N
N

N

HAL

open science

Automating Program Transformation with Coccinelle
Julia Lawall, Gilles Muller

» To cite this version:

Julia Lawall, Gilles Muller. Automating Program Transformation with Coccinelle. 2022 NASA Formal

Methods - 14th International Symposium, May 2022, Pasadena, CA, USA, United States.

03791022

HAL Id: hal-03791022
https://inria.hal.science/hal-03791022

Submitted on 28 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-03791022
https://hal.archives-ouvertes.fr

Automating Program Transformation with
Coccinelle

Julia L&W&11[0000_0002_1684_1264] and Gilles Muuer[OOOO—0002—0000—8569]*

Inria
{First.Last}@inria.fr
https://coccinelle.gitlabpages.inria.fr /website/

Abstract. Coccinelle is a program matching and transformation engine
for C code. This paper introduces the use of Coccinelle through a collec-
tion of examples targeting evolutions and bug fixes in the Linux kernel.

Keywords: Linux kernel, Coccinelle, program transformation.

1 Introduction

It is the dream of every programmer to have a tool that will automatically tra-
verse their software and make any kind of changes that the programmer wants.
Early efforts include sed and awk that permit developers to write simple search-
and-replace patterns involving regular expressions [11,10]. Such tools are pow-
erful, but regular expressions are hard to write, are error prone, have a limited
view of the code, and are not aware of the programming language syntax. Tools
designed according to the Visitor pattern [6], such as CIL [20], have been de-
veloped, but these require the user to become familiar with the visitor’s cho-
sen internal representation for the programming language. Must easier to use,
common semantics-preserving changes, known as refactorings, were classified by
Fowler [5], and are provided as a collection of black-box tools within integrated
development environments such as Eclipse [3]. But in real software development,
it is often necessary to perform changes that do not fit within a tidy collection
of common refactorings. These include repetitive bug fixes, that intrinsically
change the semantics of the code, and changes that respect the invariants that
the developer knows, but that are difficult to automatically recover from the
code base.

Coccinelle is a program matching and transformation engine for C code [15,
22]. The goal of Coccinelle is to make it easy for software developers to express
code transformations and apply these transformations across a large C code base.
Coccinelle’s transformation specification language SmPL (Semantic Patch Lan-
guage) allows transformations to be expressed using code fragments, annotated
with - and +, for lines to remove and add, respectively, mirroring the familiar

* Gilles Muller passed away before the writing of this paper. He initiated the Coccinelle
project in 2004 and supported its development over the next 17 years.

2 J. Lawall and G. Muller

patch syntax [18]. Such pattern-matching rules can include scripts written in
Python or OCaml, for greater expressiveness. Coccinelle was originally designed
for updating Linux kernel device drivers to take into account evolutions in Linux
kernel internal APIs [22], and accordingly supports a very large portion of the
C language. It has been used in over 9000 Linux kernel commits, and is used in
other C software projects, such as wine [25,27], systemd [26], and git [7].

Previous works on Coccinelle have presented the design of the tool [22], the
semantics of its transformation language SmPL [1], the use of Coccinelle for
finding bugs in Linux kernel code [16,23], and a retrospective after 10 years
of use, including an enumeration and assessment of the design decisions [15].
Tutorials on Coccinelle have been presented at developer conferences, some of
which are available as videos [12-14]. This paper takes advantage of the written
format to make a deep dive into SmPL, to describe the reasoning that goes into
constructing a semantic patch: how to identify a problem for which Coccinelle
can be appropriate, how to sketch a solution for such a problem using SmPL,
and how to iteratively make that solution more powerful and more automatic.
Our examples focus on the Linux kernel, but should be applicable to other kinds
of C software.

The rest of this paper is organized as follows. Section 2 provides some back-
ground on the Linux kernel, its development challenges, and the opportunities
that it raises for automatic program transformation. Section 3 presents a simple
and classic example, the transformation of a call to the kernel memory alloca-
tion function kmalloc, followed by a zeroing call to memset, into a single call
to the zeroing kernel memory allocation function kzalloc. Section 4 scales this
kind of transformation up to the detection of memory leaks involving kernel
device_node structures. Section 5 considers detection of anomalies in the use of
the Linux kernel memory allocation flags, GFP_KERNEL and GFP_ATOMIC. Each
of these examples emphasizes the aspect of exploration facilitated by Coccinelle
— the use of Coccinelle scales naturally from simple rules with a limited scope
that may have false positives, but get the job done, to more complex rules that
capture a wider variety of conditions in a more accurate way. It is hoped that
this work can serve as a reference for a developer who wants to use Coccinelle
for the first time or who wants to explore some of its more advanced features.

