
HAL Id: hal-03788980
https://hal.science/hal-03788980

Submitted on 27 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Practical unstructured splines: Algorithms, multi-patch
spline spaces, and some applications to numerical

analysis
Stefano Frambati, Hélène Barucq, Henri Calandra, Julien Diaz

To cite this version:
Stefano Frambati, Hélène Barucq, Henri Calandra, Julien Diaz. Practical unstructured splines: Algo-
rithms, multi-patch spline spaces, and some applications to numerical analysis. Journal of Computa-
tional Physics, 2022, 471, pp.111625. �10.1016/j.jcp.2022.111625�. �hal-03788980�

https://hal.science/hal-03788980
https://hal.archives-ouvertes.fr

Practical unstructured splines: algorithms, multi-patch spline

spaces, and some applications to numerical analysis

Stefano Frambati∗1, Hélène Barucq1, Henri Calandra1, and Julien Diaz1

1Makutu, Inria, TotalEnergies, Universite de Pau et des Pays de l’Adour, CNRS,
Avenue de l’Université, F64000 Pau

Abstract

In this work, we show how some recent advances on simplex spline spaces can be used to construct a
polynomial-reproducing space of unstructured splines on multi-patch domains of arbitrary shape and
topology. The traces of these functions on the subdomain boundaries reproduce the usual traces of
standard polynomial bases used in discontinuous Galerkin (DG) approximations, allowing to borrow
many theoretical and practical tools from these methods. Concurrently, we recast some theoretical re-
sults on the construction and evaluation of spaces of simplex splines into an explicit, algorithmic form.
Together, these efforts allow to formulate a practical, efficient and fully unstructured multi-patch discon-
tinuous Galerkin - isogeometric analysis (DG-IGA) scheme that bridges the gap between some current
multi-patch isogeometric analysis (IGA) approaches and the more traditional mesh-based interior penalty
discontinuous Galerkin (IPDG) method. We briefly discuss the advantages of this unified framework for
time-explicit hyperbolic problems, and we present some interesting numerical examples using the acoustic
wave equation.

1 Introduction

Standard finite element (FE) analysis for the numerical solution of partial differential equations (PDEs)
is usually formulated over a domain Ω ⊂ Rd by introducing an underlying geometric subdivision (a mesh)
of Ω, a set of polynomial basis functions over each mesh element, and using suitable linear combinations
to impose a strong global C0 regularity over Ω. From here, over time, two seemingly opposing tendencies
have arisen.

In discontinuous Galerkin (DG) schemes, continuity is not imposed strongly, making the solution
discontinuous on mesh faces. Instead, weak continuity is restored via the imposition of numerical fluxes
and penalty terms between elements. This fully unstructured approach offers a great deal of flexibility
and combines a good modelization of complex geometries with local h (mesh size), k (polynomial degree)
and even t (timestep)-adaptivity, which is especially appreciated in the physical sciences (see e.g. [1] for
a recent application). In the case of time-explicit discretization schemes, the block-diagonal nature of the
mass matrix also allows to use efficient explicit time discretization schemes. As the degree k of the basis
increases, the Courant-Friedrichs-Lewy (CFL) restriction on the timestep scales like O(h/k2), where h is
the spatial discretization step [2].

Going in a seemingly opposite direction, isogeometric analysis (IGA) [3, 4] replaces the standard
FE basis by B-splines, i.e., piecewise-polynomial functions of degree k with increased regularity, up to
order Ck−1. Since these functions (and their rational counterparts, Non-Uniform Rational B-Splines or
NURBS) are routinely used in engineering to represent the (exact) geometry of mechanical pieces, IGA

∗Corresponding author: stefano.frambati@totalenergies.com

1

obviates the need to mesh the simulation domain before performing analysis, eliminating the associated
potential discrepancy as a source of error. Moreover, IGA has been proven to possess superior numerical
properties, including a CFL condition timestep for wave propagation that scales like O(h/k) [5].

Aiming at bridging the chasm between these two worlds, some recent approaches have focused on
formulating independent IGA schemes over multiple B-spline patches, which are then coupled through
the introduction of DG-like fluxes and penalties. These attempts, which are often named multi-patch DG-
IGA schemes, have proven fruitful, with a recent work [5] highlighting how its application to time-domain
wave propagation allows to retain the parallelization potential of DG (and its associated block-diagonal
mass matrix) with the improved CFL condition typical of IGA.

However, the parameterization of IGA patches suitable for numerical analysis is far from a trivial
task, and even ensuring its injectivity requires a careful placement of control points (see, e.g., [6, 7]).
This problem is even more relevant in many applications to natural sciences, where the geometry of
discontinuities can be complex and have arbitrary topology, while pre-existing CAD models are lacking
or nonexistent. Recent advances in unstructured spline theory [8] have provided some clarity on the
construction of spaces of simplex (unstructured) spline functions, and the technology seems ripe for a
fully-formed numerical simulation scheme based on these functions.

In this work, we present a simple but highly flexible approach to this goal, which reproduces the
features of multi-patch DG-IGA approaches but relies on unstructured multivariate splines. The corre-
sponding IGA patches can have arbitrary topology, and are built starting from a simple set of points,
without further structure, simplifying considerably their use in inverse problems. Moreover, our basis
functions reproduce the usual FE and DG bases as special cases, making it very easy to seamlessly couple
all three numerical schemes in a single simulation.

In Section 2 we give an introduction to the main properties of simplex splines and their polynomial-
reproducing spaces that we use in this work. In Section 3, we recast some theoretical results of [8] into
an explicit form, allowing to formulate some algorithms for the construction of spline spaces and the
evaluation of all spline functions supported at a point. In Section 4, we refine this result to allow the defi-
nition of spline spaces over a set of subdomains of arbitrary shape, and we show that the spline functions
with nonzero trace on subdomain boundaries have an especially simple form. Finally, in Section 5 we
show how these spaces can be exploited to formulate a fully unstructured multi-patch DG-IGA scheme
with promising numerical properties for time-explicit formulations, which we apply to the propagation
of acoustic waves. We present a few numerical results in Section 6, before drawing some conclusions and
discussing some avenues for improvement in Section 7.

2 Background

We recall in this section the basic properties of simplex splines and the associated polynomial-reproducing
spaces that we will use of in the rest of this work.

2.1 Simplex spline functions

Simplex spline functions were first introduced by Curry and Schoenberg [9]. Let us select a vector of n
points in Rd, A := (a1, . . . , an), possibly with repetitions. Given a set Q of k + d + 1 indices between 1
and n, the normalized multivariate spline function M(x | Q) can be defined for x ∈ Rd via the following
recurrence formula, first derived by Micchelli [10],

M(x | Q) :=


1

vol(σQ)
1σQ

(x) if |Q| = d+ 1,

k + d

k

∑
b∈B

λb(x)M(x | Q \ {b}) otherwise.

(2.1a)

(2.1b)

Here, σQ := conv({aq}q∈Q) indicates the d-dimensional simplex having as vertices the points indexed by
Q, 1σQ

(x) is the indicator function of σQ, whose value is one if x ∈ σQ and zero otherwise, B is any subset

2

B ⊆ Q of size d+ 1 such that the simplex σB := conv((ab)b∈B) satisfies vol(σB) > 0, and {λb(x)}b∈B are
the barycentric coordinates of x with respect to each of the vertices of σB .

If the affine rank of the points indexed by Q is less than d + 1, the spline function is zero almost
everywhere. Else, M(x | Q) is a multivariate piecewise-polynomial function of x ∈ Rd with maximum
degree k, regularity Ck−1 if all sub-vectors of d+ 1 points of (aq)q∈Q are affinely independent, and with
locally lower regularity otherwise. It is well-known that the superposition integral of a continuous function
f(x) : Rd 7→ R with a spline M(x | Q) can be expressed directly as the following Dirichlet average [11,
12], ∫

Rd

f(x)M(x | Q) dx =
1

(k + d)!

∫
Σk+d

f

∑
q∈Q

λqaq

 (dλq)q∈Q, (2.2)

where Σk+d ⊂ Rk+d is a (k + d)-dimensional simplex spanned by the barycentric coordinates (λq)q∈Q
satisfying 0 ≤ λq ≤ 1 and

∑
q∈Q λq = 1.

We will make use of two additional expressions, also derived in [10]. The first one is the derivative
formula for a simplex spline function, which determines the first derivatives of a degree-k spline in terms
of d+ 1 simplex splines of degree k − 1,

(∇M(x | Q))i = (k + d)
∑
b∈B

νi,bM(x | Q \ {b}). (2.3)

Here, for each i = 1, . . . , d, (νi,b)b∈B are the (vector) barycentric coordinates of the i-th unit direction
with respect to σB , i.e., (d + 1) real numbers such that

∑
b∈B νi,b(ab)j = 1 if i = j and 0 if i 6= j, and

satisfying
∑
b∈B νi,b = 0. Another expression that we use in this work is the knot insertion formula. If

|Q| ≥ d+ 2 (i.e., if k ≥ 1), we can select another index c ∈ Q \B. We then have

M(x | Q \ {c}) =
∑
b∈B

λb(ac)M(x | Q \ {b}), (2.4)

where again λb(ac) represents the usual barycentric coordinate of ac with respect to the vertex ab in
the simplex σB . Notice that (2.4) relates splines of the same degree k − 1. We show a few multivariate
simplex splines in Figure 1.

Figure 1: Three examples of bi-variate simplex splines of degree k = 2, built on k+ d+ 1 = 5 points. As
the points become collinear, the regularity of the spline function decreases.

2.2 Polynomial-reproducing spaces of simplex spline functions

Polynomial-reproducing spaces, i.e., spaces of functions containing all the polynomials up to a given
degree k in their linear span, are essential for numerical schemes based on the Galerkin formulation. In
[13], Neamtu showed that polynomial-reproducing simplex spline spaces can be built using higher-order
Delaunay triangulations over the point configuration A. Limited to the case of two dimensions, and under
the condition that all sub-vectors of d+ 1 points of A are affinely independent, Liu and Snoeyink [14, 15]
have also provided an explicit and practical construction algorithm for these spaces.

Recently, these results were generalized in [8], where some combinatorial objects known as zono-
topal tilings are employed to overcome both the complexities associated to higher dimensions and the

3

geometrical degeneracy of affinely dependent point configurations. When restricted to Delaunay trian-
gulations (equivalently, to regular fine zonotopal tilings), the results of [8] provide enough material to
create some explicit algorithms for the construction of spline spaces and the evaluation of the simplex
splines supported on a given location. These algorithms are the object of the next section.

Let A = (a1, . . . , an) be, as above, a point configuration in Rd, possibly including some repeated
points, and let h := (h1, . . . , hn) ∈ Rn be any height vector over A, associating to the index i the height
value hi. Let B = {b1, . . . , bd+1} be a set of d + 1 indices between 1 and n, select another index i 6∈ B,
1 ≤ i ≤ n and consider the following expressions,

S(b1, . . . , bd+1) := sign

∣∣∣∣∣∣∣
ab1 1
...

...
abd+1

1

∣∣∣∣∣∣∣ , D(b1, . . . , bd+1, i) := sign

∣∣∣∣∣∣∣∣∣
ab1 hb1 1
...

...
...

abd+1
hbd+1

1
ai hi 1

∣∣∣∣∣∣∣∣∣ · S(b1, . . . , bd+1), (2.5)

where
∣∣ · ∣∣ denotes the determinant, sign(x) := +1 or −1 if x > 0 or x < 0, respectively, and

sign(0) := 0. We call a set of indices B such that the points {ab1 , . . . , abd+1
} are affinely indepen-

dent (i.e., S(b1, . . . , bd+1) 6= 0) an affinely independent set. Notice that D(b1, . . . , bd+1, i) does not
depend on the order of the indices in B, and thus we will often use the shorthand D(B, i). We adopt the
following standard definitions.

Definition 2.1 (Weighted Delaunay condition). A simplex σB , whose vertices are indexed by the affinely
independent set B = {b1, . . . , bd+1}, satisfies the weighted Delaunay condition if D(B, i) < 0 whenever
i 6∈ B.

Definition 2.2 (Generic height vector). A height vector h is called generic if D(B, i) 6= 0 for every
choice of affinely independent set B = {b1, . . . , bd+1} and every choice of index i 6∈ B.

Definition 2.2 is equivalent to [8, Definition 3.2]. If h is generic, then the simplices σB satisfying the
weighted Delaunay condition form a triangulation of conv(A), the weighted Delaunay triangulation of A.
If there is no set of d+ 1 points in A that are co-planar, and no set of d+ 2 points that are co-spherical,
then the choice hi = ‖ai‖2 yields the usual Delaunay triangulation of A (see, e.g., [16]). The above
formulation is however valid for all point sets, including the case of repeated points in A.

Many algorithms and tools exist to compute the (weighted) Delaunay triangulation of a set of points,
especially in two and three dimensions. In this work, we assume that a routine is available to compute
the weighted Delaunay triangulation a set of points without repetitions, given a generic height vector h
(see, e.g., [17]). However, since repeated points in A play a crucial role in our formulation, we need the
following additional definition of a fine-grained height vector.

Definition 2.3 (Fine-grained height vector). A height vector h is called fine-grained if, for every affinely
independent set B = {b1, . . . , bd+1}, and any index j 6∈ B, either aj = ab for some b ∈ B, or D(B, i) has
the same sign for all indices i such that ai = aj .

