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Abstract

Deep neuroevolution and deep reinforcement learning (deep RL) algorithms
are two popular approaches to policy search. The former is widely applica-
ble and rather stable, but suffers from low sample efficiency. By contrast,
the latter is more sample efficient, but the most sample efficient variants are
also rather unstable and highly sensitive to hyper-parameter setting. So far,
these families of methods have mostly been compared as competing tools.
However, an emerging approach consists in combining them so as to get
the best of both worlds. Two previously existing combinations use either
an ad hoc evolutionary algorithm or a goal exploration process together
with the Deep Deterministic Policy Gradient (ddpg) algorithm, a sample
efficient off-policy deep RL algorithm. In this paper, we propose a differ-
ent combination scheme using the simple cross-entropy method (cem) and
Twin Delayed Deep Deterministic policy gradient (td3), another off-policy
deep RL algorithm which improves over ddpg. We evaluate the resulting
method, cem-rl, on a set of benchmarks classically used in deep RL. We
show that cem-rl benefits from several advantages over its competitors and
offers a satisfactory trade-off between performance and sample efficiency.

1 Introduction

Policy search is the problem of finding a policy or controller maximizing some unknown
utility function. Recently, research on policy search methods has witnessed a surge of
interest due to the combination with deep neural networks, making it possible to find good
enough continuous action policies in large domains. From one side, this combination gave
rise to the emergence of efficient deep reinforcement learning (deep RL) techniques (Lillicrap
et al., 2015; Schulman et al., 2015; 2017). From the other side, evolutionary methods,
and particularly deep neuroevolution methods applying evolution strategies (ESs) to the
parameters of a deep network have emerged as a competitive alternative to deep RL due
to their higher parallelization capability (Salimans & Kingma, 2016; Conti et al., 2017;
Petroski Such et al., 2017).

Both families of techniques have clear distinguishing properties. Evolutionary methods are
significantly less sample efficient than deep RL methods because they learn from complete
episodes, whereas deep RL methods use elementary steps of the system as samples, and
thus exploit more information (Sigaud & Stulp, 2018). In particular, off-policy deep RL
algorithms can use a replay buffer to exploit the same samples as many times as useful,
greatly improving sample efficiency. Actually, the sample efficiency of ESs can be improved
using the ”importance mixing” mechanism, but a recent study has shown that the capacity
of importance mixing to improve sample efficiency by a factor of ten is still not enough
to compete with off-policy deep RL (Pourchot et al., 2018). From the other side, sample
efficient off-policy deep RL methods such as the ddpg algorithm (Lillicrap et al., 2015) are
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known to be unstable and highly sensitive to hyper-parameter setting. Rather than opposing
both families as competing solutions to the policy search problem, a richer perspective
consists in combining them so as to get the best of both worlds. As covered in Section 2,
there are very few attempts in this direction so far.

After presenting some background in Section 3, we propose in Section 4 a new combination
method that combines the cross-entropy method (cem) with ddpg or td3, an off-policy deep
RL algorithm which improves over ddpg. In Section 5, we investigate experimentally the
properties of this cem-rl method, showing its advantages both over the components taken
separately and over a competing approach. Beyond the results of cem-rl, the conclusion
of this work is that there is still a lot of unexplored potential in new combinations of
evolutionary and deep RL methods.

2 Related work

Policy search is an extremely active research domain. The realization that evolutionary
methods are an alternative to continuous action reinforcement learning and that both fami-
lies share some similarity is not new (Stulp & Sigaud, 2012a;b; 2013) but so far most works
have focused on comparing them (Salimans et al., 2017; Petroski Such et al., 2017; Conti
et al., 2017). Under this perspective, it was shown in (Duan et al., 2016) that, despite its
simplicity with respect to most deep RL methods, the Cross-Entropy Method (cem) was
a strong baseline in policy search problems. Here, we focus on works which combine both
families of methods.

Synergies between evolution and reinforcement learning have already been investigated in
the context of the so-called Baldwin effect (Simpson, 1953). This literature is somewhat
related to research on meta-learning, where one seeks to evolve an initial policy from which
a self-learned reinforcement learning algorithm will perform efficient improvement (Wang
et al., 2016; Houthooft et al., 2018; Gupta et al., 2018). The key difference with respect to
the methods investigated here is that in this literature, the outcome of the RL process is not
incorporated back into the genome of the agent, whereas here evolution and reinforcement
learning update the same parameters in iterative sequences.

Closer to ours, the work of Colas et al. (2018) sequentially applies a goal exploration process
(gep) to fill a replay buffer with purely exploratory trajectories and then applies ddpg to
the resulting data. The gep shares many similarities with evolutionary methods, though
it focuses on diversity rather than on performance of the learned policies. The authors
demonstrate on the Continuous Mountain Car and half-cheetah-v2 benchmarks that
their combination, gep-pg, is more sample-efficient than ddpg, leads to better final solutions
and induces less variance during learning. However, due to the sequential nature of the
combination, the gep part does not benefit from the efficient gradient steps of the deep RL
part.

