
HAL Id: hal-03341866
https://hal.science/hal-03341866

Submitted on 13 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Migrating GUI behavior: from GWT to Angular
Benoît Verhaeghe, Anas Shatnawi, Abderrahmane Seriai, Nicolas Anquetil,

Anne Etien, Stéphane Ducasse, Mustapha Derras

To cite this version:
Benoît Verhaeghe, Anas Shatnawi, Abderrahmane Seriai, Nicolas Anquetil, Anne Etien, et al.. Mi-
grating GUI behavior: from GWT to Angular. International Conference on Software Maintenance
and Evolution, Sep 2021, Luxembourg city, Luxembourg. �hal-03341866�

https://hal.science/hal-03341866
https://hal.archives-ouvertes.fr


Migrating GUI behavior: from GWT to Angular
Benoît Verhaeghe3,1 Anas Shatnawi3 Abderrahmane Seriai3 Nicolas Anquetil1

Anne Etien1 Stéphane Ducasse2 Mustapha Derras3

1Univ. Lille, CNRS,
Inria, Centrale Lille,

UMR 9189 CRIStAL, France
{firstname.lastname}@inria.fr

2Univ. Lille, Inria,
CNRS, Centrale Lille,

UMR 9189 CRIStAL, France
{firstname.lastname}@inria.fr

3Berger-Levrault, France
{firstname.lastname}@berger-levrault.com

Abstract—In a collaboration with Berger-Levrault, a major IT
company, we are working on the migration of GWT applications
to Angular. We focus on the GUI aspect of this migration
which requires a framework switch (GWT to Angular) and a
programming language switch (Java to TypeScript). Previous
work identified that the GUI can be split into the UI structure
and the GUI behavioral code. GUI behavioral code is the code
executed when the user interacts with the UI. Although the
migration of UI structure has already been studied, the migration
of the GUI behavioral code has not. To help developers during the
migration of their applications, we propose a generic approach in
four steps that uses a meta-model to represent the GUI behavioral
code. This approach includes a separation of the GUI behavioral
code into events (caller code) and the code executed when an
event is fired (called code). We present the approach and its
implementation for a real industrial case study. The application
comprises 470 Java (GWT) classes representing 56 web pages. We
give examples of the migrated code. We evaluate the quality of
the generated code with standard tools (SonarQube, codelizer)
and compare it to another Java to TypeScript converter. The
results show that our code has 53% fewer warnings and rule
violations for SonarQube, and 99% fewer for codelizer.

Index Terms—Graphical User Interface, GUI behavioral code,
Model-Driven Engineering, Migration

I. INTRODUCTION

Our work takes place in a collaboration with Berger-
Levrault, a major IT company developing large applications
using the Google Web Toolkit (GWT) framework. GWT
allows developers to create web-based front-end Java ap-
plications. The GWT framework is no longer intensively
maintained with only two minor releases since 2015. As a
consequence, Berger-Levrault decided to migrate the GUI of
its applications to Angular 12.

The migration of an application’s GUI has already been
studied [1, 2, 3, 4]. However, the authors of previous work
only considered the visual part of the application, i.e. migrating
the widgets and their position; and not the GUI behavior.
Thus, there is still a need to support the migration of the GUI
behavioral code.

The GUI behavioral code is the code executed when the
user interacts with the UI. For example, when users click on
a button, display a Popup. So, migrating GUI behavioral code
consists of migrating the source code executed when the end-
user interacts with the UI.

Tools and approaches that migrate source code from one
framework to another or from one programming language
to another have already been developed [5, 6]. However,
the migration of source code relative to the GUI is still
one of their most complex challenges [7]. Moreover, unlike
approaches proposed by language translators such as JSweet1

and CodeTranslater2, GUI behavioral code migration requires
a language migration and an API migration, e.g. migrating
GUI handlers between GUI framework requires a specific
approach.

Thus, we must provide an approach that helps to migrate
GUI behavioral code. Such an approach should migrate the
code and ensure the maintainability of the new application by
generating natural code, i.e. respecting the conventions of the
target language as used by an expert.

This paper presents an approach to migrate the GUI be-
havioral code. The approach comes with a meta-model repre-
senting the GUI behavioral code and is linked to the visual
part of the application. We detail the steps to extract behavior
and generate the target code. We implemented a prototype that
performs the migration of GWT code to Angular. Then, we
applied it on a real industrial context, and assess the result
both manually and with standard quality evaluation tools.

The contributions of the paper are:

• an approach to migrate application behavioral code;
• a meta-model to represent GUI behavioral code linked to

the GUI visual part;
• a tool that implements our approach for GWT behavioral

migration; and
• a validation of the approach in an industrial context.

In Section II, we review the literature on language migra-
tion. In Section III, we define the GUI behavioral code from
an example. In Section IV, we detail the migration process
of GUI behavioral code. In Section V and Section VI, we
present an implementation of our approach. In Section VII, we
present an evaluation of the migration of our partner company
application. In Section VIII, we discuss our results and the

1JSweet: http://www.jsweet.org/papers-and-publications/
2CodeTranslater: https://www.carlosag.net/tools/codetranslator/

http://www.jsweet.org/papers-and-publications/
https://www.carlosag.net/tools/codetranslator/


genericity of our approach. In Section IX, we conclude and
present future work.

II. STATE OF THE ART

To the best of our knowledge, there is no study on the migra-
tion of code executed when the user interacts with the UI. So,
we present related work on the GUI structure (in Section II-A).
In Section II-B, we present existing migration approaches.
Finally, we detail language migration tools and approaches
(in Section II-C).

A. GUI Structure

Hayakawa et al. [8] split the GUI code into multiple parts.
For instance, GUI is divided into two categories of code: visual
and behavioral.
Visual code describes the visual aspect of the GUI. It is

composed of the Meta, Widget, and the Style part. They
correspond respectively to UI meta-information (such as
the UI title), the type of the widgets and the Domain
Object Model (DOM), and the style of the element (color,
size, etc.).

