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G1 Spline Functions for Point Cloud Fitting

Michelangelo Marsala∗, Angelos Mantzaflaris, Bernard Mourrain

Inria Centre at Université Côte d’Azur, Sophia Antipolis, France

Abstract

In this work we present a new construction of basis functions that generate the space of geometrically
smooth splines on an unstructured quadrilateral mesh. The basis is represented in terms of biquintic Bézier
polynomials on each quadrilateral face. The gluing along the face boundaries is achieved using quadratic
gluing data functions, leading to globally G1–smooth spaces. We analyze the latter space and provide a
combinatorial formula for its dimension as well as an explicit basis construction. Moreover, we assess the
use of this basis in point cloud fitting problems. To apply G1 least squares fitting, a quadrilateral structure
as well as parameters in each quadrilateral is required. Even though the general problem of segmenting
and parametrizing point clouds is beyond the focus of the present work, we describe a procedure that
produces such a structure as well as patch-local parameters. Our experiments demonstrate the accuracy
and smoothness of the obtained reconstructed models in several challenging instances.

Keywords: Point cloud fitting, multipatch domain, gluing data, geometrically smooth surfaces, spline basis

1. Introduction

A fundamental operation in geometric modeling is the construction of geometric models from measure-
ments or observations. This consists in computing an accurate representation of the surface of an object,
from a set of points obtained e.g. from laser scanners, Light Detection And Ranging (LIDAR) scanners or
stereo camera devices. With the fast development of accessible acquisition tools, it is nowadays possible to
use dense and precise point clouds to compute geometric models, such as meshes. Such reconstruction tools
are indeed used in many applications including earth surveying tasks [51, 49, 44], geographic information
and navigation systems [35], building model reconstructions [53], cultural heritage information systems [38],
reverse engineering [10, 47], metrology [50, 54], medical imaging [42, 43].

Typically one adds structure to the point cloud by generating a mesh with the input points as vertices.
Consequently, the mesh is further processed using mesh simplification, hole filing, noise removal, remeshing,
smoothing, and so on, to obtain a representation of the shape with good regularity and good approximation
properties (see e.g. [2, 23, 30, 5]). Nevertheless, a piecewise linear shape does not imply a smooth normal
field therefore it is not always suitable for use in Computer Aided Geometric Design.

A classical approach for obtaining smooth shapes is based on B-spline or NURBS representations. Given
a sequence of points a B-spline curve of prescribed regularity approximating the point set can be computed
by solving a least square distance problem [11]. Iterating the procedure and inserting more knots results
in an accurate, regular and efficient description of a curve. The approach can be extended to rectangular
patches of tensor product B-splines for point clouds, which rely mainly on rectangular surface patches.
Local refinement techniques, based on e.g. Truncated Hierarchical B-splines (THB) [13, 25], T-splines [24],
Locally Refined splines (LR) [45], or Polynomial splines over Hierarchical T-meshes (PHT) [27] have also
been developed to reduce the fitting error, while reducing the total number of required degrees of freedom.

The task of segmenting and parametrizing a point cloud is a necessary step towards fitting with spline
functions that poses many challenges [52]. The choice of parameters impacts greatly the final fitting and
several heuristics have been developed in that respect, based on local weights [12], optimization methods [37,

∗Corresponding author
Email addresses: michelangelo.marsala@inria.fr (Michelangelo Marsala), angelos.mantzaflaris@inria.fr (Angelos

Mantzaflaris), bernard.mourrain@inria.fr (Bernard Mourrain)



48], subdivision [3] and so on. We refer the reader to the recent review article [56] for a thorough presentation
of different existing methods.

However, in many applications, the shape to be described cannot be mapped continuously and bijectively
to a single rectangle and collections of quadrangular faces are needed to properly fit the whole point cloud.
This does not prevent the reconstructed B-spline faces to have non-smooth junctions along shared edges. In
[28], point-wise constraints on the normals of biquintic Bézier patches along the shared edges are imposed
to obtain approximate regularity along the edges of the quadrangular patches. In [41] the authors propose
a construction of G1 biquintic B-splines starting from a given network of C0 biquintic B-splines with single
inner knots. This model construction can be seen as a projection to a G1 model of the space of G1 functions;
however, it does not provide an explicit basis to that space that can be used for fitting problems. The paper
[14] presents the construction of a G1 biquintic Bézier surface interpolating the vertices of an input triangular
mesh. Furthermore, newer biquintic construction as [22], provides the construction of G2 surfaces developed
via the use of functionals. Nevertheless, the above cited works only focus on the reconstruction of spline
models and not on the computation of efficient bases for approximation purposes, which is the topic of the
present work.

In [55], a so-called ”immune genetic algorithm” is used to solve the fitting problem augmented with
G1 constraints. These patch-by-patch approaches require the treatment of G1 conditions as additional
constraints of the squared distance minimization problem and do not guarantee that the computed surface
is globally smooth. In [15, 9], G1 surfaces of bidegree (3, 3) and (4, 4) with 4 splits and respectively linear
and quadratic gluing data are computed to interpolate a network of curves. Fitting optimization is used to
approximate a point cloud, once the curve edges of the faces have been fixed. This constraints the resulting
surface to have edges aligned with prescribed curves, and the fitting quality of the resulting surface depends
on the chose of these curves.

