
HAL Id: hal-03503825
https://hal.science/hal-03503825

Submitted on 3 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tell me when you are sleepy and what may wake you up!
Djob Mvondo, Antonio Barbalace, Alain Tchana, Gilles Muller

To cite this version:
Djob Mvondo, Antonio Barbalace, Alain Tchana, Gilles Muller. Tell me when you are sleepy and what
may wake you up!. SoCC 2021 - ACM Symposium on Cloud Computing, Nov 2021, Seattle WA USA,
United States. pp.562-569, �10.1145/3472883.3487013�. �hal-03503825�

https://hal.science/hal-03503825
https://hal.archives-ouvertes.fr

Tellmewhenyouaresleepyandwhatmaywakeyouup!
Djob Mvondo, Antonio

Barbalace
The University of Edinburgh

{djob.mvondo,antonio.barbalace}@ed.ac.uk

Alain Tchana
ENS Lyon

alain.tchana@ens-lyon.fr

Gilles Muller
INRIA

gilles.muller@inria.fr

Abstract
Nowadays, there is a shift in the deployment model of

Cloud and Edge applications. Applications are now deployed
as a set of several small units communicating with each other
– the microservice model. Moreover, each unit – a microser-
vice, may be implemented as a virtual machine, container,
function, etc., spanning the different Cloud and Edge service
models including IaaS, PaaS, FaaS. A microservice is instan-
tiated upon the reception of a request (e.g., an http packet
or a trigger), and a rack-level or data-center-level scheduler
decides the placement for such unit of execution considering
for example data locality and load balancing. With such a
configuration, it is common to encounter scenarios where
different units, as well as multiple instances of the same unit,
may be running on a single server at the same time.
When multiple microservices are running on the same

server not necessarily all of them are doing actual process-
ing, some may be busy-waiting – i.e., waiting for events (or
requests) sent by other units. However, these "idle" units are
consuming CPU time which could be used by other running
units or cloud utility functions on the server (e.g., monitor-
ing daemons). In a controlled experiment, we observe that
units can spend up to 20% - 55% of their CPU time waiting,
thus a great amount of CPU time is wasted; these values
significantly grow when overcommitting CPU resources (i.e.,
units CPU reservations exceed server CPU capacity), where
we observe up to 69% - 75%. This is a result of the lack of
information/context about what is running in each unit from
the server CPU scheduler perspective.
In this paper, we first provide evidence of the problem

and discuss several research questions. Then, we propose an
handful of solutions worth exploring that consists in revisit-
ing hypervisor and host OS scheduler designs to reduce the
CPU time wasted on idle units. Our proposal leverages the
concepts of informed scheduling, andmonitoring for internal
and external events. Based on the aforementioned solutions,
we propose our initial implementation on Linux/KVM.

1 Introduction
Recently, more and more Cloud and Edge customers are

switching from deploying their applications as a monolith to
the microservice model, in which applications are deployed
as an ensemble of different small units – the microservices,
which communicate with each other over the network. Virtu-
alization is used as a core technology to power the microser-
vices, enabling many of them to run on the same machine in

isolation, thus securely, even when they belong to different
Cloud or Edge customers.
Each microservice can be implemented as a virtual ma-

chine, container, function, etc., spanning IaaS, PaaS, and FaaS
deployments. IaaS uses "heavyweight" full-fledged virtual
machines (VM) while FaaS relies on "lightweight" VMs, such
as microVMs [5]. A FaaS VM runs a very limited number of
tasks (potentially, only one function) compared to a IaaS VM
that may run several applications.
A critical component of a virtualization platform is the

scheduler. In both IaaS and FaaS, the hypervisor or host OS
-level scheduler plays a key role to achieve high throughput
and low I/O latency and meet service level objectives (SLOs).
However, several researchworks pinpoint that current hyper-
visor or host OS -level schedulers do not perform as expected
when faced with specific workloads. For instance, facing mix
workloads composed of CPU and I/O intensive tasks, the
scheduler exhibits priority inversion issues[18, 34] and un-
necessary I/O stalls[19]. Another problematic workload con-
sists of spinlock intensive applications which experience the
lock holder and the lock waiter[21, 30, 36, 37, 40] preemption.
When analysing these issues, we observe that their root cause
is the scheduler hierarchy combinedwith the blackboxnature of
VMs, which introduces a semantic gap. The guest level sched-
uler thinks that it directly controls the hardware, whereas the
hardware is controlled by the hypervisor or host OS, which in
turn is not aware of the decisions taken by the guest software.
In this paper, we demonstrate for the first time that the

same kind of problems severely reduce the number of mi-
croservices that can be co-placed on the same server, or
drastically increase their serving latencies. Due to insuffi-
cient knowledge about the microservices running in VMs
and the obliviousness of the way microservices communi-
cates, current hypervisor or host OS -level schedulers lead
to the issue that we call avoidable latencies between mi-
croservices’ triggers, or events, and their actual execution.
For example, in a FaaS scenario, when Firecracker[1] faces
the execution of a chain of functions on the same physical
server, the scheduler do not consider functions’ nature to
affect execution order, thus resulting in unpredictable trigger
and execution times (see §2). We noticed that servers tend to
spend a great amount of time fairly scheduling the different
functions, while they are barely waiting for inputs – up to
75% of functions’ total CPU time in a controlled experiment.
Background & Related Work. When no virtualization is
involved, an operating system (OS) scheduler running on

DjobMvondo, Antonio Barbalace, Alain Tchana, and Gilles Muller

bare-metal decides what task executes next on the available
processing units. Traditional OSes adopt a fair scheduling
algorithm that guarantees an "equal" time of execution per
task[9]. On a server that uses virtualization, two or more
schedulers are stacked: the bottom-level hypervisor’s or host
OS’ scheduler (e.g., credit in Xen), and the upper-level guest
OS’s scheduler (e.g., CFS in Linux). The bottom-level sched-
uler acts similarly to OS schedulers running on bare-metal ex-
cept that, instead of tasks, it deals with virtual CPUs (vCPUs).
In most of the cases, the guest OS is a black-box – hence, the
bottom-level and upper-level scheduler do not communicate.
Several research works attempt to address issues related

to hierarchical scheduling both in bare-metal and virtualized
systems.