In other words, with a fine-grained height vector, repeated points in A have very close height values,
so much so that the corresponding signs in (2.5) can only be distinguished by independent sets B that
use one of the copies. In practice, this property is easy to achieve using symbolic perturbation, as shown
in the following proposition.

Proposition 2.4. Let U be the set indexing the first appearance of each point in A, and let h be a generic
height vector over the (unique) points of A indexed by U . Let ε be a real number smaller than the smallest
positive difference between these height values. For each repeated point of A, indexed by i 6∈ U and such
that ai = au for some u ∈ U , define h(ai) := h(au) + (i− u)/ |A| ε. Then, the resulting height vector on
A is both generic and fine-grained.

Proof. The definition of h is equivalent to the application of the following perturbation rule whenever
ai = aj ,

sign(hi − hj) = sign(i− j), (2.6)

4

with the understanding that, for any index k such that ak 6= ai, we have sign(hj − hk) = sign(hi − hk).
This shows that h is fine-grained. Let now B be an affinely independent set of indices. If a point ai
indexed by i 6∈ B coincides with a point ab for some b ∈ B, then one can subtract the row containing ab
from the last row in the first determinant defining D(B, i) in (2.5), obtaining a row of zeros except for the
(d+ 2)-th column, whose value is simply hi − hb. Expanding the determinant in this row and exploiting
(2.6), as well as the fact that B is an affinely independent index set, shows that the determinant cannot
be zero, and thus that h is generic.

In practical terms, the height vector of Proposition 2.4 can simply be obtained by assigning the same
height value to all the copies of a point in A, and comparing the point indices instead of the height values
when the comparison is performed on two coincident points. Given (2.6), the expression (2.5) for D(B, i)
simplifies significantly in the case of repeated points,

D(b1, . . . , bd+1, i) = sign(bj − i) when ai = abj for some 1 ≤ j ≤ d+ 1.

In the following, we always assume that the height vector h is both generic and fine-grained.
Given a generic height vector h, the polynomial-reproducing simplex splines spaces of degree k, asso-

ciated to order-k Delaunay configurations [8, 13–15], can be easily characterized as follows,

S(k) := {M(· | I tB) : |I| = k,D(B, i) > 0 (respectively, < 0) if and only if i ∈ I (resp. i 6∈ I tB)},
(2.7)

where we denote by t the disjoint union of two sets, i.e., the union of sets with empty intersection. In
the following, we refer I as the set of interior knots of M , and to B as the set of boundary knots of M .

3 Algorithms for simplex spline spaces

In this section, we review some theoretical results of [8] in order to formulate a set of explicit, comprehen-
sive algorithms for the construction and evaluation of a space of polynomial-reproducing simplex splines
over conv(A).

3.1 Simplex spline space construction

A first algorithm to construct a polynomial-reproducing simplex spline space over conv(A), valid in the
case d = 2 and without repeated or affinely independent points, was provided by Liu and Snoeyink [14,
15] and proved to be valid at all degrees k by Schmitt [18]. This approach relies on the construction and
subsequent triangulation, without added points, of a series of two-dimensional (non-convex) polygonal
regions, called vertex links. For d ≥ 3, however, there exist polytopal regions that cannot be triangulated
in this sense, such as for example Schönhardt’s polyhedron [19], hindering the extension of this approach
to dimension 3 and above.

This result is extended in [8], where it is proved that, if the same weighted Delaunay triangulation is
used at every step, and subject to a slight redefinition of vertex links [8, Definition 2.7], the triangulability
of every link region is guaranteed, and the algorithm can be used successfully for all space dimensions,
all spline degrees, and all point configurations. Furthermore, if the vertices located on the boundary of
conv(A) are repeated at least k + 1 in A, the resulting simplex spline space reproduces all polynomials
over conv(A) [8, Corollary 2.4], similarly to the behavior of clamped (or open) knot sets in standard
B-spline bases.

We extract from these results a simple, practical algorithm for the construction of a polynomial-
reproducing spline space S(r), for r = 0, . . . , k, over any point configuration A, which we present in
Algorithm 1. We apply here a few additional requirements to the process of [8, Theorem 2.10] and [8,
Theorem 3.3]. In particular, we assume that all the points lying on conv(A) are repeated k+1 times in A,
so that polynomials are reproduced on the whole convex hull conv(A), and furthermore we assume that
repeated points appear consecutively in A, in order to simplify our point indexing conventions. Finally,
we apply the perturbation rule (2.6). Since standard Delaunay triangulation algorithms do not always
allow symbolically-perturbed height vectors, we explicitly introduce this feature in the algorithm, and
only rely on (weighted) Delaunay triangulations of sets of unique points.

5

Algorithm 1 builds polynomial-reproducing simplex spline spaces of degree up to k over a point con-
figuration.

Input:
A any point configuration in Rd;
h a generic height vector;
k maximum spline space degree to be computed.

Output:
S(r) set of simplex spline functions spanning the polynomial-reproducing space of degree r for all
0 ≤ r ≤ k.

Assumptions: Points lying on the boundary of conv(A) are repeated at least k + 1 times in A. All the
copies of a given point are consecutive in A.

Auxilary procedures: Delaunay(P , h) computes the weighted Delaunay triangulation of the points
P with height vector h, Mult(a, A) returns the number of points in A that are equal to a, FirstIn-
dex(a, A) returns the index in A of the first copy of a in A.

1: procedure BuildSplineSpace(A, h, k)
2: S(r) ← ∅, Qr ← ∅, for r = 0, . . . , k.
3: D ←Delaunay(unique points in A, h)
4: for all simplices σ in D do
5: B ← {FirstIndex(a, A): a vertex of σ}
6: Add M(· | ∅ tB) to S0

7: for all unique point a in A do
8: Add {FirstIndex(a, A)}, i.e., the singleton set containing just FirstIndex(a, A), to Q1.

9: for r = 1, . . . , k do
10: for all sets of indices Q ∈ Qr do
11: M0 ← {M(· | ∅ tB) ∈ S0 : B ∩Q 6= ∅}
12: R0 ← geometric union of all simplices σB associated to splines M(· | ∅ tB) ∈M0

13: M1 ← {M(· | I tB) ∈ S(q) : 1 ≤ q < r, I ⊂ Q,B ∩Q = ∅}
14: R1 ← geometric union of all simplices σB associated to splines M(· | I tB) ∈M1

15: RQ ← geometric difference R0 \ R1

16: if RQ is not empty then
17: P0 ← points on the boundary of RQ
18: P ← P0 t {ai : i ∈ Q, Mult(ai, A)>Mult(ai, (aq)q∈Q)}
19: DQ ←Delaunay(unique points in P , h)
20: for all simplices σ ∈ DQ lying inside RQ do
21: B ← {FirstIndex(a, A)+Mult(a, (aq)q∈Q): a vertex of σ}
22: Add M(· | Q tB) to S(r)

23: for all index b ∈ B do add Q t {b} to Qr+1 if not already present

24: return {S(0), . . . ,S(k)}.

Notice that, in Algorithm 1, the calculation of the region RQ associated to a set of indices Q only
involves simplices located near the points (aq)q∈Q, although the number of such simplices increases with
the degree of the space. Also, notice that, as for Liu and Snoeyink’s original approach, Algorithm 1 needs
to perform an initial Delaunay triangulation over all (unique) points in A, followed by the triangulation
of each region RQ. The number of these triangulations is bounded by the total number of spline functions
in the result. Even though the computation of Delaunay triangulations over n points has a worst-case
complexity of O(n2), aside from the first triangulation of A, all other triangulations only involve a very
limited number of points.

Notice also that each spline M(· | I tB) produced by the algorithm, for all degrees 1 ≤ r ≤ k,
satisfies the weighted Delaunay condition (2.7), i.e., D(B, i) < 0 for all i 6∈ I tB and D(B, i) > 0 for all
i ∈ I, even when ai = ab for some i ∈ I and b ∈ B. This is due to the symbolic perturbation rule (2.6),
which is implicitly enforced by the indexing rules chosen in Algorithm 1.

Finally, notice that, in addition to points on conv(A), nothing prevents repeating some internal points

6

of A as well, with the consequence of locally reducing the regularity of the spline space. We exploit this
property in Section 4 to show an interesting special case of this construction. In all cases, when d = 1 and
h is the usual choice for Delaunay weights, i.e., hi := ‖ai‖2, Algorithm 1 reproduces the usual B-spline
basis [20] over the interval conv(A).

A graphical depiction of the Algorithm 1 is given in Figure 2. In the figure, we construct some spline
functions over a set of points A in two dimensions, using the standard Delaunay height vector hi := ‖ai‖2.
The point a1 is only represented once in A, while the two points a2 and a3 are coincident. Panel (a)
shows the triangles of the Delaunay triangulation of A, corresponding to splines of degree k = 0 via (2.1b).
When constructing the splines of degree k = 1, one has to compute the spline functions associated to
the point a1 (Q = {1} in Algorithm 1). The corresponding region R0 consists of the union of all the
triangles touching {a1}, and is shown in panel (b). Notice that, in this case, R1 = ∅. Triangulating the
region R{1} = R0 \R1 = R0, as shown in panel (c), yields three triangles. Each of these is associated to
a piecewise-linear spline, defined, via (2.1a) and (2.1b), by the union of the three vertices of the triangle
with the point a1. Each of these splines is added to S(1). Notice that, for the repeated vertex a := a2 = a3,
one chooses to include the vertex indexed by FirstIndex(a,A)+Mult(a, {a1}) = 2 + 0 = 2, i.e., a2.
For each triangle vertex b, the candidate set Q = {a1, b} is added to Q2, and is later used to construct
splines of degree 2.

When evaluating the spline functions associated to the point a2 (Q = {2}), one can easily take into
account the fact that a2 is repeated twice in A. Algorithm 1 prescribes in this case that the region R0,
shown in panel (d), must be triangulated including a2 as a vertex, as shown in panel (e). The ambiguity on
the indexing of a := a2 = a3 is once again resolved, since FirstIndex(a,A)+Mult(a, {a2}) = 2 + 1 = 3,
and therefore the index 2 is never used more than once.

The candidate set Q = {a1, a2} produced in panel (c) must be processed when constructing the
spline functions of degree k = 2. The corresponding regions R0 and R1 are shown in panels (f) and (g),
respectively. Triangulating R0 \R1 yields two triangles, as shown in panel (h), each yielding a quadratic
spline defined by the union of its three vertices and the points a1 and a2. Ambiguities on repeated points
are resolved by Algorithm 1, analogously as the previous case.

a1

a2, a3

(a)

a1

R0

(b)

a1

(c)

a2, a3

R0

(d)

a2, a3

(e)

a1

a2, a3

R0

(f)

a1

a2, a3
R1

(g)

a1

a2, a3

(h)

Figure 2: A set of points in two dimensions and a graphical depiction of some steps of Algorithm 1.
Notice that a2 = a3. The description of these steps is given at the end of Section 3.1. (a) Delaunay
triangles, representing splines of degree k = 0. (b) The region R0 corresponding to Q = {1}, and its
triangulation (c). The corresponding region (d), and its triangulation (e) in the case of a repeated point,
Q = {2}. (f) The region R0, the region R1 (g) and the triangulation of R{a1,a2} = R0 \R1 (h), yielding
the splines of degree k = 2, corresponding to Q = {a1, a2}.

7

3.2 Simplex spline evaluation

One of the best practical aspects of the usual one-dimensional B-spline basis is the availability of an
efficient algorithm capable of computing the value of all the spline functions in the basis supported at a
given point x ∈ R, optimally reusing intermediate results [20, Chapter X, Algorithm 8]. For this task,
limited to d = 1, only the spline functions S(r), r = 0, . . . , k − 1 computed in Algorithm 1 are needed.
When d > 1, these functions are only sufficient to determine which spline functions of S(k) are nonzero
on x ∈ Rd, following [8, Proposition 3.7], but the evaluation of these splines at a given x ∈ Rd requires
the introduction of auxiliary functions.

In practical applications, determining which functions are supported at a point can be performed
efficiently using suitable bounding volume hierarchies (BVH, see, e.g., [21]). Thus, we do not focus on
this task here. Instead, we reformulate in algorithmic form a combinatorial strategy presented in [8,
Section 3.3] which can be used to construct a suitable set of auxiliary functions for the evaluation of all
spline functions in S(k), and their first derivatives, at a given location x ∈ Rd. This can be achieved via
the following steps.

First, one builds and stores a base oriented evaluation graph G, whose vertices contain all the splines
in S(k) as well as a set of auxiliary spline functions, and where each spline M(· | I tB) of degree k ≥ 1
has at most 2(d+ 1) incoming edges, two for each b ∈ B.

a1

a2

a3

a4

a5

(a)

l1

b

l2

i

j

T1

(b)

l1

b

l2

i

j

T2

(c)

l1

b

l2

i

j

T3

(d)

b

l1

l2

i

j

T1

(e)

b

l1

l2

i

j

T2

(f)

b

l1

l2

i

j

T3

(g)

Figure 3: Some steps in the construction of some auxiliary functions for a spline of degree k = 2 in two
dimensions via Algorithm 2. The spline is described by the five points {a1, . . . , a5} (a), and some auxiliary
functions obtained by removing the vertex a2 and a1 are shown in panels (b–d) and (e–g), respectvely.
A description of these steps is given in Section 3.2.

