manner. A possible
approach is to have an intermediate representation of queries
(e.g. an algebra) in which high level queries are translated so
that they can be optimized automatically. Relational Algebra
(RA) is such an intermediate representation that has benefited
from decades of research, in particular on algebraic rewriting
rules in order to compute efficient query evaluation plans.

A very important feature of graph queries is recursion, which
enables to express complex navigation patterns to extract
useful information based on connectivity from the graph. For
instance, recursion is crucial for supporting queries based on

transitive closures. Recursive queries on large-scale graphs
can be very costly or even infeasible. This is due to a large
combinatorial of basic computations induced by both the
query and the graph topology. Recursive queries can generate
intermediate results that are orders of magnitude larger than
the size of the initial graph. For example, a query on a graph of
millions of nodes can generate billions of intermediate results.
Therefore being able to optimize queries and reduce the size
of intermediate results as much as possible becomes crucial.

Several works have addressed the problem of query op-
timization in the presence of recursion, in particular with
extensions of Relational Algebra [9]–[11]; and with Datalog-
based approaches [12] such as BigDatalog [13]. Recently,
µ-RA [11] proposed logical optimization rules for recursion
not supported by earlier approaches. In particular, these rules
include the merging and reversal of recursions that cannot be
done neither with Magic sets nor with Demand Transforma-
tions that constitute the core of optimizations in Datalog-based
systems [11]. The work in [36] introduces a cost model for
[33] that allows for estimating the best logical plan among a
set of equivalent µ-RA plans. However, both these works are
limited to the centralized setting.

In this paper, we present Dist-µ-RA a new method and its
implementation for the optimized distributed evaluation of re-
cursive relational algebra terms. Specifically, our contribution
is twofold:

1) a new method for the optimization of distributed eval-
uation of queries written in recursive relational algebra.
Since it uses a general recursive relational algebra, it
can be of interest for a large number of mainstream
RDBMS implementations; and it can also provide the
support for distributed evaluation of recursive graph
query languages. For example Dist-µ-RA provides a
frontend where the programmer can formulate queries
known as UCRPQs [14]–[17]1).
This method provides a systematic parallelisation tech-
nique by means of physical plan generation and se-
lection. These plans automatically repartition data in

1UCRPQs, discussed in more details in Sec. II, constitute an important
fragment of expressive graph query languages: they correspond to unions
of conjunctions of regular path queries. A translation of UCRPQs into the
recursive relational algebra is given in [11].



order to reduce data transfer between cluster nodes and
communication costs during recursive computations.

2) a prototype implementation [18] of the system on top
of Apache Spark. Specifically, Dist-µ-RA can use plain
Apache Spark or Apache Spark with PostgreSQL as a
DBMS backend. To evaluate Dist-µ-RA experimentally,
a classification of graph queries by the means of seven
query classes has been defined. Each class characterizes
queries with a particular feature: for example a recursion
with a filter, or concatenated recursions. Dist-µ-RA is
evaluated using queries that cover the different classes,
and using datasets (both real and synthetic) of various
sizes. Experimental results show that Dist-µ-RA is more
efficient than state-of-the-art systems such as BigDatalog
[13] in most query classes.

The outline of the paper is as follows: we first present
preliminary notions in Section I. Section II describes the
architecture of Dist-µ-RA. In Section III, we show how µ-RA
terms are distributed and how physical plans are generated.
Finally, we report on experimental evaluation in Section IV
and related works in Section V before concluding.

I. PRELIMINARIES

A. µ-RA syntax

The µ-RA algebra [11] is an extension of the Codd’s relational
algebra with a recursive operator whose aim is to support
recursive terms and transform them when seeking efficient
evaluation plans. The syntax of µ-RA is recalled from [11]
in Fig. 1. It is composed of database relation variables and
operations (like join and filter) that are applied on relational
tables to yield other relational tables. µ is the fixpoint operator.
In µ(X = Ψ), X is called the recursive variable of the fixpoint
term.

ϕ ::= term
X relation variable

| |c→ v| constant
| ϕ1 ∪ ϕ2 union
| ϕ1 ./ ϕ2 natural join
| ϕ1 . ϕ2 antijoin
| σf (ϕ) filtering
| ρba (ϕ) renaming
| π̃a(ϕ) anti-projection (column dropping)
| µ(X = Ψ) fixpoint term

Figure 1. Grammar of µ-RA [11].

Like in RA, the data model in µ-RA consists of relations that
are sets of tuples which associate column names to values. For
instance, the tuple { src→ 1, dst→ 2 } is a member of the
relation S of Fig. 2.

Let us consider a directed and rooted graph G, a relation E
that represents the edges in G, and a relation S of starting
edges (a subset of edges in E that start from the graph root
nodes), as represented in Fig. 2.

1

54

32 src dst
1
1
2
4
5
10
10
11
11
13

2
4
3
5
6
11
13
5
12
12

10
13

12

11

src dst
1
1
10
10

2
4
11
13

E

S

G

6

Figure 2. Graph example.

The following examples illustrate how µ-RA algebraic terms
can be used to model graph operations, such as navigating
through a sequence of edges in a graph:
Example 1. The term π̃c(ρ

c
dst (S) ./ ρcsrc (E)) returns pairs

of nodes that are connected by a path of length 2 where the
first element of the pair is a graph root node. For that purpose,
the relation S is joined (./) with the relation E on the common
column c, after proper renaming (ρ) to ensure that c represents
both the target node of S and the source node of E. After the
join, the column c is discarded by the anti-projection (π̃c) so as
to keep only the two columns src, dst in the result relation.
Example 2. Now, the recursive term µ(X = S ∪
π̃c(ρ

c
dst (X) ./ ρcsrc (E))) computes the pairs of nodes that

are connected by a path in G starting from edges in S.

The subterm ϕ = π̃c(ρ
c
dst (X) ./ ρcsrc (E)) computes new

paths by joining X (the previous paths) and E such that the
destinations of X are equal to the sources of E.

The fixpoint is computed in 4 steps where Xi denotes the value
of the recursive variable at step i:

X0=∅

X1=
{
{src→ 1, dst→ 2}, {src→ 1, dst→ 4},

{src→ 10, dst→ 11}, {src→ 10, dst→ 13}
}

X2=X1 ∪
{
{src→ 1, dst→ 3}, {src→ 1, dst→ 5},

{src→ 10, dst→ 5}, {src→ 10, dst→ 12}
}

X3=X2 ∪
{
{src→ 1, dst→ 6}, {src→ 10, dst→ 6}

}
X4=X3 (fixpoint reached)

At step 1 it is empty, at step 2 it is a relation of two columns
src and dst that contains four rows, and the iteration
continues until the fixpoint is reached.

B. Semantics and properties of the fixpoint

The semantics of a µ-RA term is defined by the relation
obtained after substituting the free variables in the term (like E
and S in example 2) by their corresponding database relations.
The notions of free and bound variables and substitution are
formally defined in [11]. As a slight abuse of notation, we



sometimes use a recursive term Ψ (i.e. a term that contains a
recursive variable X) as a function R → Ψ(R) that takes a
relation R and returns the relation obtained by replacing X in
the term Ψ by the relation R. In the above example

ϕ(S) = π̃c(ρ
c
dst (S) ./ ρcsrc (E)) =

{
{src→ 1, dst→ 3}, {src→

1, dst→ 5}, {src→ 10, dst→ 5}, {src→ 10, dst→ 12}
}

.

Under this notation, µ(X = Ψ) is defined as the fixpoint F
of the function Ψ, so Ψ(F ) = F .

Let us consider the following conditions (denoted Fcond) for a
fixpoint term µ(X = Ψ) (as also considered in [11]).

• positive: for all subterms ϕ1 .ϕ2 of Ψ, ϕ2 is constant in
X (i.e. X does not appear in ϕ2);

• linear: for all subterms of Ψ of the form ϕ1 ./ ϕ2 or
ϕ1 . ϕ2, either ϕ1 or ϕ2 is constant in X;

• non mutually recursive: when there exists a subterm
µ(Y = ψ) in Ψ, then any occurence of X in this subterm
should be inside a term of the form µ(X = γ).

These conditions guarantee the following properties (see [11]):
Proposition 1. If µ(X = Ψ) satisfies Fcond then

Ψ(S) = Ψ(∅) ∪
⋃
x∈S

Ψ({x})

and thus Ψ has a fixpoint with µ(X = Ψ) = Ψ∞(∅).

For instance, µ(X = R .X) is not positive, µ(X = X on X)
is not linear, and µ(X = µ(Y = ϕ(X))) is mutually recursive.
Whereas µ(X = R ∪X on µ(Y = ϕ(Y ))) satisfies Fcond.
Proposition 2. Every fixpoint term µ(X = Ψ) that satisfies
Fcond can be written like the following: µ(X = R∪ϕ) where
R is constant in X and ϕ(∅) = ∅. R is called the constant
part of the fixpoint and ϕ the variable part.