In bare-metal OSes, existing works examine scheduling is-
sues, focusing on thread blocking. Scheduler activations [4],
which introduced N:M scheduling decades ago, provide a
kernel-user mechanism to make the user-level scheduler
switch to another user-level thread when a user-level thread
blocks in the kernel. Although there is no virtual machine
involved, it solves a hierarchical scheduling problem. Linux
Futex[11, 16], is more recent kernel-user mechanism – with-
out VMs, that inform the kernel about the spinning state of
an application – thus, avoiding wasting CPU resources.

Regarding IaaS, some approaches either exploit vCPUs mi-
gration between pCPUs to reduce I/O workloads stalls [19],
ballooning to reduce priority inversion issues [34], or com-
bining CPU hardware features to reduce the cost of vCPUs
context-switches [18]. Teabe et al. [35] modified both the hy-
pervisor and the guest OSes schedulers such that, a guest OS
scheduler schedules a task that wants to take a lock only if
the remaining quantum is enough to perform the critical sec-
tion, thus avoiding both the lock holder and the lock waiter
preemption problems. Regarding FaaS, research works tend
to focus on inter-server scheduling policies for dispatching
functions among worker nodes to improve load balancing
and data locality [20, 31, 42]. To the best of our knowledge,
no work targets intra-server scheduling issues in FaaS.
Overall, prior works require significant modifications of

the guest OS level scheduler and are rigid, i.e., they are tightly
related to a specific issue. Thus, cannot correctly handle di-
verse scenarios. We argue that a more generic approach is
needed to handle constantly changing workloads as encoun-
tered in IaaSandFaaS environments today – e.g., microservices
scenario. Besides, we think that it is urgent to address this
problem as nested virtualization is gaining in popularity[26].

Finally, other solutions to the hierarchical scheduling prob-
lem span from flattened scheduling to introspection and
guest live-modifications [7, 10, 12, 33] or include runtime
scheduler extensions, such as proposed by Small et al. [33],
by extOS [7], or Ipanema [25]. This work builds on those.
Contribution. In this paper, we propose a redesign of the
traditional hypervisor, or host OS, scheduling in data centers,

which include (a) accompanying VMs/tasks with contextual
knowledge about their working model, for example in terms
of network activity; (b) monitoring VMs/tasks for events
that change their internal and external state. The redesign is
motivated by a campaign of experiments targeting microser-
vices implemented in FaaS (§2), whose experimental results
are explained in §3. We discuss several possible approaches
while unveiling our design (§4) and conclude in §5.

2 Motivations
To fully understand the problem at hand, we set up a con-

trolled experiment that aims at highlighting the core issues
with scheduling. To this aim, we chose to trigger the ex-
ecution of several inter-dependent workloads on a server.
Inter-dependent workloads are extensively deployed in data
centers, including microservices, tenants I/O-bound appli-
cations, parallel multiprocessing (e.g., MapReduce or MPIs)
jobs, machine learning training jobs, etc.

We arrange ourmicroserviceworkloads to be implemented
as FaaS. Our choice is motivated by the growing interest in
both industry and academia on FaaS. FaaS-based applications
consist of several functions that are called in sequence or
graph. FaaS platforms mainly involve scheduling event han-
dlers and the running functions. Most FaaS platforms (e.g.,
OpenWhisk[29], Firecracker, Knative[24]) support the con-
cept of chain or pipeline of functions (𝐹𝑖,𝑖=1,...,𝑛), where after
the trigger of the first function in the chain (𝐹1), the remain-
ing functions are sequentially and automatically triggered.
Usually, the payload of function 𝐹𝑖,𝑖≠1 in a chain, includes
the output of 𝐹𝑖−1,𝑖≠1. These chains are often used to express
workflows use cases1 and represent up to 31% of serverless
functions in the Cloud[14].
However, when faced with several chains of functions

on a single server, especially on an overcommitted server,
scheduling becomes a cumbersome task (at the hypervisor
or host OS -level). How chains should be prioritized among
each other to achieve agreed service-level latencies? The com-
plexity is exacerbated when (micro-)VMs2 are used to host
functions (which is the case with AWS Lambda) due to the
blackbox nature of VMs. To assess this problem, we design
the following experiment(s).
2.1 Experimental Scenario
Despite microservices naturally run on several different

machines – i.e., distributed, it is the case that the microser-
vices part of a singleworkflowmay be placed by a data-center
scheduler on a single machine. Hence, and also in order to
better quantify the problem at end, we herein focus on chains
of microservices on a single server. To ease deployment, we
decided to use Amazon Firecracker. However, we believe
that the same results apply to other VM technologies, such
as Kata Containers [22]. Lately, in Section 2.2, we reassess
our results within a FaaS container-based scenario.
1Checkout some examples at: https://doi.org/10.5281/zenodo.3862625
2When compared to containers

https://doi.org/10.5281/zenodo.3862625

Tell me when you are sleepy and what may wake you up!