Once this structure has been computed, given a location x ∈ Rd, one selects a suitable subgraph Gx
of G containing no cycles, i.e., a directed acyclic graph (DAG). The splines of degree 0 have no incoming
vertices in Gx, and therefore can be used as starting points for the evaluation process. Using an efficient
search structure, such as for example an R?-tree [21, 22] the splines of degree 0 supported at x are
determined, and evaluated directly via (2.1a). All other degree zero splines are given a value of 0. The
corresponding nodes in Gx are marked as visited. Then, one iteratively follows the topological ordering
of Gx, using for example Kahn’s algorithm [23], until all the reachable nodes have been visited.

At each node, one can evaluate the corresponding spline function M(· | I tB) of degree k ≥ 1 once
all its incoming edges have been visited. In particular, each visited edge can be used to compute one of
the d+ 1 values M(x | I tB \ {b}), b ∈ B. After all the incoming contributions have been evaluated, one
can use (2.1b) to evaluate M(x | I tB) itself, and (2.3) to evaluate its first derivatives, after which the
corresponding node in Gx is marked as visited, and the process continues until all the active edges have
been visited. The unevaluated spline functions are given a value of zero.

8

Algorithm 2 builds the auxiliary functions and base oriented evaluation graph.

Input:
A generic point configuration, as in Algorithm 1;
h a generic height vector.

Output:
G the base evaluation graph

Auxilary procedures: Push(Q, M) inserts M at the end of the queue Q, Pop(Q) removes and returns
the element at the end of the queue Q.

1: procedure BuildAuxFunctions(A, h, S(k))
2: G ← ∅, Q ← ∅
3: for all M(· | I tB) ∈ S(k) do
4: if M(· | I tB) is not a vertex of G then
5: Add M(· | I tB) as a vertex of G
6: Push(Q, M(· | I tB))
7: while Q is not empty do
8: M(· | I tB)←Pop(Q)
9: for all b ∈ B do

10: L← B \ {b}, and choose a fixed ordering L = (l1, . . . , ld)
11: C0 ← {(l1, . . . , ld, i) : i ∈ I} t {(l1, . . . , ld, b)}
12: C1 ← {C ∈ C0 : vol(σC) > 0}
13: Sort C1 using the total order defined by the following rule,

(l1, . . . , ld, i) < (l1, . . . , ld, j)⇔ D(l1, . . . , ld, i, j) · S(l1, . . . , ld, j) < 0. (3.1)

14: N ← elements immediately before and immediately after (l1, . . . , ld, b) in C1, if any
15: for B′ ∈ N do . Note: N may contain two, one or zero elements.
16: if D(B′, b) > 0 then
17: X ← I tB
18: else
19: X ← (I tB) \ {b}
20: I ′ ← X \B′
21: if M(· | I ′ tB′) is not a vertex of G then
22: Add M(· | I ′ tB′) as a vertex of G
23: Push(Q, M(· | I ′ tB′))
24: Add an edge from M(· | I ′ tB′) to M(· | I tB) in G
25: return G

For each spline M(x | I tB) and each index b ∈ B, the corresponding incoming edge in Gx connects
M(x | I tB) to another spline M(x | I ′ tB′) satisfying |B ∩B′| = d and either I ′ tB′ = I tB \ {b} or
I ′ tB′ = I tB. In the first case, the knowledge of M(x | I ′ tB′) yields directly M(x | I tB \ {b}). In
the second case, the values of M(x | I ′ tB′) = M(x | I tB) and M(x | I ′ tB′ \ {b′}) for all b′ ∈ B′ are
known, since the corresponding node in Gx has already been visited. These values can then be used to
compute M(x | I tB \ {b}) = M(x | I ′ tB′ \ {b}) through a single application of (2.4). If no incoming
edge is present in Gx for some b ∈ B, then the corresponding value of M(x | I tB \ {b}) is simply set to
zero.

We give in Algorithm 2 a step-by-step construction of the base graph G, and we illustrate in Figure 3
some steps of the construction of auxiliary functions for a two-dimensional spline M1 := M(· | I tB) of
degree k = 2 defined over the five points {a1, . . . , a5}, depicted in panel (a). The boundary and interior
knot indices are, respectively, B = {1, 2, 3} and I = {4, 5}. Algorithm 2 prescribes that one of the points
indexed by b ∈ B is selected. Let us select b = 2, and let us denote the other indices in B by l1 and l2,
respectively, and the indices in I by i and j. The simplices T1, T2 and T3, defined by points indexed by
{l1, l2, i}, {l1, l2, j} and {l1, l2, b} respectively, are shown in panels (b), (c) and (d).

9

Algorithm 3 evaluates all the spline functions supported at a given location x.

Input:
A generic point configuration, as in Algorithm 1;
x a generic point in Rd;
G the base evaluation graph computed by Algorithm 2.

Output: The values of M(x | I tB) and M(x | I tB \ {b}), b ∈ B, for all splines M(· | I tB) ∈ S(k)

Auxilary procedures: FindSupported(x, G, A) returns the splines M(· | ∅ tB) of degree 0 in G
such that x ∈ σB ; Push and Pop defined as in Algorithm 2.

1: procedure EvaluateSplineFunctions(A, h, x, G)
2: Q ← ∅, Gx ← ∅ . Determine the active edges, building the acyclic graph Gx.
3: Z ←FindSupported(x, G)
4: for M(· | ∅ tB) ∈ Z do Push(Q, M(· | ∅ tB))

5: while Q is not empty do
6: M(· | I tB)←Pop(Q)
7: add M(· | I tB) as a vertex in Gx
8: for all M(· | I ′ tB′) such that there is an edge e from M(· | I tB) to M(· | I ′ tB′) in G

do
9: L← B ∩B′

10: {b′} ← B′ \ L
11: if x and ab′ are on the same side of conv((al)l∈L) then
12: add edge e to Gx
13: if M(· | I ′ tB′) is not a vertex in Gx then Push(Q, M(· | I ′ tB′))
14: Evaluate M(x | ∅ tB) for all splines in Z via (2.1a)
15: for M(· | ∅ tB) ∈ Z do Push(Q, M(· | ∅ tB))

16: while Q is not empty do . Follow the topological ordering of Gx to evaluate splines.
17: M(· | I tB)←Pop(Q)
18: for all M(· | I ′ tB′) such that there is an edge e from M(· | I tB) to M(· | I ′ tB′) in Gx

do
19: {b′} ← B′ \B
20: if (I tB) ⊂ (I ′ tB′) then
21: M(x | I ′ tB′ \ {b′})←M(x | I tB)
22: else if I tB = I ′ tB′ then
23: compute M(x | I ′ tB′ \ {b′}) via (2.4), using M(x | I tB) and M(x | I tB \ {b}),

b ∈ B
24: mark the edge e as visited
25: if M(· | I ′ tB′) has no more unvisited incoming edges then
26: compute M(· | I ′ tB′) via (2.1b)
27: Push(Q, M(· | I ′ tB′))
28: return the computed values of visited splines M(x | I tB) ∈ S(k), zero for all other spline

functions in S(k).

According to Algorithm 2, these three simplices must be sorted following the criterion (3.1), and the
simplices not directly adjacent to T3 must be discarded. In this case, one finds the ordering T1 < T2 < T3,
and thus only T2 is kept. For the standard Delaunay height vector, this can be determined visually using
circumscribed circles. In fact, both a4 and a5 lie inside the circle circumscribed to T3, a4 (but not a1)
lies inside the circle circumscribed to T2, and neither a5 nor a1 lie inside the circle circumscribed to T1.
This inclusion hierarchy yields the ordering of the triangles. After defining B′ := {l1, l2, j} = {1, 3, 5},
one can easily verify that D(B′, b) < 0. In fact, with the standard choice of Delaunay height vector, this
corresponds to the condition that b lies outside the circle circumscribed to T2, i.e., the standard Delaunay
condition. Thus, according to Algorithm 2, a new spline M2 = M(· | I ′ tB′) is created with boundary
and interior knots indexed by B′ and I ′ = (I t B \ {b}) \ B′ = {l1, l2, i, j}. Notice that M2 is of degree
k = 1. Both M1 and M2 are added to the graph G as vertices, if not already present, and an oriented

10

edge is added from M2 to M1.
The same procedure is then applied to another boundary knot vector of M1, as shown in panels (e),

(f) and (g). In this case, {b, l1, l2, i, j} = {1, 2, 3, 4, 5}, and three simplices T1, T2 and T3 are created
similarly to the previous case. Since the criterion (3.1) yields the ordering T1 < T3 < T2, both T1 and
T2 are kept. Given that D(2, 3, 4, 1) < 0 and D(2, 3, 5, 1) > 0, we must add to G the spline functions
M3 := M(· | I ′′ tB′′) and M4 := M(· | I ′′′ tB′′′) defined by B′′ = {2, 3, 4}, I ′′ = {5}, B′′′ = {2, 3, 5}
and I ′′′ = {1, 4}. Notice that M3 has degree k = 1, but M4 has degree k = 2. The corresponding
edges are added to G. The process of Algorithm 2 continues recursively, until splines of degree k = 0 are
reached, at which point the process stops.

We detail in Algorithm 3 the spline evaluation process, based on G, and we present an example of
its application in Figure 4. Here, we illustrate some steps in the evaluation of two spline functions of
degree k = 2 in two dimensions, defined over the sets of 5 knots shown in panel (a). The boundary and
interior knot indices (B, I) for the two splines are given by ({1, 2, 3}, {4, 5}) and ({2, 5, 6}, {1, 4}). Panel
(b) shows the splines of degree k = 0 (each corresponding to a triangle) produced by Algorithm 2, and
inserted into the base graph G, while the full base graph G itself is shown in panel (d). Here, each spline
function is identified by the couple (B, I) of boundary and interior knot indices, respectively. Empty
arrowheads represent connections between splines of the same degree, and filled arrowheads represent
connections between splines whose degrees differ by one.

When a point x ∈ R2 is selected, the evaluation via Algorithm 3 starts by choosing all the splines of
degree k = 0 in G that are supported at x, as shown in panel (c). The subgraph Gx of G built by the
first part of Algorithm 3 is shown in panel (e). Notice that Gx is indeed acyclic, and can therefore be
topologically sorted. Starting from the two splines of degree k = 0 supported at x, namely ({1, 2, 4},∅)
and ({1, 4, 5},∅), one is able to compute the values appearing on the right hand side of (2.1a), either
directly (full arrowheads) or applying 2.4 (empty arrowheads). When all incoming arrows have been
computed for a given spline, a simple application of (2.1b) yields the value of the spline itself at x. Notice
that in Gx each spline has at most (d+ 1) incoming edges. Splines of degree zero have none, since in this
case, N = ∅ in Algorithm 2. Notice also that, in general, the set of splines of degree zero produced by
Algorithm 2 does not form a triangulation, since the corresponding simplices may overlap.

Together, Algorithm 1, Algorithm 2 and Algorithm 3 allow to construct, given an arbitrary point
configuration A, a polynomial-reproducing spline space over conv(A), and to compute the numerical
value of all the spline functions that are nonzero at a given location x. In the following section, we will
discuss how one can construct a multi-patch spline space over a domain decomposition of Ω ⊆ conv(A).

4 Multi-patch spline spaces

In the previous section, we have reformulated algorithmically the processes described in [8] in order to
build and evaluate a polynomial-reproducing spline space over a general point configuration A of points
in Rd. In particular, if the points lying directly on the convex hull of A are repeated k + 1 times, then
the spline space of degree k reproduces all the polynomials up to degree k over the whole convex hull
conv(A), including therefore its boundary ∂(conv(A)). If the domain Ω is convex, introducing a point
cloud A such that Ω = conv(A) is therefore sufficient, and allows the imposition of boundary conditions
on Ω.