Another approach related to ours is the work of Maheswaranathan et al. (2018), where the
authors introduce optimization problems with a surrogate gradient, i.e. a direction which
is correlated with the real gradient. They show that by modifying the covariance matrix of
an ES to incorporate the informations contained in the surrogate, a hybrid algorithm can
be constructed. They provide a thorough theoretical investigation of their procedure, which
they experimentally show capable of outperforming both a standard gradient descent method
and a pure ES on several simple benchmarks. They argue that this method could be useful
in RL, since surrogate gradients appear in Q-learning and actor-critic methods. However, a
practical demonstration of those claims remains to be performed. Their approach resembles
ours in that they use a gradient method to enhance an ES. But a notable difference is that
they use the gradient information to directly change the distribution from which samples
are drawn, whereas we use gradient information on the samples themselves, impacting the
distribution only indirectly.

The work which is the closest to ours is Khadka & Tumer (2018b). The authors introduce an
algorithm called erl (for Evolutionary Reinforcement Learning), which is presented as an
efficient combination of a deep RL algorithm, ddpg, and a population-based evolutionary
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algorithm. It takes the form of a population of actors, which are constantly mutated and se-
lected in tournaments based on their fitness. In parallel, a single ddpg agent is trained from
the samples generated by the evolutionary population. This single agent is then periodically
inserted into the population. When the gradient-based policy improvement mechanism of
ddpg is efficient, this individual outperforms its evolutionary siblings, it gets selected into
the next generation and draws the whole population towards higher performance. Through
their experiments, Khadka & Tumer demonstrate that this setup benefits from an efficient
transfer of information between the RL algorithm and the evolutionary algorithm, and vice
versa.

However, their combination scheme does not make profit of the search efficiency of ESs. This
is unfortunate because ESs are generally efficient evolutionary methods, and importance
mixing can only be applied in their context to bring further sample efficiency improvement.

By contrast with the works outlined above, the method presented here combines cem and
td3 in such a way that our algorithm benefits from the gradient-based policy improvement
mechanism of td3, from the better stability of ESs, and may even benefit from the better
sample efficiency brought by importance mixing, as described in Appendix B.

3 Background

In this section, we provide a quick overview of the evolutionary and deep RL methods used
throughout the paper.

3.1 Evolutionary algorithms, evolution strategies and EDAs

Evolutionary algorithms manage a limited population of individuals, and generate new in-
dividuals randomly in the vicinity of the previous elite individuals. There are many variants
of such algorithms, some using tournament selection as in Khadka & Tumer (2018b), niche-
based selection or more simply taking a fraction of elite individuals, see Back (1996) for a
broader view. Evolution strategies can be seen as specific evolutionary algorithms where
only one individual is retained from one generation to the next, this individual being the
mean of the distribution from which new individuals are drawn. More specifically, an opti-
mum individual is computed from the previous samples and the next samples are obtained
by adding Gaussian noise to the current optimum. Finally, among ESs, Estimation of Dis-
tribution Algorithms (EDAs) are a specific family where the population is represented as
a distribution using a covariance matrix Σ (Larrañaga & Lozano, 2001). This covariance
matrix defines a multivariate Gaussian function and samples at the next iteration are drawn
according to Σ. Along iterations, the ellipsoid defined by Σ is progressively adjusted to the
top part of the hill corresponding to the local optimum θ∗. Various instances of EDAs,
such as the Cross-Entropy Method (cem), Covariance Matrix Adaptation Evolution Strat-
egy (cma-es) and pi2-cma, are covered in Stulp & Sigaud (2012a;b; 2013). Here we focus
on the first two.

3.2 The Cross-Entropy Method and cma-es

The Cross-Entropy Method (cem) is a simple EDA where the number of elite individuals
is fixed to a certain value Ke (usually set to half the population). After all individuals of a
population are evaluated, the Ke fittest individuals are used to compute the new mean and
variance of the population, from which the next generation is sampled after adding some
extra variance ε to prevent premature convergence.

In more details, each individual xi is sampled by adding Gaussian noise around the mean
of the distribution µ, according to the current covariance matrix Σ, i.e. xi ∼ N (µ,Σ). The
problem-dependent fitness of these new individuals (fi)i=1,...,λ is computed, and the top-
performingKe individuals, (zi)i=1,...,Ke are used to update the parameters of the distribution
as follows:
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µnew =

Ke∑
i=1

λizi (1)

Σnew =

Ke∑
i=1

λi(zi − µold)(zi − µold)T + εI, (2)

where (λi)i=1,...,Ke
are weights given to the individuals, commonly chosen with λi = 1

Ke

or λi = log(1+Ke)/i∑Ke
i=1 log(1+Ke)/i

(Hansen, 2016). In the former, each individual is given the same

importance, whereas the latter gives more importance to better individuals.

Similarly to cem, Covariance Matrix Adaptation Evolution Strategy (cma-es) is an EDA
where the number of elite individuals is fixed to a certain value Ke. The mean and covariance
of the new generation are constructed from those individuals. However this construction
is more elaborate than in cem. The top Ke individuals are ranked according to their
performance, and are assigned weights based on this ranking. Those weights in turn impact
the construction of the new mean and covariance. Quantities called ”Evolutionary paths” are
also used to accumulate the search directions of successive generations. In fact, the updates
in cma-es are shown to approximate the natural gradient, without explicitly modeling the
Fisher information matrix (Arnold et al., 2011).