In Example 2, S is the constant part and π̃c(ρ
c
dst (X) ./

ρcsrc (E)) is the variable part. In the rest of the paper, we
only consider fixpoint terms satisfiying the conditions Fcond in
their decomposed form µ(X = R∪ϕ) since their existence is
guaranteed thanks to proposition 1.

The evaluation of recursive terms has been studied notably
in the context of Datalog [12] and with transitive closure
evaluation [19] with the semi-naive (or differential) method.
In this approach, a fixpoint term is typically evaluated with
the algorithm 1.

Algorithm 1

1 X = R
2 new = R
3 while new 6= ∅:
4 new = ϕ(new)\ X
5 X = X ∪ new
6 return X

The final result is obtained by evaluating ϕ repeatedly starting
from X = R until no more results can be produced (the

fixpoint has been reached). In this algorithm, ϕ is applied
on the new results only (obtained by making a set difference
between the current result and the previous one) instead of
the entire result set. Notice that this is possible thanks to
the property of ϕ stated in proposition 1, which implies that
ϕ(Xi) ∪ ϕ(Xi+1) = ϕ(Xi) ∪ ϕ(Xi+1 \Xi).

II. DIST-µ-RA ARCHITECTURE

The Dist-µ-RA system takes a query as input parameter, trans-
lates it into µ-RA, optimizes it, and then performs the eval-
uation in a distributed fashion on top of Spark. Specifically,
the Dist-µ-RA system is composed of several components, as
illustrated in Fig. 3.

Query2Mu MuRewriter CostEstimator

PhysicalPlanGenerator

PgSQLExecutor SparkExecutor

SparkPgSQL

µ-RA term Logical plans

PgSQL physical plan Spark physical plan

SQL query Spark operations

Selected logical plan

UCRPQ µ-RA term

Figure 3. Architecture of the Dist-µ-RA system.

The Query2Mu component translates recursive graph queries
written in Union of Conjunctive Regular Path Queries
(UCRPQ) into µ-RA terms. The UCRPQ syntax is given
in [11] and we give an example below. Dist-µ-RA sup-
ports more general µ-RA terms that are not expressible as
UCRPQs2, as long as they satisfy the triple condition Fcond
mentioned in Section I.

From a given input µ-RA term, the MuRewriter explores the
space of semantically equivalent logical plans by applying a
number of rewrite rules. In addition to the rewrite rules already
known in classical relational algebra, MuRewriter applies a
set of rules specific to the fixpoint operator. These rules and
the conditions under which they are applicable are formally
defined in [11].

The evaluation costs of these terms are estimated by the
CostEstimator component proposed in [20]. This com-
ponent is an implementation of a classical Selinger style cost

2See the practical experiments section for some examples such as the “same
generation” query.



estimator [21] based on cardinality estimation. Based on these
estimations, a best logical recursive plan is selected.

From a given recursive logical plan, the
PhysicalPlanGenerator generates a physical
plan for distributed execution (see Section III). Two
distributed execution setups are used. In the first setup (using
PgSQLExecutor), each Spark worker runs a PostgreSQL
instance to perform a part of the evaluation locally. The
second setup (using SparkExecutor) relies only on Spark.
In all cases, the query evaluation is performed on top of
Spark.

a) Example: We first describe the transformations that a query
(UCRPQ or µ-RA term) undergoes before being considered
for distributed evaluation when given as input parameter to
the PhysicalPlanGenerator (described in Section III).

Consider for instance the following UCRPQ composed of a
conjunction of two Regular Path Queries (RPQs):

?a,?b,?c←?a wasBornIn/IsLocatedIn+ Japan,

?b isConnectedTo+ ?c

The first RPQ computes the people ?a that are born in a
place that is located directly or indirectly in Japan. The
query is first translated into µ-RA by Query2Mu so that
MuRewriter can generate semantically equivalent plans. We
describe below the rewrite rules specific to fixpoint terms
leveraged from [11] that can apply in MuRewriter, and we
give the intuition of their effect on performance:

• Pushing filters into fixpoints: with this rule, the query
?x isLocatedIn+ Japan is evaluated as a fix-
point starting from ?x such as ?x isLocatedIn
Japan, which avoids the computation of the whole
isLocatedIn+ relation followed by the filter Japan.

• Pushing joins into fixpoints: let us consider the query ?x
isMarriedTo/knows+ ?y. Instead of computing the
relation knows+ and joining it with isMarriedTo,
this rule rewrites the fixpoint such that it starts from
?x and ?y that verify ?x isMarriedTo/knows ?y.
The application of this rule is beneficial in this case
because the size of the isMarriedTo/knows relation
is usually smaller than the size of the knows relation.

• Merging fixpoints: when evaluating ?x
isLocatedIn+/dealsWith+ ?y, instead of
computing both fixpoints separately then joining them,
this rule generates a single fixpoint that starts with
isLocated/dealsWith then recursively appends
either isLocatedIn to the left or dealsWith to the
right.

• Pushing antiprojections into fixpoints: this rule gets rid of
unused columns during the fixpoint computations. For in-
stance, the query ?y � ?x isLocatedIn+ ?y (this
query asks for ?y only) is evaluated by starting only from
the destinations ?y of the isLocatedIn relation and
by recursively getting the new destinations, thus avoiding

to keep the pairs of nodes ?x and ?y then discarding ?x
at the end.

• Reversing a fixpoint: the fixpoint corresponding to the
relation a+ can either be computed from left to right
by starting from a and by recursively appending a to
the right of the previously found results, or from right
to left by starting from a and appending a to the left.
Reversing a fixpoint consists in rewriting from the first
form to the other or vice versa. This rule is necessary
to account for all possible filters and joins that can be
pushed in a fixpoint. For instance, a filter that is located
at the left side of a+ can only be pushed if the fixpoint
is evaluated from left to right.

After these transformations, the best (estimated) recursive
logical plan selected by CostEstimator is given as input
parameter to PhysicalPlanGenerator that is in charge
of generating the best physical plan for distributed execution.

III. DISTRIBUTED EVALUATION

We now describe how fixpoint terms are evaluated in a
distributed manner, first by explaining the principles and then
how physical plans are generated.

A. Fixpoint distributed evaluation principles

The first principle uses a global loop on the Spark driver3.
The second principle uses parallel local loops on the Spark
workers, and corresponds to our contribution.

1) Global Loop on the Driver (Pgld): Pgld corresponds to
the natural way a Spark programmer would implement the
fixpoint operation: it distributes the computations performed
at each iteration of Algorithm 1. This execution is illustrated
in Fig. 4 (left side). Colored arrows show data transfers that
occur at each iteration of the fixpoint. The driver performs the
loop and, at each iteration, instructions at lines 4 and 5 are
executed as Dataset 4 operations that are distributed among
the workers. We call this execution plan Pgld. On Spark, ∪
is executed as Dataset union followed by a distinct()
operation. This means that in Pgld, at least one data transfer
(shuffle) per iteration is made to perform the union.

2) Parallel Local loops on the Workers (Pplw): This evalua-
tion principle uses the following observation to distribute the
fixpoint:
Proposition 3. Under the conditions Fcond, we have:

µ(X = R1 ∪R2 ∪ ϕ) = µ(X = R1 ∪ ϕ) ∪ µ(X = R2 ∪ ϕ)

which is a consequence of proposition 1. This proposition
means that a fixpoint whose constant part is a union of two
datasets can be obtained by making the union of two fixpoints,

3The driver is the process that creates tasks and send them to be executed
in parallel by worker nodes.

4Distributed collection data structure used to store relational data in
Spark [22]



¢

datasets

workers

driver

Xi

Xi−1

μ(R ∪ φ)

X ∪ new

Xi = Xi−1 ∪ new
new = φ(new)∖Xi−1

W4W3W2W1

Xi

Xi−1

μ(R1 ∪ φ) μ(R2 ∪ φ) μ(R3 ∪ φ) μ(R4 ∪ φ)

D

W4W3W2W1

D

Figure 4. Execution on the cluster of Pgld (left) and Pplw (right).

each with one of these datasets as a constant part. Thanks to
this proposition 3, the fixpoint can be executed by distributing
the constant part R among the workers, then each worker i
executes a smaller fixpoint µ(X = Ri ∪ ϕ) locally starting
from its own constant part Ri. We call this execution plan
Pplw. Execution is illustrated in the right side of Fig. 4. As
opposed to Pgld, Pplw performs only one data shuffle at the
end to make the union (∪) between the local fixpoints.