In this section, we wish to extend this construction to more general, non-convex multi-patch spline
spaces. To this end, we subdivide the (open) simulation domain Ω ⊂ Rd into a finite set of open nd
subdomains (Ωi)

nd
i=1, and we construct a set of compatible, polynomial-reproducing spline spaces over

each subdomain Ωi. In general, the subdomains are not assumed to have a particular shape, nor even
to be convex. In practical applications, we wish to be able to build complex domains whose shape
follows the irregularities of the problem geometry. We do not even assume that the domains are simply
connected, and we allow the presence of internal boundaries. However, we still assume that the domains
are polytopal (e.g., polyhedral in three dimensions and polygonal in two dimensions), and that they form

11

a1

a2

a3

a4

a5

a6
(a)

a1

a2

a3

a4

a5

a6
(b)

x
a1

a2

a3

a4

a5

a6
(c)

t2, 3, 5u, t1, 4u

t1, 2, 3u, t4, 5u

t2, 3, 4u, t5u t1, 3, 5u, t4ut1, 2, 5u, t4u

t2, 4, 5u,∅

t1, 4, 5u, t2u

t1, 2, 4u,∅t3, 4, 5u,∅ t1, 3, 4u,∅ t1, 4, 5u,∅

t2, 3, 5u, t4u

t1, 5, 6u, t4u

t2, 5, 6u, t1, 4u

t2, 4, 6u, t1u

t1, 2, 6u, t4, 5u

t1, 4, 6u,∅

t1, 2, 6u, t4u

t4, 5, 6u,∅

(d)

t2, 3, 5u, t1, 4u

t1, 2, 3u, t4, 5u

t2, 3, 4u, t5u t1, 3, 5u, t4ut1, 2, 5u, t4u

t2, 4, 5u,∅

t1, 4, 5u, t2u

t1, 2, 4u,∅t3, 4, 5u,∅ t1, 3, 4u,∅ t1, 4, 5u,∅

t2, 3, 5u, t4u

t1, 5, 6u, t4u

t2, 5, 6u, t1, 4u

t2, 4, 6u, t1u

t1, 2, 6u, t4, 5u

t1, 4, 6u,∅

t1, 2, 6u, t4u

t4, 5, 6u,∅

(e)

Figure 4: Evaluation process for two spline functions in two dimensions, according to Algorithm 3. (a)
The two sets of 5 knots defining the two splines of degree k = 2. (b) The splines of degree k = 0 (each
corresponding to a triangle) produced by Algorithm 2, and the corresponding full base graph G (d). (c)
The spline functions of degree k = 0 in G that are supported at a point x, and the given evaluation acyclic
graph Gx (e). In the graphs, a spline with boundary and interior knots indices B and I, respectively, is
represented by the ordered couple B, I. A description of these steps is given in Section 3.2.

12

a proper subdivision of Ω, i.e., denoting by · the closure of a set,

Ωi ∩ Ωj = ∅ for i 6= j,

nd⋃
i=1

Ωi = Ω.

We denote by F the set of all internal and external boundary facets of the compatible domains Ωi, i.e.,

F :=

nd⋃
i=1

{F : F ∈ ∂Ωi},

Given that we are not assuming that the domains Ωi are convex, the algorithms proposed in the last
section need some specialization, since one cannot simply introduce a point cloud in each domain and
build a spline space on its convex hull. We therefore introduce in this section the assumptions on the
domain boundaries and on the height vector that are required in order to produce a suitable space of
multi-patch splines.

4.1 Gabriel property

We wish to create polynomial-reproducing spline spaces that follow the constrained facets F delimiting
our subdomains. One potential roadblock lies with the fact that the construction Algorithm 1 is based on
successive weighted Delaunay triangulation steps. In order for the corresponding spline spaces to follow
the domain decomposition, the faces F ∈ F lying on the domain boundaries need to be included in the
triangulation. The issue of building a Delaunay triangulation that respects a given set of constraints
(constrained Delaunay triangulation, or CDT) is notoriously hard [24], and even determining whether a
domain is triangulable or not is in general NP-hard (non polynomial hardness, see, e.g., [25]). For this
reason, we shift this burden to a pre-processing step, and we require that a suitable point configuration
and a suitable height vector have been selected.

Let h be a generic height vector in the sense of Definition 2.2, and TA(h) be the associated weighted
Delaunay triangulation of conv(A) (Definition 2.1). We introduce the following weighted version of the
well-known Gabriel property of Delaunay facets, see, e.g. [26, 27].

Definition 4.1 (Gabriel property). Let C be a set of indices between 1 and n such that |C| = d and
the points (ac)c∈C are affinely independent. Suppose that there exists a point γ ∈ aff((ac)c∈C) (i.e.,
satisfying det((ac, 1)c∈C , (γ, 1)) = 0) such that

γ · (ai − ac)−
hi − hc

2
≤ 0, (4.1)

for all c ∈ C and for all i = 1, . . . , n, with equality if and only if i ∈ C. Then the facet conv((ac)c∈C) is
said to have the Gabriel property.

Gabriel facets are useful because they are automatically included in the weighted Delaunay trian-
gulation. To see this, let N be a normal to the facet σC := conv((ac)c∈C), and let ε be the real
number of smallest absolute value for which (γ + εN) · (ab − ac) − (hb − hc)/2 = 0 for some b 6∈ C.
Since N is normal to σC , ab must be affinely independent from the points (ac)c∈C . The coordinates
of γ′ := γ + εN can be then computed explicitly by solving the d linearly independent equations
(ai − ac) · γ′ = (hi − hc)/2 for i ∈ B := C t {b}. It is then easy to check, comparing with (2.5),
that sign(γ′ · (ai− ab)− (hi−hb)/2) = D(B, i) for all i = 1, . . . , n and b ∈ B. Recalling that h is generic,
this implies that σB (and therefore its facet σC) appears in the corresponding weighted Delaunay trian-
gulation.

Given an arbitrary facet σC , one can find a candidate point γ by choosing an index c ∈ C and finding a
solution to the d linearly independent equations det((ac, 1)c∈C , (γ, 1)) = 0 and γ ·(ai−ac) = (hi−hc)/2 for
i ∈ C, i 6= c. The point γ represents a generalization of the center of the diametrical sphere circumscribed
to σC . If γ satisfies (4.1), then the facet is already Gabriel, else one may proceed to subdivide σC by
selecting some barycentric coordinates λC on σC and introducing a new point e =

∑
c∈C λcac into A,

13

and a corresponding height value he <
∑
c∈C λchc. The sublinearity of the height value then makes it

more likely that the Gabriel condition (4.1) is satisfied. The subdivision process can be further iterated if
needed, until all the required facets are Gabriel. In the case of the standard Delaunay triangulation, this
process is known as making the triangulation conforming Gabriel, see, e.g., [28, 29] and Figure 5. We do
not describe here how one can most efficiently refine the constrained facets so that they are conforming
Gabriel, and we assume instead that this pre-processing step has already been performed.

a2

a1

a3

a2

a1

a3

a2

a1

a3

a1 a2

a1

a3

a1

Figure 5: Example of Gabriel facets in two dimensions for the standard Delaunay height vector. (Left)
the facet a2a3 is Gabriel, since its diametral sphere is empty, but the facet a1a2 is not, and therefore
it does not appear in the Delaunay triangulation (center left). (Center right) The Gabriel property can
however be restored by refining the facet a1a2, introducing the additional point a′. The facet a1a2 is
then guaranteed to be represented in the modified Delaunay triangulation (right).

After making sure that all the constrained facets F ∈ F are Gabriel, one still has to make sure that
they are included not only in the order-zero Delaunay triangulation of A, but also in all the iterated
triangulations that are required for the construction of splines of degrees 1 ≥ r ≤ k in Algorithm 1. We
show in the following subsections that repeating all the points belonging to constrained facets k+1 times
in A is sufficient, provided that the height vector h is fine-grained (Definition 2.3).

Notice that the notion of a fine-grained height vector is compatible with the Gabriel property in the
presence of repeated points. In fact, in the definition of a Gabriel facet, one can use for each vertex the
copy that has the lowest index in A. Then, (4.1) is satisfied automatically for any point coincident with
a facet vertex, thanks to (2.6).

4.2 Domain decomposition of spline spaces

We now prove that, if the properties discussed in the preceding section are satisfied, the spline space built
via Algorithm 1 can indeed be used to create a spline space on each subdomain Ωi ⊆ Ω.

First, we prove a proposition characterizing the behavior of these spline spaces near the constrained
facets F ∈ F , i.e., near the boundary of Ω and the interfaces between subdomains. In the following,(
a
b

)
:= a!/(b!(a− b)!) always denotes the binomial coefficient.

Proposition 4.2. Let h be a generic, fine-grained height vector, and let F be a Gabriel facet, arbitrarily
oriented, whose vertices are repeated at least k + 1 times in A. If there are at least k + 1 points in A
on a given side of F , then there are exactly

(
k+d
k

)
spline functions M(x | I tB) of degree k such that

σB := conv((ab)b∈B) lies on that side of F and contains F as a facet.

Proof. By hypothesis, each of the d vertices of F is repeated at least k + 1 times in A. Choose one copy
for each vertex, and let C be the corresponding set of indices, with |C| = d. For each c ∈ C, define

Rc := {1 ≤ i ≤ n : ai = ac, hi < hc}, (4.2)

let RC :=
⊔
c∈C Rc and let k′ := |RC |. Notice that there are exactly

(
k+d
k

)
distinct ways to choose the

copies of vertices of F such that k′ ≤ k. For any such choice, we can complete the set RC to a set I ⊇ RC
with |I| = k as follows.

Since F is Gabriel, there exists a point γ ∈ Rd such that, for all c ∈ C, γ · (ai − ac) − (hi − hc)/2 is
zero if i ∈ C and negative if i 6∈ C. Pick an open halfspace of F and suppose that there are at least k+ 1
points of A (not necessarily distinct) lying in it. Denote by J the indices of the points of A in this open
halfspace, and let N be the normal of σC pointing towards this side. For each index j ∈ J , the expression

14

(γ + θN) · (aj − ac) − (hj − hc)/2 is linear in θ and negative for θ = 0, and since N · (aj − ac) > 0, it
must cross zero and become positive for some value θ = θj > 0. Since h is generic, all the values θj must
be distinct. Let

S := {j : (γ + θjN) · (aj − ac)− (hj − hc)/2 = 0 for all c ∈ C and some θj > 0}.

By hypothesis, S contains at least k + 1 elements. Sort the indices in S by increasing value of the
corresponding parameter θj , and let Sk−k′ contain the first k− k′ elements of S, and let b correspond to
its (k − k′ + 1)-th element.

Define B := Ct{b} and I := RCtSk−k′ , so that |I| = k. It is clear from (2.5), (4.2) and the definition
of Sk−k′ that D(B, i) < 0 for i 6∈ I t B and D(B, i) > 0 for i ∈ I. Thus, by (2.7), the simplex spline
M(x | I tB) is in S(k). We can build in this way

(
k+d
k

)
distinct simplex splines, whose simplices σB are

all incident on the same side of the facet F = σC .

Notice that, if the facet F has at least k + 1 points of A on each side, then Proposition 4.2 can be
applied to both sides of F . An example of the simplices of Proposition 4.2 is shown in Figure 6, top right.

Proposition 4.2 is a generalization of a property of the usual mesh-based discontinuous Galerkin
methods, where for every facet F in the mesh having a simplicial mesh element on its positive side, there
are exactly

(
k+d
k

)
linearly independent polynomials supported on the mesh element adjacent to F . We

show in the next subsection that this is not an accident.
Proposition 4.2 immediately allows to subdivide the spline functions in the global spline space over Ω

between the subdomains (Ωi)
nd
i=1.

Corollary 4.3. Let h satisfy the hypotheses of Proposition 4.2, and suppose that each facet F ∈ F is
Gabriel and its vertices are repeated at least k + 1 times in A. Then, for every spline M(x | I tB) of
degree k, the interior of the simplex conv((ab)b∈B) cannot intersect the boundary of any subdomain.

Proof. For every facet F ∈ F on the boundary of a subdomain Ωi, select the side of F on which Ωi lies.
Then, there are at least k + 1 points on the positive side of F , and Proposition 4.2 ensures that there
are

(
k+d
k

)
spline functions M(x | I tB) whose simplex conv((ab)b∈B) is adjacent to F on its positive

side. Notice that these simplices do not cross F . Let R be the intersection of their interiors, and let
M(x | J tB′) be a distinct simplex spline whose associated simplex σB′ := conv((ab)b∈B′) intersects F .
Then, the interior of σB′ must also intersect R, in contradiction with [8, Proposition 2.12], which states
that only

(
k+d
k

)
such simplices cover the region R. Thus, the interior of σB′ cannot cross F . The same

reasoning can be repeated for all the facets on the boundary of any subdomain Ωi, since they are all
Gabriel by hypothesis, proving the corollary.

If one chooses a set of domain boundaries and a height vector that satisfy the hypotheses of Corollary
4.3, then one can use the process detailed in the previous section to build a spline space over the whole

Ω, and assign each spline function to a subdomain. This yields one spline S(k)
i space for each subdomain

Ωi, determined according to the following criterion,

M(x | I tB) ∈ S(k)
i if and only if conv((ab)b∈B) ⊆ Ωi. (4.3)

This is the criterion that we choose to construct our discontinuous spline space. Notice that some
splines of S(k) might have associated simplices lying outside Ω, and are therefore discarded. Notice also

that the interior knots of the splines in S(k)
i are also contained in Ωi. This is trivially true for splines of

degree 0, and since Algorithm 1 states that the set of internal points of splines of degree k is a subset of
the set of points I tB of splines of order k − 1, it is true by induction at all degrees k.

Finally, notice that Corollary 4.3 has as an interesting special case the usual discontinuous Galerkin
(DG) polynomial basis over a simplicial mesh.

Corollary 4.4. Let the height vector h and the subdomains (Ωi)
nd
i=1 satisfy the hypotheses of Corollary

4.3, and suppose furthermore that each subdomain Ωi is a simplex, so that (Ωi)
nd
i=1 forms a triangulation

of Ω. Then, the corresponding spline space S(k) is the usual Bernstein-Bézier discontinuous Galerkin
basis of degree k over each simplex Ωi.