Behavioral code is defined as the executed script when an
event (such as a click event) is fired.

Many approaches have considered the migration of the
visual code [1, 2, 3, 9, 10]. However, the behavioral code must
also be considered to migrate the GUI completely. We will thus
detail the migration approaches found in the literature.

B. Migration approaches

Sneed and Verhoef [11] described three ways to migrate an
application: conversion, reimplementation, and wrapping.

Conversion consists in a one-step approach that translates
statement by statement the source code to its target language
counterpart [7].

Reimplementation is used by many approaches that migrate
the GUI visual part [1, 2, 3, 9]. It follows this process:

• The old application is extracted into a source language-
specific model.

• Then, the model is transformed to a higher-level repre-
sentation.

• Finally, the high-level model is transformed into a target
language-specific model or directly used to generate the
target application.

Wrapping “is an established re-engineering technique to
provide access to existing functionality through a preferred in-
terface” [12]. In consequence, the source code is not migrated
but called by the new code.

Whereas each approach allows one to execute code with the
target GUI framework, only conversion, and reimplementation
perform a migration. Moreover, reimplementation is the most
used one for GUI migration. Thus, it is the one we will focus
on.

When performing a reimplementation to a GUI framework
defined in another language, one needs to perform a language
migration.

C. Language migration

The language migration field focuses on migrating ap-
plications written in one programming language to another
language. The main goal is to be able to run the migrated
application.

Malton [13] classified language migrations according to
their difficulties into three categories:
Dialect conversion deals with the migration from one version

of a programming language to another. For example, from
Python 2 to Python 3 [14].

API migration is the switch of frameworks and keeping the
same programming language [15]. For example, moving
from Java Swing to JavaFX.

Language migration deals with the migration from one lan-
guage to another. It better fits our context.

Brant et al. [7] migrated a Delphi application into C#. To do
so, they used and developed SmaCC, a transformation engine
that allows one to write transformation patterns.

Terwilliger et al. [5] worked on the conversion of Fortran
to C++ code. To do so, they developed FABLE which is a
tool that automatically rewrites the code in C++. The authors
wanted to generate C++ code suitable for future development,
and at the same time “similar to the original Fortran code”.

Martin and Muller [6] translated C code to Java. To translate
the application they used a traditional approach: create an
Abstract Syntax Tree (AST) representation of the source code,
transform it into an AST for Java, and then traverse this AST
to generate the target source code.

Trudel et al. [16] developed a tool that migrates C to Eiffel
(an object-oriented language). To do so, they built an AST
of the original source code and they applied successive trans-
formations on this AST. Thus, they incrementally transform
the code from C to Eiffel. They also manually wrote helper
classes that ensure the Eiffel classes have the same capabilities
as their C structure counterpart. For example, there is a helper
class to access the stdio library aiming to help Eiffel translated
code using stdio specific features.

III. BEHAVIORAL CODE

None of the previous studies propose a solution to help
developers migrating GUI behavioral code. Yet, it is essential
to provide such support during migration projects in addition
to the migration of the visual part of the application. Moreover,
GUI behavioral code is only described as “the executed script
when an event is fired” [8].

Thus, before designing a migration approach, we detail what
GUI behavioral code is. To do so, we first present a concrete
example in Section III-A. Then, we split the GUI behavioral
code into two parts and present them in Section III-B.

A. GUI behavioral code

To clarify the definition of GUI behavioral code, we use the
following concrete example.

Figure 1 shows an example of GWT Java code. It corre-
sponds to a method executed when the end-user clicks on a
button of the interface to migrate. The method reads the value



1 button.addClickHandler(new ClickHandler() {
2 public void onClick(final ClickEvent event) {
3 String values = emailBox.getText();
4 if (values != null) {
5 List<String> results = values.split(",");
6 IGwtService.sendEmail(results, new

AsyncCallback<List<String>>() {
7 public void onSuccess(List<String> result){
8 EventPopup.displayInfo(result.toString());
9 }

10 });
11 }}});

Fig. 1: GUI behavioral code in Java
of an inputText (line 3) looking for email addresses separated
by commas (line 5) and uses a service to send an email to
each address (line 6).

More specifically, line 1, addClickHandler(new
ClickHandler ... ) corresponds to the creation of
the event click handler and attaches it to the widget button.
This is the entry-point of the GUI behavioral code. When the
click event is fired, the method onClick line 2 is executed.

Then, line 3, there are two behavioral elements. emailBox
is an access to a UI element, here an input text declared in the
UI. And .getText() is an access to the value of the attribute
text of the widget emailBox.

Finally, on line 8, there is a declaration and usage of Popup.
The Popup is identified by the usage of the class EventPopup.

All other parts of the code, not directly linked to the UI, do
not belong to the GUI behavioral code. They are: control flow
(if, line 4), business code (call to a distant service, line 6), or
algorithm details (converting a string as a List, line 5).

Note that a similar separation of the code can be done in
other programming languages (Java, TypeScript, C#, etc.).

B. GUI behavioral code structure

From the previous example, we subdivide the GUI be-
havioral code into two categories: the events and the GUI
manipulation code.
Events correspond to the events raised by the system or when

end users interact with the UI. Each GUI framework
has a set of recognized events, however, there are some
common ones, and there is an exhaustive list that can be
found in each browser documentation3.

GUI manipulation code impact or reference part of the
visual aspect of the application. Examples of GUI ma-
nipulation code include showing or hiding UI elements.

For the Events, by analyzing the GWT applications of our
industrial partner, we identified the events used in our context:

• Click corresponds to a user clicking on any UI element
of the DOM. It can be a button as well as a table, a text,
or an empty zone.

• Change corresponds to modification in a text input or a
table.

• Error corresponds to a problem, for example when load-
ing an image and the resource is unavailable.