The problem of computing dimension and explicit bases of spaces of G1 functions is an active topic of
research in spline theory and isogeometric analysis. Many authors have investigated the dimension and basis
of spline spaces over planar domains. See e.g. [1, 17, 40, 26, 34] and references therein. Fewer results are
available in the case of Gr, r > 1 spline spaces [33, 19, 20, 21, 7, 8].

Contributions. In this work, we describe a new construction of G1 basis functions and show the appli-
cability of these basis functions in fitting problems. The basis functions, computed by means of quadratic
gluing data, are attached to vertices, edges and faces. Their coefficients in the Bernstein basis of each face
depend solely on the topology of the mesh, therefore they can be computed once for every vertex valence.
The fitting problem is solved using least square distance minimization in the space spanned by the G1 spline
basis associated with the quadrilateral mesh. The resulting surface is, by construction, smooth everywhere
with continuous tangent planes along all shared edges. Our main focus is not on point cloud parametrization,
which is, as already mentioned, a hard problem in itself but on the construction and analysis of good G1

spline function spaces for approximating unstructured point clouds. Nevertheless, a computational approach
is used to obtain parametrization (see Section 5.3): we triangulate the point cloud, then convert the fine
triangulation into a coarse quadrilateral mesh, and finally we construct a G1 spline surface supported on
this coarse mesh using the approach in [32]. This initial surface is used to compute a footpoint for each
point in the cloud and thereby associate parameters to be used in fitting.

Outline. In Section 2 we establish notation and present the definition of G1 smooth spline on a multipatch
domain making use of quadratic gluing data functions; moreover, we recall the equations generating the
G1 biquintic space that we are interested in. Section 3 is devoted to the construction of an explicit set of
basis functions spanning the G1 spline space, including explicit formulas for the computation of the Bézier
representation of the basis functions. In Section 4 we prove that our construction yields a basis and we derive
a combinatorial dimension formula for the space. We use the new bases in point cloud data fitting problems
and elaborate on several examples in Section 5. In doing so, we detail on a computational approach to obtain
a coarse quadrilateral structure and parameters for the point cloud (Section 5.3). Section 6 concludes the
work.

2. G1 functions on a mesh M

Let us begin recalling some standard definitions. Given a matrix of points bi,j ∈ R3, we define a
(tensor-product) Bézier patch as

Q(u, v) =

n,m∑
i,j=0

bi,jB
i,j
n,m(u, v), (u, v) ∈ [0, 1]2,
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where Bi,j
n,m(u, v) = Bi

n(u)Bj
m(v) is the bivariate Bernstein polynomials of bidegree (n,m), that is, Bh

d (u) =(
d
h

)
uh(1 − u)d−h.
A quadrilateral mesh in three dimensions is a collection of faces, edges and vertices together with their

adjacency relations. Throughout this paper we work with meshes which contain only quadrilateral faces and
we shall refer to such a structure as quadrilateral mesh, denoting it by M.

An important notion is the valence of a vertex, which we define as the number of adjacent faces emanating
from the vertex. An interior vertex is said to be regular (RV in short) in the case that the valence is equal to
4, and is called irregular (or extraordinary – EV) otherwise. In the particular case of a vertex on the mesh
boundary, the regular case corresponds to a valence equal to 2. The case of valence 1, i.e. corresponding
to a corner vertex, is treated separately. Given a mesh M it is interesting to count the main features it
possesses: we will refer to nV as the number of vertices of the mesh, which can be subdivided in nIEV

inner EVs, nBEV boundary EVs and nRV regular vertices. The total number of edges is denoted by nE and
is composed by the number of extraordinary and regular edges, nEE and nRE respectively, that is, edges
attached to extraordinary and regular vertices, as well as the number of boundary edges nBE . With nF we
refer to the number of faces and lastly nC is the number of corners of the mesh. Moreover, a collection of
patches f = (fσ)σ∈M, with σ a face of the mesh M and fσ = f

∣∣
σ

is called a multipatch surface [32].

A surface is said to be G1 if it has continuous normals. In order to define the G1 continuity between
patches in a mathematical setting, we use gluing data functions aN,N ′ : e −→ R , bN,N ′ : e −→ R, with
e the common edge between two adjacent patches of the mesh M linking a vertex of valence N with one
of valence N ′. In the following construction, we shall assume that each edge e is a curve on the surface
parametrized in the interval [0, 1].

We say that a multipatch function f = (fσ)σ∈M on a mesh M is differentiable or G1 if for any two
functions f0, f1 defined on faces σ0, σ1 ∈ M sharing an edge e, we have (using a prescribed orientation of
the coordinate frames as in [32]) f1(u1, 0) = f0(0, u1) ,

∂f1
∂v1

(u1, 0) = bN,N ′(u1)
∂f0
∂u0

(0, u1) + aN,N ′(u1)
∂f0
∂v0

(0, u1) ,
u1 ∈ [0, 1] , (1)

where aN,N ′ , bN,N ′ are the gluing data defined on the edge e. The functions satisfying eq. (1) for all shared
edges belong to the linear space of G1 functions on M with respect to the gluing data aN,N ′ and bN,N ′ . In
this paper we consider quadratic symmetric gluing data defined as

aN,N ′(u) = a0B
0
2(u) − a2B

2
2(u) , where a0 = 2 cos

(
2π

N

)
, a2 = 2 cos

(
2π

N ′

)
,

bN,N ′(u) = −1 ,

(2)

with Bi
2(u) =

(
2
i

)
ui(1 − u)2−i , i = 0, 2, the standard univariate Bernstein polynomials. We refer to [36, 4,