15

Proof. For any facet F of Ωi, choose the side of F on which Ωi lies, and follow the proof of Proposition
4.2. Notice that in this case, since all the points in Ωi are repeated k + 1 times and h is fine-grained
(Definition 2.3), the points indexed by the set Sk−k′ must be all coincident. Thus, the knot vector of the
resulting spline M(· | I tB) consists of d + 1 distinct points (ab)b∈B ⊂ Rd, each repeated a number of
times 1 ≤ rb ≤ k + 1, with

∑
b∈B rb = k + d + 1. Expression (2.2) then shows that, for any continuous

function f ,∫
Rd

f(x)M(x | I tB) dx =
1

(k + d)!
=

∫
Σk+d

f

(∑
i∈ItB

λiai

)
(dλi)i∈ItB , (4.4)

=

∏
b∈B(rb − 1)!

(k + d)!

∫
Σd

f

(∑
b∈B

λbab

)(
λrb−1
b

)
b∈B (dλb)b∈B ,

where we have used in the last step a known property of Dirichlet averages (see, e.g., [30, Theorem 5.2-4])
to reformulate the integral over the (k+d)-dimensional simplex Σk+d as an integral over the d-dimensional
simplex Σd. The product (λrb−1

b)b∈B can be recognized as the barycentric representation of a Bernstein
polynomial of degree

∑
b∈B(rb−1) = k, see, e.g., [31]. Consequently, the last expression in (4.4) is simply

the integral over σB of the product of f(x) with a Bernstein polynomial. Moreover, the
(
k+d
k

)
splines

supported over σB correspond to the
(
k+d
k

)
combinations of multiplicities (rb)b∈B summing to k + d+ 1,

as shown in the proof of Proposition 4.2. Thus, the whole Bernstein-Bézier basis over the simplex is
obtained. Finally, since the facets of Ωi satisfy the Gabriel property and Ωi is a simplex, the simplex σB
must coincide with Ωi, hence completing the proof.

This result proves that one can obtain the usual Bernstein-Bézier discontinuous Galerkin (DG) mesh-
based polynomial basis as a special case of our method. Thus, with our formulation, one expects to
be able to easily and naturally mix unstructured spline-based patches and DG patches with simplicial
mesh elements in the same numerical scheme. We show that this is indeed the case with some numerical
experiments in Section 6.

4.3 Trace of spline functions on domain boundaries

The spline spaces produced under the assumptions of Corollary 4.3 are indeed discontinuous at the domain
interfaces. In fact, they include splines of degree k with k+ d points (out of the total k+ d+ 1) lying on
the same facet F on the boundary of the domain. Using the recurrence relation (2.1), it is easy to show
that these functions have a non-zero trace on F , i.e., on the boundary of the subdomain, cf. Figure 1.
These functions can therefore be used to evaluate boundary conditions, inter-domain fluxes and penalty
terms for discontinuous-Galerkin approaches, as we do in Section 5.

We show in the next Proposition that the spline functions having a nonzero trace over a subdomain
have a particularly simple form.

Proposition 4.5. In the hypotheses of Proposition 4.2, the simplex splines supported in a subdomain
and having a nonzero trace on a subdomain facet F ∈ F are exactly the Bernstein-Bézier polynomials
with nonzero trace on F and supported on a common simplex adjacent to F .

Proof. Due to the regularity of simplex spline functions (cf. (2.1) and Figure 1), a simplex spline M(x |
I tB) of degree k has a nonzero trace on F if and only if exactly k + d of its knots lie on aff(F). The
knots (ab)b∈B describe a non-degenerate d-dimensional simplex. Thus, there is exactly one b ∈ B such
that ab 6∈ aff(F), and letting C := B \ {b}, one concludes that F = σC := conv((ac)c∈C) is a facet of
σB := conv((ab)b∈B). All the knots (ai)i∈I must lie on F . We need to prove that they are actually
vertices of F .

Let i ∈ I, and suppose that ai does not coincide with any point (ac)c∈C , so that the perturbation
rule (2.6) does not apply. Let (λc)c∈C be the barycentric coordinates of ai with respect to σC , such that∑
c∈C λc = 1 and

∑
c∈C λcac = ai. The fact that i ∈ I implies D(B, i) > 0, via (2.7). Rewrite the last

row in the first determinant in the definition of D(B, i), (2.5), as

(ai, hi, 1) =
∑
c∈C

λc(ac, hc, 1) +
∑
c∈C

λc(0, hi − hc, 0), (4.5)

16

and expand the determinant by exploiting its linearity with respect to this row. Since C ⊂ B and thus
D(B, c) = 0 for all c ∈ C, the terms arising from the first sum in (4.5) vanish. Direct evaluation of the
remaining terms yields

0 < D(B, i) = sign(
∑
c∈C

λchc − hi) (S(B))
2
.

Therefore,
∑
c∈C λchc > hi. But since F satisfies the Gabriel property, one can multiply (4.1) by λc and

sum over c, yielding hi >
∑
c∈C λchc and contradicting (4.2). Thus, ai must coincide with a vertex of

σC .
We conclude the proof by noticing that the point ab (i.e. the only point with index b ∈ B that does

not lie on F) must be the same for all these splines, as it corresponds to the first index in the set Sk−k′

in the proofs of Proposition 4.2 and Corollary 4.4. Thus, all these splines are supported on the same
simplex conv((ab)b∈B).

Proposition 4.5 shows that, when the domain boundaries are composed of Gabriel facts whose vertices

are repeated at least k + 1 times in A, the simplex spline functions in the spline sace S(k)
i have exactly

the same trace on the boundaries of Ωi as the usual Bernstein-Bézier polynomials used in standard
discontinuous Galerkin methods over a simplicial mesh of Ωi. We exploit this fundamental property in
the next Section 5 to show how two important features of the standard discontinuous Galerkin methods
can be seamlessly carried over to unstructured spline spaces.

4.4 From simplex splines to multivariate B-splines

Using [8, Corollary 2.4], the explicit expansion of a polynomial q(x) of degree k over a subdomain Ωi can

be expressed in terms of the spline functions of the corresponding space S(k)
i as

q(x) =

(
k + d

k

)−1 ∑
M(· |ItB)∈S(k)

i

Q((ai)i∈I) vol(σB)M(x | I tB), (4.6)

where Q((ai)i∈I) is a symmetric multi-affine function (the polar form of q) of the interior knots (ai)i∈I .
Since, in our construction, many different splines can share the same interior knot indices I (namely all
those obtained from the triangulation of the link region RI of Algorithm 1), the decomposition (4.6) of
the polynomial q(x) is not unique.

We remove this unwanted freedom by fixing a given linear combination of splines sharing any given set
of interior knots. Specifically, as done, e.g., in [15, Chapter 8], we define for every set I the multivariate
B-spline function of degree k

N(· | I) :=

(
k + d

k

)−1 ∑
{B:M(· |ItB)∈S(k)

i }

vol(σB)M(· | I tB). (4.7)

It is important to remark that, in order to preserve the multi-patch property of the spline space, the
sum (4.7) is done independently for every subdomain Ωi, and it only includes spline functions from the

corresponding space S(k)
i . Simplex splines with the same interior knots but belonging to different patches

S(k)
i are not summed, to preserve the domain decomposition. We illustrate this sum in Figure 7.

Finally, multivariate B-splines can also be used to recover, as a special case, the usual finite element
(FE) mesh-based polynomial basis.

Corollary 4.6. Suppose that the height vector h satisfies the hypotheses of Corollary 4.4, and there is
only one subdomain Ω1 = Ω. Suppose furthermore that all the points have multiplicity k + 1 in A. Then
the multivariate B-spline functions defined via (4.7) correspond to the usual C0 Bernstein-Bézier finite
element basis on the weighted Delaunay triangulation T (h) of Ω with height vector h.

Proof. Since all the points in A are repeated k+ 1 times, the same reasoning as in the proof of Corollary
4.4 can be applied to show that the spline spaces correspond to a complete basis of Bernstein-Bézier

17

Figure 6: (Top left) a point configuration A of points in R2, with two domains. We use A to build a
spline space of degree k = 2. The Gabriel facets are shown in the picture. Points on these facets are
repeated 2 + 1 times. (Top right) the simplices associated to the splines of Proposition 4.2, that protect
the boundaries and allow the decomposition of the spline space. (Bottom left) the simplices associated to
the splines of Proposition 4.5, corresponding to splines that have a nonzero trace on constrained facets.
(Bottom right) the simplices associated to all splines of degree ≤ 2. Their intersection determines the
quadrature decomposition.

18

a1

a2
a3

a1

a2
a3

a1

a2
a3

a1

a2
a3

Figure 7: (Top) multivariate B-spline function of degree k = 3 (last picture), obtained as a linear
combination of the three simplex splines on its left. The splines share the same set of interior knot
indices I = {1, 2, 3}. (Bottom) the corresponding link region RI computed by Algorithm 1 and its
triangulation, yielding the three simplex splines in the sum.

polynomials of degree k over each simplex of the triangulation T (h). Consider now two splines M(x |
I tB1) and M(x | I tB2) sharing the same set of interior knot indices I 6= ∅. Since these splines are
supported on the simplices σB1

:= conv((ab)b∈B1
) and σB2

:= conv((ab)b∈B2
), respectively, the knots

(ai)i∈I must be vertices of the shared simplex σI := σB1
∩ σB2

. Furthermore, these knots must have the
same multiplicity in both splines.

Let now d′ < d be the spatial dimension of σI , and consider the first spline M(· | I tB1). Denote
by CI ⊂ B1 the indices of unique points lying on σI , and by C0 ⊂ B1 the indices of points not lying on
σI . Notice that the points indexed by C0 must all have multiplicity 1 in I t B1. One can then write
the superposition integral of M(· | I tB1) with any continuous function f , restricted to σI , simply by
rewriting the last expression of (4.4), setting (rc)c∈C0

= 1 and (λc)c∈C0
= 0, and multiplying by the

Jacobian vold
′
(σI)/ vold(σB1),∫

σI

f(x)M(x | I tB1) dx =
vold

′
(σI)

vold(σB1)

∏
c∈CI

(rc − 1)!

(k + d)!

∫
σI

f

(∑
c∈CI

λcac

)
(λrc−1
c)c∈CI

(dλC)c∈CI
. (4.8)

Here, (ac)c∈CI
is the set of distinct vertices of σI and the integers (rc)c∈CI

represent their multiplicity in
both ItB1 and ItB2. The same expression is obtained for the other spline function M(· | I tB2), with
vold(σB2

) replacing vold(σB1
) in (4.8). By examining (4.8), one concludes that multiplying the spline

M(· | I tB1) by the factor vold(σB1
) makes its trace on the interface σI independent of the originating

simplex σB1
. Thus, all the splines appearing in the the sum (4.7) have compatible traces on the mesh

skeleton, and the corresponding multivariate B-spline function is continuous across the interfaces between
its supporting simplices.

The mechanism that leads to the construction of the Bernstein-Bézier polynomials in Corollary 4.4
and Corollary 4.6 in the case of repeated points can be better understood by looking at Figure 2, panels
(a), (d) and (e). One can see that the triangulation of the region R0 corresponding to a repeated point
a always reproduces the set of simplices of the initial Delaunay triangulation of A that have a as a
vertex. Thus, all the corresponding spline functions are simply polynomials defined over a simplex, and
the corresponding coefficients in the recursive development of (2.1) are simply powers of the barycentric
coordinates.

19

5 Multi-patch DG-IGA scheme for acoustic wave propagation

We showcase the usefulness of our proposed unstructured multi-patch spline spaces by formulating a
fully-unstructured multi-patch DG-IGA numerical scheme for the acoustic wave equation,

1

ρc2
∂2p

∂t2
−∇ ·

(
1

ρ
∇p
)

= s, (5.1)

where p = p(x, t) is the pressure, ρ = ρ(x) is the medium density, c = c(x) is the wave velocity, and
s = s(x, t) is a source term. As standard practise for geophysics applications, we solve (5.1) in the time
interval [0, T] by setting zero initial conditions,

p(x, 0) =
∂p

∂t
(x, 0) = 0, (5.2)

and imposing a set of boundary conditions on ∂Ω applied throughout the simulation time. More precisely,
we subdivide ∂Ω into three disjoint subsets ∂ΩF , ∂ΩD and ∂ΩA, over which we impose the Neumann,
Dirichlet and first-order absorbing [32, 33] boundary conditions, respectively,

p

∣∣∣∣
∂ΩD

= 0,
∂p

∂n

∣∣∣∣
∂ΩF

= 0,
∂p

∂t

∣∣∣∣
∂ΩA

+ c
∂p

∂n

∣∣∣∣
∂ΩA

= 0,

where ∂/∂n denotes the outward normal derivative on ∂Ω.
Since unstructured spline spaces are capable of reproducing the usual discontinuous Galerkin poly-

nomial bases as a special case, our approach nicely bridges the multi-patch DG-IGA formulation of [5],
based on structured (tensor-product) IGA patches tied by DG fluxes, with more standard mesh-based
DG approaches, such as that of [34]. We briefly discuss, later in this section, the implications of this fact
for time-explicit schemes.