3For example, for Firefox: https://developer.mozilla.org/en-US/docs/Web/
Events

• Submit corresponds to a user submitting a form.
• SubmitComplete is raised by the system after a successful

Submit event, e.g. when the form fields were correctly
filled and there is no network problem.

Since we work with web applications, this list might show
some bias towards web events, however, one could easily ex-
tend the list with other events without impacting our approach.
Note that events with the same name in two different GUI
frameworks might behave differently [7].

For GUI manipulations code, there is no exhaustive list
of possible expressions that impact the UI. So, we propose a
first list of GUI manipulations code we found in our context.

• Widget access. For example, Figure 1 line 3: emailBox.
• Widget attribute getter or setter. For example, Figure 1

line 3: getText().
• Navigating corresponds to the navigation from one page

to another.
• Open Popup shows a Popup in the application. Popups

can be: info; warning; or error.
• Open Dialog4 is the piece of code used to open a dialog

in the GUI.
Again, other kinds of GUI manipulations code may exist,

e.g. adding or removing an element in the DOM, or ani-
mations, but they were not found in our context so we did
not consider them in the following. However, they could be
considered without impacting our approach.

IV. MIGRATION PROCESS

Here, we extend the approach of [3] to support GUI
behavioral code migration.

First, Section IV-A, we present the migration approach and
highlight our contribution. Then, Section IV-B, we present
the behavioral meta-model designed to represent the GUI
behavioral code. Finally, Section IV-C, we detail the step for
the extraction and the generation of the GUI behavioral code.

A. Migration approach

Migrated
application

GUI behavioral code modelGUI behavioral code extraction

Source code model extraction

GUI model
extractionSource code model

Source 
application

GUI model

Export
GUI

Export
behavioral

code

Fig. 2: Migration approach (white [3], gray our extension)

Figure 2 presents the GUI migration approach with the
contributions of this paper on the behavioral code migration
in gray. The migration is divided into 5 steps:

4A Dialog is a window “box or other interactive components, such as a
dismissable alert, inspector, or subwindow” (https://developer.mozilla.org/en-
US/docs/Web/HTML/Element/dialog)

https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/dialog
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/dialog


InvocableEntity

page

navigations 1
Navigating dialog

1

openers
0..*

OpeningDialog

widget
behavioralAccess

0..*1
Accessing

DOMElement

behavioralAccess

0..*

attribute
1

Accessing
AttributeValue

Setting
AttributeValue

Getting
AttributeValue

Widget

Attribute

Page Dialog

behavior
0..*

0..1

Event

Container

widget

attributes
0..*

events

events 0..*widget

Click

Change Submit

SubmitComplete

OpeningPopup

Error

Legend

AST 
meta-model

Behavioral
meta-model

UI meta-model

ASTExpression

0..*

...

Fig. 3: Behavioral meta-model — The UI meta-model (white boxes) is based on the one described in [3]

1. Source code model extraction takes as input the source
application and generates a source code model (in Famix
[17]). One can query the model to extract concepts such
as classes, methods, and method invocations.

2. GUI model extraction takes as input the source code
model. It queries this model to extract the GUI concepts
such as the widgets and their attributes.

3. GUI behavioral code extraction takes as input the ex-
tracted GUI model and the source code model. The source
code model includes the GUI manipulations code and the
creation of event handlers. The GUI model includes the
widgets already extracted with which users can interact.
It produces a GUI behavioral code model.

4. Export GUI takes as input the GUI model and generates
the code of the visual part of the application.

5. Export behavioral exports the extracted behavioral code
in the target language inside the generated GUI code.

In this paper, we focus on the behavioral part of the
migration.

B. Behavioral meta-model

To represent the GUI behavioral code, we designed a meta-
model Figure 3. It is based on an AST meta-model, and so it
comes as an extension of FAST5 a generic AST meta-model.
As described above in Section III-B, the meta-model is divided
into two parts: the Events raised by user interaction, and the
GUI manipulation code.

To integrate all the behavioral concepts inside the generic
AST, we defined all GUI manipulations code entities as AST
Expression. Thus, we can transform any specific AST model
into our GUI behavioral model using the AST Expression
concept.
Event corresponds to the events that will be raised when

the end-user interacts with the UI. It can be refined as
Click, Change, Error, Submit, and SubmitComplete or
any other event. An Event is linked to the AST concept

5FAST (generic AST): https://github.com/moosetechnology/FAST/

InvocableEntity which represents an element that can
be invoked, e.g. a method or a lambda expression. An
Event is also linked to a Widget (part of the UI meta-
model [3]) on which it is attached.

AccessingDOMElement represents the reference to any wid-
get of the DOM. For example, it corresponds to an access
to a variable containing a widget in Java. A widget can
have multiple references.

AccessingAttributeValue represents an access
to a widget attribute, and so is linked to the
Attribute concept of the UI meta-model. It can
be refined as a GettingAttributeValue or a
SettingAttributeValue.

Navigating corresponds to the GUI manipulations code to
navigate from one page of the application to another. This
concept is linked to the Page concept of the UI meta-
model.

OpeningPopup corresponds to the code executed to open a
Popup.

OpeningDialog corresponds to code executed to open a dia-
log. The dialog is already defined in the UI meta-model,
and many openers exist.

C. Behavioral code migration approach

Because the GUI behavioral meta-model is linked to a UI
meta-model, the first step to extract the behavioral code is
the extraction of the UI model. This step is part of the GUI
extraction and we follow the same approach as [3]. It consists
of identifying the widgets, their attributes, and the DOM of
the visual part of the application.

Then, it is possible to extract the GUI behavioral code
model. To do so, we first extract the event handlers, and then
extract the GUI behavioral code from the AST.

The extraction of event handlers is done into three sub-steps:
Identify event handler types, Detect handlers instances, and
Attach handlers to widgets. This extraction works on the
GUI model and follows 3 steps to extract widgets and their
attributes: identify, detect, and attach.

https://github.com/moosetechnology/FAST/


Identify event handler types: We identify all the possible
event handlers that exist in the source application’s
framework. A handler is a class that executes the GUI
behavioral code when an event occurs. Example of events
handler types are: click, change, hover. . .