16, 9, 15, 32] for more details.
Here we assume that N ′ = 4 which implies a2 = 0; geometrically speaking this means that the EVs of

the mesh we consider are only linked to regular vertices. Let f1 and f2 be two Bézier patches of bidegree
(d, d); the G1 relations across an edge defined in (1) can be written in terms of the Bézier coefficients as

d∑
i=0

b
(1)
i,0B

i
d(u) =

d∑
i=0

b
(0)
0,iB

i
d(u) ,

d∑
i=0

(
b
(1)
i,1 − b

(1)
i,0 + b

(0)
1,i − b

(0)
0,i

)
Bi

d(u) = a0B
0
2(u)

(
d−1∑
i=0

(
b
(0)
0,i+1 − b

(0)
0,i

)
Bi

d−1(u)

)
,

(3)

where we used the gluing functions introduced in (2) and b
(k)
i,j are the control points of the patch σk.

Throughout the paper we use biquintic Bézier patches, that is, (d, d) = (5, 5); this choice has also been
made in [32], where the surface approximation scheme G1ACC is presented. The G1ACC surface is defined
through masks returning a multipatch Bézier surface with G1 smoothness around EVs and at least C1

smoothness everywhere else. The coordinate functions of that parametrized surface are elements of the
space of G1 spline functions that we study in the present paper.
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We are now in position to write the equations defining the geometric continuity constraints across an
extraordinary edge, obtained from (3) for d = 5, as follows:

b
(1)
0,1 + b

(0)
1,0 = ā0b

(1)
0,0 + a0b

(1)
1,0 , (4)

5(b
(1)
1,1 + b

(0)
1,1) = a0b

(1)
0,0 + 5ā0b

(1)
1,0 + 4a0b

(1)
2,0 , (5)

10(b
(1)
2,1 + b

(0)
1,2) = −a0b

(1)
0,0 + 5a0b

(1)
1,0 + 10ā0b

(1)
2,0 + 6a0b

(1)
3,0 , (6)

10(b
(1)
3,1 + b

(0)
1,3) = a0b

(1)
0,0 − 5a0b

(1)
1,0 + 10a0b

(1)
2,0 + 10ā0b

(1)
3,0 + 4a0b

(1)
4,0 , (7)

b
(1)
4,1 + b

(0)
1,4 = 2b

(1)
4,0 , (8)

b
(1)
5,1 + b

(0)
1,5 = 2b

(1)
5,0 , (9)

10(b
(1)
3,0 − b

(1)
2,0) = b

(1)
0,0 − 5b

(1)
1,0 + 5b

(1)
4,0 − b

(1)
5,0 , (10)

with ā0 = 2 − a0.
Starting from the above equations (4)-(10), we shall present an explicit construction of a set of basis

functions generating the G1 spline space and use it in point cloud fitting problems.

3. Bases extraction

In this section we present an explicit construction of the space of basis functions generating the G1

space, which we refer to as B. Following the topology of the input mesh M, we can distinguish the space
of functions attached to the vertices BV (i.e. spanned by functions whose support lies on all the patches
sharing the vertex), space of basis functions attached to the edges BE (i.e. spanned by functions whose
support lies on the patch(es) sharing the edge) and space of basis functions attached to the faces BF (i.e.
spanned by bases whose support lies only on the interior of a single patch). This decomposition will be
exploited in the proofs of Section 4. Thus, we arrive at a set of basis functions which can be decomposed as

B =

(
nV⋃
i=1

BVi

)
∪

(
nE⋃
i=1

BEi

)
∪

(
nF⋃
i=1

BFi

)
. (11)

We assume that all the EVs in M are isolated, that is, their one-ring neighborhood contains only RVs.
Having EVs attached to regular vertices only, which translates into eq. (8)-(9), implies that vertex, edge and
face functions have value and derivative equal to zero on the boundary of their support; thus basis functions
with local support on a collection of faces of M do not influence functions in the region surrounding its
support. By combining the equations in system (4)-(10) circularly around all the edges attached to an EV we
can reformulate the G1 constraints using a staircase block matrix, which is useful to better understand the

bases extraction and their analysis which follows. Let bi,j =
(

b
(k)
i,j

)
, k = 1, . . . , N , be the vector containing

all the points b
(k)
i,j attached to the neighborhood of the EV we are considering, u = (1, . . . , 1︸ ︷︷ ︸

N

)T , C ∈ RN×N

and the circulant matrix defined as

C =


0 1 0 · · · 0

1
. . .