2 Background

The original and primary target of Coccinelle is the Linux kernel. The Linux
kernel poses a huge maintenance challenge. It amounts to over 21 million lines
of code in Linux v5.16 (January 2022), accepts contributions from over 4000 de-
velopers per year, and undergoes frequent and large-scale changes, motivated by
security, performance, new hardware features, etc. As part of the Linux kernel’s
evolution, it often occurs that some API function is found to be unsuitable, the
function is redefined in some way, and then the uses of the function have to be
modified across the kernel. These modifications may involve changes in the ar-

Automating Program Transformation with Coccinelle 3

Table 1. Usage of common functions in the files of Linux 5.16, drivers/usb/atm. v/
indicates that the given API function is called at least once in the given file.

cxacru.c|speedtch.c|ueagle-atm.c|usbatm.c|xusbatm.c

atm usbatm_usb_probe Ve v Ve — v

usb interface_to_usbdev| v | v | VR VR VA

specific usb_submit_urb Ve v Ve v —
usb_set_intfdata - v - v v

kernel request_firmware Ve v — —
generic wait_for_completion Ve — - v —
mutex_lock v - v v -
init_timer v v - v —
kzalloc v v v v -

guments and return values, triggering the need for further changes in the usage
context.

Intuitively, sustaining the high rate of development on the huge code base
of the Linux kernel may seem like an impossible task. Indeed one may think
of one’s own small software projects, where often one decides to just live with
some unsuitable code structure to avoid the need to do all of the work required
to change it. Scaling this work up to 21 million lines of code, and managing to
make all the changes correctly is a real challenge.

A mitigating factor is that the Linux kernel code base contains a lot of repe-
tition [2]. For example, consider the kernel API functions (Table 1) used in the
various files of the Linux v5.16 directory drivers/atm, containing Asynchronous
Transfer Mode (ATM) network device drivers. Many of the key kernel API func-
tions are used in many of the drivers. This commonality occurs at all levels —
we see functions that are specific to ATM drivers, functions that are generic
to USB drivers, and functions that are generic to the entire kernel, including
kzalloc for memory allocation, which we use as an initial case study in Section
3. This pattern raises hope that not only may these functions be reused across
the various drivers, but they may also be used in similar ways. If this is the case,
then it may be possible to automate any needed changes in their usage.

Repetitive API usages raise the opportunity for using a tool to script API
usage changes. That is, rather than manually collecting the relevant files (e.g.,
with grep) and then tracking down the relevant usage contexts (e.g., with search
in an editor), it could be faster and more reliable to write a transformation rule
and then leave the job of finding the relevant code and making the changes to
a transformation tool. This is the role of Coccinelle, that is the focus of this

paper.

3 Coccinelle in a Nutshell, Illustrated by kzalloc

Coccinelle offers a pattern-based language for matching and transforming C code.
It has been under development since 2005 and open source since 2008. An impor-
tant goal of Coccinelle is to fit with the habits of Linux kernel developers. The

4 J. Lawall and G. Muller

Linux kernel follows an email-based development model, where developers ex-
change patches describing their proposed changes, and thus developers are used
to creating, reading, and applying them. Accordingly, Coccinelle was designed
to allow code changes to be expressed using patch-like code patterns. We refer
to these as semantic patches, because they are like patches, but their application
takes into account the program control flow, and thus part of its semantics.

A common use of Coccinelle is to reorganize a collection of one or more API
functions. Accordingly, to present Coccinelle, we consider a simple example, the
merging of uses of the kernel memory allocation function kzalloc followed by
a zeroing of the allocated memory with memset, into a single call to the ker-
nel zeroing memory allocation function kzalloc. An example of this change is
shown, as a patch, in Figure 1. The change itself is simple: replace kmalloc by
kzalloc and drop the now redundant call to memset. Still, finding the opportu-
nities for the change is complex: The calls to kmalloc and memset are typically
not contiguous — as illustrated in Figure 1, there is often at least some error-
handling code in between them. Furthermore, some kmallocs have no following
memsets and some memsets have no preceding kmallocs, so simply using grep
to find calls to one or the other will return many irrelevant code locations. Fi-
nally, some memsets may serve to reinitialize a structure rather than initialize a
just-allocated one. Even though calls to both kmalloc and memset are present,
we do not want to create a call to kzalloc in these cases. Coccinelle is designed
to help with these challenges.

100 -1348,9 +1348,8 @@

2 - fh = kmalloc(sizeof (struct zoran_fh), GFP_KERNEL);
3+ fh = kzalloc(sizeof (struct zoran_fh), GFP_KERNEL);
4 if ('fh) {

5 dprintk (1,

6 KERN_ERR

7 "%s: zoran_open(): allocation of zoran_fh failed\n",
8 ZR_DEVNAME (zr));

9 return -ENOMEM;

10 }

11 - memset (fh, O, sizeof(struct zoran_fh));

Fig. 1. An instance of the conversion of kmalloc and memset to kzalloc.