Detect handler instances: We determine where, in the
source code, the event handlers are created (i.e. instanti-
ations of the event handler types).

Attach handlers to widgets: We link the handler instances
to their widget owners. From this sub-step, we know the
interactions allowed by the application for each widget.

Once we have extracted the event handlers, it is possible to
extract the GUI manipulation code. This step is divided into
four sub-steps: Build AST, Define patterns, Apply pattern,
and Model transformation.
Build AST: First, we build an AST of the code that will be

executed. Note that the executed code can be spread over
a group of methods or classes that must be parsed to
obtain a complete AST of the GUI manipulations code.

Define patterns: Then, we manually define patterns that
identify GUI manipulation code inside the AST model.
Each GUI manipulation code can be detected by one
or multiple patterns. Since the GUI manipulation code
depends on the GUI framework, one must redefine pat-
terns for each framework, but patterns are common to all
applications that use the same framework.

Apply pattern: Then, we use a pattern matcher with the
defined patterns on the ASTs. It provides the location
of the GUI manipulation code in the source code.

Model transformation: Finally, for each detected GUI ma-
nipulation code, we apply model transformations. It con-
sists in creating the behavioral entity associated to the
pattern (e.g. OpeningPopup or Navigating) with its
associations, and replace the old AST expressions with
the new GUI behavioral entities.

Having presented our approach to migrate the GUI manip-
ulations code as well as the behavioral meta-model used in
our approach, in the following, we exemplify the application
of this approach on a real system.

V. CONCRETE EXAMPLE

In the following, we present an implementation6 of our
migration approach. As the approach is split into two parts,
we split the extraction into two parts: extractings events,
Section V-A, and extracting the GUI manipulations code,
Section V-B.

A. Extracting Events

We are now detailing the three sub-steps of the event
extraction. Figure 4 presents a snippet of code that illustrates
the creation of event handlers. The code consists of the
creation of three widgets, line 1 a panel, line 2 a linkbutton,
and line 5 an anonymous button (new Button(){...}).

6anonymous URL to the implementation on GitHub

1 Panel panel = new Panel();
2 LinkButton linkbutton = new LinkButton("Send");
3 linkbutton.addClickHandler(new ClickHandler() {
4 public void onClick(ClickEvent event) { ... }});
5 panel.add((new Button()).addClickHandler(new

ClickHandler() { ... }));

Fig. 4: Creating event handlers in Java/GWT

Identify event handler types: In our context, the application
is developed in Java with the GWT framework. The GWT
documentation7 defines the class EventHandler as the most
abstract event handler type. Thus, the available event handlers
in the source application are the subclasses of EventHandler.

In Figure 4 only the ClickHandler type is represented (lines 3
and 5).
Detect handlers instances: To detect handlers’ instances, one
needs to look for the invocations of the Java constructor of
the events handler types. For instance, creating a click event
is made by calling new ClickHandler(...).

In Figure 4, there are two event handler creations, line 3
and 5, both identified by new ClickHandler.
Attach handlers to widgets: For each handler instance, our
implementation extracts its widget owner. To do so, it looks
for the receiver of the handler creation. The receiver of the
handler creation might not be in the same statement as the
handler creation. In such a case, the extraction performs static
analysis to retrieve the correct widget owner. The owner can
be declared in the same method, or in another method or class.

In Figure 4, the first click handler (line 3) is created inside
the method addClickHandler sent by the variable linkbutton.
And the variable linkbutton holds the linkbutton widget defined
line 2. Thus, the event handler owner is the linkbutton widget.
The second click handler (line 5) is created inside the method
addClickHandler sent by the anonymous button. Thus, the event
handler owner is the anonymous button.

B. Extracting GUI manipulation code

In the following, we detail an example in our context that
extracts GUI manipulation code from the methods presented
Figure 5. In this example, the method onClick() is called when
the end user clicks on a button of the UI which, in turn, calls
the method generateError(). In case the application has been
launched in debug mode (line 5), a Popup is displayed with the
message “I am an error” (line 7). Otherwise, the navigation
to the page APage is performed (line 9). The extraction of the
GUI manipulation code is divided into four sub-steps.
Build AST: From the identified event handler instances, it is
possible to build an AST of the executed code. In our context,
the handlers’ instances are represented by anonymous classes
(e.g. new ClicHandler() {. . . }).

The executed code might be spread over several methods or
classes. To identify all the methods, our implementation first
uses the Famix model [17] that identifies the call graph of
the handlers instances’ methods. For instance, in Figure 5, the

7http://www.gwtproject.org/javadoc/latest/

http://www.gwtproject.org/javadoc/latest/


1 public void onClick(final ClickEvent event) {
2 this.generateError();
3 }
4 private void generateError() {
5 if(debugMode){
6 System.err.println("logging error");
7 EventPopup.displayError("I am an error");
8 } else {
9 Workspace.getPhaseManager().displayPhase(

ConstantsPhase.APage());
10 }
11 }

Fig. 5: Example of GUI manipulations code

method generateError() is called by the method onClick() which
is the method called by the event handler. Thus, our prototype
builds the AST of both methods.
Define patterns: To detect GUI manipulation code inside an
AST model, we defined manually for each GUI manipulation
code one or multiple patterns. In the following, we present
the 8 patterns we defined for the 6 GUI manipulations code.
Table I presents the mapping of patterns to produced GUI
manipulations code.