In Example 2, if we split the start edges S among two workers
by giving the first (1, 2) and (10, 11) and the second (1, 4)
and (10, 13), after executing Pplw, the first worker will find
the paths (1, 3), (10, 5), (10, 6) and (10, 12) and the second
will find (1, 5), (1, 6), and (10, 12).

Data distribution for Pplw: There are cases where the final
data shuffle induced by Pplw can also be avoided by appro-
priately repartitioning input data among workers. We first give
the intuition behind this idea, followed by the proof.

We look for a column col (or a set of columns) in X left
unchanged by ϕ. In other words, a tuple in R having a value
v at column col will only generate tuples having the same
value at this column throughout the iterations of the fixpoint.
So if we put all tuples in R having v at column col in one
worker, no other worker will generate a tuple with this value
at that column.

For this, we use the stabilizer technique defined in Defini-
tion 10 of [11] and used to push filters in fixpoint expressions.
It consists of computing the set of columns which are not
altered during the fixpoint iteration. For instance, ’src’ is a
stable column in the fixpoint expression of example 2 meaning
that tuples in the fixpoint having ’src’ = 1 can only be produced
from tuples in S having ’src’ = 1, which implies that filtering
tuples having ’src’ = 1 before or after the fixpoint computation
lead to the same results. However, this is not true for the
column ’dst’ which is not stable.

To summarize, when the constant part of the fixpoint is

repartitioned by the stable column (or columns) prior to the
fixpoint execution, we know for certain that there will be
no duplicate across the workers (so we can avoid calling
distinct() at the end of the computation).

For instance, repartitioning the constant part S in example 2
by src will result in the paths (1, 3), (1, 5), and (1, 6) being
found in one worker and the paths (10, 5), (10, 6) and (10, 12)
in the second, thus avoiding a duplicate (10, 12) between the
two workers.

Proof. Let c be a stable column of µ(X = R ∪ ϕ), which
means that ∀e ∈ µ(X = R∪ϕ) ∃r ∈ R e(c) = r(c) [11]. In
µ-RA, an element r in R is a mapping (tuple), which means
that it is a function that takes a column name and returns the
value that r has at that column.

Let us consider a partitioning R1, ..., Rn of R by the column
c which verifies the following

∀i 6= j ∈ {1..n} ∀a ∈ Ri ∀b ∈ Rj a(c) 6= b(c)

This statement means that there are no two elements of R at
different partitions that share the same value at column c. We
next show that this statement is also true for the fixpoint term.

Let i 6= j ∈ {1..n} and let x ∈ µ(X = Ri∪ϕ) and y ∈ µ(X =
Rj ∪ϕ). Since c is stable, we have ∃a ∈ Ri x(c) = a(c) and
∃b ∈ Rj y(c) = b(c). So x(c) 6= y(c).

In conclusion, the sets µ(X = Ri ∪ ϕ) where i ∈ {1..n} are
disjoint.

B. Physical plan generation and selection

We present the different physical plans automatically gener-
ated by the Dist-µ-RA system for µ-RA terms, and explain
how they are selected. Dist-µ-RA generates a physical plan
for Pgld, which is used only as a baseline in performance
comparisons.



Workers

Driver

W4W3W2W1

μ(R1 ∪ φ) μ(R2 ∪ φ) μ(R3 ∪ φ) μ(R4 ∪ φ)

D

RDataset

PostgreSQL 
instances

20
Figure 5. Execution on the cluster of Ppgplw.

We propose two alternative physical plans which are variants
of Pplw:

• Ppg
plw: Fig. 5 illustrates the execution of this physi-

cal plan. The local fixpoints are executed on Post-
greSQL. The fixpoint operator is performed as a Spark
mapPartition() operation where each worker per-
forms a portion of the fixpoint computation on Post-
greSQL. A PostgreSQL instance runs on each worker.
The part of data assigned to each worker is represented
as a view in the PostgreSQL instance running on this
worker. The µ-RA expression (that computes the fixpoint)
is translated to a PostgreSQL query that is executed using
this view as the constant part of the fixpoint. The local
PostgreSQL plans are selected for the operators in the
fixpoint expression. Each PostgreSQL executor returns its
results as an iterator which is then processed by Spark.

Workers

Driver

W4W3W2W1

μ(R1 ∪ φ) μ(R2 ∪ φ) μ(R3 ∪ φ) μ(R4 ∪ φ)

D

!! !" !#!$

"! "" "#"$SetRDDs

U U U U

"# U ## "$ U #$ "# U ##"# U ##

#%&!

$(#%&!)

#%

Figure 6. Execution on the cluster of Psplw.

• Ps
plw: Fig. 6 illustrates the execution of this physical

plan. The fixpoint computation is implemented using a
loop in the driver that uses Spark operations to compute
the recursive part of the fixpoint. These Spark operations
are written in such a way that each worker performs its
own fixpoint independently (i.e. without data exchanged
between workers). Joins are executed as broadcast joins:

all relations in the variable part of the fixpoint (apart
from the recursive relation) are broadcasted. Antipro-
jections are executed without the need of applying the
distinct() operation. To perform the union (or set-
difference), a special union (set-difference) operation is
used that computes the union (set-difference) partition-
wise. These special union and set-difference operations
are implemented as part of the SetRDD API. SetRDD
[13] is a special RDD5 where each partition is a set.
This SetRDD is used to store the value of the recursive
variable X at each iteration. This means that each partition
of X holds the intermediate results of the local fixpoint
performed by the worker to which this partition has been
assigned.

As a consequence, for each of the non-recursive µ-RA op-
erators, there are two kinds of physical plans: local plans
implemented using PostgreSQL and distributed plans imple-
mented using the Spark Dataset API. Datasets are used
to represent relational data in Spark. The optimization of
these expressions is then delegated to Spark’s Catalyst internal
optimizer [23] before execution. Some operators have more
than one distributed execution plan. For instance, for the join
operator, we choose which argument (if any) to broadcast in
order to guide Spark on whether to use broadcast join or
another type of join.

As mentioned earlier, datasets in the variable part of the
fixpoint are broadcasted to the workers in Ps

plw, whereas in
Ppg
plw, they are are stored as tables in Postgres that are queried

by the parallel tasks. To select between the two alternatives
Ps
plw and Ppg

plw, we rely on the following criteria: when the
size of the datasets in the variable part of the fixpoint exceeds
the memory available for a task6, we select Ppg

plw and Ps
plw

otherwise.

IV. EXPERIMENTS

We evaluate the performance of a prototype implementation
of the Dist-µ-RA system on top of the Spark platform [3].
We extensively compared its performance against other state-
of-the-art systems on various datasets and queries. We report
below on these experiments.

A. Experimental setup

Experiments have been conducted on a Spark cluster com-
posed of 4 machines (hence using 4 workers, one on each
machine, and the driver on one of them). Each machine has
40 GB of RAM, 2 Intel Xeon E5-2630 v4 CPUs (2.20 GHz,
20 cores each) and 66 TB of 7200 RPM hard disk drives,
running Spark 2.4.5 and Hadoop 2.8.4 inside Debian-based
Docker containers.

5RDD is an abstraction that Spark provides to represent a distributed
collection of data. An RDD is split among partitions which are assigned to
workers.

6A Spark task is unit of computation executed on the worker on a single
partition. Tasks are executed in parallel on partitioned data.



B. Datasets

Real Dataset Description Edges Nodes

Yago [24] YAGO semantic knowledge base 62,643,951 42,832,856
Epinions [25] Epinions product ratings (2005) 13,668,320 996,744
Wikitree [26] Online genealogy dataset 9,192,212 1,382,751
Coauth-M [25] MAG Geology coauthor simplices 5,120,762 1,256,385
Gottron [27] Wikipedia words 2,941,903 273,961
AcTree [28] Academic family tree data 1,561,494 777,220
Wikitree_0 [26] Wikitree filtered on relation ID 0 1,556,453 1,019,438
Reddit [29] Hyperlinks between subreddits 858,490 55,863
TW-Cannes [30] Cannes Multiplex social network 991,855 438,539
Higgs-RW [25] Twitter, Higgs boson (2012) 733,647 425,008
Wikidata_c [31] Wikidata child relation 280,405 333,572
Wikidata_p [31] Wikidata father & mother relations 280,740 334,430
Facebook [29] Social circles from Facebook 88,234 4,039
Ragusan [25] Ragusan nobility genealogy 51,938 13,690
Isle-of-Man [25] Isle of Man genealogy 36,666 10,474
Fr-Royalty [32] French royalty genealogy tree 12,358 2,127

Synthetic Dataset Edges Nodes

uniprot_10M 10,001,920 10,000,000
uniprot_5M 5,001,427 5,000,000
uniprot_1M 1,000,443 1,000,000
uniprot_100k 66,181 100,000
rnd_100k_0.001 5,003,893 100,000
rnd_10k_0.001 249,791 10,000
rnd_7k_0.001 24,630 7,000
rnd_5k_0.001 12,660 5,000
tree_10k 9,999 10,000
tree_7k 6,999 7,000
tree_5k 4,999 5,000

Table I
REAL AND SYNTHETIC GRAPHS.