3.1 First steps

To develop a kmalloc-memset semantic patch that is widely applicable across
the Linux kernel code base, we take the patch of Figure 1 as a starting point,
and consider how it can be made more generic.

The first step is to consider what parts of the patch in Figure 1 are generic
to the change, and what parts are specific to a particular instance. For the
kmalloc-memset transformation, it is necessary to have a call to kmalloc fol-
lowed by a call to memset, where the second argument to memset should be

Automating Program Transformation with Coccinelle 5

0. These terms will thus appear in the semantic patch exactly as they appear
in Figure 1. On the other hand, some other terms in the patch of Figure 1
are important, not for their specific content, but for their relationship to other
terms appearing in the affected code. This is the case for 1) the return value of
kmalloc (i.e., fh) and the first argument of memset, which must be the same
expression, 2) the first argument of kmalloc (the size of the allocated region),
that becomes the first argument of the call to kzalloc and should be the third
(size) argument of memset, and 3) the second argument of kmalloc that becomes
the second argument of kzalloc. These terms appear in the semantic patch as
metavariables, i.e., variables that can match against any term in the source code,
but that must be matched consistently. The metavariables are declared between
the initial pair of @@, at the place of the affected line numbers in the standard
patch. The metavariables are furthermore declared with their types; all of the
metavariables that are relevant to this change have type expression. Finally,
some terms are not important to the change, such as the if statement between
the calls to kmalloc and memset. Such terms are removed, and replaced by
“...7 b« 7 matches any control-flow path from a source code term matching
the pattern before the “...” to a source code term matching the pattern after
the “...”. Furthermore, by default, all such execution paths that do not lead to
an error return must satisfy these constraints.

The resulting semantic patch is shown in Figure 2. It makes six changes in
Linux v5.16, with no false positives. Figure 3 shows one change, in which the
code separating the kmalloc and memset is more complex than a single if. All
of the generated patches have been submitted to the Linux kernel. One received
the feedback that a different zeroing function should be used (kcalloc). Four
have been applied unchanged in linux-next as of March 25, 2022.

100
2 expression res, size, flag;
300
4- res = kmalloc(size, flag);
5+ res = kzalloc(size, flag);

6
7 - memset (res, 0, size);

Fig. 2. A first attempt at a kmalloc and memset to kzalloc semantic patch.

3.2 A refinement

While our experiment with the semantic patch in Figure 1 was completely suc-
cessful on Linux v5.16, the semantic patch is not fully reliable. Figure 4 shows a
false positive in net/sunrpc/auth_gss/gss_krb5_keys.c, in Linux v5.2. Here
a kmalloc is indeed followed by a memset, according to our pattern, but the

! To prevent misreading, in the text, we always enclose SmPL ... in quotes

© WO W e

=
= o

0 N oUW N e

e e
N oUW~ O ©

6 J. Lawall and G. Muller

- port = kmalloc(sizeof (¥port), GFP_KERNEL);
+ port = kmalloc(sizeof (*port), GFP_KERNEL);
if (!port) {
rc = -ENOMEM;
goto __error;
}
rc = snd_seq_create_kernel_client (NULL, ...);
if (rc < 0)
goto __error;
system_client = rc;

- memset (port, 0, sizeof (¥port));

Fig. 3. A successful change in sound/core/seq/oss/seq_oss_init.c.

memset is used to reinitialize the data to 0 (just before freeing the data, for
security reasons), rather than to initialize the data to 0 as done by kzalloc.

- inblockdata = kmalloc(blocksize, gfp_mask);
+ inblockdata = kzalloc(blocksize, gfp_mask);
if (inblockdata == NULL)
goto err_free_cipher;
inblock.data = (char #*) inblockdata;
inblock.len = blocksize;
if (in_constant->len == inblock.len) {
memcpy(inblock.data, in_constant ->data, inblock.len);
} else {
krb5_nfold(in_constant ->len * 8, in_constant ->data,
inblock.len * 8, inblock.data);
}
- memset (inblockdata, 0, blocksize);
kfree (inblockdata);
Fig. 4. An false positive for the kmalloc and memset semantic patch.
Indeed, by simply replacing the code between the kmalloc and the memset
by “...”, we have eliminated any constraints on the code found in the execution
path between them. To limit the matches to the cases where the memset repre-
sents an initialization, we can add constraints on the matching of “. . .” using the

keyword when. For inspiration, we consider how the allocated data is used in the
false positive of Figure 4. The data allocated by the call to kmalloc on line 1 is
used in the right side of an assignment on line 6, creating an alias through which
it is subsequently initialized on line 10 or 12. If such an assignment appears in
the region matched by “...”, then the memset is performing a reinitialization
and should not be removed. This constraint is written ase = <+... res ...+>
(Figure 5, line 7), to indicate that the value returned by kmalloc, res, should
not appear anywhere on the right-hand side of the assignment. Analogous to
this example use, we also add constraints to ensure that the allocated data is
not assigned to directly (line 8), or passed to another function (line 9), likely

Automating Program Transformation with Coccinelle 7

with the purpose of initializing it. Finally, we forbid loops, as the memset may
be used to reinitialize the data on each iteration (lines 10-11). Figure 5 shows
the resulting more robust semantic patch. On Linux v5.16, this semantic patch
makes the same changes as the original one found in Figure 2.