TABLE I: Mapping of pattern to GUI manipulations code

AST pattern GUI manipulations code
(1) ErrBox → OpeningPopup
(2) EventPopup → OpeningPopup
(3) Window.alert(. . . ) → OpeningPopup

(4) Workspace.getPhaseManager()
.displayPhase(...) → Navigating

(5) aDialog.show() → OpeningDialog
(6) aWidget → AccessingDOM
(7) AccessingDOM.setX (. . . ) → SettingAttribute
(8) AccessingDOM.getX (. . . ) → GettingAttribute

For OpeningPopup, we defined three pattern: (1) reference
to ErrBox; (2) reference to EventPopup; or (3) invocation of
alert method of the Window class (i.e. Window.alert(...)).

For Navigating, we defined one pattern that matches in the
AST model Workspace.getPhaseManager().displayPhase(...).

For OpeningDialog, the pattern matches an invocation of
show method on a variable that is a dialog. At this stage, we
remind the reader that the widgets and the variables in which
they are assigned were extracted during the GUI extraction.

For AccessingDOM, the pattern matches a reference to a
variable that contains a widget already extracted during the
GUI extraction.

For GettingAttribute and SettingAttribute, the pat-
terns looks for already matched AccessingDOM GUI manip-
ulation code that called respectively a getter or a setter. The
name of the attribute is retrieved from the name of the getter
or setter, i.e. setTitle() corresponds to a setter of the attribute
title.
Apply pattern: Then, we use a pattern matcher with the
defined patterns on the ASTs. In our example (Figure 5),
our implementation identifies two GUI manipulations code.
EventPopup.displayError(...) matches one of the OpeningPopup

pattern, and Workspace.getPhaseManager().displayPhase(...)
matches the Navigating pattern.

generate
Error()

If/Else

ElseIf

Workspace

getPh...

...

EventPopup

displayError()

System

err

...

"I am an..."

generate
Error()

If/Else

ElseIf

NavigatingOpening
PopupSystem

err

...

"I am an..." Page

Legend

AST 
meta-model

Behavioral
meta-model

UI meta-model

Fig. 6: Example of model transformation for Figure 5
left: Original AST ; right: Transformed AST

Model transformation: Finally, we perform model transfor-
mations on each AST. Figure 6 presents the model trans-
formation performed for the method generateError() of Fig-
ure 5. The left-hand side presents a simplified version of
the original method AST. The circled entities (Worspace,
getPh. . . , EventPopup, displayError, and "I am. . . ") are the entities
found by the pattern matcher. The right-hand side presents
a simplified version of the produced behavioral model. For
instance, for the OpeningPopup (Figure 5, line 7), we replace
EventPopup.displayError by a OpeningPopup entity. The string
parameter is preserved during the transformation. The case
of Navigating is more complex, as the parameter Con-
stantsPhase.APage() refers to a Page defined in the UI model,
our approach also retrieves the page (in white in Figure 6).

VI. GENERATING

From the behavioral model, it is possible to generate the tar-
get code which is the last step of our approach. The generation
is done by visiting the modified AST model and generating for
each node its target language counterpart. It does not present
major difficulties. Nevertheless, in the following, we present
the different features we have implemented on the generator
to produce natural code and help developers in the migration
process.

Figure 7 and Figure 8 present respectively an example
of Java code, and the TypeScript counterpart migrated using
our approach. These examples illustrate five features we have
developed to produce natural code.
Migration of Java to TypeScript: Additionally to the mi-
gration of the GUI manipulation code, our implementation
migrates the rest of the code (i.e. variable declaration, control
flow, etc.). Although it is not one of our main goals, it helps
developers understand the target language8, and it speeds

8Note that most of them are experts in GWT but novices in Angular



1 public void onClick(final ClickEvent event) {
2 String values = emailBox.getText();
3 if (values != null) {
4 values.split(",");
5 EventPopup.displayInfo("can access");
6 } else {
7 Workspace.getPhaseManager().displayPhase(

ConstantsPhase.AnotherPage());
8 }
9 }

Fig. 7: Example of Java code

1 constructor(
2 protected _desktopService: DesktopService,
3 private _toastrService: ToastrService,) {
4 }
5
6 onClick() {
7 let values = (<any>this.input).nativeElement.

value;
8 if (values != null) {
9 values.split(’,’); // <ToReview> : Unknown

invocation: split(...)
10 this._toastrService.success(’can access’);
11 } else {
12 openPage(’AnotherPage’);
13 }
14 }

Fig. 8: Example of TypeScript code migrated from Java code
in Figure 7

up the migration process. For instance, Figure 7 line 2, the
variable values is a string declared in Java. Our generator
produced, Figure 8 line 7, let values which corresponds to
the values variable declaration in Angular.
Add comments: Our generator adds comments with a tag
ToReview at the end of each statement where part of the
statement is not fully migrated. It helps the developers focus
on problematic expressions. For instance, Figure 7 line 4,
the split(...) method is not known by our tool, so, it is
migrated as a TypeScript method invocation, Figure 8 line 9,
and flagged the comment with Unknown invocation.
Follow target framework guidelines: The generated code
should use the target framework features. Indeed, it is im-
portant to follow the target framework guideline to produce
natural code. For example, in our context, we can use both
JQuery or the Angular framework to access a DOM element.
Whereas the code using JQuery would be more concise,
we prefer to use Angular native features. Figure 8 line 7,
(<any>this.input).nativeElement is an Angular DOM
element access. Using JQuery, the code would be translated as
$("#input"), which is more concise but does not use Angular
features.

Another option would have been to use the Angular data
binding feature. It allows one to access the value of a widget
from TypeScript. However, this solution is more challenging
because requires modifying the HTML source code.