We chose chains of 5 and 3 microservices based on [14],
which states that 82% of all use cases consist of applications that
use five or less different functions. Specifically, we compute 2
chains applications. The first one performs image process-
ing and consists of 5 image processing functions (blurring,
edging, resize, gamma, and sepia filtering) to generate a
thumbnail, and the second one performs online compiling
with gg[15] and does a 3-stage compilation of a hello world
in C (denoted make) and llvm build. Our applications come
from the ServerlessBench suite[41].

We are interested in the following function-level metrics:
➀ the latency between the trigger and the start of the chain
execution (trigTime), ➁ the inter function latency3 (avgIn-
terTime), and ➂ the total chain execution time (execTime).
For the image processing application, the input4 and output
images are read and stored from-to AWS S3.

We then repeat the same experiment with the image pro-
cessing application whilst increasing the number of colo-
cated chains, which are all triggered at the same time. The
number of colocated chains goes from 0 to 50. Additionally,
for every run, we collect the following low-level scheduling
metric. ➃ the idle time inside each micro-VM created during
the experiment (idleTime) i.e., the overall time a micro-VM
is scheduled on a CPU but the function within it cannot do
any processing either because it awaits an I/O, or it awaits
input from another function as illustrated in Figure 1.
Experimental Setup. For a fair evaluation, we run the colo-
cation related experiments under two network tail latency
scenarios; the first — local network — the functions run in a
a1.metal server on AWS EC2 whilist the second — remote
network— the functions run in our in-lab server (see below),
thus the network latency to AWS S3 are higher compared to
the first situation.
The server that we used in our lab is a PowerEdge R430

with an Intel Xeon E5-2620 v4 (8 cores/16 hyperthreads at
2.10GHz), 16 GB memory, 1TB hard drive, and 2 NetXtreme
BCM5720 1Gbps. On AWS EC2, an a1.metal server instance
has 16 physical cores (Custom built AWS Graviton Proces-
sor with 64-bit Arm Neoverse n1), 32 GB memory, and up
to 10Gbps network bandwidth. The two servers run Linux
4.19.0-13-amd64 andmicroVMs are poweredwith Firecracker
v0.24.0. Thus, our experiments cover a CPU overcommit ra-
tio (vCPU:pCPU) of 1:1, 3:1, 6:1, as supported in production
environments[8, 23, 27, 32, 38].

2.2 Experimental Results
Figure 2 and 3 presents our evaluation results. On a sin-

gle chain invocation (2), we observe that the units CPU idle
times ratio ranges between 16% to 27% of the total CPU time
used by the application. These numbers worsen whenever
we increase the over commitment ratio.

3The average time it takes to schedule the next function in the chain
4The input images are 256KB and 1MB in size

pCPU

microVM a

Func1

microVM b

Func2

microVM c

Func3

microVM d

Func1

Func1 awaits
I/O response

Awaits Func1
output

Awaits Func1
output

microVM b is idle

microVM c is idle

in out

in out

in out

in out

Time

Figure 1. Illustration of micro-VMs idle times. Micro-VMs b and c
running Func2 and Func3 respectively, are scheduled even though they
await Func1 output which has not finished running. This results in
wasted CPU time.

thumbnail
256KiB

thumbnail
1MiB

gg-make gg-llvm

Benchmarks - microVM runtimes

0

2

4

6

8

10

C
P

U
T

im
e

(s
)

0.9

2.3

4.2

10.45

0.15
0.63 0.98

2.27

0.3 0.4 0.7 0.69

execTime

avgIdleTime

interTrriger

Figure 2. Total CPU times, idle CPU times, and average inter trigger
times for 2 pipelines: image processing and online compiling. The runs
are performed on AWS EC2 a1.metal.

As shown in Figure 3, the total execution time of the im-
age processing chains hugely increases with the number of
parallel invocations, ranging from 28.3𝑠 up to 83.41𝑠 with
the in-lab setup and 20𝑠 up to 78.52𝑠 with the a1.metal
setup, thus an overhead of 2.97𝑥 and 3.92𝑥 for in-lab and
a1.metal respectively. The observed overhead is a result of bad
schedulingdecisionswhich leadmicro-VMs to being scheduled
while the function within it cannot do any processing. Indeed,
the average micro-VMs idle times’ ratio5 as shown in Figure
3-c ranges from 20.18% to 75.31% with the in-lab setup and
18.25% to 69.25%with the a1.metal setup, thus an increment
factor of 3.73𝑥 and 3.79𝑥 for the in-lab and a1.metal setup
respectively. These idle times undermine chain trigger times
(Figure 3-a) and intra-chain function trigger times (Figure
3-d), which overall affects the total chains’ execution times.
What about containers? As someone would expect, the
observed wasted CPU cycles are curtailed when running mi-
croservices within containers (OS-level virtualization). Since
a container is a set of OS’ processes, the OS scheduler has
more insight on whether a process is for example spinning or
awaiting some external event, therefore, it is in the position
to reduce the idle times’ ratio. We confirmed that by rerun-
ning the same experiments introduced above using Apache
OpenWhisk[29] in standalone mode (v1.0.0). Apache Open-
Whisk is an open source FaaS platform that leverages Docker

5With respect to each micro-VM total runtime

DjobMvondo, Antonio Barbalace, Alain Tchana, and Gilles Muller

0 10 20 30 40 50
Parallel Chains

0

50

100

150

200

250

A
vg

.
C

ha
in

T
ri

gg
er

T
im

es
(m

s)

in-lab

ec2-a1.metal

(a) Average
chain trigger times (trigTime)

per parallel functions invocations.