1
1 0 · · · 0

 = Circ(0, 1, 0, . . . , 0) . (12)

Note that b4,0 = b5,0 = 0, as a consequence of the isolated EV hypothesis; the full system of G1 relations
around an EV can be written as
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
−ā0u C1

−a0u −5ā0I − 4a0I 5C2

−u 5I − 10I 10I
a0u −5a0I −10ā0I −6a0I 10I 10I

−a0u 5a0I −10a0I 10ā0I 10I 10I





b0,0

b1,0

b2,0

b1,1

b3,0

b2,1

b̂1,2

b3,1

b̂1,3


= 0 , (13)

where a0 = 2 cos (2π/N) is the first Bernstein coefficient of the gluing data function, ā0 = 2−a0, I ∈ RN×N

is the identity matrix,
C1 = −a0I + C + CN−1 , C2 = I + C , (14)

and b̂1,2 = C b1,2, b̂1,3 = C b1,3, with C in (12). The strategy we exploit to obtain the Bézier coefficients
defining the basis functions is the following: starting from eq. (4)-(10) or eq. (13) we impose, one by one,
the value one to each ”free” coefficient involved in the G1 constraints. Then, with this initial value we solve
the G1 relations in (4)-(10) or eq. (13), while we gradually set the value of any unconstrained coefficients
that we encounter (i.e. coefficients which lead to an overdetermined equation) to zero.

3.1. The space BV : basis functions attached to a vertex

Here, we consider basis functions attached to inner and boundary vertices (extraordinary or regular) and
corner vertices. We only provide the explicit construction for bases attached to inner extraordinary and
inner regular vertices, since the construction for the remaining cases is analogous.

3.1.1. Construction of basis functions associated to an inner EV
Given an extraordinary vertex of valence N , we have attached to it basis functions concerning their value

at the vertex and their value of the first and cross derivatives at the vertex. We will figure out during the
construction that these bases are in number N+3.

Basis function attached to the vertex value. To extract the basis function associated to the value at the
vertex, we start solving the system (4)-(10) with initial value b0,0 = 1 and continuing the construction
fixing zero values for all the control points which are not constrained by any relation we will encounter
during the construction. With this assumption, we can rewrite eq. (4) in the form

C1b1,0 = (2 − a0)u , (15)

with C1 ∈ RN×N defined in (14). The solution of eq. (15) will return the values concerning the first
derivatives of the basis with unit value at the vertex. As shown in [32], the matrix C1 = −a0I + C + CN−1

is singular and corank(C1) = 2; for this reason, in order to obtain a unique solution we need to insert two
extra constraints to the system (15). Let Ker(C1) = K = Span{k1,k2} be the kernel of the matrix C1

generated by the two vectors k1 and k2, we can choose our solution to be orthogonal to the space K, i.e.
⟨b1,0|k1⟩ = ⟨b1,0|k2⟩ = 0 , where ⟨·|·⟩ represents the classical Euclidean scalar product. An explicit formula
to compute the kernel K has been provided in [32]. This procedure allows us to achieve a unique solution
for this set of control points. Going further in the resolution of the system, using the solution we just obtain
Equation (4) and the circulant matrix C, and taking into account the constraint along the edge in eq. (10)
which becomes

b2,0 =
1

2
b1,0 −

1

10
u , (16)

we can reorder eq. (5) as

C2b1,1 = −1

5
a0u + 5(2 + a0)b1,0 , (17)

with C2 as in eq. (14). For odd values of the valence N the matrix C2 is invertible, while for even occurrences
we have corank(C2) = 1. To obtain a unique solution in the singular case we need to fix an extra constraint
which we decide to be the orthogonality of the expected solution b1,1 to Ker(C2). For a deeper explanation

5



of the solving strategy of (17) we refer the reader to [32]. Regarding the control points for the higher
derivatives b2,1 and b3,1, from Equations (6)-(7) and using again (16) we come up with the relations

b2,1 + b̂1,2 = −1

5
u + b1,0 and b3,1 + b̂1,3 = 0 (18)

which can be solved, for instance, imposing the extra relations b2,1 = b̂1,2 and b3,1 = b̂1,3. This procedure,
as depicted from the construction, will return a unique basis function. In Fig. 1-(a) is presented an example
of the coefficients obtained with the previous construction in case of an EV of valence N = 3.

Basis functions attached to the first derivatives at the vertex. To proceed with the construction of the second
subset of basis functions we start again from Eq. (4) but imposing this time the value b0,0 = 0; this choice
leads to the following homogeneous linear system

C1b1,0 = 0 , (19)

where the matrix C1 is the same as the previous section and introduced in (14). A solution of eq. (19) is
easily given by

b1,0 ∈ Ker(C1) = Span{k1,k2}
as for eq. (15); since the kernel of the matrix C1 is a 2-dimensional space generated by the vectors k1 and
k2 we will have two admissible solutions for the system (19) which, in fact, leads to two different bases
function attached to value of the first derivative at the vertex obtained by solving the other G1 relations
starting with b1,0 = k1 and b1,0 = k2. The remaining constraints relating high order derivatives, taking
into account the edge constraint obtained from eq. (10)

b2,0 =
1

2
b1,0 ,

are given by the equations

C2b1,1 =
1

5
(2 + a0)b1,0 ,

b2,1 + b̂1,2 = b1,0 ,

b3,1 + b̂1,3 = 0 ,

which can be solved in the same way as Eq. (17) and Eq. (18). Figure 1-(b) and (c) show the graph of the
resulting functions for an EV with N = 3.