We use real and synthetic datasets of different sizes and
topological properties, as summarized in Table I. We consider
the following real graphs:

• Yago7: A knowledge graph extracted mainly from Wiki-
pidia [24].

• datasets from the Colorado index of complex networks
[25] and from the Snap network dataset collection [29].

In addition, we consider the following synthetic graphs:

• uniprot_n: a benchmark graph of n nodes generated using
the gMark benchmark tool [34]. It models the Uniprot
database of proteins [35].

• rnd_n_p: random graphs generated with the Erdos Renyi
algorithm, where n is the number of nodes in the graph
and p the probability that two nodes are connected.

• tree_n: a random tree of n nodes generated recursively as
follows: tree_1 is a tree of 1 node, and then tree_i+ 1 is
a tree of i+ 1 nodes where the ith + 1 node is connected
as a child of a randomly selected node in tree_i.

7We use a cleaned version of the real world dataset Yago 2s, that we
have preprocessed in order to remove duplicate RDF [33] triples (of the
form <source, label, target>) and keep only triples with existing and valid
identifiers. After preprocessing, we obtain a table of Yago facts with 83
predicates and 62,643,951 rows (graph edges).

C. Systems

We compare Dist-µ-RA with the following systems:

• BigDatalog [13] available at [36]: a large-scale distributed
Datalog engine built on top of Spark.

• GraphX [7]: a Spark library for graph computations. It
exposes the Pregel API for recursive computations. In
order to compare our system with GraphX we need to
convert UCRPQs to GraphX programs8. Specifically, we
compute a regular graph query by making each node send
a message to its neighbors in such a way that the query
pattern is traversed recursively from left to right. This
means that for a query that starts by selection (?x ←
A pattern ?x), only the node A sends a message at
the start of the computation.

D. Queries

Queries may contain various forms of recursion. To ensure
that tested queries cover different forms of recursion, we rely
on a classification of queries in seven classes. Each class
regroups queries with a particular recursive feature: C1 − C6
describe UCRPQ queries on knowledge graphs (like Uniprot
and Yago). We also provide additional experiments using more
general queries not expressible as UCRPQs in the class C7. The
classification is the following:

• C1 corresponds to queries containing a single transitive
closure (TC), e.g. ?x,?y← ?x a+ ?y

• C2: queries with a filter to the right of a TC, e.g. ?x←
?x a+ C

• C3: queries with a filter to the left a TC, e.g. ?x ←
C a+ ?x

• C4: queries which contain a concatenation of a non
recursive term to the right of a TC, e.g. ?x,?y ←
?x a+/b ?y

• C5: queries which contain a concatenation of a non
recursive term to the left of a TC, e.g. ?x,?y ←
?x b/a+ ?y

• C6: queries which contain a concatenation of TCs, e.g.
?x, ?y ← ?x a+/b+ ?y

• C7: queries with non regular recursion, e.g. anbn.

Each class requires specific optimizations. For instance, the
optimization of queries of classes C2 and C3 requires pushing
filters in fixpoint terms (in two different directions). Queries
of classes C4 and C5 require an optimization that pushes joins
in fixpoint terms. C2 and C4 require reversing fixpoint terms
before applying other optimizations (rewritings). Queries of
C6 can be optimized by merging fixpoints or by pushing joins
in fixpoint terms.

8In the GraphX framework, a recursive computation is composed of
“supersteps” where, in each superstep, graph nodes send messages to their
neighbor nodes, then a merge function aggregates messages per recipient and
each recipient receives its aggregated messages in order to process them. A
computation is stopped when no new message is sent.



A query may belong to one or more classes. Whenever a query
belongs to several classes this means that it requires the opti-
mization techniques of all the corresponding classes, together
with a technique capable of combining them. Therefore, the
more classes a query belongs to, the harder is its optimization.
For example, the query ?x ← C a/b+ ?x belongs to C3
because there is a filter to the left of the transitive closure b+
and also belongs to C5 because there is a concatenation to the
left of b+.

To cover a variety of queries in the experiments (see Figures 7
and 8), there is, for each class Ci, at least one query that
belongs to Ci alone. In addition, we also consider queries that
belong to Ci and to a combination of other classes. This allows
to test how the different combinations of optimizations are
supported by the tested systems.

a) Yago queries: Fig. 7 lists the UCRPQs evaluated on the
Yago dataset along with their classes. Queries Q3 and Q4 are
taken from [37], Q5 from [38], and Q6,Q7 from [39]. We
have added queries Q8 − Q25 that include larger transitive
closures.

Qid Query C1 C2 C3 C4 C5 C6
Q1 ?x,?y ← ?x,?y <- ?x hasChild+ ?y ×
Q2 ?x,?y ← ?x,?y <- ?x isConnectedTo+ ?y ×
Q3 ?x ← ?x isMarriedTo/livesIn/IsL+/dw+ Argentina × × ×
Q4 ?x ← ?x livesIn/IsL+/dw+ United_States × × ×
Q5 ?x ← ?x (actedIn/-actedIn)+ Kevin_Bacon ×
Q6 ?area ← wce -type/(IsL+/dw|dw) ?area × × ×
Q7 ?person← ?person isMarriedTo+/owns/IsL+|owns/IsL+ USA × × ×
Q8 ?x,?y ← ?x IsL+/dw+ ?y ×
Q9 ?x,?y ← ?x (IsL|dw|rdfs:subClassOf|isConnectedTo)+ ?y ×
Q10 ?x ← ?x (isConnectedTo/-isConnectedTo)+ S_Airport ×
Q11 ?person← ?person (wasBornIn/IsL/-wasBornIn)+ JLT ×
Q12 ?x ← Jay_Kappraff (livesIn/IsL/-livesIn)+ ?x ×
Q13 ?x,?y ← ?x (actedIn/-actedIn)+/hasChild+ ?y ×
Q14 ?x,?y ← ?x (wasBornIn/IsL/-wasBornIn)+/isMarriedTo ?y ×
Q15 ?x,?y ← ?x (actedIn/-actedIn)+/influences ?y ×
Q16 ?x ← Marie_Curie (hWP/-hWP)+ ?x ×
Q17 ?x ← London -wasBornIn/(playsFor/-playsFor)+ ?x × ×
Q18 ?x ← London (-wasBornIn/hWP/-hWP/wasBornIn)+ ?x ×
Q19 ?x,?y ← ?x -actedIn/(-created/influences/created)+ ?y ×
Q20 ?x,?y ← ?x -isLeaderOf/(livesIn/-livesIn)+ ?y ×
Q21 ?x,?y ← ?x (-created/created)+/directed ?y ×
Q22 ?x ← Lionel_Messi (playsFor/-playsFor)+/isAff ?y × ×
Q23 ?x ← SH (haa|influences)+/(isMarriedTo|hasChild)+ ?x × ×
Q24 ?x,?y ← ?x isConnectedTo+/IsL+/dw+/owns+ ?y ×
Q25 ?x,?y ← ?x haa/hasChild/(hWP/-hWP)+ ?y ×

Figure 7. Queries for the YAGO dataset9.

b) Concatenated closures: We consider queries of the form
a1+/a2+/.../an+ where 2 ≤ n ≤ 10. These queries all belong
to class C6.

c) Non regular queries: We also consider queries that contain
non-regular forms of recursion. These queries are exclusively
expressible as µ-RA terms, not as UCRPQs. All of these
queries belong to C7:

• anbn queries: they return the pairs of nodes connected
by a path composed of a number of edges labeled a

9 “isL” stands for “IsLocatedIn”, “dw” for “dealsWith”, “haa”
for “hasAcademicAdvisor”, “JLT” for “John_Lawrence_Toole”,
“hWP” for “hasWonPrize”, “SH” for “Stephen_Hawking”, “isAff”
for “isAffiliatedTo”, “S_Airport” for “Shannon_Airport”, and
“wce” for “wikicat_Capitals_in_Europe”.

followed by the same number of edges labeled b. They
are expressed with the following µ-RA term:

µ(X = π̃m(ρmtrg (σpred=a (R)) ./ ρmsrc (σpred=b (R)))

∪ π̃m(π̃n(ρmtrg (σpred=a (R)) ./ ρntrg (ρmsrc (X))

./ ρnsrc (σpred=b (R)))))

• Same Generation (SG) queries: they return the pairs of
nodes that are of the same generation in a graph. We use
the following term to express them:

TSG =µ(X = π̃m(ρmsrc (R) ./ ρmsrc (R))

∪ π̃m(π̃n(ρmsrc (R) ./ ρntrg (ρmsrc (X)) ./ ρnsrc (R))))

• Filtered SG queries: they compute the pairs of nodes that
are of the same generation for a particular predicate p in
a graph.