0 10 20 30 40 50
Parallel Chains

0

20

40

60

80

100

O
ne

ch
ai

n
E

xe
c.

T
im

e(
s)

in-lab

ec2-a1.metal

(b) One
chain total execution time (execTime)
per parallel functions invocations.

0 1 5 10 20 30 40 50
Parallel Chains

0

20

40

60

80

100

m
ic

ro
V

M
s

Id
le

T
im

e
R

at
io

(%
)

in-lab

ec2-a1.metal

(c)microVMs
idle times ratio (idleTime) distribution
per parallel functions invocations.

0 10 20 30 40 50
Parallel Chains

0

100

200

300

400

In
te

r-
F

un
c

T
ri

gg
er

T
im

es
(m

s)

in-lab

ec2-a1.metal

(d) Average
inter-func trigger times (avgInterTime)
per parallel functions invocations.

Figure 3. Colocated chains experiment: for every run, we plot the results obtained with our in-lab server and AWS EC2 a1.metal instance.

containers to run functions. We observed container idle time
ratios ranging from 17.8% to 31.6% (over commitment ex-
periment), thus a lower CPU time waste ratio compared to
micro-VMs.

Despite containers are known to be less secure than (micro-
) VMs – in fact, FaaS providers (such as Azure Functions)
which run functions inside containers, stack them into VMs
for security purposes [39], and Amazon runs a function
per micro-VM, both containers and (micro-) VMs are part
of Cloud and Edge providers offering today. Our experi-
ments show that both technologies are prone to the same
scheduling-related issue, while the effect is more demarcate
on the "more secure" technology.

3 Unfolding the Puzzle

As already mentioned, what we identified with these ex-
periments is not fully new in the virtualization realm, but
another instance of a known problem: the existence of a
semantic gap between the scheduler in the hypervisor/host
OS, and the scheduler in the VM (or what the application
does, in the case of containers). The same problem mani-
fested before in the OS literature, as early as when user-level
threading has been integrated with kernel-level threading
– e.g., schedule activations [4]. Herein, we are addressing
the same high level problem(s), but with a broader scope –
i.e., not restricted to inactive VMs that just busy wait. At the
same time we propose to use existing contextual information,
in this case, how several microservices are chained together
and the data that they exchange.

Our work is based on the followings observations.
• First, a microservice may not be doing any useful pro-
cessing (idle or inactive) not just when it is busy wait-
ing.

• Second, we noticed that with microservices, which
communicatemostlywith network packets, it is straight-
forward to identify what events may turn an idle or
inactive microservice into an active one.

We further dig into these two issues below.
Imaysleep! Microservices are commonly scheduledwith an
interactive and fair scheduling algorithm on a singlemachine,

such as CFS in Linux, or credit scheduler in Xen. Microser-
vices can be implemented atop an operating system, e.g., in
containers, or as guest VM deployed as a unikernel, or within
a traditional operating system with full or stripped operat-
ing environment, which is what we used in our evaluation
(microVM).

Independently of the deployment, a vCPU that is busy
waiting on a spinlock can be de-scheduled until the target
memory area is updated – this has been covered in previous
literature [18, 19], and it doesn’t affect only VMs, with a full
and stripped down operating system, but also unikernels,
and containers whose applications exploits kernel-bypass
technologies (e.g., DPDK/SPDK). In all such cases, for perfor-
mance reasons, an application may busy waiting for events,
without notifying any other level software.

However, especially when a traditional operating system
runs a microservice, such microservice may not be process-
ing any request and still no software is busy waiting. Instead,
the software on the VM may carry on management tasks at
the user or OS-kernel level, which may or may not include
an idle loop. Hence, detecting software that is busy waiting is
not the only way to conclude that a VM may be put to sleep
waiting for an event. In fact, a VM may be also put to sleep
right after the scheduler start scheduling the idle task, or
when a microservice sends a response to a previous request.
Obviously, the microservice software in the VM may also
explicitly inform the scheduler – but this is not implemented
yet, and it require trusting the microservice, which may be
an attack vector.
Wakemeup! Other than detecting when a VM doesn’t need
to be scheduled because not doing any useful work, it is fun-
damental to identify when it should be put back to run. Exter-
nal events that may put back a VM into run are: modification
of a memory area, modification of a device mapped area due
for example to end of a data transfer (network packet, storage
blocks, etc), device interrupt, timer interrupt, IPI (for SMP),
management interrupt (ipmi, smbus, acpi, error, etc.). Some
of these events have been demonstrated before that they can
be postponed [3, 6], including timer interrupts in most of the

Tell me when you are sleepy and what may wake you up!

cases, while uniprocessor VMs have significantly less events
– management interrupts are at a minimum for Cloud VMs.

Although such events may be delayed or coalesced, they
must be monitored, and the scheduler must know which par-
ticular set of events should put back a VM to run – such as a
network request to a microservice. Thus, for the hypervisor
or host OS scheduler, it must be possible to monitor such
events and move a VM back to "normal" scheduling (e.g.,
to a CPU ready/run queue) when specific events happen.
Finally, each VM is concern in specific events, which must
be detailed at some level.