A minor difference between cem and cma-es can be found in the update of the covariance
matrix. In its standard formulation, cem uses the new estimate of the mean µ to compute
the new Σ, whereas cma-es uses the current µ (the one that was used to sample the current
generation) as is the case in (2). We used the latter as Hansen (2016) shows it to be more
efficient. The algorithm we are using can thus be described either as cem using the current
µ for the estimation of the new Σ, or as cma-es without evolutionary paths. The difference
being minor, we still call the resulting algorithm cem. Besides, we add some noise in the
form of εI to the usual covariance update to prevent premature convergence. We choose
to have an exponentially decaying ε, by setting an initial and a final standard deviation,
respectively σinit and σend, initializing ε to σinit and updating ε at each iteration with
ε = τcemε+ (1− τcem)σend.

Note that, in practice Σ can be too large for computing the updates and sampling new
individuals. Indeed, if n denotes the number of actor parameters, simply sampling from Σ
scales at least in O(n2.3), which becomes quickly intractable. Instead, we constrain Σ to be
diagonal. This means that in our computations, we replace the update in (2) by

Σnew =

Ke∑
i=1

λi(zi − µold)2 + εI, (3)

where the square of the vectors denote the vectors of the square of the coordinates.

3.3 DDPG and TD3

The Deep Deterministic Policy Gradient (ddpg) (Lillicrap et al., 2015) and Twin Delayed
Deep Deterministic policy gradient (td3) (Fujimoto et al., 2018) algorithms are two off-
policy, actor-critic and sample efficient deep RL algorithms. The ddpg algorithm suffers
from instabilities partly due to an overestimation bias in critic updates, and is known to
be difficult to tune given its sensitivity to hyper-parameter settings. The availability of
properly tuned code baselines incorporating several advanced mechanisms improves on the
latter issue (Dhariwal et al., 2017). The td3 algorithm rather improves on the former issue,
limiting the over-estimation bias by using two critics and taking the lowest estimate of the
action values in the update mechanisms.
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Figure 1: Architectures of the cem-rl (a) and erl (b) algorithms

4 Methods

As shown in Figure 1a, the cem-rl method combines cem with either ddpg or td3, giving
rise to two algorithms named cem-ddpg and cem-td3. The mean actor of the cem pop-
ulation, referred to as πµ, is first initialized with a random actor network. A unique critic
network Qπ managed by td3 or ddpg is also initialized. At each iteration, a population
of actors is sampled by adding Gaussian noise around the current mean πµ, according to
the current covariance matrix Σ. Half of the resulting actors are directly evaluated. The
corresponding fitness is computed as the cumulative reward obtained during an episode in
the environment. Then, for each actor of the other half of the population, the critic is
updated using this actor and, reciprocally, the actor follows the direction of the gradient
given by the critic Qπ for a fixed number of steps. The resulting actors are evaluated after
this process. The cem algorithm then takes the top-performing half of the resulting global
population to compute its new πµ and Σ. The steps performed in the environment used
to evaluate all actors in the population are fed into the replay buffer. The critic is trained
from that buffer pro rata to the quantity of new information introduced in the buffer at
the current generation. For instance, if the population contains 10 individuals, and if each
episode lasts 1000 time steps, then 10,000 new samples are introduced in the replay buffer
at each generation. The critic is thus trained for 10,000 mini-batches, which are divided into
2000 mini-batches per learning actor. This is a common practice in deep RL algorithms,
where one mini-batch update is performed for each step of the actor in the environment. We
also choose this number of steps (10,000) to be the number of gradient steps taken by half of
the population at the next iteration. A pseudo-code of cem-rl is provided in Algorithm 1.

In cases where applying the gradient increases the performance of the actor, cem bene-
fits from this increase by incorporating the corresponding actors in its computations. By
contrast, in cases where the gradient steps decrease performance, the resulting actors are
ignored by cem, which instead focuses on standard samples around πµ. Those poor samples
do not bring new insight on the current distribution of the cem algorithm, since the gradient
steps takes them away from the current distribution. However, since all evaluated actors
are filling the replay buffer, the resulting experience is still fed to the critic and the future
learning actors, providing some supplementary exploration.

This approach generates a beneficial flow of information between the deep RL part and
the evolutionary part. Indeed, on one hand, good actors found by following the current
critic directly improve the evolutionary population. On the other hand, good actors found
through evolution fill the replay buffer from which the RL algorithm learns.

In that respect, our approach benefits from the same properties as the erl algorithm
(Khadka & Tumer, 2018b) depicted in Figure 1b. But, by contrast with Khadka & Tumer
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Algorithm 1 cem-rl

Require: max steps, the maximum number of steps in the environment
τcem, σinit, σend and pop size, hyper-parameters of the cem algorithm
γ, τ, lractor and lrcritic, hyper-parameters of ddpg

1: Initialize a random actor πµ, to be the mean of the cem algorithm
2: Let Σ = σinitI be the covariance matrix of the cem algorithm
3: Initialize the critic Qπ and the target critic Qπt
4: Initialize an empty cyclic replay buffer R

5: total steps, actor steps = 0, 0
6: while total steps < max steps:

7: Draw the current population pop from N (πµ,Σ) with importance mixing (see Algo-
rithm 2 in Appendix B)

8: for i← 1 to pop size/2:
9: Set the current policy π to pop[i]

10: Initialize a target actor πt with the weights of π
11: Train Qπ for 2 ∗ actor steps / pop size mini-batches
12: Train π for actor steps mini-batches
13: Reintroduce the weights of π in pop