σpred=p (TSG)

• Joined SG: they return the pairs of nodes that are of the
same generation for a particular set of predicates P in a
graph. P is a one column (pred) relation that gets joined
with the TSG term on the column pred:

P on TSG

d) Uniprot queries: For the synthetic Uniprot datasets, we use
the UCRPQ queries shown in Fig. 8.

Qid Query C1 C2 C3 C4 C5 C6
Q26 ?x,?y ← ?x -hKw/(ref/-ref)+ ?y ×
Q27 ?x,?y ← ?x -hKw/(enc/-enc)+ ?y ×
Q28 ?x ← C (occ/-occ)+ ?x ×
Q29 ?x,?y ← ?x int+/(occ/-occ)+/(hKw/-hKw)+ ?y ×
Q30 ?x ← ?x (enc/-enc | occ/-occ)+ C ×
Q31 ?x,?y ← ?x int+/(occ/-occ)+ ?y ×
Q32 ?x,?y ← ?x int+/(enc/-enc)+ ?y ×
Q33 ?x,?y ← ?x int/(enc/-enc)+ ?y ×
Q34 ?x,?y ← ?x -hKw/int/ref/(auth/-auth)+ ?y ×
Q35 ?x,?y ← ?x (enc/-enc)+/hKw ?y ×
Q36 ?x ← ?x (enc/-enc)+ C ×
Q37 ?x,?y,?z,?t← ?x (enc/-enc)+ ?y, ?x int+ ?z, ?x ref ?t × ×
Q38 ?x,?y ← ?x (int|(enc/-enc))+ ?y, C (occ/-occ)+ ?y × ×
Q39 ?x ← ?x int+/ref ?y, C (auth/-auth)+ ?y × ×
Q40 ?x ← ?x int+/ref ?y, C -pub/(auth/-auth)+ ?y × × ×
Q41 ?x ← C -pub/(auth/-auth)+ ?x × ×
Q42 ?x,?y ← ?x -occ/int+/occ ?y × ×
Q43 ?x,?y ← ?x (-ref/ref)+ ?y ×
Q44 ?x,?y ← ?x int/ref/(-ref/ref)+ ?y ×
Q45 ?x ← C (ref/-ref)+ ?x ×
Q46 ?x,?y ← ?x (-ref/ref)+/(auth|pub) ?y ×
Q47 ?x,?y ← ?x int/(occ/-occ)+ ?y ×
Q48 ?x ← C int/(enc/-enc|occ/-occ)+ ?x × ×
Q49 ?x ← C (enc/-enc)+ ?x ×
Q50 ?x,?y ← ?x -hKw/(occ/-occ)+ ?y ×

Figure 8. Uniprot queries10.

E. Results

We report on experimental results and analyse them. We
measure the time spent in evaluating queries by the different
systems, in seconds. For each set of experiments, we define
a timeout value. Whenever the time spent in evaluating a
query reaches this timeout value, we consider that the query
evaluation did not terminate within reasonable time. On charts,
the timeout value corresponds to the maximum value on the
y-axis. Some systems crashed in some query evaluations. In
charts, this is denoted by the presence of a red cross on
a time bar. The observed crashes are out of memory and

10 “int” stands for “interacts”, “enc” for “encodes”, “occ” for
“occurs”, “hKw” for “hasKeyword”, “ref” for “reference”, “auth”
for “authoredBy”, and “pub” for “publishes”.



timeout failures. They are due to the amount of data processed
and transferred over the network that exceeds the capacity of
the machines. This amount of data is linked to the size of
intermediate results produced by the query evaluation. The
other cases correspond to query evaluations where the system
answered correctly. The plotted times represent the average
running times over three executions.

1) Dist-µ-RA recursive plans evaluation: Fig. 9 presents the
time spent in evaluating each of the Dist-µ-RA plans (Sec. III)
for UCRPQs on the Yago dataset. We observe that the Pplw
plans are faster than Pgld. This illustrates the interest of
the communication cost reduction performed by Pplw. As
explained in Sec. III, Pgld requires communications between
the workers at each step of the recursion while Pplw does not.
Furthermore, we observe that Ps

plw performs better on most
cases when compared to Ppg

plw. This is due to the cost of data
marshalling and exchange between PostgreSQL and Spark.
However, when the size of the datasets in the variable part of
the fixpoints is large, Ppg

plw becomes faster (e.g. queries Q22

and Q25). In that case, the performance gains are due to local
optimizations of this variable part performed by PostgreSQL.

2) UCRPQs on Yago: comparison with other systems:

In Fig. 10 we present the performance results of Dist-µ-RA,
BigDatalog and GraphX on the queries Q1−Q25 on the Yago
dataset.

First, these results show that Dist-µ-RA is much faster than
GraphX overall. We believe that this lack of performance is
due to the fact that, in the GraphX Pregel model, each node
has to keep track of its ancestors that satisfy a given regular
path query (or a part of it) and transmit this information to
their successors in order to get the pairs of nodes satisfying the
whole query. So while GraphX has been proven to be efficient
for a number of graph algorithms [7], it can be less suitable
for this kind of queries. The only case where GraphX matches
the performance of Dist-µ-RA is for Q17 where filtering is
performed at the beginning of the query (see Sec. IV-C).

Second, these results show that Dist-µ-RA provides much
faster performance than Bigdatalog for all the classes C2-C6,
and comparable performance for class C1.

One explanation for the difference in performance of Q5 of
class C2 is that it requires reversing a fixpoint term first before
pushing the filter “Kevin Bacon”. This fixpoint reversal is not
supported by Datalog’s Magic Sets optimization technique (see
Sec. V for more details). Another example is Q24 of class C6
where Dist-µ-RA merges fixpoint terms (which BigDatalog
is unable to do). Overall, the optimizations in Dist-µ-RA are
more effective. We noticed that this is particularly true when
the size of intermediate results is large (Q5 and Q10 −Q25).

3) Concatenated closures: We now evaluate concatenated
closure queries (which belong to C6) on the graph obtained
from rnd_100k_0.001. The graph edges are randomly labeled
from a set of 10 different labels. Results are shown in Fig. 11.

Dist-µ-RA is faster on all queries. The time difference between
Dist-µ-RA and BigDatalog for a query with n concatenations
(a1+/.../an+) becomes larger when n increases. BigDatalog
fails for queries where n ≥ 5 and GraphX crashes on all
queries. The plans that are selected in Dist-µ-RA for the
execution of these queries apply a mixture of the rewritings
that “push joins” and “merge fixpoints” (see Sec. II). These
results also indicate that optimizations introduced by these
rewritings provide significant performance gains for class C6.

4) Non regular queries: The execution times for these queries
of class C7 are given in Fig. 12. On the basic SG and
anbn queries, Dist-µ-RA and BigDatalog have comparable
execution times. Dist-µ-RA is faster on Filtered SG and Joined
SG queries.

5) UCRPQs on Uniprot: The results reported in Fig 13
show that Dist-µ-RA is the only system that answers all of
the queries. Furthermore, Dist-µ-RA is faster on all queries
belonging to C2−6 (except Q42 where the size of the transitive
closure is small).

a) Further scalability banchmarks on Uniprot: We report on
further scalability benchmarks where Dist-µ-RA and BigDat-
alog execution times are compared for each Uniprot query on
generated uniprot_n graphs with varying sizes of 1M, 5M and
10M edges. Results are shown in Fig. 14. Results indicate
that BigDatalog fails in 44 cases out of 75 query evaluations.
Dist-µ-RA answers all of them and scales better.

Notice that, for comprehensive benchmarking, queries and
graph sizes have been selected so as to cover a wide range of
result sizes. Q40 is one of the queries with the smallest result
size (14K records for uniprot_10M) and Q46 is one with the
largest (around 1.5B records for uniprot_10M, which is 150
times the size of the graph).

F. Summary

Overall, for all query classes, Dist-µ-RA is significantly more
efficient compared to GraphX. For query classes C2−6 and
some queries in C7, Dist-µ-RA is more efficient than Big-
Datalog, especially for large intermediate query result sizes.
For query class C1 and some queries in C7, Dist-µ-RA and
BigDatalog have a comparable performance. Our empirical
findings tend to indicate that for these cases the various
optimizations techniques of Dist-µ-RA and Bigdatalog have
limited impact.