When focusing on network communication, which is the
main way microservices use to communicate, the hypervisor
or host OS scheduler should look up for packets flowing to
and from the VM. Although this is possible with paravirtu-
alized devices, or traditional network stack for containers,
this become not obvious when SR-IOV or DPDK/SPDK are
adopted, because such technologies are supposed to bypass
the hypervisor or host OS. Finally, it is important to define a
way to inform the scheduler about what events should wake
up a microservice, and despite this can be done by the user it-
self, this maybe a security risk if not done in a controlled way.
Key Takeaway. To keep packing more and more microser-
vices on the same machine, without largely affecting their
service latency as shown by our experiments, we need to re-
think how scheduling works. While what have been proposed
previously in the literature may cover some cases, it is not
enough to support the microservice scenarios presented here.
Contextual information, which changes over time, must be
obtained or provided to the hypervisor/host OS scheduler,
which should be notified by what events are happening in
the system. Finally, security shouldn’t be overlooked.

4 Approaches
We propose that scheduling decisions in a hypervisor, or

host OS, should be taken by considering contextual infor-
mation regarding the running software, especially when a
semantic gap exists. In the microservice scenario, the con-
textual information consists in how different microservices
are chained and what messages they exchange. At high level,
we envision hypervisors’ or OS’ schedulers to be customiz-
able per-schedulable-entity (or eventually, user). Customiza-
tion is fundamental to reduce the priority of a schedulable
entity[25, 28] – when it is not going to do any actual work,
and increase the priority of the latter because it has suddenly
received work. Scheduler customizations are not enough per-
schedulable entity, additional mechanisms to identify idle
or wake up events related to a VM/task are needed. Because
identification mechanisms have been widely researched be-
fore, including VM and packet introspection [2, 10, 12], as
well as machine learning [6], herein we focus on how the
scheduler should be customized and how to communicate
events to it. Lastly, due to our initial use-case scenario, chains
of microservices that run in multi-tenancy environments,

security is at the highest stake, and it has been given high
consideration in our design.

To achieve our goal, is it really necessary to modify the hy-
pervisor’s or OS’s scheduler? In fact, it is not strictly necessary
to do that. In a KVM-like environment, a user-space control
programmay collect the contextual information, monitor the
execution of the VMs for events, and change the scheduling
priority of VMs accordingly. However, such solution likely
has a very high overhead originating by the large amount
of context switches between the control program, the kernel
and the VM/task being monitored. Nevertheless, in a type-1
hypervisor scenario the control program maybe running in
a DOM0-like VM, but there is no easy way to have such con-
trol program not affecting the hypervisor scheduler. Hence,
we believe that the aforementioned mechanisms should be
put into the hypervisor or host OS kernel itself – and not
only for a performance reason. We foresee the following
three approaches to informing the scheduler of contextual
information.
Approach1:Directedbyatrustedsource. A trusted source,
i.e., the Cloud orchestrator, provides to a server together with
the target VMs, the information that can be fed to the hy-
pervisor or host OS scheduler. Thus, the information fed to
the scheduler is not coming directly from the user and the
host-OS or hypervisor can trust it.

The scheduling information may be provided in a manifest
file, as a set of rules in a domains specific language, or as
a precompiled program/plugin written in a restricted ISA
(e.g., eBPF, WebAssembly). However, the former requires
the development and deployment of a program to read and
interpret the manifest file(s), while the latter an interpreter
or JIT compiler for the safe execution of the code.
Approach 2: Fully Collaborative. Similar to the previous
approach, but it is the VM that at runtime provides the con-
textual information to the hypervisor’s or host OS’ scheduler
of the server. A major limitation of this approach is security.
Security is at a stake here because the information provided
by the VM itself is not fully trustable. The guests may use
this as a vector to construct a DoS attack to the server.
Approach 3: Learning. The scheduler on the host OS, or
hypervisor, instead of having the contextual information
being provided, tries to reconstruct it itself, with a form of
VM introspection. Specifically, it monitors the guest VM in
order to identify if it is actually producing any observable
external state (e.g., requesting or transmitting data to/from
the user). The host OS or hypervisor uses such information to
change the interactivity with the target VMs. This is similar
to what interactive scheduling algorithms (the ones that
consider IO when taking decisions) do, but applied to the
problem of scheduling processes in a hierarchy scheduling
environment. The main drawback of this method lies in the
fact that if you don’t know the guest or cannot inspect it, this
is not a viable option, e.g., encrypted VMs, such as AMD SEV.

DjobMvondo, Antonio Barbalace, Alain Tchana, and Gilles Muller

4.1 Prototype Design
With the goal of oversubscribing CPU resources (3:1 and

up) in microservice deployments, but without affecting the
service latencies, we are developing an extensible hypervi-
sor/host OS scheduler that can be customized at runtime,
and the customization information are shipped together with
the VM and automatically built by the Cloud provider. For
the time being, we assume that the Cloud provider has a
mechanism that either enforce the user to specify network
request/response pairs or automatically recognize those (e.g.,
via learning). Because such information is provided by the
Cloud provider, it is trustable and used on a server to identify
sleep/wake up events and therefore extend the scheduler.
At the moment, we are targeting Linux/KVM and Fire-

cracker microVMs. Hence, we decided to extend the Linux
kernel scheduler (host OS) with eBPFs. eBPFs in the sched-
uler communicate with eBPFs in the network layer and by
monitoring network packets enable better scheduling deci-
sions. eBPF are forged by the Cloud provider based on the
mentioned knowledge of request/response packet pairs. As
the user is not involved in the creation of the eBPFs, we
believe there are no adversarial security issues. Finally, we
choose eBPF as a quick, highly-customizable solution with
an increasing community[13, 17], but a similar technology,
e.g., Webassembly, may be used.