14: actor steps = 0
15: for i← 1 to pop size:
16: Set the current policy π to pop[i]
17: (fitness f , steps s) ← evaluate(π)
18: Fill R with the collected experiences
19: actor steps = actor steps + s

total steps = total steps + actor steps

20: Update πµ and Σ with the top half of the population (see (1) and (2) in Section 3.2)

21: end while

(2018b), gradient steps are directly applied to several samples, and using the cem algo-
rithm makes it possible to use importance mixing, as described in Appendix B. Another
difference is that in cem-rl gradient steps are applied at each iteration whereas in erl,
a deep RL actor is only injected to the population from time to time. One can also see
from Figure 1 that, in contrast to erl, cem-rl does not use any deep RL actor. Other
distinguishing properties between erl and cem-rl are discussed in the light of empirical
results in Section 5.2.

Finally, given that cma-es is generally considered as more sophisticated than cem, one may
wonder why we did not use cma-es instead of cem into the cem-rl algorithm. Actually, the
key contribution of cma-es with respect to cem consists of the evolutionary path mechanism
(see Section 3.2), but this mechanism results in some inertia in Σ updates, which resists to
the beneficial effect of applying RL gradient steps.

5 Experimental study

In this section, we study the cem-rl algorithm to answer the following questions:

• How does the performance of cem-rl compare to that of cem and td3 taken
separately? What if we remove the cem mechanism, resulting in a multi-actor
td3?

• How does cem-rl perform compared to erl? What are the main factors explaining
the difference between both algorithms?

6



Additionally, in Appendices B to E, we investigate other aspects of the performance of cem-
rl such as the impact of importance mixing, the addition of action noise or the use of the
tanh non-linearity.

5.1 Experimental setup

In order to investigate the above questions, we evaluate the corresponding algorithms in sev-
eral continuous control tasks simulated with the mujoco physics engine and commonly used
as policy search benchmarks: half-cheetah-v2, hopper-v2, walker2d-v2, swimmer-
v2 and ant-v2 (Brockman et al., 2016).

We implemented cem-rl with the PyTorch library 1. We built our code around the
ddpg and td3 implementations given by the authors of the td3 algorithm2. For the erl
implementation, we used one given by the authors3.

Unless specified otherwise, each curve represents the average over 10 runs of the correspond-
ing quantity, and the variance corresponds to the 68% confidence interval for the estimation
of the mean. In all learning performance figures, dotted curves represent medians and the
x-axis represents the total number of steps actually performed in the environment, to high-
light potential sample efficiency effects, particularly when using importance mixing (see
Appendix B).

Architectures of the networks are described in Appendix A. Most td3 and ddpg hyper-
parameters were reused from Fujimoto et al. (2018). The only notable difference is the use
of tanh non linearities instead of relu in the actor network, after we spotted that the latter
performs better than the former on several environments. We trained the networks with
the Adam optimizer (Kingma & Ba, 2014), with a learning rate of 1e−3 for both the actor
and the critic. The discount rate γ was set to 0.99, and the target weight τ to 5e−3. All
populations contained 10 actors, and the standard deviations σinit, σend and the constant
τcem of the cem algorithm were respectively set to 1e−3, 1e−5 and 0.95. Finally, the size of
the replay buffer was set to 1e6, and the batch size to 100.

5.2 Results

We first compare cem-td3 to td3, td3 and a multi-actor variant of td3, then cem-rl to
erl based on several benchmarks. A third section is devoted to additional results which
have been rejected in appendices to comply with space constraints.

5.2.1 Comparison to cem, td3 and a multi-actor td3

(a) (b) (c)

Figure 2: Learning curves of td3, cem and cem-rl on the half-cheetah-v2, hopper-v2,
and walker2d-v2 benchmarks.

In this section, we compare cem-td3 to three baselines: our variant of cem, td3 and a
multi-actor variant of td3. For td3 and its multi-actor variant, we report the average of

1The code for reproducing the experiments is available at
https://github.com/apourchot/CEM-RL.

2Available at https://github.com/sfujim/TD3.
3Available at https://github.com/ShawK91/erl paper nips18.
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the score of the agent over 10 episodes for every 5000 steps performed in the environment.
For cem and cem-td3, we report after each generation the average of the score of the new
average individual of the population over 10 episodes. From Figure 2, one can see that
cem-td3 outperforms cem and td3 on half-cheetah-v2, hopper-v2 and walker2d-
v2. On most benchmarks, cem-td3 also displays slightly less variance than td3. Further
results in Appendix G show that on ant-v2, cem-td3 outperforms cem and is on par with
td3. More surprisingly, cem outperforms all other algorithms on swimmer-v2, as covered
in Appendix E.

cem td3
Environment Mean Var. Median Mean Var. Median

half-cheetah-v2 2940 12% 3045 9630 2.1% 9606
hopper-v2 1055 1.3% 1040 3355 5.1% 3626
walker2d-v2 928 5.4% 934 3808 8.9% 3882
swimmer-v2 351 2.7% 361 63 14% 47
ant-v2 487 6.7% 506 4027 10% 4587

td3 Multi-Actor cem-td3
Environment Mean Var. Median Mean Var. Median

half-cheetah-v2 9662 2.8% 9710 10725 3.7% 11539
hopper-v2 2056 20% 2376 3613 2.9% 3722
walker2d-v2 3934 4.1% 3954 4711 3.3% 4637
swimmer-v2 76 14% 60 75 15% 62
ant-v2 3567 22% 3911 4251 5.9% 4310

Table 1: Final performance of cem, td3, multi-actor td3 and cem-td3 on 5 environments.
We report the mean ands medians over 10 runs of 1 million steps. For each benchmark, we
highlight the results of the method with the best mean.