100

2 expression res, size, flag, e, f;
3 statement S;

400

5 - res = kmalloc(size, flag);

6+ res kzalloc (size, flag);

7 ... when != e = <+... res ...+>

8 when != (<+... res ...+>) = e

9 when != f(...,<+... res ...+>,...)
10 when != for(...;...;...) S

11 when != while(...) S

12 - memset (res, 0, size);

Fig.5. A more robust kmalloc and memset to kzalloc semantic patch. Lines 3 and
7-11 are new.

3.3 A second refinement

Our semantic patch requires that the allocated data size be expressed in the
same way in both the call to kmalloc (first argument) and the call to memset
(third argument), to ensure that the sizes are the same. However, there are two
common ways of indicating data sizes in the Linux kernel: sizeof (T), where T
is the type referenced by the data pointer, and sizeof (*x), where x is the data
pointer itself. Figure 6 shows a more flexible semantic patch allowing either style
or a mixture.

100
2 expression flag, e, f;
3 statement S;

4 type T;

5T *res;

6 0Q

7 res =

8 - kmalloc

9 + kzalloc

10 (\(sizeof (T)\|sizeof (xres)\), flag);
11 ... when != e = <+... res ...+>

12 when != (<+... res ...+>) = e

13 when != f(...,<+... res ...+>,...)
14 when != for(...;...;...) S

15 when != while(...) S

16 - memset (res, 0, \(sizeof (T)\|sizeof (¥res)\));

Fig.6. A more flexible kmalloc and memset to kzalloc semantic patch. Lines 4-5,
7-10, and 16 are new.

8 J. Lawall and G. Muller

This semantic patch illustrates several new features:

— - and + need not be applied to complete lines of code (lines 7-10). The
matching and transformation process is independent of any whitespace in
the semantic patch.

— An expression metavariable can be declared to have a specific type (line 5).
This can be a C-language type, or, as illustrated here, a type metavariable.

— A disjunction, here written as \(...\]...\), allows specifying a selection
of patterns that can be allowed to match. The first match is chosen. A
disjunction can also be written as (...|...), where the (, |, and) are in
column 0.

This semantic patch finds two more opportunities for kzalloc, as compared to
the one in Figure 5, however it overlooks two opportunities as well, in which the
size is not expressed as a single sizeof expression. For greater flexibility, we can
create a single semantic patch consisting of Figure 5 followed by Figure 6, to
find a larger set of transformation opportunities.

4 A Second Example: of _node_put

We next present a case study related to bug finding and fixing. Bug finding
and fixing was not the original target of Coccinelle [22], but it can also involve
searching for patterns of code and making repetitive changes accordingly, and
thus Coccinelle can be useful in this case. While the previous example reorganizes
a collection of APT calls, this one finds the need for an API call that is missing,
in a specific context. This example also illustrates how one instance of a change
can be scaled up to many variants.

4.1 The problem

We consider the case of iterators over collections of device_node structures.
These structures are managed using reference counts. Forgetting to decrement
a reference count when needed prevents the structure from ever being freed,
causing a memory leak. As a concrete example, we consider the use of the for_-
each_child_of_node iterator. Each iteration visits a device_node structure. To
simplify the code, this iterator increases the reference count of the current node
before executing the body of the loop, and then decreases the reference count of
that node before moving on to the next iteration. Figure 7 shows a typical use
of the iterator that benefits from these hidden reference count operations.

But, out of sight, out of mind. By hiding the management of the reference
count in the normal case, the iterator hides the fact that explicit management
of the reference count is needed in exceptional cases. Specifically, in the example
of Figure 8, if there is a jump out of the loop body via the return (line 7), the
increment of the reference count is performed, but the decrement (of _node_put),
that is performed by the iterator at the end of a loop iteration, is not executed.
The solution is to add a call to of _node_put (line 6).

Automating Program Transformation with Coccinelle 9

1 for_each_child_of_node(parent, child)
2 pnv_php_reverse_nodes (child);

Fig.7. A simple use of for_each_child_of_node, from drivers/pci/hotplug/-
pnv_php.c, Linux v5.16.

for_each_child_of_node (phandle ->parent, node) {
alias_id = of_alias_get_id(node, clk_name);
if (alias_id >= 0 && alias_id < cmdq->gce_num) {

1
2
3
4 C
5 if (IS_ERR(cmdq->clocks[alias_id].clk)) {
6 + of _node_put (node) ;
7 return PTR_ERR(cmdq->clocks[alias_id].clk);
8 }
9 3
o }

Fig. 8. A use of for_each_child_of_node that may case a memory leak, from dri-
vers/mailbox/mtk-cmdq-mailbox.c, Linux v5.16, slightly simplified for conciseness.