5 Conclusion
We presented yet another scheduling-related problem in

the host OS/hypervisor layer that manifests in modern Cloud
and Edge data centers where applications are increasingly
deployed within the microservice model. The problem is
another instance of the issue of semantic gap where several
layers of software are running on a single machines and
there is no communication. Which is common for several
reasons, including legacy support and security.
We highlight that such semantic gap can cost up to 69%

or 75% wastage of CPU time, and investigate its root causes.
Additionally, we sketch different approaches to solve this
problem, which rely on the idea of providing additional con-
text regarding each microservice, while outlining drawbacks
of any approach in terms of security. Lastly, we describe a
current work that aims at extending the host OS/hypervisor
scheduler – Linux/KVM, via eBPF to get a runtime customiz-
able scheduler, which can effectively detect when to sleep
and wake up microservices.

Acknowledgments
We thank our shepherd, Amit Levy, and the anonymous

reviewers for their insightful feedback.

References
[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony

Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.
Firecracker: Lightweight Virtualization for Serverless Applications.

In 17th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 20). USENIX Association, Santa Clara, CA, 419–434.
https://www.usenix.org/conference/nsdi20/presentation/agache

[2] Yuvraj Agarwal, Stefan Savage, and Rajesh Gupta. 2010. SleepServer:
A Software-Only Approach for Reducing the Energy Consumption
of PCs within Enterprise Environments. In Proceedings of the 2010
USENIX Conference on USENIX Annual Technical Conference (Boston,
MA) (USENIXATC’10). USENIX Association, USA, 22.

[3] Irfan Ahmad, Ajay Gulati, and Ali Mashtizadeh. 2011. VIC: Interrupt
Coalescing for Virtual Machine Storage Device IO. In Proceedings of
the 2011 USENIX Conference on USENIX Annual Technical Conference
(Portland, OR) (USENIXATC’11). USENIX Association, USA, 4.

[4] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and
Henry M. Levy. 1991. Scheduler Activations: Effective Kernel Support
for theUser-LevelManagement of Parallelism. InProceedings of theThir-
teenth ACM Symposium on Operating Systems Principles (Pacific Grove,
California, USA) (SOSP ’91). Association for Computing Machinery,
New York, NY, USA, 95–109. https://doi.org/10.1145/121132.121151

[5] AWS. 2018. Introducing Firecracker, a New Virtualization Technology
and Open Source Project for Running Multi-Tenant Container
Workloads. http://tiny.cc/iwm7tz. Online; accessed Jan, 05 2021.

[6] M. Bacou, G. Todeschi, A. Tchana, D. Hagimont, B. Lepers, and W.
Zwaenepoel. 2019. Drowsy-DC: Data Center Power Management
System. In 2019 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE Computer Society, Los Alamitos, CA, USA,
825–834. https://doi.org/10.1109/IPDPS.2019.00091

[7] Antonio Barbalace, Javier Picorel, and Pramod Bhatotia. 2019. ExtOS:
Data-Centric Extensible OS. In Proceedings of the 10th ACM SIGOPS
Asia-Pacific Workshop on Systems (Hangzhou, China) (APSys ’19).
Association for Computing Machinery, New York, NY, USA, 31–39.
https://doi.org/10.1145/3343737.3343742

[8] Salman A. Baset, LongWang, and Chunqiang Tang. 2012. Towards an
Understanding of Oversubscription in Cloud. In Proceedings of the 2nd
USENIX Conference on Hot Topics in Management of Internet, Cloud, and
Enterprise Networks and Services (San Jose, CA) (Hot-ICE’12). USENIX
Association, USA, 7.

[9] Justinien Bouron, Sebastien Chevalley, Baptiste Lepers, Willy
Zwaenepoel, Redha Gouicem, Julia Lawall, Gilles Muller, and
Julien Sopena. 2018. The Battle of the Schedulers: FreeBSD
ULE vs. Linux CFS. In 2018 USENIX Annual Technical Confer-
ence (USENIX ATC 18). USENIX Association, Boston, MA, 85–96.
https://www.usenix.org/conference/atc18/presentation/bouron

[10] K. Burns, A. Barbalace, V. Legout, and B. Ravindran. 2014.
KairosVM: Deterministic introspection for real-time virtual
machine hierarchical scheduling. In Proceedings of the 2014
IEEE Emerging Technology and Factory Automation (ETFA). 1–8.
https://doi.org/10.1109/ETFA.2014.7005061

[11] Jonathan Corbet. 2020. Rethinking the futex API. https:
//lwn.net/Articles/823513/.

[12] Michael Drescher, Vincent Legout, Antonio Barbalace, and Binoy
Ravindran. 2016. A Flattened Hierarchical Scheduler for Real-Time
Virtualization. In Proceedings of the 13th International Conference
on Embedded Software (Pittsburgh, Pennsylvania) (EMSOFT ’16).
Association for Computing Machinery, New York, NY, USA, Article
12, 10 pages. https://doi.org/10.1145/2968478.2968501

[13] eBPF. 2021. eBPF Foundation. https://ebpf.io/foundation/. Online;
accessed Sep, 10, 2021.