One may wonder whether the good performance of cem-td3 mostly comes from its ”ensem-
ble method” nature (Osband et al., 2016). Indeed, having a population of actors improves
exploration and stabilizes performances by filtering out instabilities that can appear during
learning. To answer this question, we performed an ablative study where we removed the
cem mechanism. We considered a population of 5 actors initialized as in cem-td3, but then
just following the gradient given by the td3 critic. This algorithm can be seen as a multi-
actor td3 where all actors share the same critic. We reused the hyper-parameters described
in Section 5.2. From Figure 2, one can see that cem-td3 outperforms more or less signifi-
cantly multi-actor td3 on all benchmarks, which clearly suggests that the evolutionary part
contributes to the performance of cem-td3.

As a summary, Table 1 gives the final performance of methods compared in this Section.
We conclude that cem-td3 is generally superior to cem, td3 and multi-actor td3. More
precisely, in environments where td3 provides a useful gradient information, cem-td3 en-
hances cem by accelerating updates towards better actors, and it enhances td3 by reducing
variance in the learning process.

5.2.2 Comparison to erl

In this section, we compare cem-rl to erl. The erl method using ddpg rather than td3,
we compare it to both cem-ddpg and cem-td3. This makes it possible to isolate the effect
of the combination scheme from the improvement brought by td3 itself. Results are shown
in Figure 3. We let erl learn for the same number of steps as in Khadka & Tumer, namely
2 millions on half-cheetah-v2 and swimmer-v2, 4 millions on hopper-v2, 6 millions
on ant-v2 and 10 millions on walker2d-v2. However, due to limited computational
resources, we stop learning with both cem-rl methods after 1 million steps, hence the
constant performance after 1 million steps.

8



(a) (b) (c)

Figure 3: Learning curves of erl, cem-ddpg and cem-td3 on half-cheetah-v2, hopper-
v2, ant-v2 and walker2d-v2. Both cem-rl methods are only trained 1 million steps.

Our results slightly differ from those of the erl paper (Khadka & Tumer, 2018b). We
explain this difference by two factors. First, the authors only average their results over 5
different seeds, whereas we used 10 seeds. Second, the released implementation of erl may
be slightly different from the one used to produce the published results4, raising again the
reproducibility issue recently discussed in the reinforcement learning literature (Henderson
et al., 2017).

erl cem-ddpg cem-td3
Environment Mean Var. Median Mean Var. Median Mean Var. Median

half-cheetah-v2 8684 1.5% 8675 11035 2.7% 11276 10725 3.7% 11539
hopper-v2 2288 10.5% 2267 3444 1.6% 3499 3613 2.9% 3722
walker2d-v2 2188 15% 2338 2865 7.6% 2958 4711 3.3% 4637
swimmer-v2 350 2.41% 360 268 12% 279 75 15% 62
ant-v2 3716 18.1% 4240 2170 52% 3574 4251 5.9% 4310

Table 2: Final performance of erl, cem-ddpg and cem-td3 on 5 environments. We report
the mean ands medians over 10 runs of 1 million steps. For each benchmark, we highlight
the results of the method with the best mean.

Figure 3 shows that after performing 1 million steps, both cem-rl methods outperform
erl on half-cheetah-v2, hopper-v2 and walker2d-v2. We can also see that cem-td3
outperforms cem-ddpg on walker2d-v2. On ant-v2, cem-ddpg and erl being on par
after 1 million steps, we increased the number of learning steps in cem-ddpg to 6 millions.
The corresponding results are shown in Figure 10b in Appendix G. Results on swimmer-v2
are covered in Appendix E.

One can see that, beyond outperforming erl, cem-td3 outperforms cem-ddpg on most
benchmarks, in terms of final performance, convergence speed, and learning stability. This
is especially true for hard environments such as walker2d-v2 and ant-v2. The only
exception in swimmer-v2, as studied in Appendix E.

Table 2 gives the final best results of methods used in this Section. The overall conclusion
is that cem-rl generally outperforms erl.

5.2.3 Additional results

In this section, we outline the main messages arising from further studies that have been
rejected in appendices in order to comply with space constraints.

In Appendix B, we investigate the influence of the importance mixing mechanism over the
evolution of performance, for cem and cem-rl. Results show that importance mixing has
a limited impact on the sample efficiency of cem-td3 on the benchmarks studied here,
in contradiction with results from Pourchot et al. (2018) obtained using various standard

4personal communication with the authors
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evolutionary strategies. The fact that the covariance matrix Σ moves faster with cem-rl
may explain this result, as it prevents the reuse of samples.