5.1 Overview of the numerical scheme

The starting point for our formulation is the usual symmetric interior-penalty discontinuous Galerkin
(IPDG) scheme presented in [34]. Its weak form can be written as follows,

nd∑
i=1

∫
Ωi

1

ρc2
ϕ
∂2p

∂t2
dΩ +

nd∑
i=1

∫
Ωi

1

ρ
∇ϕ · ∇p dΩ−

∑
F∈FDG

∫
F

[[ϕ]] · {{1

ρ
∇p}} dF (5.3)

−
∑

F∈FDG

∫
F

{{1

ρ
∇ϕ}} · [[p]] dF +

∑
F∈FDG

αF

∫
F

[[ϕ]] · [[p]] dF +
∑
F∈FA

∫
F

1

ρc
ϕ
∂p

∂t
dS =

nd∑
i=1

∫
Ωi

ϕsdΩ,

where Ω is the domain of interest, subdivided as before into the nd polytopal (e.g., polygonal for d = 2
and polyhedral for d = 3) subdomains (Ωi)

nd
i=1, and ϕ is a piecewise-polynomial test function, of class

at least C1 in each subdomain. The physical parameters ρ and c are assumed to be positive, bounded,
piecewise-smooth functions, and the source s(x, t) is assumed to be in L2([0, T];L2(Ω)). The third and
fourth terms in (5.3) together form the symmetric flux term, while the fifth term is a penalty term that
ensures numerical stability and, weakly, the continuity of the solution.

The set of all subdomain facets F has been subdivided into three disjoint sets of facets, FD := F∩∂ΩD,
FN := F ∩ ∂ΩN , and FA := F ∩ ∂ΩA, as well as a set of interior (or DG) facets, FDG := F \ ∂Ω. As
customary in discontinuous Galerkin methods, given a scalar function u and a vector function v defined
over each domain Ωi, we have denoted by [[u]] and {{v}}, respectively, the jump of u and the average of
v, defined over a facet F ∈ FDG with unit normal vector NF , as

[[u]]F := (u+ − u−)NF , {{v}}F :=
1

2
(v+ + v−),

where u+, v+ (respectively u−, v−) are the traces of u and v taken in the domain which sees NF as an
outward normal (resp., inward normal). The definition is extended to facets F ∈ ∂Ω by taking NF to be
the unit outward normal, and defining the jump and average simply as [[u]]F := u+NF , {{v}} := v+.

20

Notice that free-surface and Dirichlet boundary conditions do not appear directly in (5.3). In fact, the
contribution of facets F ∈ FN simply vanishes in (5.3), while the Dirichlet condition is imposed implicitly
by discarding from the space all the spline functions with a non-vanishing trace on FD. Notice also that,
compared to the usual IPDG approach, the polytopal subdomains Ωi ⊆ Ω appearing in the sums of (5.3)
are in general neither simplices, nor even necessarily convex or simply connected.

5.2 Discrete form

After ensuring that all the constrained facets are Gabriel, we can build the spline space Sh as follows. First,
we construct a spline space S(k) of degree k ≥ 2 over conv(A), using Algorithm 1, which we decompose

into a set of nd spline spaces (S(k)
i)nd

i=1, defined over each subdomain, according to the criterion (4.3). We
then simply use the following discretization space,

Sh :=

nd⊕
i=1

S(k)
i .

After building the discretization space, we select a basis (ϕi)
nB
i=1 of Sh, composed of nB multivariate

B-splines defined via (4.7), and we solve the initial problem (5.2) using a second-order leapfrog (LF2)
explicit time scheme, see, e.g., [35]. The discrete form of our problem can be expressed as follows,

p(t+1) =

(
M +

∆t

2
B

)−1(
2Mp(t) −Mp(t−1) −∆t2(K + F + P)p(t) +

∆t

2
Bp(t−1)

)
+ ∆t2S(t),

where p(t−1), p(t) and p(t+1) represent the coefficient vectors of the pressure at three successive time
steps over the given basis, Si(t) :=

∫
Ω
ϕi(x)s(x, t) dx, and M , K and B are the usual mass, stiffness and

damping matrices,

Mij :=

∫
Ω

1

ρc2
ϕiϕj dΩ, Kij :=

∫
Ω

1

ρ
∇ϕi · ∇ϕj dΩ, Bij :=

∫
∂ΩA

1

ρc
ϕiϕj dS, (5.4)

while the flux and penalty terms of (5.3) translate into the corresponding matrices,

Fij := −
∑

F∈FDG

∫
F

(
[[ϕi]] · {{

1

ρ
∇ϕj}}+ {{1

ρ
∇ϕi}} · [[ϕj]]

)
dF, Pij :=

∑
F∈FDG

∫
F

αF [[ϕi]] · [[ϕj]] dF. (5.5)

All vectors have size nB and all matrices have size nB × nB .
The maximum stable timestep of the simulation can be determined using the usual CFL condition,

which for the LF2 scheme reads

∆tCFL ≤
2√
λmax

, (5.6)

where λmax represents the maximum eigenvalue of the matrix M−1K ′ and K ′ := K + F + P . The
penalty coefficient αF associated to each facet F ∈ FDG needs to be chosen large enough to guarantee
the positivity of the bilinear form associated to (5), but not too large, in order to limit its damping effect.
We discuss in Section 5.3 how as suitable value can be given to this parameter.

5.2.1 Basis construction, evaluation and quadratures

Once the discrete space Sh has been build, one can perform the efficient pointwise evaluation of all spline
functions by relying on the auxiliary functions constructed in Algorithm 2, using the evaluation process
of Algorithm 3. From this point onward, in order to simplify our presentation, we will consider physical
parameters that are constant on each subdomain.

In order to be able to assemble the system matrices (5.4) and (5.5), one must be able to compute the
integral between two spline functions in Sh. Since simplex splines are piecewise-polynomial functions, this

21

Algorithm 4 constructs the quadrature cells for the assembly of system matrices.

Input:
A generic point configuration, as in Algorithm 1;
S(r) the set of spline functions built by Algorithm 1, for r = 0, . . . , k.

Output: The set W of cells over which each spline function is a pure polynomial.
Auxilary procedures: Push and Pop defined as in Algorithm 2.
1: procedure BuildQuadratureCells(A, S(r) for r = 0, . . . , k)
2: T ← R?-tree constructed on the simplices {conv((ab)b∈B) : M(· | I tB) ∈ S(r), 0 ≤ r ≤ k}
3: x← a point in the interior of Ω
4: Q = ∅ queue of seed points
5: C = ∅ set of cells
6: Push(Q, x) insert x into Q
7: while Q is not empty do
8: x←Pop(Q)
9: {σ1, . . . , σm} ←Query(T , x) simplices supported at x . There are exacty

(
k+d+1
d

)
such

simplices
10: W ← ⋂m

i=1 σm
11: if W not empty and W does not contain W then
12: insert C into W
13: for facet F of W do
14: f ← centroid of F
15: NF ← outward normal of F , |NF | = 1
16: xf ← f + εNF for ε much smaller than any distance between distinct points in A
17: Push(Q, xf)

18: return W

integral can be evaluated by decomposing the integration domain Ω over a set of disjoint cells (Wi)
nW
i=1,

such that every spline in the space is a pure polynomial over each cell Wi,∫
Ω

M(x | I tB)M(x | I ′ tB′) dΩ =

nW∑
i=1

∫
Wi

M(x | I tB)M(x | I ′ tB′) dΩ.

We call this decomposition the quadrature subdivision. Using the recurrence formula (2.1b) and the
validity of the evaluation scheme of Algorithm 3, it is clear that the cells (Wi)

nW
i=1 can be obtained as

intersections of simplices σB := conv((ab)b∈B) associated to splines M(x | I tB) ∈ Sh of degree k or less.
This can be achieved via a simple process that we make explicit in Algorithm 4. Notice that, thanks to [8,

Proposition 2.12], each quadrature cell is obtained as the intersection of exactly
∑k
r=0

(
r+d
d

)
=
(
k+d+1
d

)
such simplices. In turn, these can be computed efficiently, since the halfspace intersection problem is dual
to the usual convex hull problem [36], for which many efficient implementations exist. Once the cells are
computed, the integration of the product of two splines becomes simply the integral of a polynomial over
each cell, which can be computed using standard algorithms.

One drawback of this approach is that the number of cells in the quadrature subdivision can be very
large, much larger than the number of cells in a triangulation of A (see Figure 6), and increases with k.
We discuss this issue, and some possible solutions, in the concluding section.

5.3 Positivity of the bilinear form and a priori error analysis

The IPDG method relies on a penalty term to make its associated bilinear form positive. This is necessary
to ensure the stability of the method, but can adversely impact the performance of the numerical scheme,
since the condition number of the associated bilinear form scales linearly in the penalty constant (see,
e.g., [37]). Thus, the determination of a general criterion for choosing a reasonably small but effective
penalty coefficient is crucial.

22

In [38], Shahbazi introduces a sufficient penalty term αF on each facet F , computed from the inradius
(i.e., the radius of the inscribed sphere) of the two adjacent simplices σ+ and σ−. The derivation of this
value relies on the existence of inverse inequalities bounding the integral of any polynomial q(x) of degree
k over F with integrals over σ+ and σ− [39],∫

F

q(x)2 dF ≤ (k + 1)(k + d)

d

vold−1(F)

vold(σ±)

∫
σ±
q(x)2 dσ±. (5.7)

Thanks to Proposition 4.5, the same inverse inequalities can be applied to our scheme. In fact, the
only spline functions contributing to (5.5) are those that have a non-vanishing trace over the facets
F ∈ FDG. Proposition 4.5 then guarantees that these functions are all polynomials supported over two
fixed simplices, σB+ and σB− , adjacent to F . Consequently, the choice of αF given in [38, Expression (7)]
can be used in our scheme, unchanged, for each face F ∈ FDG between two subdomains. We therefore
make the following choice,

αF = α0

max(1
ρ+ ,

1
ρ−)

min(r(σB+), r(σB−))
, (5.8)

where the subscripts + and − identify the two sides of F , ρ+ and ρ− are the respective density values, B±

are the two affinely independent sets such that the splines on either side of F are supported on σB± :=
conv((ab)b∈B±), and r(σB±) is the inradius of σB± . In [38], the constant factor α0 := (k + 1)(k + d)/2
is chosen for (5.8), but a larger constant can be used to ensure the good numerical conditioning of the
system matrices. In our work, we use the following value,

α0 =

(
k + d

k

)
. (5.9)

Finally, and importantly, the a priori error estimate of the standard IPDG method (see, e.g., [34])
only relies on the polynomial-reproducing property of the basis, and on the inverse inequality (5.7). Thus,
without any additional effort, the same a priori error estimate can be carried over without modification
to our numerical scheme.

6 Some numerical results

We present in this section a few numerical results of the simulation of the propagation of acoustic waves
using our scheme.

6.1 Block-diagonal mass matrix

In Figure 8 we show the effect of domain boundaries and point multiplicities on the sparsity pattern
of the mass matrix. In this example, we consider a point configuration A, containing around 1.4 · 104

distinct points, and we show the impact of three different choices for the constrained facets (and thus
the repeated knots). We compare a mesh-based approach, where each simplex is a subdomain and all
points are repeated k + 1 times, a multi-patch DG-IGA approach with only 6 subdomains, and a pure
IGA approach with a single domain. Notice that the pure DG case is obtained as in Corollary 4.4, and
the pure IGA case is obtained by treating the whole Ω as the only subdomain. Consequently, all three
numerical schemes are obtained through our construction, with pure DG and pure IGA obtained as the
limiting cases. This is reflected in the sparsity pattern of the mass matrix (Figure 8, right), which is
always block-diagonal, but where one can arbitrarily vary the size and number of diagonal blocks by
choosing a suitable domain decomposition, from one per mesh element up to a single block for the whole
domain. Notice also that the blocks are sparse (except near the DG limit) and have a limited bandwidth,
comparable with the usual DG case. The pure IGA and DG-IGA cases have a very similar number of
nonzero entries, ∼ 3.5 · 105 for k = 2, despite their rather different appearance.

In practical implementations, this flexibility can be exploited for efficient load balancing in parallel
codes. Ideally, the blocks can be made small enough so that a single computational node is capable of
storing the factorization of the mass matrix corresponding to a single subdomain, so as to accelerate the
iterations of time-explicit schemes.

23

Figure 8: Three choices of constraints for a point configuration A with around 1.4 · 104 distinct points
(left), and the resulting sparsity pattern of the mass matrix for k = 2 (right). The subdomain shapes
are borrowed from the synthetic model discussed in Section 6.3 and Figure 12. (Top) DG approach, with
around 2.8 · 104 simplices. (Middle) multi-patch DG-IGA with 6 subdomains. (Bottom) pure IGA with
a single subdomain. The subdomain boundaries are not shown in the latter case, since the model now
consists of a single domain.