The issue occurs not only for jumps via return, but also for goto and break.
The jump out of the loop body can occur anywhere within the loop body and
there may be multiple such jumps. There is also a large set of relevant iterators.

4.2 The semantic patch

Figure 9 shows the semantic patch for the case of for_each_child_of_node
and return. This semantic patch uses “...” (line 9) to trace through each pos-
sible execution path in the loop body to find those where the reference count is
decremented (line 11), where the device_node variable may be stored in some
more global way that requires the reference count to remain raised (lines 13-17),
and where there is a jump out of a loop (line 20). It is on the latter that an
of _node_put should be inserted (line 19).
The semantic patch illustrates some more features of SmPL:

— Iterators: Iterators are not part of the C language, but are rather defined by
the Linux kernel as macros. While many macros can be parsed as function
calls, this is not possible for iterators, because an iterator amounts to a loop
header. Accordingly, SmPL provides a special notation for declaring them.
iterator name (line 2) allows declaring the name of a specific iterator, which
is then parsed similarly to a while loop. iterator (line 5) allows declaring
a metavariable that can match any iterator.

— Local variables: local idexpression (line 3) declares a metavariable that
only matches a variable declared in the current function. This feature is
important in this semantic patch, to ensure that the device_node does not
escape the loop.

— Disjunction: (|) in the leftmost column indicates a choice between a se-
lection of patterns. The ? on the last pattern indicates that the return is
optional; as in Figure 7, some paths may not match any of the patterns.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

10 J. Lawall and G. Muller

[

iterator name for_each_child_of_node;
local idexpression n;

expression e,el;

iterator i1l;

statement S;

Qe

for_each_child_of_node(e,n) {

(

of _node_put(n);
|

el = n
|

return n;
|

i1(...,n,...) S
|
+ of_node_put(n);
? return ...;
)

. when any

}

Fig. 9. for_each_child_of_node with no of _node_put before a return out of the loop.

— When any: By default, “...” matches a path that does not contain a match
of any pattern appearing just before or after the “...”. when any allows such
matches. The effect of the when any on the second “...” is that the disjunc-

tion pattern matches the first instance of the pattern along each execution
path through the loop body.

4.3 Scaling up

In the previous semantic patch rule, the jump out of the loop is performed by
a return. goto and break each introduce minor specific issues, and one can
create a rule for each case. A second point of variation is the iterator name, and
indeed new iterators can be introduced over time. The semantic patch in Figure
10 addresses this issue, for a small selection of iterators, using a pair of rules.

The first rule (lines 1-20), named r (line 1), matches the complete loop
in two ways, using a conjunction (&), analogous to the disjunction introduced
previously. The first conjunct lists the names of specific iterators to match, while
the second uses metavariables to capture the name of the iterator (i) and the
number of arguments (1len) before the device_node typed index variable. Note
that the position of this index variable varies depending on the iterator.

The second rule (lines 22-44) then inherits from rule r the metavariables i
(denoted r.i), representing the iterator name, and len, representing the offset
of the index variable (denoted r.len). These inherited metavariables can then
be used freely, like any other metavariable.

When applied to a given file, the semantic patch matches the first rule across
the file, and collects possible bindings of the set of metavariables. The second
rule is triggered once for each unique set of bindings of the metavariables that

© WO W e

BB A A D W W W W W W W W W W NN NNNKNE R R R e e e e
B WN R O ® W0 0h @R O ®N0 U R WNRO©OW-N 3Ok W= O

Automating Program Transformation with Coccinelle 11

erae

local idexpression n;

expression e}

iterator name for_each_child_of_node, for_each_available_child_of_node,
for_each_node_with_property;

iterator i;

statement S;

expression list [len] es;

e

(

(

for_each_child_of_node(e,n) S

|

for_each_available_child_of_node(e,n) S
|

for_each_node_with_property(n,e) S

)
&

i(es,n,...) S

)

0Q
local idexpression n;
expression el;
iterator r.i,il;
expression list [r.len] es;
statement S;
e
i(es,n) {

of_node_put(n);
el = n

return n;

i1t(...,n,...) S

|
+ of_node_put(n);
? return ...;
)
when any
}

Fig. 10. for_each_child_of_node with no of_node_put before a jump out of the loop.

it inherits. Thus, the second rule will be applied to the entire file up to three
times, depending on how many of the iterators mentioned in r are used in the
file, and thus the number of bindings of rule r’s i and len metavariables.