Another example of an Angular feature supported by our

Fig. 9: Angular Event Binding feature

tool is the event binding. Figure 9 presents how event-binding
feature is used. It consists of adding in the HTML source code
the template statement (e.g. method) executed when an event
is fired. Migrating without using the Angular feature would
have resulted in calling the method addEventListener on the
button field.
Allow API switching: API differences exist between the
source GUI framework, the target GUI framework, and the
UI meta-model. Our generator must take into account the
differences to produce code. For example, the content of an
input is represented by the attribute “text” in the UI meta-
model. However, in Angular, it translates as “value”. To handle
such differences, we manually mapped each source UI concept
to its target counterpart. In a concrete example, Figure 7 line 2,
emailBox.getText() allows one to get the value of the input
text emailBox. We manually map the GWT attribute “text” to
the Angular attribute “value”. So, Figure 8 line 7, our tool
generated in Angular an access to the “value” property.
Initialize dependencies: To use GUI manipulation code, one
needs to initialize their dependencies. For instance, the GUI
manipulation code to navigate from one page to another needs
the navigation service. To generate the code that initializes
GUI manipulation code dependencies, we first manually map
each GUI manipulation code to its required dependencies.
Then, during the code generation step, our implementation
generates the code to initialize the dependencies in the class
constructor. In our context, it is the case for multiple GUI
manipulations code elements. For instance, the Navigating
and the OpeningPopup GUI manipulations code need to use
three Angular services. Figure 8 lines 2 to 3, the generator
automatically declared the DesktopService service to allow
the navigation between pages and the ToastrService used
by the OpeningPopup GUI manipulations code.

VII. EXPERIMENT

We evaluate our approach and its implementation on the
migration of a real industrial application. First, Section VII-A,
we present the case study. Then, Section VII-B, we discuss
the evaluation metrics. Finally, Section VII-C, we present our
results.

A. Industrial case study

This work is done in collaboration with an international
industrial partner, Berger-Levrault. Berger-Levrault has de-
veloped several applications of different sizes in GWT. We
performed our behavioral migration process on two of its
applications. The first one is the most important of the
company comprising more than 500 web pages, more than
50,000 widgets, and is maintained day-to-day by more than 40
full-time developers and engineers. The application includes
more than 1 MLOCs, in 21,433 classes and 95,164 methods.



The second application is a middle-size application totaling 56
web pages comprising more than 4,000 widgets. It includes
200 KLOCs in 3,725 classes and 16,585 methods. Both
applications are more than 10 years old.

B. Evaluation set-up

Our implementation runs without raising any errors for
both applications. However, there is a lack of automatic tools
to evaluate the correctness of the produced code. Thus, we
performed a manual evaluation of the middle-size application
that took us two full-time weeks (10 person/days). Note
that performing the same evaluation for the most important
application has been estimated by our industrial partner to 5
person/months.

Since, no approach on behavioral migration was found in
the literature, we propose a new evaluation set-up, divided into
two parts: check the structure and check the naturalness of the
code.

For the structure, our solution checks that the event
handlers are correctly detected, and migrated. It consists in
the following three metrics already used in UI migration
evaluation [2, 8, 18]:

• The percentage of event handlers correctly detected, i.e.
the event handlers are detected regardless of whether their
types are detected or attached to the correct widget. For
example, the ondrag event handler type is not in our meta-
model but our approach detects that an event handler
exists and the owner widget has not been extracted during
GUI extraction.

• The percentage of event handlers types correctly detected,
i.e. a click handler in the original application corresponds
to a click handler in the generated code.

• The percentage of event handlers assigned to the correct
widget.

Because no tool performs such an evaluation, we rely
on manual validation to check all these metrics. For the
percentage of event handlers correctly detected, we looked
at the source code of the application, file by file, and counted
the number of created event handlers and compared it with
the number of elements found by our tool. For the percentage
of event handlers types correctly detected and the percentage
of event handlers assigned to the correct widget, for each
detected event handler, we manually checked, in the source
code, that its type and owner were correctly extracted by our
tool.

For the naturalness of the code, we want to check that the
generated code respect the convention of code written by An-
gular developers. We used external tools that check the quality
of the produced code. For instance, we applied SonarQube9;
the TypeScript transpiler that reports badly written TypeScript
code and potential problems (such as missing classes); and an
Angular linter named codelyzer10 that is less relevant because

9SonarQube is a well known open-source tool that analyzes code quality
and security

10codelyzer: http://codelyzer.com/

it only reports problems such as using spaces instead of tabs.
To avoid bias in the results we used the default setting of each
tool.

We also compare our approach to JSweet, a transpiler from
Java to TypeScript. It claims to produce code that compiles
and is “programmer-friendly”. This is further discussed in
Section VIII-B.

C. Results

First, after performing our approach on the company’s
application, we generate an Angular application that compiles
and runs without raising any errors.

We now check that the event handlers of the original ap-
plication are well detected, associated with the correct Event
concept of our behavioral meta-model, and linked to the right
exported widget.

TABLE II: Result of manual event handler extraction check

event handler event handler event handler
detected type detected correctly assigned

100% (232) 98% (228) 95% (221)

In parentheses: number of event handlers

Table II summarizes the results for the structure check. Our
manual evaluation reported 232 event handlers created in the
Java code.

Our prototype detected 100% of the created event handlers.
Among them, it detected 98% of the event handlers types. The
4 event handler types not detected correspond to handlers for
events created by the developers. This problem is further dis-
cussed Section VIII-D. 95% of the event handlers are assigned
to the correct widget. Four out of the 11 missing widgets were
the preceding unidentified ones, so our implementation did not
try to assign them to a widget. For the other 7, their owners
were not present in the UI model. So, improving the GUI
extraction, which is out of the scope of this paper, would help
here. To summarize, our approach detected 232 event handlers
comprising 214 click handlers, 5 change handlers, 1 hover
handler, and 1 out handler. The remaining 11 event handlers
were not correctly extracted.

TABLE III: natural code

Approach
SonarQube

(blocker/ma-
jor/minor)

TypeScript
transpiler

Linter
(codelyser)

Our approach 520 (0/98/422) 130 367
JSweet 986 (3/566/417) 6,539 21,344

Table III summarizes the results for the naturalness of
code. SonarQube categories the errors by severities11. Blockers
have an important impact on the system and are likely to
happen; majors have a limited impact and are likely to happen;
minors have a limited impact and are unlikely to happen.