In Appendix C, we analyze the effect of adding Gaussian noise to the actions of cem-
td3. Unlike what Khadka & Tumer (2018b) suggested using erl, we did not find any
conclusive evidence that action space noise improves performance with cem-td3. This may
be due to the fact that, as further studied in Appendix D, the evolutionary algorithm in
erl tends to converge to a unique individual, hence additional noise is welcome, whereas
evolutionary strategies like cem more easily maintain some exploration. Indeed, we further
investigate the different dynamics of parameter space exploration provided by the erl and
cem-td3 algorithms in Appendix D. Figure 6 and 7 show that the evolutionary population
in erl tends to collapse towards a single individual, which does not happen with the cem
population due to the sampling method.

In Appendix E, we highlight the fact that, on the swimmer-v2 benchmark, the perfor-
mance of the algorithms studied in this paper varies a lot from the performance obtained
on other benchmarks. The most likely explanation is that, in swimmer-v2, any deep RL
method provides a deceptive gradient information which is detrimental to convergence to-
wards efficient actor parameters. In this particular context, erl better resists to detrimental
gradients than cem-rl, which suggests to design a version of erl using cem to improve the
population instead of its ad hoc evolutionary algorithm.

Finally, in Appendix F, we show that using a tanh non-linearity in the architecture of actors
often results in significantly stronger performance than using relu. This strongly suggests
performing ”neural architecture search” (Zoph & Le, 2016; Elsken et al., 2018) in the context
of RL.

6 Conclusion and future work

We advocated in this paper for combining evolutionary and deep RL methods rather than
opposing them. In particular, we have proposed such a combination, the cem-rl method,
and showed that in most cases it was outperforming not only some evolution strategies
and some sample efficient off-policy deep RL algorithms, but also another combination,
the erl algorithm. Importantly, despite being mainly an evolutionary method, cem-rl is
competitive to the state-of-the-art even when considering sample efficiency, which is not
the case of other deep neuroevolution methods (Salimans et al., 2017; Petroski Such et al.,
2017).

Beyond these positive performance results, our study raises more fundamental questions.
First, why does the simple cem algorithm perform so well on the swimmer-v2 benchmark?
Then, our empirical study of importance mixing did not confirm a clear benefit of using
it, neither did the effect of adding noise on actions. We suggest explanations for these
phenomena, but nailing down the fundamental reasons behind them will require further
investigations. Such deeper studies will also help understand which properties are critical
in the performance and sample efficiency of policy search algorithms, and define even more
efficient policy search algorithms in the future. As suggested in Section 5.2.3, another avenue
for future work will consist in designing an erl algorithm based on cem rather than on an
ad hoc evolutionary algorithm. Finally, given the impact of the neural architecture on our
results, we believe that a more systemic search of architectures through techniques such as
neural architecture search (Zoph & Le, 2016; Elsken et al., 2018) may provide important
progress in performance of deep policy search algorithms.
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A Architecture of the networks

Our network architectures are very similar to the ones described in Fujimoto et al. (2018).
In particular, the size of the layers remains the same. The only differences resides in the
non-linearities. We use tanh operations in the actor between each layer, where Fujimoto
et al. use relu and we use leaky relu in the critic, where Fujimoto et al. use simple relu.
Reasons for this choice are presented in Appendix F.

Table 3: Architecture of the networks (from the input layer (top line) to the output layer
(bottom line)

Actor Critic
(state dim, 400) (state dim + action dim, 400)

tanh leaky relu
(400, 300) (400, 300)

tanh leaky relu
(300, action dim) (300, 1)

tanh

B Importance mixing

Importance mixing is a specific mechanism designed to improve the sample efficiency of
evolution strategies. It was initially introduced in Sun et al. (2009) and consisted in reusing
some samples from the previous generation into the current one, to avoid the cost of re-
evaluating the corresponding policies in the environment. The mechanism was recently
extended in Pourchot et al. (2018) to reusing samples from any generation stored into an
archive. Empirical results showed that importance sampling can improve sample efficiency
by a factor of ten, and that most of these savings just come from using the samples from
the previous generation, as performed by the initial mechanism. A pseudo-code of the
importance mixing mechanism is given in Algorithm 2.

Algorithm 2 Importance mixing

Require: p(z,θnew): current probability density function (pdf), p(z,θold): old pdf, gold:
old generation

1: gnew ← ∅
2: for i← 1 to N

3: Draw rand1 and rand2 uniformly from [0, 1]

4: Let zi be the ith individual of the old generation gold
5: if min(1, p(zi,θnew)

p(zi,θold)
) > rand1:

6: Append zi to the current generation gnew

7: Draw z′i according to the current pdf p(.,θnew)

8: if max(0, 1− p(z′i,θold)
p(z′i,θnew) ) > rand2:

9: Append z′i to the current generation gnew

10: size = |gnew|
11: if size ≥ N : go to 12

12: if size > N : remove a randomly chosen sample
13: if size < N : fill the generation sampling from p(.,θnew)
14: return gnew
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In cem, importance mixing is implemented as described in (Pourchot et al., 2018). By
contrast, some adaptation is required in cem-rl. Actors which take gradient steps can no
longer be regarded as sampled from the current distribution of the cem algorithm. We
thus choose to apply importance mixing only to the half of the population which does not
receive gradient steps from the RL critic. In practice, only actors which do not take gradient
steps are inserted into the actor archive and can be replaced with samples from previous
generations.

(a) (b) (c)

(d) (e)

Figure 4: Learning curves of cem-td3 and cem with and without importance mixing on the
half-cheetah-v2, hopper-v2, walker2d-v2, swimmer-v2 and ant-v2 benchmarks.