V. RELATED WORKS

In order to evaluate expressive queries (such as UCRPQs)
over graphs, it is essential for a system to be able to: (i)
support recursion and the optimization of recursive terms, and
(ii) provide distribution of both data and computations. We
examine and compare to the closest related works along these
two aspects below.



660 588 660 600

0

50

100

150

200

250

300

350

400

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25

Pdec Pdec Pgld𝒫"#$𝒫%#&' 𝒫%#&
%"

1000

Figure 9. Running times of Pplw and Pgld plans on Yago.

X 960 X X414
660

475 469

0

50

100

150

200

250

300

350

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25
Dist-µ-RA BigDatalog Graphx

1000

Figure 10. Running times on Yago. A timeout is set at 1,000 s.

X X X X X X

0

500

1000

1500

2000

2500

3000

3500

4000

2 3 4 5 6 7 8 9 10

Ti
m

e 
(s

)

Dist-µ-RA BigDatalog

Figure 11. Evaluation times for concatenated closure queries.

For (i) we have choosen to build our system using µ-RA
[11] since it offers more optimization opportunities without
sacrifying expressivity, in particular with respect to approaches
based on Datalog and RA [11]. In Datalog, Magic Sets [40],
[41], recently improved by Demand Transformation [42], are
well-known optimization techniques for recursive programs.

The optimizations provided by Magic Sets and Demand Trans-
formations are equivalent to pushing selections and projections
in µ-RA. However, there is no Datalog equivalent to merging
fixpoints as in [11]. Furthermore, depending on the way
the Datalog program is written, some optimizations may or
may not be applied. For instance a left-linear DL program
(e.g. P (x, y) ← P (x, z), R(z, y)) cannot push filters that are
applied on the right side (on y in the example). The optimiza-
tion framework has then to be coupled with a technique for
reversing DL programs as proposed in [43]. Since Datalog
engines use heuristics to combine optimization techniques,
optimizations are not always performed as observed in [11].
In all cases, combinations of Datalog optimizations lack the
ability to merge fixpoints. In summary, Dist-µ-RA relies on µ-
RA which enables optimizations at the logical level that other
systems are unable to achieve. However, µ-RA [11] has been
only proposed for the centralized setting.

Concerning the distribution aspect (ii), the seminal systems
MapMeduce and Dryad are known to be inefficient for iterative
applications [4]. Spark [3] and Flink [4] were introduced to



X X X X X X X

0
50

100

150
200
250

300
350
400
450

500

Ragusan Wikidata_p AcTree Epinions Reddit TW-Cannes Coauth-MAG Wikitree

Dist-µ-RA BigDatalog Graphx

𝑎"𝑏"

XX X X X X X X X

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Ragusan Higgs-RW AcTree Epinions Reddit TW-Cannes Coauth-MAG Gottron Wikitree

Filtered SG

Dist-µ-RA BigDatalog Graphx

X X X X

0

50

100

150

200

250

300

350

400

Facebook Wikidata_c Wikitree_0 acTree Ragusan Isle-of-Man Fr-Royalty

SG

Dist-µ-RA BigDatalog Graphx

X X X X X

0
200

400
600
800

1000

1200
1400
1600
1800

2000

acTree Higgs-RW Coauth-MAG Gottron Wikitree

Joined SG

Dist-µ-RA BigDatalog Graphx

Figure 12. µ-RA queries running times. A timeout is set to 2000s.

X XX X X X X

0

50

100

150

200

250

300

350

Q26 Q27 Q28 Q29 Q30 Q31 Q32 Q33 Q34 Q35 Q36 Q37 Q38 Q39 Q40 Q41 Q42 Q43 Q44 Q45 Q46 Q47 Q48 Q49 Q50

Ti
m

e 
(s

)

Dist-µ-RA BigDatalog Graphx

2000

Figure 13. Running times on uniprot_1M. A timeout is set to 2,000 s.

improve upon these systems and became prevalent for large
scale and data-parallel computations. Work in [44] proposes
a technique that improves Spark task scheduling and thus
performance for iterative applications. This system-level opti-
mization is transparent for Spark applications and thus Dist-
µ-RA can directly benefit from it.

Systems specifically designed for large-scale graph process-
ing include Google’s Pregel [5], Giraph [6] an open-source
system based on the Pregel model, GraphLab [45] and Power-
graph [46]. GraphX [7] is a Spark library for graph processing
that offers a Pregel API to perform recursive computations.
Pregel is based on the Bulk Synchronous Parallel model. A
Pregel program is composed of supersteps. At each superstep,

a vertex receives messages sent by other vertices at the
previous iteration and processes them to update its state and
send new messages. Computation stops when no new message
is sent. Is is not straightforward to evaluate UCRPQs in Pregel.
An automata like algorithm needs to be written to know which
stage of the regular query each processed path has reached.
The idea is to traverse the paths in the graph (by sending
messages from vertices to their neighbors) while traversing
the regular query. [47] proposes a system that implements
RPQ queries on GraphX and proposes optimizations to re-
duce communications between nodes. In all these systems,
selections can be pushed in one direction only. For instance,
if the program traverses the regular query from left to right,



X XX X X X X X X X X X X X X X X X X X X X XX X X X X X X X X X X X X X X X 1200 X 1440 X X X X

0

50

100

150

200

250

300

350

400

Q26 Q27 Q28 Q29 Q30 Q31 Q32 Q33 Q34 Q35 Q36 Q37 Q38 Q39 Q40 Q41 Q42 Q43 Q44 Q45 Q46 Q47 Q48 Q49 Q50
1M 5M 10M 1M 5M 10MDist-µ-RA BigDatalog

2000

Figure 14. Dist-µ-RA and BigDatalog running times on Uniprot graphs of different sizes

the execution of the program naturally computes the filters
and edge selections occuring before a recursion first, thereby
pushing these operations in the recursion. Selections which
occur after the recursion cannot be pushed. Additionally,
communications between workers happen in every recursion
superstep, which is avoided by the Pplw plan in Dist-µ-RA.

Distributed systems with higher-level query language support
have been developed. The Spark SQL [22] library enables
the user to write SQL queries and process relational data
using Datasets or DataFrames. However, recursion is
not supported. DryadLINQ [48] that exposes a declarative
query language on top of Dryad (or Pig Latin [49] on top of
Hadoop MapReduce) has the same limitation. TitanDB [50] is
a distributed graph database that supports the Gremlin query
language. Gremlin provides primitives for expressing graph
traversals. It is able to express UCRPQ queries with its own
syntax. However, these systems do not provide optimization
techniques comparable to the ones we propose.

SociaLite [51] is an extension of Datalog for social network
graph analysis. Its distributed implementation runs queries on a
cluster of multi-core machines in which workers communicate
using message passing. SociaLite does not offer a distribution
plan equivalent to Pplw where recursion can be executed with-
out communication between workers at every step. Myria [52]
is a distributed system that supports a subset of Datalog
extended with aggregation. Queries are translated into query
plans executed on a parallel relational engine. Myria supports
incremental evaluation of recursion and provides synchronous
and asynchronous modes. It does not support advanced logical
optimizations of the recursive query plan like pushing joins in
fixpoints nor merging fixpoints. Myria does not either propose
a distribution plan equivalent to Pplw.

RaSQL [53] proposes an extension of SQL with some aggre-
gate operations in recursion. Queries are compiled to Spark
SQL to be distributed and executed on Spark. RaSQL does not
propose rules to push selections in the fixpoint operator nor to
merge fixpoints. RaSQL proposes a decomposable plan for re-
cursion similar to the one in BigDatalog but has no automated

technique to distribute data. The RaSQL implementation is not
available for benchmarking.

BigDatalog [13] is a recursive Datalog engine that runs on
Spark. It uses the Datalog GPS technique [54] that analyses
Datalog rules to identify decomposable Datalog programs and
determine how to distribute data and computations. These
ideas are tied to Datalog and are not applicable to the relational
algebra. The present work proposes a new method specifically
designed for recursive relational algebraic terms. It uses the µ-
RA filter pushing technique to automatically repartition data.
Compared to BigDatalog, Dist-µ-RA is superior because it
supports optimizations that BigDatalog is unable to provide.
For instance, as mentioned earlier, BigDatalog cannot perform
Dist-µ-RA’s optimization that merges fixpoints. In fact, it
is not possible to do so in the Datalog framework. This is
known as an intrinsic limitation of Magic Sets and Demand
Transformations at the core of Datalog optimizations. Another
example is that BigDatalog cannot push all filters and joins that
can be pushed, without requiring the support of techniques to
reverse fixpoints. This is notably hard and BigDatalog does
not implement such techniques. In comparison, Dist-µ-RA
supports more logical optimizations of terms (and regardless
of their initial form) and is thus capable of generating logical
query plans that are beyond reach for BigDatalog. In practice,
Dist-µ-RA provides superior performance on a wider range of
query classes, as reported by the experiments in Section IV.