4.4 Impact

Figure 11 shows the number of files in each release of the Linux kernel be-
tween v4.0 (April 2015) and v5.16 (January 2022) that are missing an of_-
node_put () within a use of one of the iterators for_each_node_by_name, for_-
each_node_by_type, for_each_compatible_node, for_each_matching_node,
for_each_matching _node_and_match, for_each_child_of_node, for_each_-
available_child_of_node, or for_each_node_with_property. We collected

12 J. Lawall and G. Muller

this information using the for_each_child.cocci semantic patch that has been
part, of the Linux kernel distribution since v5.10 (December 2020).

affected files

A iSRS USRS RS TS RS U U N I OO IO IO OO T LT LT T T T T
PP PRI ILIIIIIT >0 5 5 > > > > 0101010101010
PR R

1

Fig. 11. Number of files missing uses of of _node_put as detected by the for_each_-
child.cocci semantic patch found in the Linux kernel.

Over most of the time shown (April 2015 — January 2022), the number of
affected files has slowly increased, as, for example, new files have been added that
do not contain the required code. The large dips from version v4.3 to version
v4.4 and then from version v5.2 to version v5.4 were due in part to the use of
Coccinelle to add the needed calls at a large scale. In recent years, there has been
a steady decline, starting with Linux v5.10, in which a semantic patch addressing
the need for of_node_put was added into the Linux kernel. Developers and
continuous integration tools can use this semantic patch to add the missing calls
even before the code is integrated into a mainline Linux kernel release, breaking
the steady upward trend seen in previous releases.

5 A Third Example: Inconsistent Atomicity Flags

Our final example shows how Coccinelle can be used to collect information across
a complete code base, and to report anomalies in the collected information as
potential bugs. Similar reasoning has been used effectively in various prior ap-
proaches for mining APT usage rules [4,8,17]. We how how this idea can be used
in a lightweight way with Coccinelle. A challenge is that Coccinelle works on one
file at a time, and within each file on one function (or other top-level declara-
tion) at a time. We show how Coccinelle’s scripting language interface, allowing
the use of scripts written in OCaml or Python, makes collecting and processing
information across an entire code base possible.

5.1 The problem

Our example relates to the use of the Linux kernel flags GFP_KERNEL and GFP_-
ATOMIC that are commonly passed to memory allocation functions to indicate
whether the function may sleep or not to wait for memory to be available, re-
spectively. Essentially, GFP_KERNEL should be used when no lock is held, and

Automating Program Transformation with Coccinelle 13

GFP_ATOMIC should be used when a lock is held. The challenge is that holding
a lock is an interprocedural property; taking a lock in one function means that
the lock is held in the execution of all called functions, until the lock is released.
Detecting whether a caller may hold a lock is particularly difficult for function
pointers, which the Linux kernel uses extensively. Figure 12 shows an example,
representing an interface to a network device driver. The choice of GFP_KERNEL
or GFP_ATOMIC depends on whether locks are held at the call sites of these
function pointers. Such call sites are typically located in other files, and thus are
not accessible to Coccinelle when processing the file that contains this interface
definition and the definitions of the referenced functions. The call sites may be
subject to further interprocedural locking effects that are difficult to analyze.

1 static struct platform_driver moxart_mac_driver = {
2 .probe = moxart_mac_probe,

3 .remove = moxart_remove 3

4 .driver = {

5 .name = "moxart-ethernet",
6 .of _match_table = moxart_mac_match,
7 },

8};

Fig. 12. Collection of function pointers representing an interface to the MOXA ART
Ethernet (RTL8201CP) driver (drivers/net/ethernet/moxa/moxart_ether.c).

5.2 The solution

Rather than search for the function-pointer call sites and the contexts in which
they occur, we instead explore what information we can infer by assuming that
the function stored in a particular structure member is always called in the same
way. This assumption implies that if no locking code is present in the function
itself, then either GFP_KERNEL will always be used by all functions stored in a
given structure member, or GFP_ATOMIC will always be used. A mixture would
imply that either our hypothesis is false, and the function pointer is called in
different contexts, or that the function is using an incorrect flag.

The structure of the semantic patch is roughly as follows. First, it will pass
over the code base to collect the names of all functions containing a reference
to GFP_KERNEL and the names of all functions containing a reference to GFP_-
ATOMIC. In each case, it identifies the structure member storing the function,
if any. Finally, after collecting this information across the entire code base, for
each structure member, it compares the number of functions in each category.
If there is a large number of functions in one category and a small number of
functions in the other, it is possible that inappropriate flags are being used, and
the relevant code should be further investigated.

The semantic patch starts as shown below, by defining some hash tables to
collect information from across the code base. This rule is indicated as initial-

14 J. Lawall and G. Muller

ize:ocaml (line 1), meaning that it is run before the treatment of any files, and
that it contains OCaml script code. Such script code is passed directly to the
OCaml interpreter, and is not processed by Coccinelle in any way.