For SonarQube, our migrated code has 520 errors. It cor-
responds to 98 “major” problems and 422 “minor” ones.

11https://docs.sonarqube.org/display/SONARqube71/Rules+-+types+and+
severities

http://codelyzer.com/
https://docs.sonarqube.org/display/SONARqube71/Rules+-+types+and+severities
https://docs.sonarqube.org/display/SONARqube71/Rules+-+types+and+severities


More than half of the major problems (64/98) are “deprecated
HTML attribute usage” and “missing table header”. The first
one should be avoided to ensure web browsers compatibility.
The second one creates problems with web accessibility, for
instance, assistive technologies, such as screen readers, use
table headers to provide context to users. For the JSweet mi-
grated version, SonarQube reports 986 errors with 3 “blocker
problems”, 566 “major”, and 417 “minor”. More than half of
the major problems (492/566) are TypeScript problems with
multiline blocks and control flow that might raise issues with
non-empty statements. This analysis shows that our approach
produces a code of better quality for SonarQube than the
JSweet approach.

The TypeScript transpiler provides information about the
number of unknown class usage, i.e. references to classes
that do not exist. For our approach, the TypeScript tran-
spiler reports 130 missing classes. They are helper classes
and classes that represent data (DTO [19]). For the JSweet
exported version, it reports 6,539 missing classes. They are
helper classes, classes that represent data, and widget and
behavioral classes (Button, ClickHandler, etc.). The transpiler
does not report critical problems for both approaches. This
analysis shows that our approach generates far fewer problems
to fix.

The lint, codelizer, reports only minor problems due to
code formatting. It reports 367 problems for our approach
and 21,344 problems for the JSweet exported version. It also
reports missing bracket for if and for statements for the JSweet
exported version. Although brackets are not always mandatory,
missing brackets might introduce bugs in the application. This
analysis shows that our approach has a lot fewer problems than
the JSweet approach.

VIII. DISCUSSION

Section VIII-A discusses how the company environment
might have eased our work. Section VIII-B presents the
differences between our approach and JSweet. Section VIII-C
discusses the genericity of our approach. Section VIII-D
presents the custom events, that are events not present in our
meta-model. Finally, Section VIII-E highlights the features in
the target framework that eased migration compared to other
migration projects.

A. Company environment

Although the results are encouraging, we only experimented
our tool on two applications of Berger-Levrault. Berger-
Levrault has a development guideline that must be followed
by developers. Thus, the applications we are migrating do not
use all the Java features (i.e., lambda expression, dependency
injections, etc.). As a result, our implementation did not need
to handle such features. This might have eased the extraction
of the GUI behavioral code.

B. Validation with JSweet

Since we did not find any other tool that migrates behavioral
code, we used JSweet as another Java to TypeScript migration

tool. However, JSweet does not migrate from GWT to Angu-
lar, and so we do not have the same goal. Whereas it gives
us a baseline to compare to, another study with a tool that
migrates GUI behavioral code would be preferable. However,
there is no other tool in the literature that performs such a
migration.

C. Genericity of the approach

Our approach relies on applying pattern matching on AST.
We acknowledge that this kind of approach is complex to
reproduce.

To reduce this problem, we executed our approach on
different applications of Berger-Levrault. For instance, we
experimented it on the major application of the company that
is a human resources software. We report 3,469 event handler
instances in the 519 pages. Whereas it does not validate that
our tool extracts all the handlers, it shows that the same
implementation can be used for different applications.

It would also be interesting to validate our approach against
applications using another source framework. To do so, one
needs an AST model and a parser for the source language.
Then, it is possible to perform the approach as described
Section IV-C. The major challenge is then to define patterns for
each GUI manipulation code. Automatic recognition of GUI
manipulation code patterns will be part of our future work.

In conclusion, the time needed to reproduce this work will
depend on the already existing tools. In our context, we use
the Moose platform [20] that comes with the Famix meta-
model and an AST meta-model, and an extractor for the
Java programming language. Then, manual work requiring
good knowledge of the source GUI framework is necessary
to extract the GUI manipulation code patterns.

D. Custom events

We identified 5 event types used in the applications of
our industrial partner. Extracting and generating these events
enable good results with our current implementation. However,
as described Section III-B, more events exists. For instance,
the Firefox developer page lists 112 common events and 102
uncommon events. Additionally, developers can create their
own events. In this situation, it is not possible to add all
possible events into a meta-model beforehand. To improve the
genericity of our approach, one can easily add new concepts
as a kind of Event when they are encountered.

E. Target language eases the work

Our migration case study is from GWT to Angular. That
is to say from Java to TypeScript. It is important to note that
moving from Java to TypeScript is eased by multiple factors.
First, there is no switch of paradigm. Indeed, both are object-
oriented languages12. Second, during migration, a common
problem comes with type mismatch [21], but TypeScript is
a dynamically typed language and several Java types are
identical in TypeScript or merged into one. For instance, the

12https://rachelappel.com/2015/01/02/write-object-oriented-javascript-
with-typescript/

https://rachelappel.com/2015/01/02/write-object-oriented-javascript-with-typescript/
https://rachelappel.com/2015/01/02/write-object-oriented-javascript-with-typescript/


Java double, int, short. . . are all merged into the TypeScript
number type.

IX. CONCLUSION AND FUTURE WORK

In this paper, we propose a definition of GUI behavioral
code divided into two parts. We designed a meta-model that
allows one to represent the GUI behavioral code and an
approach to perform a migration using this meta-model. In
the context of an industrial partnership, we implemented our
approach in a prototype that performs the migration of GWT
code to TypeScript for an Angular application. Then, we
validated our approach and implementation on a real industrial
case study. To ensure the genericity of our approach, we also
tested it on another company’s project. We evaluated that our
tool produces natural code and correctly migrates 95% of the
event handlers.