From Figure 4, one can see that in the cem case, importance mixing introduces some
minor instability, without noticeably increasing sample efficiency. On half-cheetah-v2,
swimmer-v2 and walker2d-v2, performance even decreases when using importance mix-
ing. For cem-rl, the effect varies greatly from environment to environment, but the gain
in sample reuse is almost null as well, though an increase in performance can be seen on
swimmer-v2. The latter fact is consistent with the finding that the gradient steps are not
useful in this environment (see Appendix E). On hopper-v2 and half-cheetah-v2, results
with and without importance mixing seem to be equivalent. On walker2d-v2, importance
mixing decreases final performance. On ant-v2, importance mixing seems to accelerate
learning in the beginning, but final performances are equivalent to those of cem-rl. Thus
importance mixing seems to have a limited impact in cem-td3.

cem-td3 cem-td3 + im
Environment Mean Var. Median Mean Var. Median

half-cheetah-v2 10725 3.7% 11147 10601 4.9% 11539
hopper-v2 3613 2.9% 3722 3589 1.2% 3616
walker2d-v2 4711 3.3% 4637 4420 2.3% 4468
swimmer-v2 75 15% 62 117 11% 135
ant-v2 4251 5.9% 4310 4235 7.8% 4013

Table 4: Final performance of cem-td3 with and without importance mixing on the half-
cheetah-v2, hopper-v2, swimmer-v2, ant-v2 and walker2d-v2 environments. We
report the mean ands medians over 10 runs of 1 million steps. For each benchmark, we
highlight the results of the method with the best mean.
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This conclusion seems to contradict the results obtained in Pourchot et al. (2018). This may
be due to different things. First, the dimensions of the search spaces in the experiments
here are much larger than those studied in Pourchot et al. (2018), which might deteriorate
the estimation of the covariance matrices when samples are too correlated. On top of this,
the mujoco environments are harder than the ones used in Pourchot et al. (2018). In
particular, we can see from Figure 2 that cem is far from solving the environments over one
million steps. Perhaps a study over a longer time period would make importance mixing
relevant again. Besides, by reusing old samples, the importance mixing mechanism somehow
hinders exploration (since we evaluate less new individuals), which might be detrimental in
the case of mujoco environments. Finally, and most importantly, the use of RL gradient
steps accelerates the displacement of the covariance matrix, resulting in fewer opportunities
for sample reuse.

C Effect of action noise

In Khadka & Tumer (2018b), the authors indicate that one reason for the efficiency of their
approach is that the replay buffer of ddpg gets filled with two types of noisy experiences.
On one hand, the buffer gets filled with noisy interactions of the ddpg actor with the
environment. This is usually referred to as action space noise. On the other hand, actors
with different parameters also fill the buffer, which is more similar to parameter space noise
(Plappert et al., 2017). In cem-rl, we only use parameter space noise, but it would also
be possible to add action space noise. To explore this direction, each actor taking gradient
steps performs a noisy episode in the environment. We report final results after 1 million
steps in Table 5. Learning curves are available in Figure 5.

(a) (b) (c)

(d) (e)

Figure 5: Learning curves of cem-rl with and without action space noise on the half-
cheetah-v2, hopper-v2, walker2d-v2, swimmer-v2 and ant-v2 benchmarks.

Unlike what Khadka & Tumer (2018b) suggested, we did not find any conclusive evidence
that action space noise improves performance. In cem-td3, the cem part seems to explore
enough of the action space on its own. It seems that sampling performed in cem results
in sufficient exploration and performs better than adding simple Gaussian noise to the
actions. This highlights a difference between using an evolutionary strategy like cem and
an evolutionary algorithm as done in erl. Evolutionary algorithms tend to converge to a
unique individual whereas evolutionary strategies more easily maintain some exploration.
These aspects are further studied in Appendix D.
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cem-td3 cem-td3 + an cem-td3- relu
Environment Mean Var. Median Mean Var. Median Mean Var. Median

half-cheetah-v2 10725 3.7% 11147 11006 2.7% 11086 10267 3.7% 10133
hopper-v2 3613 2.9 % 3722 3541 5.7% 3761 3604 2.6% 3716
walker2d-v2 4711 3.3% 4637 4542 5.7% 4392 4311 7.5% 4534
swimmer-v2 75 15% 62 74 15% 62 118 21% 114
ant-v2 4251 5.9% 4310 3711 7.9% 3604 2264 16% 2499

Table 5: Final Performance of cem-rl with and without action noise (an), with ddpg,
and with relu non-linearities in mujoco environments. We report the mean ands medians
over 10 runs of 1 million steps. For each benchmark, we highlight the results of the method
with the best mean.

D Parameter space exploration in cem-rl and erl

In this section, we highlight the difference in policy parameter update dynamics in cem-rl
and erl. Figure 6 displays the evolution of the first two parameters of actor networks
during training with cem-rl and erl on half-cheetah-v2. For erl, we plot the chosen
parameters of the ddpg actor with a continuous line, and represent those of the evolutionary
actors with dots. For cem-rl, we represent the chosen parameters of sampled actors with
dots, and the gradient steps based on the td3 critic with continuous lines. The same number
of dots is represented for both algorithms.