1 @initialize:ocaml@

2 0@
3let atbl = Hashtbl.create 101 (* collect functions using GFP_ATOMIC x)
4let ktbl = Hashtbl.create 101 (% collect functions using GFP_KERNEL x*)

Next, the semantic patch matches uses of GFP_KERNEL and GFP_ATOMIC, first
identifying a use, then detecting whether the containing function is stored in
a structure member, and finally, if so, storing the location of the reference in
the appropriate hash table. The rules for each flag are independent, and are
thus shown in parallel in Figure 13, although in the actual semantic patch, one
sequence of rules comes after the other. The first rule in the GFP_ATOMIC case
(lines 1-14 on the right of Figure 13) is more complex than the first rule in the
GFP_KERNEL (lines 1-5 on the left of Figure 13); in the former case we have to
ensure that the code is not executed when a lock is locally held, which is verified
by ensuring that there is no subsequent lock release before the taking of another
lock is optionally reached (lines 8-14), considering some common lock functions.

10ri1@ 1 identifier f;

2 identifier f; 2 position p;

3 position p; 300

4 0@ 4f@p(...,GFP_ATOMIC,...)

5 f@p(...,GFP_KERNEL,...) 5... when != spin_unlock(...)

6 6 when != spin_unlock_irqrestore(...)

70s1@ 7 when != spin_unlock_bh(...)

8 identifier i,j,fn; 8 (

9 identifier f1 : 9 spin_lock (...);

10 script:ocaml(rl.p) 10 |

11 {f1=(List.hd p).current_element}; 11 spin_lock_irqgsave (...);

12 0@ 12 |

13 struct i j = { .fn = f1, }; 13 ?spin_lock_bh (...);

14 14)

15 @script:ocaml@ 15

16p << rl.p; 16 0s2Q

171 << sl.i; 17 identifier i,j,fn;

18 fn << sl.fn; 18 identifier f1

19 Q 19 script:ocaml(r2.p)

20 Common . hashadd ktbl (i,fn) p 20 {f1=(List.hd p).current_element};
21 @@

22 struct i j = { .fn = f1, };
23

24 @script:ocaml@

25p << r2.p;

261 << s82.1i;

27 fn << s82.fn;

28 @@

20 Common . hashadd atbl (i,fn) p

Fig. 13. Collection of information about occurrences of GFP_KERNEL and GFP_ATOMIC.

The semantic patch concludes with a straightforward finalize:ocaml rule
that iterates over one of the hash tables, and for each structure member compares
the number of pointed functions using GFP_KERNEL or GFP_ATOMIC. The output

Automating Program Transformation with Coccinelle 15

can be freely tailored to be more complete, possibly including false positives, or to
only include the most likely anomalies, possibly creating false negatives. Among
the results, we observe that, in Linux 5.16, 7 functions in the probe member of a
platform_driver structure, as illustrated in Figure 12, use GFP_ATOMIC, while
2627 use GFP_KERNEL. Checking the 7 cases reveals that they should be converted
to use GFP_KERNEL. Patches making these changes have been submitted to the
Linux kernel, and appear in the linux-next version of March 10, 2022.

6 Related Work

Automated program transformation has a long history. We focus on work specif-
ically related to Coccinelle. Lawall and Muller give an overview of the design
decisions of Coccinelle, its impact, and closely related work [15]. Martone and
Lawall provides a tutorial in using Coccinelle, similar to that presented here,
but targeting high-performance computing [19]. Kang et al. [9] explore the use
of Coccinelle for Java. Outside of the Coccinelle team, Nielsen et al. [21] pro-
pose a transformation system something like Coccinelle to meet the needs of
JavaScript programs. Some Coccinelle-like features have recently been added to
the Java source-code analysis and transformation tool Spoon [24].

7 Conclusion

Coccinelle has facilitated thousands of lines of changes in the Linux kernel and
other software projects. By making it possible to easily write complex patterns,
describing code fragments and their context, Coccinelle enables an alternate,
cross cutting view of a large code base. Coccinelle has been a source of fun
and pride for its developers. We hope that the reader will have a chance to try
Coccinelle, and will enjoy using it too.

Availability: Coccinelle is available from many Linux distributions, and from the
Coccinelle website: https://coccinelle.gitlabpages.inria.fr/website/

Acknowledgments: Yoann Padioleau and René Rydhof Hansen were postdocs
working on Coccinelle in its earliest days, and contributed greatly to the de-
sign and implementation. Nicolas Palix has also maintained parts of Coccinelle
over the years. Recent interns who contributed greatly to the code base in-
clude Jaskaran Singh and Keisuke Nishimura. The initial work on Coccinelle
was funded in part by the French ANR and the Danish FTP. Recently, Inria has
supported the continued maintenance of Coccinelle, with the help of Sébastien
Hinderer and then Thierry Martinez. We are also deeply grateful for the feedback
and support from the Linux kernel developer community. Keisuke Nishimura and
Michele Martone also gave helpful feedback on drafts of this paper. We thank
the organizers of NFM22 for the invitation to present this work.