24

6.2 Validation

We have validated the method on a simple two-dimensional homogeneous model Ω of size 9.2km× 3.0km
with ρ = 1000kg m−3, c = 1500m s−1, absorbing boundary conditions on all sides, a single source point
and an array of receivers. We have used, as in all other results of this section, a pointlike source, whose
time dependence is given by the standard Ricker wavelet [40]. We have compared the pressure values at
a set of receivers with the analytical result computed using the Gar6more software [41], which are based
on the well-known Cagniard–De Hoop method. We have evaluated the L2 error of the simulation at the
location xr ∈ Rd, d = 2, 3 of each receiver r as

e2
r :=

∫ T
0

(p(xr, t)− pA(xr, t))
2 dt∫ T

0
p2

A(xr, t) dt
, (6.1)

where pA is the analytical solution computed with Gar6more. We have first performed a convergence
study on a subdomain Ω′ ⊂ Ω of size 2km×2km around the source point, measuring the error as a function
of the density of the point set A, i.e., the average distance h between points. Results are in Figure 9
for k = 2, 3. We have compared the convergence rate obtained with our method to the corresponding
FE and DG simulations, by introducing denser point sets with decreasing average spacing. In each case,
we have performed an IGA simulation, defining a single subdomain and increasing the multiplicity of
points on ∂Ω, a finite element (FE) simulation obtained by repeating k + 1 times all the points in A (cf.
Corollary 4.6), and a DG simulation obtained from this by additionally defining a subdomain for each
simplex in a triangulation of Ω (Corollary 4.4). As can be seen, our method yields the same order of
convergence O(1/hk+1) in the L2 norm as the DG and FE reference methods, see, e.g., [34].

After selecting an appropriate point set spacing h, corresponding to a point configuration A with
around 3.4 · 104 points, we have repeated the simulation by varying the polynomial order k, ranging from
1 to 4. In Figure 10, we show a snapshot from the simulation for k = 3, and we compare the CFL
timestep for the LF2 time integration scheme (5.6), the number of degrees of freedom (i.e., the number of
multivariate B-splines in the basis), the relative error (6.1) and the error times the number of degrees of
freedom, which represents the inverse of the precision per degree of freedom. Again, and for all polynomial
degrees, the corresponding bases for the FE and DG methods are supported on a triangulation over the
same point set A, and can simply be obtained with Algorithm 1 by setting appropriate point repetitions
and domain boundaries, as discussed in the previous section.

50 100 200 500

10´3

10´2

10´1

100 1{h3

Point set spacing h

}p
´p

h
} L

2

}p
} L

2

Precision for k “ 2

IGA
DG
FE

200 500 1000

10´2

10´1

100

1{h4

Point set spacing h

}p
´p

h
} L

2

}p
} L

2

Precision for k “ 3

IGA
DG
FE

Figure 9: A simple homogeneous domain with two different point set spacings h, corresponding to the
different average distance between points (left). The source is located at the center of the model (red
dot). The convergence rate of our method (IGA) is compared with that of the DG and FE methods,
defined over a triangulation on the same point set, for k = 2 (center) and k = 3 (right).

As can be seen, multivariate spline spaces share many properties with their more usual tensor-product
counterparts. Specifically, the number of degrees of freedom increases only linearly with the order k, due
to the fact that no new nodes are inserted. Our numerical simulation suggests that, for higher degrees,

25

the maximum timestep given by the CFL condition decreases less rapidly than in the case of the FE and
DG methods, and possibly only decreases as h/k, instead of h/k2. However, this conclusion cannot be
drawn with certainty from our relatively limited simulation, and would warrant further testing with an
extended range of polynomial degrees. The precision per number of degrees of freedom is comparable for
FE and IGA, and has the same behavior as a function of k in all three methods.

Notice that, for k = 1, FE and IGA coincide, and that at all orders the DG simulation is penalized
by the excessive number of degrees of freedom with respect to both FE and IGA, which is a well-known
drawback of the method. Also notice that the penalization term α0 (5.9) used to produce the DG
calculation results of Figure 10 is higher than the minimum value necessary for positivity, which further
penalizes the maximum allowable timestep of the DG calculation, although it makes the simulation very
stable.

In order to investigate whether the introduction of subdomain boundaries impacts the behavior of the
CFL condition, we have performed a similar calculation on a simple two-dimensional bi-layered model,
with the same dimensions as the two-dimensional homogeneous model above, but split horizontally into
halves. The finite element simulation in this case is to be interpreted as a multi-patch FE calculation,
where one FE basis is introduced in each of the two subdomains, and DG fluxes and penalty terms are
used to couple subdomains.

The two media have the same density ρ = 1000kg m−3, but the medium containing the source has
a velocity of c = 1500m s−1, while the second medium has a velocity of c = 2500m s−1. The point
configuration contains around 2.3 ·104 points, of which around 1.7 ·104 are in the region of lower velocity,
since the point density was adapted to the local wavelength. In this simulation, we have computed the
same quantities as in the homogeneous case. The corresponding results, as well as a simulation snapshot,
are shown in Figure 11. As one can see, the presence of an interface does in fact penalize the maximum
allowable timestep of all the methods. The multi-patch DG-IGA simulation still achieves, however, the
best timestep.

In general, as noticed in [5], the superior CFL condition timestep seen in multi-patch DG-IGA methods
is due to the increased support of the basis functions. The same behavior is experienced when the usual
C0 finite element bases are modified to have a larger support [42]. In particular, we expect this behavior
to be present as long as the number of functions of degree k in each subdomain is much larger than
around

(
k+d
k

)
.

6.3 Multi-patch simulation and blending with DG

We have tested the multi-patch DG-IGA approach on a simple two-dimensional 3km × 3km synthetic
seismic model, the same used in [43]. This model, shown in Figure 12, is composed of 1.4 · 104 points
divided in 6 layers, including water on the top and a salt body in the interior. Although schematic,
this model is representative of heterogeneous media found in geophysical problems, with high velocity
contrasts typical of subsoil structures containing both sediments and salt bodies.

We have performed a multi-patch DG-IGA simulation with 6 domains, shown in Figure 13, and a
hybrid simulation whereby four domains use unstructured spline functions (IGA), and two domains are
meshed and use the standard Bernstein-Bézier DG basis obtained via Corollary 4.4, shown in Figure
14. No apparent numerical artifacts were detected at the interfaces between the two numerical schemes,
suggesting that, even numerically, the coupling between the two schemes is very natural and seamless.

6.4 Non-simply-connected domains

The usual tensor-product spline spaces used to define multivariate spline functions are limited to a simple
topology, namely, that of a topological sphere. Obtaining a non-simply-connected domain then requires
gluing together multiple patches. This is a tedious and sometimes very difficult step that often results
in reduced regularity along seam lines. Instead, the approach proposed in this work allows to perform
full IGA simulations on a non-simply connected domain, simply by placing suitable boundary conditions
(or DG fluxes) on the internal boundaries, and excluding the subdomains representing holes from the
simulation.

26

1 2 3 4 5

10´3.5

10´3

10´2.5

1{k2

1{k

Polynomial degree k

∆
t C

F
L

rss

CFL timestep

IGA
DG
FE

1 2 3 4 5

105

106

Polynomial degree k

n
d
.o
.f
.

Degrees of freedom

IGA
DG
FE

1 2 3 4 5
10´3

10´2

10´1

100

Polynomial degree k

}p
´p

h
} L

2

}p
} L

2

Precision

IGA
DG
FE

1 2 3 4 5

103

104

105

Polynomial degree k

}p
´p

h
} L

2

}p
} L

2
ˆ
n
d
.o
.f
.

Precision per degree of freedom

IGA
DG
FE

Figure 10: Wave propagation in a two-dimensional homogeneous model (top), in which we compare, for
the IGA, FE and DG schemes and for k = 1, . . . , 4, the CFL timestep condition (middle left), the number
of degrees of freedom (middle right), the relative error (bottom left) and the relative error times the
number of degrees of freedom (bottom right).

27

1 2 3 4 5
10´4

10´3

1{k2

1{k

Polynomial degree k

∆
t C

F
L

rss

CFL timestep

IGA
DG
FE

1 2 3 4 5

105

9 ¨ 105

Polynomial degree k

n
d
.o
.f
.

Degrees of freedom

IGA
DG
FE

1 2 3 4 5
10´4

10´3

10´2

10´1

100

Polynomial degree k

}p
´p

h
} L

2

}p
} L

2

Precision

IGA
DG
FE

1 2 3 4 5

102

103

104

105

Polynomial degree k

}p
´p

h
} L

2

}p
} L

2
ˆ
n
d
.o
.f
.

Precision per degree of freedom

IGA
DG
FE

Figure 11: Wave propagation in a two-dimensional bi-layered model (top), in which we compare, for
multi-patch IGA, multi-patch FE and DG simulations and for k = 1, . . . , 4, the same quantities as in
Figure 10.

28

ρ = 1000kgm−3, c = 2000m s−1

ρ = 2030kgm−3, c = 1500m s−1

ρ = 2710kgm−3

c = 5334m s−1

ρ = 2710kgm−3

c = 4633m s−1

ρ = 2030kgm−3

c = 2609m s−1

ρ = 2810kgm−3

c = 4359m s−1

FA

FN

FDG

Figure 12: The synthetic model used for testing our multi-patch DG-IGA approach, with its associated
physical parameters (left) and the point configuration used to construct our splines and DG basis (right).
We also show the location of the absorbing (FA), free-surface (FN) and DG (FDG) boundaries.

We show here two examples, both two-dimensional, of this feature. In Figure 15, we show a simple
model inspired by helioseismology applications, with three domains, one with genus zero and two with
genus one. The model was adapted from [44], and the spline space was built on a point configuration
containing around 6.4 · 103 points. Notice that the density of points has been adapted to the local
wavelength. The simulation has degree k = 3. Notice that, for this specific case, the exact circular
geometry and the availability of a preferred coordinate system (namely, polar coordinates) would allow
to treat the same model using standard isogeometric analysis and known trimming techniques. However,
an approach based on an unstructured point set provides a simpler and more streamlined workflow,
applicable to any shape without relying on finding clever ways of parameterizing the domain. In addition,
unstructured spline functions would allow to easily mix and compare standard mesh-based approaches
on the same underlying physical simulation domain.

In Figure 16 we show a simple application to the propagation of acoustic waves in a domain of complex
topology, by simulating a two-dimensional model of the interior of a church, namely, the Santa Croce
basilica in Florence, Italy. The large amount of columns and other obstacles increases the genus of the
simulation domain to 99, which would be extremely difficult to obtain by gluing together tensor-product
B-spline patches. Using unstructured spline spaces, the regularity of the space is kept maximal (i.e., k−1
at degree k) inside the domain. The model comprises around 1.1 · 104 distinct points. The simulation
has degree k = 2. Contrary to the previous example, devising a set of tensor-product IGA patches
covering accurately such a high-genus and complex model would be far from trivial. In practice, this
model would be much easier to simulate using a fully unstructured FE or DG method. Notice that, for
k = 2, our approach uses only about 2.7 · 104 degrees of freedom, while a the FE and DG methods over a
triangulation of the same point set would require 4.0 · 104 and 1.2 · 105 degrees of freedom, respectively.

6.5 Three-dimensional domains

Finally, we have performed a few numerical simulations using some simple three-dimensional models, with
the goal of testing the capabilities of the method in three-dimensions and proving the feasibility of the
simple quadrature cell computation process delineated in Algorithm 4. In practical cases, the algorithm
is capable of correctly computing the quadrature cells, which has been determined by inspection of the
wave equation solution. However, for k > 3, in three dimensions, it seems that the computational burden
of determining the quadrature cells and subsequent matrix assembly operations tends to become the

29

Figure 13: Simulation of the model of Figure 12 using a multi-patch IGA approach based on 6 domains.
The spline space used has degree k = 3.

30

Figure 14: Simulation of the model of Figure 12 using a hybrid multi-patch DG-IGA approach based
on 2 meshed (DG) domains and 4 mesh-free (IGA) domains. The spline space used has degree k = 3
throughout.

31

dominant cost of the whole simulation. For this reason, we believe that a different approach for the
computation of quadratures is required. We defer this investigation to a future work, and discuss briefly
some possible solutions in the concluding section.

We show in Figure 17 the results of the simulation of a simple three-dimensional 1km × 1km × 1km
bi-layered domain with density ρ = 1000kg m−3 everywhere and velocities c1 = 2000m s−1 in the upper
half and c2 = 3000m s−1 in the lower half of the model. The simulation was performed at k = 2 on the
point configuration shown in the picture. The model comprises around 2.6 · 104 points. No significant
numerical noise was detected.

Figure 15: Simulation of a helioseismology-inspired model comprising three domains, two of which are
not simply-connected.

7 Conclusions

We have presented a set of practical algorithms and theoretical results that allow to construct a space
of polynomial-reproducing simplex spline functions over a multi-patch domain with arbitrary shape and
topology. The proposed algorithms allow to build the spline space and evaluate efficiently all the spline

32

Figure 16: Simulation of wave propagation in the 2D model of a church. The simulation comprises a
single domain, with a high genus (99) due to the large number of columns and other obstacles. The
regularity of the spline space is maximal inside the simulation domain, and only reduced next to the
domain boundaries.

33

Figure 17: Wave propagation in a simple three-dimensional bi-layered model, composed of two IGA
domains. We show the point configuration (interface points are thicker in the image), and five simulation
snapshots. The interface between the layers is shown in blue.

34

functions supported at a given location. We have shown how these spaces can be used to formulate a
simple, completely unstructured multi-patch DG-IGA numerical scheme for the solution of PDEs, which
we have applied to the propagation of acoustic waves, discussing some of its numerical advantages for
explicit time integration schemes.

One of the most interesting features of the proposed method, in our view, is that it provides a natural
bridge between the DG and IGA formulations, which can both be recovered as special cases of our
construction. Numerically, this translates into the possibility of retaining the block-diagonal structure
of the mass matrix of DG approaches (cf. Figure 8) while improving the CFL condition thanks to the
smoother, more regular shape of spline functions (cf. Figure 10). Furthermore, the regularity of the
basis can be tuned locally at the level of each subdomain, providing a natural way to couple the DG and
(unstructured) IGA formulations without introducing any additional numerical noise (cf. Figure 14).