VI. CONCLUSION

We propose a new approach for the evaluation of recursive
algebraic terms in a distributed manner. It relies on an tech-
nique capable of generating independent parallel loops on the
worker nodes in a cluster of machines instead of executing a
global loop on the driver node. The advantage of the parallel
local loops is a minimization of the amount of data shuffled
between worker nodes. This reduces communication costs
and significantly improves overall query evaluation time. We
applied this approach to recursive graph queries on real and
synthetic datasets. Experimental results show that the proposed
approach is more efficient than the state-of-the-art.



REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters,” in 6th Symposium on Operating System Design
and Implementation (OSDI 2004), San Francisco, California, USA,
December 6-8, 2004, 2004, pp. 137–150. [Online]. Available:
http://www.usenix.org/events/osdi04/tech/dean.html

[2] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed data-parallel programs from sequential building blocks,” in
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems 2007, ser. EuroSys ’07. New York, NY,
USA: Association for Computing Machinery, 2007, p. 59–72. [Online].
Available: https://doi.org/10.1145/1272996.1273005

[3] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica, “Apache spark: a unified engine
for big data processing,” Commun. ACM, vol. 59, no. 11, pp. 56–65,
2016. [Online]. Available: http://doi.acm.org/10.1145/2934664

[4] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink™: Stream and batch processing in a single
engine,” IEEE Data Eng. Bull., vol. 38, no. 4, pp. 28–38, 2015.
[Online]. Available: http://sites.computer.org/debull/A15dec/p28.pdf

[5] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-scale graph
processing,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’10. New York,
NY, USA: Association for Computing Machinery, 2010, p. 135–146.
[Online]. Available: https://doi.org/10.1145/1807167.1807184

[6] “Apache giraph.” november 2019. [Online]. Available: https://giraph.
apache.org

[7] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica, “Graphx: Graph processing in a distributed dataflow
framework,” in 11th USENIX Symposium on Operating Systems Design
and Implementation, OSDI ’14, Broomfield, CO, USA, October 6-8,
2014., 2014, pp. 599–613. [Online]. Available: https://www.usenix.org/
conference/osdi14/technical-sessions/presentation/gonzalez

[8] “Spark tuning.” february 2022. [Online]. Available: https://spark.apache.
org/docs/latest/tuning.html

[9] R. Agrawal, “Alpha: an extension of relational algebra to express a
class of recursive queries,” IEEE Transactions on Software Engineering,
vol. 14, no. 7, pp. 879–885, Jul. 1988.

[10] A. V. Aho and J. D. Ullman, “Universality of data retrieval languages,”
in Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, ser. POPL ’79. New
York, NY, USA: ACM, 1979, pp. 110–119. [Online]. Available:
http://doi.acm.org/10.1145/567752.567763

[11] L. Jachiet, P. Genevès, N. Gesbert, and N. Layaïda, “On the optimization
of recursive relational queries: Application to graph queries,” in Proceed-
ings of the ACM SIGMOD International Conference on Management of
Data. ACM, 2020, pp. 681–697.

[12] S. Abiteboul, R. Hull, and V. Vianu, Eds., Foundations of Databases:
The Logical Level, 1st ed. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1995.

[13] A. Shkapsky, M. Yang, M. Interlandi, H. Chiu, T. Condie,
and C. Zaniolo, “Big data analytics with datalog queries on
spark,” in Proceedings of the 2016 International Conference on
Management of Data, SIGMOD Conference 2016, San Francisco,
CA, USA, June 26 - July 01, 2016, F. Özcan, G. Koutrika, and
S. Madden, Eds. ACM, 2016, pp. 1135–1149. [Online]. Available:
https://doi.org/10.1145/2882903.2915229

[14] M. P. Consens and A. O. Mendelzon, “Graphlog: A visual formalism
for real life recursion,” in Proceedings of the Ninth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, ser.
PODS ’90. New York, NY, USA: ACM, 1990, pp. 404–416. [Online].
Available: http://doi.acm.org/10.1145/298514.298591

[15] P. Barcelo, D. Figueira, and L. Libkin, “Graph logics with
rational relations and the generalized intersection problem,” in
Proceedings of the 2012 27th Annual IEEE/ACM Symposium on
Logic in Computer Science, ser. LICS ’12. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 115–124. [Online]. Available:
https://doi.org/10.1109/LICS.2012.23

[16] P. Barceló, L. Libkin, A. W. Lin, and P. T. Wood, “Expressive
languages for path queries over graph-structured data,” ACM Trans.
Database Syst., vol. 37, no. 4, pp. 31:1–31:46, Dec. 2012. [Online].
Available: http://doi.acm.org/10.1145/2389241.2389250

[17] L. Libkin, W. Martens, and D. Vrgoč, “Querying graphs with data,” J.
ACM, vol. 63, no. 2, pp. 14:1–14:53, Mar. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2850413

[18] “Dist-µ-RA system implementation.” february 2022. [Online]. Available:
https://gitlab.inria.fr/tyrex-public/distmura

[19] Y. E. Ioannidis, “On the computation of the transitive closure of rela-
tional operators,” in Proceedings of the 12th International Conference
on Very Large Data Bases, ser. VLDB ’86. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1986, p. 403–411.

[20] M. Lawal, P. Genevès, and N. Layaïda, “A cost estimation technique for
recursive relational algebra,” in CIKM ’20: The 29th ACM International
Conference on Information and Knowledge Management, Virtual Event,
Ireland, October 19-23, 2020, M. d’Aquin, S. Dietze, C. Hauff,
E. Curry, and P. Cudré-Mauroux, Eds. ACM, 2020, pp. 3297–3300.
[Online]. Available: https://doi.org/10.1145/3340531.3417460

[21] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price, “Access path selection in a relational database management
system,” in Proceedings of the 1979 ACM SIGMOD International
Conference on Management of Data, Boston, Massachusetts, USA, May
30 - June 1, P. A. Bernstein, Ed. ACM, 1979, pp. 23–34. [Online].
Available: https://doi.org/10.1145/582095.582099

[22] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia,
“Spark sql: Relational data processing in spark,” in Proceedings of
the 2015 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 1383–1394. [Online]. Available:
https://doi.org/10.1145/2723372.2742797

[23] ——, “Spark SQL: relational data processing in spark,” in Proceedings
of the 2015 ACM SIGMOD International Conference on Management
of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, 2015,
pp. 1383–1394. [Online]. Available: https://doi.org/10.1145/2723372.
2742797

[24] M. P. I. for Informatics and T. P. University, “YAGO: A high-
quality knowledge base,” july 2019. [Online]. Available: https:
//www.mpi-inf.mpg.de/yago-naga/yago/

[25] “The colorado index of complex networks (icon),” february 2022.
[Online]. Available: https://icon.colorado.edu/#!/

[26] M. Fire and Y. Elovici, “Data mining of online genealogy datasets
for revealing lifespan patterns in human population,” ACM Trans.
Intell. Syst. Technol., vol. 6, no. 2, mar 2015. [Online]. Available:
https://doi.org/10.1145/2700464

[27] J. Kunegis, “Konect: the koblenz network collection,” 05 2013, pp.
1343–1350.

[28] J. Liénard, T. Achakulvisut, D. Acuna, and S. David, “Intellectual
synthesis in mentorship determines success in academic careers,” Nature
Communications, vol. 9, 11 2018.

[29] J. Leskovec, “Snap: Stanford large network dataset collection,”
november 2019. [Online]. Available: https://snap.stanford.edu/data/

[30] M. De Domenico and E. Altmann, “Unraveling the origin of social bursts
in collective attention,” Scientific Reports, vol. 10, p. 4629, 03 2020.