[14] Simon Eismann, Joel Scheuner, Erwin van Eyk, Maximilian Schwinger,
Johannes Grohmann, Nikolas Herbst, Cristina L. Abad, and Alexandru
Iosup. 2020. A Review of Serverless Use Cases and their Characteristics.
arXiv:2008.11110 [cs.SE]

[15] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee,
Christos Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From
Laptop to Lambda: Outsourcing Everyday Jobs to Thousands of

https://www.usenix.org/conference/nsdi20/presentation/agache
https://doi.org/10.1145/121132.121151
http://tiny.cc/iwm7tz
https://doi.org/10.1109/IPDPS.2019.00091
https://doi.org/10.1145/3343737.3343742
https://www.usenix.org/conference/atc18/presentation/bouron
https://doi.org/10.1109/ETFA.2014.7005061
https://lwn.net/Articles/823513/
https://lwn.net/Articles/823513/
https://doi.org/10.1145/2968478.2968501
https://ebpf.io/foundation/
https://arxiv.org/abs/2008.11110

Tell me when you are sleepy and what may wake you up!

Transient Functional Containers. In Proceedings of the 2019 USENIX
Conference on Usenix Annual Technical Conference (Renton, WA, USA)
(USENIX ATC ’19). USENIX Association, USA, 475–488.

[16] Hubertus Franke, Rusty Russell, andMatthew Kirkwood. [n.d.]. Fuss,
Futexes and Furwocks: Fast Userlevel Locking in Linux.

[17] Yoann Ghigoff, Julien Sopena, Kahina Lazri, Antoine Blin,
and Gilles Muller. 2021. BMC: Accelerating Memcached
using Safe In-kernel Caching and Pre-stack Processing. In
18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21). USENIX Association, 487–501.
https://www.usenix.org/conference/nsdi21/presentation/ghigoff

[18] Weiwei Jia, Jianchen Shan, Tsz On Li, Xiaowei Shang, Heming Cui,
and Xiaoning Ding. 2020. vSMT-IO: Improving I/O Performance and
Efficiency on SMT Processors in Virtualized Clouds. In 2020 USENIX
Annual Technical Conference (USENIX ATC 20). USENIX Association,
449–463. https://www.usenix.org/conference/atc20/presentation/jia

[19] Weiwei Jia, Cheng Wang, Xusheng Chen, Jianchen Shan, Xiaowei
Shang, Heming Cui, Xiaoning Ding, Luwei Cheng, Francis C. M. Lau,
Yuexuan Wang, and Yuangang Wang. 2018. Effectively Mitigating
I/O Inactivity in vCPU Scheduling. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18). USENIX Association, Boston, MA,
267–280. https://www.usenix.org/conference/atc18/presentation/jia

[20] Kostis Kaffes, Neeraja J. Yadwadkar, and Christos Kozyrakis. 2019.
Centralized Core-Granular Scheduling for Serverless Functions. In
Proceedings of the ACM Symposium on Cloud Computing (Santa Cruz,
CA, USA) (SoCC ’19). Association for ComputingMachinery, New York,
NY, USA, 158–164. https://doi.org/10.1145/3357223.3362709

[21] Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. 2016. Op-
portunistic Spinlocks: Achieving Virtual Machine Scalability in
the Clouds. SIGOPS Oper. Syst. Rev. 50, 1 (March 2016), 9–16.
https://doi.org/10.1145/2903267.2903271

[22] Katacontainers. [n.d.]. Katacontainers: The speed of containers, the
security of VMs. https://katacontainers.io/.

[23] Kenneth van Surksum. 2012. Best Practices for Oversubscription of
CPU, Memory and Storage in vSphere Virtual Environments.

[24] Knative. 2018. Knative. https://knative.dev/. Online; accessed Jan, 16
2021.

[25] Baptiste Lepers, Redha Gouicem, Damien Carver, Jean-Pierre Lozi,
Nicolas Palix,Maria-VirginiaAponte,Willy Zwaenepoel, Julien Sopena,
Julia Lawall, and Gilles Muller. 2020. Provable Multicore Schedulers
with Ipanema: Application toWork Conservation. In Proceedings of the
Fifteenth European Conference on Computer Systems (Heraklion, Greece)
(EuroSys ’20). Association for Computing Machinery, New York, NY,
USA, Article 3, 16 pages. https://doi.org/10.1145/3342195.3387544

[26] Jin Tack Lim and Jason Nieh. 2020. Optimizing Nested Virtualization
Performance Using Direct Virtual Hardware. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Lausanne, Switzerland)
(ASPLOS ’20). Association for Computing Machinery, New York, NY,
USA, 557–574. https://doi.org/10.1145/3373376.3378467

[27] Martin Hosken. 2018. Architecting a VMware vSphere® Compute
Platform for VMware Cloud Providers.

[28] G. Muller, J.L. Lawall, and H. Duchesne. 2005. A framework
for simplifying the development of kernel schedulers: design
and performance evaluation. In Ninth IEEE International Sympo-
sium on High-Assurance Systems Engineering (HASE’05). 56–65.
https://doi.org/10.1109/HASE.2005.1

[29] OpenWhisk. 2016. Apache OpenWhisk - Open Source Serverless Cloud
Platform. https://openwhisk.apache.org/. Online; accessed Jan, 16 2021.