16 J. Lawall and G. Muller
References
1. Brunel, J., Doligez, D., Hansen, R.R., Lawall, J., Muller, G.: A foundation for

w

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

flow-based program matching using temporal logic and model checking. In: POPL.
pp. 114-126 (Jan 2009)

Casazza, G., Villano, U., Merlo, E., Antoniol, G., DiPenta, M.: Identifying clones
in the Linux kernel. In: Proceedings First IEEE International Workshop on Source
Code Analysis and Manipulation (2001)

Eclipse (2022), https://www.eclipse.org/ide/

Engler, D.R., Chen, D.Y., Chou, A.: Bugs as deviant behavior: A general approach
to inferring errors in systems code. In: Marzullo, K., Satyanarayanan, M. (eds.)
SOSP. pp. 57-72. ACM (2001)

Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
(2002)

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995)

Git (Sep 2021), https://github.com/git/git/tree/master/contrib/coccinelle
Goues, C.L., Weimer, W.: Specification mining with few false positives. In:
Kowalewski, S., Philippou, A. (eds.) TACAS. Lecture Notes in Computer Science,
vol. 5505, pp. 292-306. Springer (2009)

Kang, H.J., Thung, F., Lawall, J., Muller, G., Jiang, L., Lo, D.: Semantic patches
for Java program transformation (experience report). In: ECOOP. LIPIcs, vol. 134,
pp. 22:1-22:27 (2019)

Kernighan, B.: UNIX: A History and a Memoir. Kindle Direct Publishing (2019)
Kernighan, B.W., Pike, R.: The UNIX Programming Environment. Prentice Hall
(1984)

Lawall, J.: An introduction to Coccinelle bug finding and
code evolution for the Linux kernel. Suse Labs (2014),
https://www.youtube.com/watch?v=buZrNd6XkEw

Lawall, J.: Keynote: Inside the mind of a coccinelle programmer. Linux Security
Summit (2016), https://www.youtube.com/watch?v=xA5FBvuCvMs

Lawall, J.: Coccinelle: 10 years of automated evolution in the Linux kernel. Linaro
Connect (2019), https://www.youtube.com/watch?v=LOsluY TzdMg

Lawall, J., Muller, G.: Coccinelle: 10 years of automated evolution in the Linux
kernel. In: USENIX ATC. pp. 601-614 (2018)

Lawall, J.L., Brunel, J., Palix, N., Hansen, R.R., Stuart, H., Muller, G.: WYSI-
WIB: exploiting fine-grained program structure in a scriptable API-usage protocol-
finding process. Software: Practice and Experience 43(1), 67-92 (Jan 2013)

Li, Z., Zhou, Y.: PR-Miner: Automatically extracting implicit programming rules
and detecting violations in large software code. In: ESEC-FSE (2005)
MacKenzie, D., Eggert, P., Stallman, R.: Comparing and Merging Files With
Gnu Diff and Patch. Network Theory Ltd (Jan 2003), Unified Format section,
http://www.gnu.org/software/diffutils/manual/ html node/Unified-Format.html
Martone, M., Lawall, J.: Refactoring for performance with semantic patching: Case
study with recipes. In: High Performance Computing - ISC High Performance
Digital 2021 International Workshops. Lecture Notes in Computer Science, vol.
12761, pp. 226-232 (2021)

Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: intermediate language
and tools for analysis and transformation of C programs. In: Compiler Construc-
tion. Lecture Notes in Computer Science, vol. 2304, pp. 213-228 (2002)

21.

22.

23.

24.
25.

26.
27.

Automating Program Transformation with Coccinelle 17

Nielsen, B.B., Torp, M.T., Mgller, A.: Semantic patches for adaptation of
JavaScript programs to evolving libraries. In: ICSE. pp. 74-85. IEEE (2021)
Padioleau, Y., Lawall, J., Hansen, R.R., Muller, G.: Documenting and automating
collateral evolutions in Linux device drivers. In: EuroSys 2008. pp. 247-260. ACM,
Glasgow, Scotland (Mar 2008)

Palix, N., Thomas, G., Saha, S., Calvés, C., Lawall, J., Muller, G.: Faults in Linux
2.6. ACM Transactions on Computer Systems 32(2), 4:1-4:40 (Jun 2014)

Spoon (Mar 2022), https://github.com/INRIA /spoon

Stefaniuc, M.: Coccinelle scripts for Wine (Sep 2021),
https://github.com/mstefani/coccinelle-wine

Systemd (Feb 2022), https://github.com/systemd/systemd/tree/main/coccinelle
WineHQ: Static analysis (Feb 2016), https://wiki.winehq.org/Static_ Analysis