Compared to the usual tensor-product B-spline bases, unstructured simplex spline spaces allow to
construct subdomains with arbitrary shape and topology, making it easier to align the zones of reduced
regularity with the discontinuities of the physical model. Moreover, a larger number of artificial subdo-
mains may be introduced for purely numerical reasons, for example in order to reduce the size of the
diagonal blocks of the system matrices, if required. This flexibility can help fine-tune the size of the
subdomains to facilitate load balancing in parallel machines for HPC applications.

One of the main drawbacks of this method is the cost of computing the cells over which all spline
functions are pure polynomials and quadrature rules can be used, a prerequisite to the assembly of system
matrices. Even though each quadrature cells can be efficiently computed, the number of such cells in
realistic cases can be very high, and can increase combinatorially with the degree k. The computation of
quadrature cells, and the subsequent matrix assembly operations, can be performed in an embarrassingly
parallel way, making full use of high-performance computational resources when available. However, we
consider this issue to be an important point to be investigated in future work.

One might be able to avoid a sizable amount of computation by using techniques such as that proposed
in [45, 46]. In this work, the inversion of the mass matrix is avoided, while retaining a favorable timestep
CFL condition, by using a modified timestepping scheme based on defect correction (DeC) techniques
(see, e.g., [47]). Within this paradigm, one recovers the accurate solution of the problem by performing a
small and convergent set of iterations over approximate, cheaper problems with appropriate residuals on
the right hand side. It is conceivable that one might define a similar approximate solution for unstructured
splines, one that not only avoids the inversion of the mass matrix but possibly much of the computational
complexity of the definition of exact quadrature cells. The approximate problem would be similar to
that obtained through mass lumping techniques, but the accuracy would be recovered via the deferred
correction method. We plan on investigating this possibility in a future work.

Alternatively, an improvement in the computational cost associated to matrix assembly might also
come from the use of additional combinatorial structures in the computation of superposition integrals
(see, for example, the technique based on triangulations of simploids [48]). Given the combinatorial origin
of polynomial-reproducing simplex spline spaces, these techniques may also be successful in improving
our method. We defer the exploration of these techniques to a future work.

A possible extension of our simplex-spline approach could come from its extension to rational func-
tions, similarly to how usual Non-Uniform Rational B-Splines (NURBS, see, e.g., [49]) extend tensor-
product B-splines. In fact, the simplex spline bases introduced in this work form a partition of unity
on the whole domain. One could therefore simply introduce control points with (d+ 1) coordinates and
interpret them projectively by dividing the whole expression by the last coordinate, completely analo-
gously to the standard approach of tensor-product bases. This might have interesting applications for
Computer-Aided Design (CAD) and engineering modeling, since it would allow to seamlessly include
exact-geometry representations of smooth features (e.g., quadrics) into an unstructured, mesh-based
model (e.g., a triangulated surface) using the same functional basis.

Finally, we have shown in Figure 15, albeit briefly, that the point set density can be adapted locally to
match the expected wavelength of the solution. One might imagine adopting a posteriori error estimates
to drive an adaptive refinement scheme (see, e.g., [50] for a recent application to hyperbolic problems).
The fact that simplex splines are build atop a simple unstructured point set, and not a full-blown mesh,
could then simplify the refinement step, as there would be no need to preserve any topological consistency

35

of the discretization.

Acknowledgments

This work is supported by the Inria - TotalEnergies S.E. joint research team Makutu (https://www.
inria.fr/makutu).

References

[1] H. Barucq, R. Djellouli, and E. Estecahandy. “Efficient DG-like formulation equipped with curved
boundary edges for solving elasto-acoustic scattering problems”. In: International Journal for Nu-
merical Methods in Engineering 98.10 (2014), pp. 747–780.

[2] T. Warburton and T. Hagstrom. “Taming the CFL number for discontinuous Galerkin methods on
structured meshes”. In: SIAM Journal on Numerical Analysis 46.6 (2008), pp. 3151–3180.

[3] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. “Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement”. In: Computer methods in applied mechanics and
engineering 194.39-41 (2005), pp. 4135–4195.

[4] J. A. Cottrell, T. J. Hughes, and Y. Bazilevs. Isogeometric analysis: toward integration of CAD and
FEA. John Wiley & Sons, 2009.

[5] J. Chan and J. A. Evans. “Multi-patch discontinuous Galerkin isogeometric analysis for wave prop-
agation: Explicit time-stepping and efficient mass matrix inversion”. In: Computer Methods in
Applied Mechanics and Engineering 333 (2018), pp. 22–54.

[6] G. Xu, B. Mourrain, R. Duvigneau, and A. Galligo. “Parameterization of computational domain in
isogeometric analysis: methods and comparison”. In: Computer Methods in Applied Mechanics and
Engineering 200.23-24 (2011), pp. 2021–2031.

[7] G. Xu, B. Mourrain, R. Duvigneau, and A. Galligo. “Analysis-suitable volume parameterization of
multi-block computational domain in isogeometric applications”. In: Computer-Aided Design 45.2
(2013), pp. 395–404.

[8] H. Barucq, H. Calandra, J. Diaz, and S. Frambati. “Polynomial-reproducing spline spaces from fine
zonotopal tilings”. In: Journal of Computational and Applied Mathematics 402 (2022), p. 113812.

[9] H. B. Curry and I. J. Schoenberg. “On Pólya frequency functions IV: the fundamental spline
functions and their limits”. In: Journal d’analyse mathématique 17.1 (1966), pp. 71–107.

[10] C. A. Micchelli. “A constructive approach to Kergin interpolation in Rk: multivariate B-splines and
Lagrange interpolation”. In: The Rocky Mountain Journal of Mathematics (1980), pp. 485–497.

[11] B. C. Carlson. “B-splines, hypergeometric functions, and Dirichlet averages”. In: Journal of ap-
proximation theory 67.3 (1991), pp. 311–325.

[12] W. Zu Castell. “Dirichlet splines as fractional integrals of B-splines”. In: The Rocky Mountain
Journal of Mathematics (2002), pp. 545–559.

[13] M. Neamtu. “Delaunay configurations and multivariate splines: a generalization of a result of BN
Delaunay”. In: Transactions of the American Mathematical Society 359.7 (2007), pp. 2993–3004.

[14] Y. Liu and J. Snoeyink. “Quadratic and cubic B-splines by generalizing higher-order Voronoi dia-
grams”. In: Proceedings of the twenty-third annual symposium on Computational geometry. ACM.
2007, pp. 150–157.

[15] Y. Liu. “Computations of Delaunay and higher order triangulations, with applications to splines”.
PhD thesis. University of North Carolina, Chapel Hill, 2008.

[16] L. Guibas and J. Stolfi. “Primitives for the manipulation of general subdivisions and the computa-
tion of Voronoi diagrams”. In: ACM transactions on graphics (TOG) 4.2 (1985), pp. 74–123.

36

[17] H. Edelsbrunner and N. R. Shah. “Incremental topological flipping works for regular triangulations”.
In: Algorithmica 15.3 (1996), pp. 223–241.

[18] D. Schmitt. “Bivariate B-Splines from convex pseudo-circle configurations”. In: International Sym-
posium on Fundamentals of Computation Theory. Springer. 2019, pp. 335–349.

[19] E. Schönhardt. “Über die Zerlegung von Dreieckspolyedern in Tetraeder”. In: Mathematische An-
nalen 98.1 (1928), pp. 309–312.

[20] C. De Boor. A practical guide to splines. Vol. 27. Springer-Verlag New York, 1978.

[21] A. Guttman. “R-trees: a dynamic index structure for spatial searching”. In: Proceedings of the 1984
ACM SIGMOD international conference on Management of data. 1984, pp. 47–57.

[22] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. “The R?-tree: an efficient and robust
access method for points and rectangles”. In: Proceedings of the 1990 ACM SIGMOD international
conference on Management of data. 1990, pp. 322–331.

[23] A. B. Kahn. “Topological sorting of large networks”. In: Communications of the ACM 5.11 (1962),
pp. 558–562.

[24] J. R. Shewchuk. “General-dimensional constrained Delaunay and constrained regular triangulations,
I: Combinatorial properties”. In: Twentieth Anniversary Volume: Springer, 2009, pp. 1–58.

[25] J. Ruppert and R. Seidel. “On the difficulty of triangulating three-dimensional nonconvex polyhe-
dra”. In: Discrete & Computational Geometry 7.3 (1992), pp. 227–253.

[26] K. R. Gabriel and R. R. Sokal. “A new statistical approach to geographic variation analysis”. In:
Systematic zoology 18.3 (1969), pp. 259–278.

[27] M. Alexa. “Conforming weighted Delaunay triangulations”. In: ACM Transactions on Graphics
(TOG) 39.6 (2020), pp. 1–16.

[28] J. R. Shewchuk. “Mesh generation for domains with small angles”. In: Proceedings of the sixteenth
annual Symposium on Computational Geometry. 2000, pp. 1–10.

[29] D. Cohen-Steiner, E. C. De Verdière, and M. Yvinec. “Conforming Delaunay triangulations in 3D”.
In: Computational Geometry 28.2-3 (2004), pp. 217–233.

[30] B. C. Carlson. Special Functions of Applied Mathematics. Academic Press, 1977. isbn: 9780121601508.

[31] G. Farin. “Triangular Bernstein-Bézier patches”. In: Computer Aided Geometric Design 3.2 (1986),
pp. 83–127.

[32] R. Clayton and B. Engquist. “Absorbing boundary conditions for acoustic and elastic wave equa-
tions”. In: Bulletin of the seismological society of America 67.6 (1977), pp. 1529–1540.

[33] F. Nataf. “Absorbing boundary conditions and perfectly matched layers in wave propagation prob-
lems”. In: Direct and inverse problems in wave propagation and applications. de Gruyter, 2013,
pp. 219–232.

[34] M. J. Grote, A. Schneebeli, and D. Schötzau. “Discontinuous Galerkin finite element method for
the wave equation”. In: SIAM Journal on Numerical Analysis 44.6 (2006), pp. 2408–2431.

[35] C. Agut and J. Diaz. “Stability analysis of the Interior Penalty Discontinuous Galerkin method
for the wave equation”. In: ESAIM: Mathematical Modelling and Numerical Analysis 47.3 (2013),
pp. 903–932.

[36] F. P. Preparata and M. I. Shamos. Computational geometry: an introduction. Springer Science &
Business Media, 2012.

[37] P. Castillo. “Performance of discontinuous Galerkin methods for elliptic PDEs”. In: SIAM Journal
on Scientific Computing 24.2 (2002), pp. 524–547.

[38] K. Shahbazi. “An explicit expression for the penalty parameter of the interior penalty method”. In:
Journal of Computational Physics 205.2 (2005), pp. 401–407.

[39] T. Warburton and J. S. Hesthaven. “On the constants in hp-finite element trace inverse inequalities”.
In: Computer methods in applied mechanics and engineering 192.25 (2003), pp. 2765–2773.

37

[40] C. S. Clay. Elementary exploration seismology. Prentice Hall, 1990.

[41] J. Diaz and A. Ezziani. Gar6more 2d. 2008. url: http://gar6more2d.gforge.inria.fr.

[42] J. W. Banks and T. Hagstrom. “On Galerkin difference methods”. In: Journal of Computational
Physics 313 (2016), pp. 310–327.

[43] A. Citrain. “Hybrid finite element methods for seismic wave simulation: coupling of discontinuous
Galerkin and spectral element discretizations”. PhD thesis. Normandie Université, 2019.

[44] L. Gizon, H. Barucq, M. Duruflé, C. S. Hanson, M. Leguèbe, A. C. Birch, J. Chabassier, D. Fournier,
T. Hohage, and E. Papini. “Computational helioseismology in the frequency domain: acoustic waves
in axisymmetric solar models with flows”. In: Astronomy & Astrophysics 600 (2017), A35.

[45] R. Abgrall, P. Bacigaluppi, and S. Tokareva. “How to avoid mass matrix for linear hyperbolic
problems”. In: Numerical Mathematics and Advanced Applications ENUMATH 2015. Springer,
2016, pp. 75–86.

[46] R. Abgrall. “High order schemes for hyperbolic problems using globally continuous approximation
and avoiding mass matrices”. In: Journal of Scientific Computing 73.2 (2017), pp. 461–494.

[47] M. L. Minion. “Semi-implicit spectral deferred correction methods for ordinary differential equa-
tions”. In: Communications in Mathematical Sciences 1.3 (2003), pp. 471–500.

[48] T. A. Grandine. “The evaluation of inner products of multivariate simplex splines”. In: SIAM
Journal on Numerical Analysis 24.4 (1987), pp. 882–886.

[49] L. Piegl and W. Tiller. The NURBS book. Springer Science & Business Media, 2012.

[50] M. Semplice and R. Loubère. “Adaptive-Mesh-Refinement for hyperbolic systems of conservation
laws based on a posteriori stabilized high order polynomial reconstructions”. In: Journal of Com-
putational Physics 354 (2018), pp. 86–110.

38