Basis attached to the cross derivatives at the vertex. To a vertex of valence N correspond N cross derivatives
attached to it; this means that we need to compute N basis functions related to the value of the cross
derivative at the vertex. Let’s consider the k-patch belonging to the vertex ring. By setting the value

b
(k)
1,1 = 1, from eq. (5) we realize that this point has only influence on values laying in patches k − 1, k

and k + 1; more precisely, the points affected by this choice are only b
(k)
2,0 and b

(k+1)
2,0 regarding the second

derivatives, which will have values equal to

b
(k)
2,0 = b

(k+1)
2,0 =

5

4a0
,

being well defined since a0 ̸= 0 ⇐⇒ N ̸= 4, that is the case of an EV we are in fact investigating. Regarding

higher order derivatives, we have the points b
(k)
3,0,b

(k+1)
3,0 ,b

(k−1)
1,2 ,b

(k)
2,1,b

(k)
1,2,b

(k+1)
2,1 and b

(k−1)
1,3 ,b

(k)
3,1,b

(k)
1,3,b

(k+1)
3,1

defined by the relations

b
(k)
3,0 = b

(k+1)
3,0 =

5

4a0
,

b
(k−1)
1,2 + b

(k)
2,1 = b

(k)
2,1 + b

(k+1)
1,2 =

1

2

(
5

a0
− 1

)
,

b
(k−1)
1,3 + b

(k)
3,1 = b

(k)
3,1 + b

(k+1)
1,3 =

5

2a0
,
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(a) (b) (c) (d)

Figure 1: Coefficients for a basis function attached to the value at the vertex (a), attached to the first derivatives at the vertex
(b)-(c) and attached to the cross derivatives at the vertex (d) for an EV of valence N = 3.

(a) (b)

Figure 2: (a): labelling of the control points around an inner regular vertex. (b): values for the Bézier points of the four basis
functions.

which are obtained making use of Eq. (6)-(7) and (10). Similarly to the other situations, the previous
equations can be solved as in (18). Repeating the same construction for all the patches in the ring we come
up with the N basis functions attached to the cross derivatives. The result in the case N = 3 is shown in
Fig.1-(d), while Fig. 4 presents the set of basis functions for an EV of valence N = 5.

3.1.2. Basis functions at an inner regular vertex
In presence of a regular vertex (RV), i.e. a vertex with valence N = 4, by construction we expect to have

C1 regularity for these bases; this is in fact what eq. (8)-(9) state.
First we need to investigate how many RV bases we have. To do that we first need to expand cyclically

eq. (8)-(9) to all the control points around the vertex; this procedure, using the notation in Fig. 2-(a) leads
to the following system:



1 0 0 −2 0 0 1 0 0
0 1 0 0 −2 0 0 1 0
1 −2 1 0 0 0 0 0 0
0 0 0 1 −2 1 0 0 0
0 1 0 0 −2 0 0 1 0
0 0 1 0 0 −2 0 0 1
0 0 0 1 −2 1 0 0 0
0 0 0 0 0 0 1 −2 1





P
Q
R
S
T
U
V
W
X


= 0 . (20)

Let D be the coefficient matrix in (20). The number of bases attached to the RV is given by corank(D) =
9 − rank(D) = 9 − 5 = 4. Hence, a choice for the Bézier points returning linearly independent bases (by
construction) verifying eq. (20) is given by the coefficients in Fig. 2-(b). In presence of RV connected to an
EV is also needed to modify more control points for each extraordinary edge, according to eq. (6) and (7).

7



(a) (b)

Figure 3: (a): labelling of the control points across a regular inner edge. (b): values for the Bézier points of the four basis
functions.

3.1.3. Bases linked to extraordinary and regular boundary vertices and corners
The extraction of these types of bases is analogous to the constructions developed in the previous sections

for the inner cases. Naming with κ the valence of an extraordinary boundary vertex, i.e. the number of
patches attached to it, imitating the process in Section 3.1.1 we come up with κ+3 bases functions, which is
equivalent to N +2 since κ = N −1. On the other hand, to obtain the bases bounded to a regular boundary
vertex and corner we need to copy the procedure shown in Section 3.1.2: in both cases, following the same
strategy leading to eq. (20), we come to get to obtain also in this case four bases functions.

3.2. Basis functions BE attached to an edge

In this second set of functions, we have bases attached to inner and boundary edges, either extraordinary
and regular ones. In the same way as the vertex bases we will present the explicit construction in the case
of inner extraordinary and regular edge functions, whereas the construction for the remaining case comes
straightforwardly.

3.2.1. Construction of bases connected to an extraordinary edge
The forming of these functions is obtained starting from Equations (6)-(7) and (10). Similarly to the

construction in Section 3.1.1, to extract the Bézier coefficients for the bases, we need to set zero values at the
free points appearing in the equations; in the construction of bases connected to extraordinary edges, the
control points we need to nullify are all the points laying on the edge, i.e. b0,0, b1,0, b2,0, b3,0, b4,0 and b5,0.
This assumption transforms Eq. (6)-(7) into

b2,1 + b̂1,2 = 0 ,

b3,1 + b̂1,3 = 0 ,
(21)

which define the two basis functions living on an extraordinary edge. The simplest solution satisfying eq. (21)

is to take b2,1 = b3,1 = 1 and b̂1,2 = b̂1,3 = −1, or vice-versa.