Our approach has good results for the migration of the GUI
behavioral code. To make the generated code executable, one
next step is to investigate the problem of missing class usage
generated by our tool and the other existing approaches.

We also would like to better study the genericity of our
approach by experimenting with other GUI frameworks. To
do so, we plan to reproduce the experiment with another GUI
framework and then work on the automatic GUI manipulations
code pattern recognition.

REFERENCES

[1] F. Fleurey, E. Breton, B. Baudry, A. Nicolas, and J.-M.
Jezéquel, “Model-Driven Engineering for Software Mi-
gration in a Large Industrial Context,” in Model Driven
Engineering Languages and Systems, vol. 4735. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 482–
497.

[2] O. Sánchez Ramón, J. Sánchez Cuadrado, and J. Gar-
cía Molina, “Model-driven reverse engineering of legacy
graphical user interfaces,” Automated Software Engineer-
ing, vol. 21, no. 2, pp. 147–186, 2014.

[3] B. Verhaeghe, A. Etien, N. Anquetil, A. Seriai, L. Deru-
elle, S. Ducasse, and M. Derras, “GUI migration using
MDE from GWT to Angular 6: An industrial case,”
in 2019 IEEE 26th International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER),
Hangzhou, China, 2019.

[4] M. P. Robillard and K. Kutschera, “Lessons learned while
migrating from swing to javafx,” IEEE Software, vol. 37,
no. 3, pp. 78–85, 2019.

[5] T. C. Terwilliger, N. Sauter, and P. D. Adams,
“Automatic Fortran to C++ conversion with FABLE,”
Source Code for Biology and Medicine, vol. 7,
no. 5, May 2012. [Online]. Available: https://scfbm.
biomedcentral.com/articles/10.1186/1751-0473-7-5

[6] J. Martin and H. A. Muller, “C to java migration experi-
ences,” in Proceedings of the Sixth European Conference
on Software Maintenance and Reengineering. IEEE,
2002, pp. 143–153.

[7] J. Brant, D. Roberts, B. Plendl, and J. Prince, “Extreme
maintenance: Transforming Delphi into C#,” in ICSM’10,
2010.

[8] T. Hayakawa, S. Hasegawa, S. Yoshika, and T. Hikita,
“Maintaining web applications by translating among dif-
ferent RIA technologies,” GSTF Journal on Computing,
p. 7, 2012.

[9] K. Garcés, R. Casallas, C. Álvarez, E. Sandoval, A. Sala-
manca, F. Viera, F. Melo, and J. M. Soto, “White-box
modernization of legacy applications: The oracle forms
case study,” Computer Standards & Interfaces, pp. 110–
122, Oct. 2017.

[10] H. Samir, A. Kamel, and E. Stroulia, “Swing2script:
Migration of Java-Swing applications to Ajax Web ap-
plications,” in 14th Working Conference on Reverse En-
gineering (WCRE 2007), 2007.

[11] H. M. Sneed and C. Verhoef, “Cost-driven software
migration: An experience report,” Journal of Software:
Evolution and Process, p. e2236, 2020.

[12] T. Tonelli et al., “Swing to swt and back: Patterns for
api migration by wrapping,” in 2010 IEEE International
Conference on Software Maintenance. IEEE, 2010, pp.
1–10.

[13] A. J. Malton, “The software migration barbell,” in
ASERC Workshop on Software Architecture. Citeseer,
2001.

[14] K. Aggarwal, M. Salameh, and A. Hindle, “Using ma-
chine translation for converting python 2 to python 3
code,” PeerJ PrePrints, Tech. Rep., 2015.

[15] C. Teyton, J.-R. Falleri, and X. Blanc, “Automatic discov-
ery of function mappings between similar libraries,” in
2013 20th Working Conference on Reverse Engineering
(WCRE). IEEE, 2013, pp. 192–201.

[16] M. Trudel, C. A. Furia, M. Nordio, B. Meyer, and
M. Oriol, “C to oo translation: Beyond the easy stuff,” in
2012 19th Working Conference on Reverse Engineering.
IEEE, 2012, pp. 19–28.

[17] S. Ducasse, N. Anquetil, U. Bhatti, A. Cavalcante Hora,
J. Laval, and T. Girba, “MSE and FAMIX 3.0: an
Interexchange Format and Source Code Model Family,”
RMod – INRIA Lille-Nord Europe, Tech. Rep., 2011.

[18] M. E. Joorabchi and A. Mesbah, “Reverse engineering
iOS mobile applications,” in 2012 19th Working Confer-
ence on Reverse Engineering. IEEE, 2012, pp. 177–186.

[19] P. B. Monday, “Implementing the data transfer object pat-
tern,” in Web Services Patterns: Java Platform Edition.
Springer, 2003, pp. 279–295.

[20] N. Anquetil, A. Etien, M. H. Houekpetodji, B. Ver-
haeghe, S. Ducasse, C. Toullec, F. Djareddir, J. Sudich,
and M. Derras, “Modular moose: A new generation of
software reengineering platform,” in International Con-
ference on Software and Systems Reuse, ICSR2020, Dec.
2020.

[21] A. A. Terekhov and C. Verhoef, “The realities of lan-
guage conversions,” IEEE Software, Nov. 2000.

https://scfbm.biomedcentral.com/articles/10.1186/1751-0473-7-5
https://scfbm.biomedcentral.com/articles/10.1186/1751-0473-7-5

	Introduction
	State of the art
	GUI Structure
	Migration approaches
	Language migration

	Behavioral code
	GUI behavioral code
	GUI behavioral code structure

	Migration process
	Migration approach
	Behavioral meta-model
	Behavioral code migration approach

	Concrete example
	Extracting Events
	Extracting GUI manipulation code

	Generating
	Experiment
	Industrial case study
	Evaluation set-up
	Results

	Discussion
	Company environment
	Validation with JSweet
	Genericity of the approach
	Custom events
	Target language eases the work

	Conclusion and Future work