[30] JiannanOuyang and JohnR. Lange. 2013. Preemptable Ticket Spinlocks:
Improving Consolidated Performance in the Cloud. SIGPLAN Not. 48,
7 (March 2013), 191–200. https://doi.org/10.1145/2517326.2451549

[31] Thomas Rausch, Alexander Rashed, and Schahram Dustdar. 2021.
Optimized container scheduling for data-intensive serverless edge

computing. Future Generation Computer Systems 114 (2021), 259 – 271.
https://doi.org/10.1016/j.future.2020.07.017

[32] Red Hat. 2021. Overcommitting resources. http://tiny.cc/xdobtz.
[33] Christopher Small and Margo Seltzer. 1996. A Comparison of

OS Extension Technologies. In USENIX 1996 Annual Technical
Conference (USENIX ATC 96). USENIX Association, San Diego, CA.
https://www.usenix.org/conference/usenix-1996-annual-technical-
conference/comparison-os-extension-technologies

[34] Kun Suo, Yong Zhao, Jia Rao, Luwei Cheng, Xiaobo Zhou, and Francis
C. M. Lau. 2017. Preserving I/O Prioritization in Virtualized OSes. In
Proceedings of the 2017 Symposium on Cloud Computing (Santa Clara,
California) (SoCC ’17). Association for Computing Machinery, New
York, NY, USA, 269–281. https://doi.org/10.1145/3127479.3127484

[35] Boris Teabe, Vlad Nitu, Alain Tchana, and Daniel Hagimont. 2017. The
Lock Holder and the Lock Waiter Pre-Emption Problems: Nip Them
in the Bud Using Informed Spinlocks (I-Spinlock). In Proceedings of the
Twelfth European Conference on Computer Systems (Belgrade, Serbia)
(EuroSys ’17). Association for Computing Machinery, New York, NY,
USA, 286–297. https://doi.org/10.1145/3064176.3064180

[36] Boris Teabe, Alain Tchana, and Daniel Hagimont. 2016. Application-
Specific Quantum for Multi-Core Platform Scheduler. In Pro-
ceedings of the Eleventh European Conference on Computer Sys-
tems (London, United Kingdom) (EuroSys ’16). Association for
Computing Machinery, New York, NY, USA, Article 3, 14 pages.
https://doi.org/10.1145/2901318.2901340

[37] Volkmar Uhlig, Joshua LeVasseur, Espen Skoglund, and Uwe Dan-
nowski. 2004. Towards Scalable Multiprocessor Virtual Machines.
In Proceedings of the 3rd Conference on Virtual Machine Research And
Technology Symposium - Volume 3 (San Jose, California) (VM’04).
USENIX Association, USA, 4.

[38] Uma Panda. 2017. How to decide VMWare vCPU to physical CPU ratio.
https://www.cloudpanda.org/blog-single/?id=76.

[39] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. 2018. Peeking behind the Curtains of Serverless
Platforms. In Proceedings of the 2018 USENIX Conference on Usenix
Annual Technical Conference (Boston, MA, USA) (USENIX ATC ’18).
USENIX Association, USA, 133–145.

[40] S.Wu,Z.Xie,H.Chen, S.Di,X.Zhao, andH. Jin. 2016. DynamicAccelera-
tion of Parallel Applications in Cloud Platforms byAdaptive Time-Slice
Control. In 2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). 343–352. https://doi.org/10.1109/IPDPS.2016.77

[41] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu,
Pingchao Yang, Chenggang Qin, and Haibo Chen. 2020. Characterizing
Serverless Platforms with Serverlessbench. In Proceedings of the 11th
ACM Symposium on Cloud Computing (Virtual Event, USA) (SoCC ’20).
Association for Computing Machinery, New York, NY, USA, 30–44.
https://doi.org/10.1145/3419111.3421280

[42] Hang Zhu, Kostis Kaffes, Zixu Chen, Zhenming Liu, Christos Kozyrakis,
IonStoica, andXin Jin. 2020. RackSched:AMicrosecond-ScaleScheduler
for Rack-ScaleComputers. In 14thUSENIX SymposiumonOperating Sys-
tems Design and Implementation (OSDI 20). USENIX Association, 1225–
1240. https://www.usenix.org/conference/osdi20/presentation/zhu

https://www.usenix.org/conference/nsdi21/presentation/ghigoff
https://www.usenix.org/conference/atc20/presentation/jia
https://www.usenix.org/conference/atc18/presentation/jia
https://doi.org/10.1145/3357223.3362709
https://doi.org/10.1145/2903267.2903271
https://katacontainers.io/
https://knative.dev/
https://doi.org/10.1145/3342195.3387544
https://doi.org/10.1145/3373376.3378467
https://doi.org/10.1109/HASE.2005.1
https://openwhisk.apache.org/
https://doi.org/10.1145/2517326.2451549
https://doi.org/10.1016/j.future.2020.07.017
http://tiny.cc/xdobtz
https://www.usenix.org/conference/usenix-1996-annual-technical-conference/comparison-os-extension-technologies
https://www.usenix.org/conference/usenix-1996-annual-technical-conference/comparison-os-extension-technologies
https://doi.org/10.1145/3127479.3127484
https://doi.org/10.1145/3064176.3064180
https://doi.org/10.1145/2901318.2901340
https://www.cloudpanda.org/blog-single/?id=76
https://doi.org/10.1109/IPDPS.2016.77
https://doi.org/10.1145/3419111.3421280
https://www.usenix.org/conference/osdi20/presentation/zhu

	Abstract
	1 Introduction
	2 Motivations
	2.1 Experimental Scenario
	2.2 Experimental Results

	3 Unfolding the Puzzle
	4 Approaches
	4.1 Prototype Design

	5 Conclusion
	References