3.2.2. Basis functions belonging to an inner regular edge
These basis functions are obtained with a similar approach as the bases in Section 3.1.2 for an inner

regular vertex; the points involved in this construction are the two pairs of layers in the inner part of the
edge, i.e. away from the influence of the vertices’ equations. In order to determine the number of these
bases, applying the C1 constraints in Eq. (8) and Eq. (9) to the two layers of control points implicated in
this analysis with the notation given by Fig. 3-(a) we have:

(
1 −2 1 0 0 0
0 0 0 1 −2 1

)


P̄
Q̄
R̄
S̄
T̄
Ū

 = 0 . (22)

If D̄ is the matrix in (22), the number of basis functions attached to an inner regular edge is given by
corank(D̄) = 4 and a set of possible solutions verifying these constraints returning linearly independent
bases is given by the configurations in Fig. 3-(b).
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3.2.3. Boundary edge basis functions
Since we are in presence of a boundary edge, in this situation we have no smoothness constraints to

impose. Hence, the basis functions in this case are the classical bivariate Bézier polynomials obtained
assigning the unit value to the four control points involved in this setting, one at the time, to obtain the
four bases we were looking for.

3.3. Basis functions BF attached to a face

To conclude the construction of our space of bases we miss to the define the basis functions belonging
uniquely to a single patch. As for the case of boundary edge functions, here we have no regularity conditions
to impose; thus the construction is the same as in Section. 3.2.3 returning four Bézier polynomial on each
face.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4: Basis function attached to the value of the vertex (a), value of first derivatives (b)-(c) and value of cross derivatives
(d)-(e)-(f)-(g)-(h) for an EV of valence N = 5.

4. Analysis of the bases and space dimension

The functions we built in Section 3 form a basis of the spline space G1(M) of G1 functions over the mesh
M. In this section a proof for this statement is provided as well as a dimension formula for the same space.
The first part of the proof, led by contradiction, focuses on the linear independence of the basis functions
and it is carried out making advantage of the property (11) and analyzing their supports; the second half,
instead, uses the equations defining the smoothness constraints of the basis functions in order to prove their
generating property.

Theorem 1. The functions constructed in Section 3 form a set of bases B for the space G1(M) over a quad
mesh M.

Proof. In order to prove that the set B is a basis of our space we need to prove their linear independence
and the property to be a generating set. For the linear independence, we proceed by contradiction. Since we
assume to deal with isolated EVs only, we have by construction that the supports of vertex basis functions
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attached to different vertices are disjoint; the same property holds for edge basis functions defined over
different edges as well as face basis functions attached to different faces. Hence, we can restrict our proof on
basis functions attached on elements sharing a common vertex. Therefore we consider an EV of valence N
with its N extraordinary edges and N faces (the case with regular vertices and regular edges is analogous)
and we assume that there exists a linear dependence between the basis functions supported on these elements,
i.e. there exist non zero coefficients α,β,γ such that

N+3∑
i=1

αiB
EV
i +

N∑
j=1

2∑
i=1

β
EEj

i B
EEj

i +

N∑
j=1

4∑
i=1

γ
Fj

i B
Fj

i = 0 . (23)

From (23) it holds that

supp

N+3∑
i=1

αiB
EV
i +

N∑
j=1

2∑
i=1

β
EEj

i B
EEj

i

 = supp

−
N∑
j=1

4∑
i=1

γ
Fj

i BiFj

 ,

and in particular

supp

N+3∑
i=1

αiB
EV
i +

N∑
j=1

2∑
i=1

β
EEj

i B
EEj

i

 ⊆

(
N+3⋃
i=1

supp
(
BEV

i

))
∪

 N⋃
i=1

 2⋃
j=1

supp
(
B

EEj

i

)
supp

N+3∑
i=1

αiB
EV
i +

N∑
j=1

2∑
i=1

β
EEj

i B
EEj

i

 ⊆

 N⋃
i=1

 4⋃
j=1

supp
(
B

Fj

i

) .

It follows that

supp

N+3∑
i=1

αiB
EV
i +

N∑
j=1

2∑
i=1

β
EEj

i B
EEj

i


⊆

(N+3⋃
i=1

supp
(
BEV

i

))
∪

 N⋃
i=1

 2⋃
j=1

supp
(
B

EEj

i

) ∩

 N⋃
i=1

 4⋃
j=1

supp
(
B

Fj

i

) = ∅ . (24)

Hence, (24) implies
N+3∑
i=1

αiB
EV
i +

N∑
j=1

2∑
i=1

β
EEj

i B
EEj

i = 0 =

N∑
j=1

4∑
i=1

γ
Fj

i B
Fj

i ,

that is γ
Fj

i = 0 ∀ i, j since B
Fj

i are linearly independent by construction. Now we have

N+3∑
i=1

αiB
EV
i = −

N∑
j=1

2∑
i=1

β
EEj

i B
EEj

i . (25)

Let us fix two adjacent patches k and k−1 sharing the EV we are considering and let us focus on the control

points b
(k)
0,0,b

(k)
1,0,b

(k)
0,1,b

(k)
1,1,b

(k−1)
1,0 ,b

(k−1)
1,1 . By definition, these control points are always equal to zero for all

the basis functions B
EEj

i , while this is not the case for the BEV
i ; hence, if we now look at the submatrices

corresponding to the points we are considering for both BEV
i and B

EEj

i , we deduce that in the first case the
selected submatrix is invertible, while the second submatrix is the null matrix. Therefore it follows that ∀i,
αi = 0 since the BEV

i are linearly independent by construction and, consequently, using the same argument,

β
EEj

i = 0 ∀i, j.
Regarding the generating property, let f ∈ G1(M). Since the basis functions B