(a) (b)

Figure 6: Evolution of the first two parameters of the actors when learning with (a) erl
and (b) cem-td3. Dots are sampled parameters of the population and continuous lines
represent parameters moved through RL gradient steps.

One can see that, in erl the evolutionary population tends to be much less diverse that in
cem-rl. There are many redundancies in the parameters (dots with the same coordinates),
and the population seems to converge to a single individual. On the other hand, there is no
such behavior in cem-rl where each generation introduces completely new samples. As a
consequence, parameter space exploration looks better in the cem-rl algorithm.

To further study this loss of intra-population diversity in erl, we perform 10 erl runs and
report in Figure 7 an histogram displaying the distribution of the population-wise similarity
with respect to the populations encountered during learning. We measure this similarity as
the average percentage of parameters shared between two different individuals of the said
population. The results indicate that around 55% of populations encountered during a run
of erl display a population-similarity of above 80%.

One can also see the difference in how both methods use the gradient information of their
respective deep RL part. In the case of erl, the parameters of the population concentrate
around those of the ddpg actor. Each 10 generations, its parameters are introduced into the
population, and since ddpg is already efficient alone on half-cheetah-v2, those param-
eters quickly spread into the population. Indeed, according to Khadka & Tumer (2018b),
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Figure 7: Histogram of the average similarity in populations during learning with the erl
algorithm. Results are averaged over 10 runs. As usual, the variance corresponds to the
68% confidence interval for the estimation of the mean.

the resulting ddpg actor is the elite of the population 80% of the time, and is introduced
into the population 98% of the time. This integration is however passive: the direction
of exploration does not vary much after introducing the ddpg agent. cem-rl integrates
this gradient information differently. The short lines emerging from dots, which represent
gradient steps performed by half of the actors, act as scouts. Once cem becomes aware of
better solutions that can be found in a given direction, the sampling of the next population
is modified so as to favor this promising direction. cem is thus pro-actively exploring in the
good directions it has been fed with.

E The case of the swimmer-v2 benchmark

Experiments on the swimmer-v2 benchmark give results that differ a lot from the results
on other benchmarks, hence they are covered separately here. Figure8a shows that cem out-
performs td3, cem-td3, multi-actor td3. Besides, as shown in Figure 8b, erl outperforms
cem-ddpg, which itself outperforms cem-td3.

(a) (b)

Figure 8: Learning curves on the swimmer-v2 environment of (a): cem and td3, multi-
actor td3 and cem-rl; (b) erl, cem-ddpg and cem-td3.

All these findings seem to show that being better at RL makes you worse at swimmer-
v2. The most likely explanation is that, in swimmer-v2, any deep RL method provides a
deceptive gradient information which is detrimental to convergence towards efficient actor
parameters. This conclusion could already be established from the results of Khadka &
Tumer (2018b), where the evolution algorithm alone produced results on par with the erl
algorithm, showing that RL-based actors were just ignored. In this particular context, the
actors using td3 gradient being deteriorated by the deceptive gradient effect, cem-rl is
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behaving as a cem with only half a population, thus it is less efficient than the standard
cem algorithm. By contrast, erl better resists than cem-rl to the same issue. Indeed,
if the actor generated by ddpg does not perform better than the evolutionary population,
then this actor is just ignored, and the evolutionary part behaves as usual, without any
loss in performance. In practice, Khadka & Tumer note that on swimmer-v2, the ddpg
actor was rejected 76% of the time. Finally, by comparing cem and erl from Figure 8a and
Figure 8b, one can conclude that on this benchmark, the evolutionary part of erl behaves
on par with cem alone. This is at odds with premature convergence effects seen in the
evolutionary part of erl, as studied in more details in Appendix D. From all these insights,
the swimmer-v2 environment appears particularly interesting, as we are not aware of any
deep RL method capable of solving it quickly and reliably.

F Using the relu or tanh non-linearity

In this section, we explore the impact on performance of the type of non-linearities used in
the actor of cem-td3. Table 5 reports the results of cem-td3 using relu non-linearities
between the linear layers, instead of tanh.

(a) (b) (c)

(d) (e) (f)

Figure 9: Learning curves of cem-rl with tanh and relu as non-linearities in the ac-
tors, on the (a) half-cheetah-v2, (b) hopper-v2, (c) swimmer-v2, (d) ant-v2 and (e)
walker2d-v2 benchmarks. (f) shows the same of cem on the swimmer-v2 benchmark.

Figure 9 displays the learning performance of cem-td3 and cem on benchmarks, using
either the relu or the tanh nonlinearity in the actors. Results indicate that on some
benchmarks, changing from tanh to relu can cause a huge drop in performance. This
is particularly obvious in the ant-v2 benchmark, where the average performance drops
by 46%. Figure 9(f) shows that, for the cem algorithm on the swimmer-v2 benchmark,
using relu also causes a 60% performance drop. As previously reported in the literature
(Henderson et al., 2017), this study suggests that network architectures can have a large
impact on performance.

G Additional results on ant-v2

Figure 10 represents the learning performance of cem, td3, multi-actor td3, cem-ddpg
and cem-td3 on the ant-v2 benchmark. It is discussed in the main text.
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(a) (b)

Figure 10: Learning curves of cem-rl, cem and td3 on the swimmer-v2 and ant-v2
benchmarks.
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