[31] “Wikidata the free knowledge base,” february 2022. [Online]. Available:
https://www.wikidata.org/wiki/Wikidata:Main_Page

http://www.usenix.org/events/osdi04/tech/dean.html
https://doi.org/10.1145/1272996.1273005
http://doi.acm.org/10.1145/2934664
http://sites.computer.org/debull/A15dec/p28.pdf
https://doi.org/10.1145/1807167.1807184
https://giraph.apache.org
https://giraph.apache.org
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/gonzalez
https://spark.apache.org/docs/latest/tuning.html
https://spark.apache.org/docs/latest/tuning.html
http://doi.acm.org/10.1145/567752.567763
https://doi.org/10.1145/2882903.2915229
http://doi.acm.org/10.1145/298514.298591
https://doi.org/10.1109/LICS.2012.23
http://doi.acm.org/10.1145/2389241.2389250
http://doi.acm.org/10.1145/2850413
https://gitlab.inria.fr/tyrex-public/distmura
https://doi.org/10.1145/3340531.3417460
https://doi.org/10.1145/582095.582099
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1145/2723372.2742797
https://www.mpi-inf.mpg.de/yago-naga/yago/
https://www.mpi-inf.mpg.de/yago-naga/yago/
https://icon.colorado.edu/#!/
https://doi.org/10.1145/2700464
https://snap.stanford.edu/data/
https://www.wikidata.org/wiki/Wikidata:Main_Page


[32] N. Halliwell, F. Gandon, and F. Lecue, “User Scored Evaluation of
Non-Unique Explanations for Relational Graph Convolutional Network
Link Prediction on Knowledge Graphs,” in International Conference on
Knowledge Capture, Virtual Event, United States, Dec. 2021. [Online].
Available: https://hal.archives-ouvertes.fr/hal-03402766

[33] R. Cyganiak, D. Wood, and M. Lanthaler, “Rdf 1.1 concepts
and abstract syntax.” february 2014. [Online]. Available: https:
//www.w3.org/TR/2014/REC-rdf11-concepts-20140225

[34] G. Bagan, A. Bonifati, R. Ciucanu, G. H. L. Fletcher, A. Lemay,
and N. Advokaat, “gmark: Schema-driven generation of graphs and
queries,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 4, pp. 856–869,
2017. [Online]. Available: https://doi.org/10.1109/TKDE.2016.2633993

[35] P. Gane, A. Bateman, M. Mj, C. O’Donovan, M. Magrane, R. Ap-
weiler, E. Alpi, R. Antunes, J. Arganiska, B. Bely, M. Bingley,
C. Bonilla, R. Britto, B. Bursteinas, G. Chavali, E. Cibrián-Uhalte, S. Ad,
M. De Giorgi, T. Dogan, and J. Zhang, “Uniprot: A hub for protein
information,” Nucleic Acids Research, vol. 43, p. D204–D212, 11 2014.

[36] “Bigdatalog repository.” february 2022. [Online]. Available: https:
//github.com/ashkapsky/BigDatalog

[37] Z. Abul-Basher, N. Yakovets, P. Godfrey, S. Ghajar-Khosravi, and M. H.
Chignell, “TASWEET: Optimizing Disjunctive Path Queries in Graph
Databases,” in Proceedings of the 20th International Conference on
Extending Database Technology, EDBT 2017, Venice, Italy, March 21-
24, 2017. OpenProceedings.org, 2017, pp. 470–473.

[38] N. Yakovets, P. Godfrey, and J. Gryz, “Waveguide: Evaluating sparql
property path queries.” in EDBT, 2015, pp. 525–528.

[39] A. Gubichev, S. J. Bedathur, and S. Seufert, “Sparqling kleene: Fast
property paths in RDF-3X,” in First International Workshop on Graph
Data Management Experiences and Systems, ser. GRADES ’13. New
York, NY, USA: ACM, 2013, pp. 14:1–14:7. [Online]. Available:
http://doi.acm.org/10.1145/2484425.2484443

[40] F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman, “Magic sets
and other strange ways to implement logic programs (extended
abstract),” in Proceedings of the Fifth ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems, ser. PODS ’86.
New York, NY, USA: ACM, 1986, pp. 1–15. [Online]. Available:
http://doi.acm.org/10.1145/6012.15399

[41] D. Saccà and C. Zaniolo, “On the implementation of a simple class
of logic queries for databases,” in Proceedings of the Fifth ACM
SIGACT-SIGMOD Symposium on Principles of Database Systems, ser.
PODS ’86. New York, NY, USA: ACM, 1986, pp. 16–23. [Online].
Available: http://doi.acm.org/10.1145/6012.6013

[42] K. T. Tekle and Y. A. Liu, “More efficient datalog queries: subsumptive
tabling beats magic sets,” in Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data. ACM, 2011, pp.
661–672.

[43] J. F. Naughton, R. Ramakrishnan, Y. Sagiv, and J. D. Ullman, “Efficient
evaluation of right-, left-, and multi-linear rules,” in Proceedings of
the 1989 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’89. New York, NY, USA: ACM, 1989, pp.
235–242. [Online]. Available: http://doi.acm.org/10.1145/67544.66948

[44] P. Katsogridakis, S. Papagiannaki, and P. Pratikakis, “Execution of
recursive queries in apache spark,” in Euro-Par, 2017.

[45] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. M. Hellerstein, “Distributed graphlab: A framework for machine
learning and data mining in the cloud,” Proc. VLDB Endow.,
vol. 5, no. 8, p. 716–727, Apr. 2012. [Online]. Available: https:
//doi.org/10.14778/2212351.2212354

[46] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Pow-
ergraph: Distributed graph-parallel computation on natural graphs,” in
Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’12. USA: USENIX Association,
2012, p. 17–30.

[47] X. Wang, S. Wang, Y. Xin, Y. Yang, J. Li, and X. Wang, “Distributed
pregel-based provenance-aware regular path query processing on rdf
knowledge graphs,” World Wide Web, vol. 23, 05 2020.

[48] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda,
and J. Currey, “Dryadlinq: A system for general-purpose distributed
data-parallel computing using a high-level language,” in Proceedings
of the 8th USENIX Conference on Operating Systems Design and
Implementation, ser. OSDI’08. USA: USENIX Association, 2008, p.
1–14.

[49] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig
latin: A not-so-foreign language for data processing,” in Proceedings
of the 2008 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’08. New York, NY, USA: Association
for Computing Machinery, 2008, p. 1099–1110. [Online]. Available:
https://doi.org/10.1145/1376616.1376726

[50] “Titan distributed graph database.” february 2022. [Online]. Available:
http://titan.thinkaurelius.com/

[51] J. Seo, J. Park, J. Shin, and M. S. Lam, “Distributed socialite: A
datalog-based language for large-scale graph analysis,” Proc. VLDB
Endow., vol. 6, no. 14, p. 1906–1917, Sep. 2013. [Online]. Available:
https://doi.org/10.14778/2556549.2556572

[52] J. Wang, M. Balazinska, and D. Halperin, “Asynchronous and fault-
tolerant recursive datalog evaluation in shared-nothing engines,” Proc.
VLDB Endow., vol. 8, no. 12, p. 1542–1553, Aug. 2015. [Online].
Available: https://doi.org/10.14778/2824032.2824052

[53] J. Gu, Y. H. Watanabe, W. A. Mazza, A. Shkapsky, M. Yang,
L. Ding, and C. Zaniolo, “Rasql: Greater power and performance
for big data analytics with recursive-aggregate-sql on spark,” in
Proceedings of the 2019 International Conference on Management
of Data, ser. SIGMOD ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 467–484. [Online]. Available:
https://doi.org/10.1145/3299869.3324959

[54] J. Seib and G. Lausen, “Parallelizing datalog programs by generalized
pivoting,” in Proceedings of the Tenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, ser. PODS ’91. New
York, NY, USA: Association for Computing Machinery, 1991, p.
241–251. [Online]. Available: https://doi.org/10.1145/113413.113435

https://hal.archives-ouvertes.fr/hal-03402766
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225
https://doi.org/10.1109/TKDE.2016.2633993
https://github.com/ashkapsky/BigDatalog
https://github.com/ashkapsky/BigDatalog
http://doi.acm.org/10.1145/2484425.2484443
http://doi.acm.org/10.1145/6012.15399
http://doi.acm.org/10.1145/6012.6013
http://doi.acm.org/10.1145/67544.66948
https://doi.org/10.14778/2212351.2212354
https://doi.org/10.14778/2212351.2212354
https://doi.org/10.1145/1376616.1376726
http://titan.thinkaurelius.com/
https://doi.org/10.14778/2556549.2556572
https://doi.org/10.14778/2824032.2824052
https://doi.org/10.1145/3299869.3324959
https://doi.org/10.1145/113413.113435

	Preliminaries
	-RA syntax
	Semantics and properties of the fixpoint

	Dist–RA architecture
	Distributed evaluation
	Fixpoint distributed evaluation principles
	Global Loop on the Driver (Pgld)
	Parallel Local loops on the Workers (Pplw)

	Physical plan generation and selection

	Experiments
	Experimental setup
	Datasets
	Systems
	Queries
	Results
	Dist–RA recursive plans evaluation
	UCRPQs on Yago: comparison with other systems
	Concatenated closures
	Non regular queries
	UCRPQs on Uniprot

	Summary

	Related Works
	Conclusion
	References