Fj

i attached to a face Fj

are C1 smooth we can define the function

f
′

:= f −
nF∑
j=1

4∑
i=1

c
Fj

i B
Fj

i , (26)
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which is still G1 and is such that the inner face coefficients vanish. The same procedure can be applied to

the C1 basis function attached to corners B
Cj

i , boundary edges B
BEj

i and regular edges B
REj

i which can be
used to define a new function starting from (26) as

f
′′

:= f
′
−

nC∑
j=1

4∑
i=1

c
Cj

i B
Cj

i −
nBE∑
j=1

4∑
i=1

c
BEj

i B
BEj

i −
nRE∑
j=1

4∑
i=1

c
REj

i B
REj

i ∈ G1 , (27)

so that it has null coefficients in the above mentioned sectors.
Let s be the indices of the 9 control points in Figure 2 related to the bases B

RVj

i attached to a regular
vertex RVj and let denote by f [s] the corresponding control coefficients of the function f . Since from (20)

Af [s] = 0, it follows that Ker(A) = Span
{
B

RVj

i [s]
}

. Hence f
′′
[s] =

∑4
i=1 c

RVj

i B
RVj

i [s]. We proceed

similarly with boundary EVs B
BEVj

i and boundary regular vertices B
BRVj

i to define respectively coefficients

c
BEVj

i , c
BRVj

i so that the function

f
′′′

:= f
′′
−

nRV∑
j=1

4∑
i=1

c
RVj

i B
RVj

i −
nBRV∑
j=1

4∑
i=1

c
BRVj

i B
BRVj

i −
nBEV∑
j=1

NBEVj
+2∑

i=1

c
BEVj

i B
BEVj

i (28)

is still a G1 smooth function and it has zero coefficients in the previously treated regions.
Now, the function f

′′′
has only non-zero coefficients around extraordinary vertices and their incident

edges. We define t as the indices of the non-zero coefficients for an extraordinary vertex EVj (black points in

Fig. 1). Similarly to the case of regular vertices, from Eq. (13), Ā f
′′′

[t] = 0, where Ā is the matrix in (13) con-

taining the G1 constraints. Then, Ker(Ā) = Span
{
B

EVj

i [t]
}

which leads to f
′′′

[t] =
∑3NEVj

+3

i=1 c
EVj

i B
EVj

i [t].

Finally, we have that

f
′′′′

:= f
′′′
−

nEV∑
j=1

3NEVj
+3∑

i=1

c
EVj

i B
EVj

i = 0 ,

which concludes the proof.

As consequence of the structure of the bases set B we have the following formula for the dimension of
our spline space.

Corollary 1. The space G1(M) has dimension given by:

dim
(
G1(M)

)
=

nV∑
i=1

|BVi
| +

nE∑
i=1

|BEi
| +

nF∑
i=1

|BFi
|

=

nEV∑
i=1

NEVi + 3nIEV + 2(nBEV + nEE) + 4(nRE + nBE + nRV + nC + nF ) .

Proof. The proof is obtained using the decomposition in (11) and summing up all the basis functions for
each feature of the mesh shown in Sections 3.1, 3.2 and 3.3.

5. Numerical experiments

We present numerical experiments in which we assess the basis functions constructed in Section 3 in
point cloud fitting problems. The setup of our investigation is the classical least square fitting problem:
given a point cloud P, i.e. a set of points Pi ∈ R3, i = 1, . . . , nP , with associated parameters (ui, vi) ∈ [0, 1]2

on the patch ℓi, we want to find the coefficients ci ∈ R3 of a G1 surface G =
∑

k ckBk such that the quantity

11



F =

nP∑
i=1

∥G(ℓi)(ui, vi) − Pi∥22 + λEthin , λ ≥ 0 , (29)

is minimal, where G(ℓ) (ℓ = 1, . . . , nF ) is the geometry map introduced in Sec. 2

G(ℓ) : [0, 1]2 −→ R3 , (u
(ℓ)
i , v

(ℓ)
i ) 7−→ G(ℓ)(u

(ℓ)
i , v

(ℓ)
i ) =

36∑
i,j=1

b
(ℓ)
i,jB

(ℓ)
i,j (u

(ℓ)
i , v

(ℓ)
i ) , (30)

with b
(ℓ)
i,j control points in the standard bivariate Bernstein polynomials B

(ℓ)
i,j defining the ℓ-th patch Ω(ℓ) =

G(ℓ)([0, 1]2).
We also take into account in our minimization problem (29) an energy term given by the standard

thin-plate energy

Ethin =

nF∑
ℓ=1

∫∫
[0,1]2

∥∥∥G(ℓ)
uu

∥∥∥2
2

+ 2
∥∥∥G(ℓ)

uv

∥∥∥2
2

+
∥∥∥G(ℓ)

vv

∥∥∥2
2
du dv , (31)

which is controlled by the parameter λ. The minimization of the functional in (31) is responsible for a
regularization effect on the final surface G (i.e. oscillations). Moreover, following the construction presented
in [18], we perform few iterations of parameter correction to further reduce the approximation error, if
needed.

Since our focus is on the quality of the G1 basis for fitting, the parametrized data that we use in the
following numerical experiments are obtained by evaluating certain input functions or surfaces to obtain
parameters. In particular, starting from a planar mesh, in order to build point cloud data from a given
analytic function f , we compute parameters (ui, vi) by randomly sampling a certain number of points in
the unit square [0, 1]2, for each patch. Therefore, the point cloud is obtained by the triple (xi, yi, f(xi, yi)),

with (xi, yi) = G(ℓi)(ui, vi). A similar procedure is performed to obtain a point cloud from a quad mesh

yielding an ACC surface [29]: considering the map GACC , we obtain sample points (xi, yi, zi) = G
(ℓi)
ACC(ui, vi)

randomly on the surface, with (ui, vi) ∈ [0, 1]2. Furthermore, we present two examples of data fitting starting
from point clouds without any given structure.

After having computed a least square surface G from a point cloud P let define the array of errors

err = {erri}nPi=1 whose entries are the quantities erri = ∥G(ℓi)(ui, vi)−Pi∥2, i.e. the Euclidean distance (ℓ2
norm) from each point of the cloud and the corresponding value on the surface evaluated in its parameter.
From this we define two quantities which will be used to assess the accuracy of the fitting, namely the biggest
error and the root mean squared error (RMSE in short):

L∞ := max
i=1,...,nP

erri , RMSE :=

√√√√ 1

nP

nP∑
i=1

err2i . (32)

5.1. Point cloud by analytic function evaluation

We present here experiments which are developed using point cloud data obtained by sampling an input
function f(x, y) over a domain identified by a quad mesh M. In Example 1 we focus the attention on
the goodness of the fitting showing how it improves when the number of basis functions increases, without
the need to use extra smoothness constraints. On the other hand, Example 2 exhibit the power of our
construction when thin plate energy is used in order to obtain an optimal result, but without increasing the
dimension of the spline space.

Example 1. For this test, the point cloud is obtained evaluating the function

fT (x, y) =
y

2 (cos(4(x2 + y − 1)))
, (x, y) ∈ MT (33)

over the mesh MT , defining a triangle, formed by 3 patches which presents an EV of valence N = 3; our
sampling produced a point cloud formed by 1536000 points. This example uses no smoothing property,
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which means we fix λ = 0. From the result in Figure 5-(a) can be noticed that constructing our spline
space over a coarse mesh as MT leads to a fitting surface which is not approximating in a proper way our
point set, due to its very oscillating behavior. This issue can be solved by increasing the number of bases
generating the spline space, i.e. increasing the number of patches defining the polygonal domain; in this
example the mesh has been refined via Catmull-Clark subdivision. In Tab. 1 and Fig. 6 are respectively
listed and plotted the errors computed from (32) for 5 refinement levels. Fig. 5 shows the input point cloud
(a) and the results at the last step of subdivision (b)-(c) together with its error color plot (d), while Tab. 2
and Fig. 6 presents the resulting errors, when the number of points increase with the dimension of the G1

spline space. As shown in Fig. 6, we recovered the optimal rate of convergence 6 using biquintic splines.

(a) (b)

(c) (d)

Figure 5: (a): final point cloud obtained sampling (33) at the last refinement step. (b): resulting surface. (c): multipatch
representation of the surface. (d): error color plot of the ℓ2 distances. Bounding box with maximum length: 2.

dim
(
G1(MT)

)
72 240 864 3264 12672

L∞ error 0.364e-00 0.122e-00 0.834e-01 0.178e-01 0.790e-02
RMSE 0.491e-01 0.149e-01 0.335e-02 0.353e-03 0.570e-04

Table 1: Maximal error L∞ and RMSE for the surfaces in Example 1 obtained under 5 Catmull-Clark subdivision steps from
a point cloud of 150528 elements.

dim
(
G1(MT)

)
72 240 864 3264 12672 49920

L∞ error 0.225e-00 0.844e-01 0.340e-01 0.385e-02 0.187e-03 0.351e-05
RMSE 0.349e-01 0.140e-01 0.338e-02 0.256e-03 0.723e-05 0.119e-06

Table 2: Maximal error L∞ and RMSE for the surfaces in Example 1 obtained under 6 Catmull-Clark subdivision steps
with dyadically increased numbers of elements in the point cloud to estimate the rate of convergence. The point clouds have
respectively 1500, 6000, 24000, 96000, 384000 and 1536000 points.
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Figure 6: Left: experimental behavior of the errors (Table 1). Right: estimated rate of convergence (Table 2).

Example 2. Here, the cloud data is derived sampling the function

fE(x, y) =
∑

ν∈{−3,0,3}

2

3e
√

(10x+ν)2+(10y+ν)2
, (x, y) ∈ ME , (34)

where ME is a quad mesh tracing out an hexagon composed of 96 patches identifying an EV of valence
N = 6 in its middle. The point cloud we obtain is formed of 153600 points. Here we show the power of the
smoothing property of this construction: differently from Example 1, fixing the number of patches i.e. the
number of basis function, which is equal to 1725 in our case, we compute the fitting surface increasing the
smoothing parameter λ from 10−3 to 10−1 with a step of 10−1. From Fig. 7-(b) we notice that the fitting
surface presents several wrinkles around the middle peak; by increasing the smoothing factor λ we recover
regularity in the output function which presents much less irregularities, as can be noticed in Fig. 7-(d).
As expected, this procedure will produce at every iteration a smoother function than the previous, but on
the other side this forced regularity constraint is reflected in an increase of the three errors in (32); this
phenomenon is shown in Tab. 3 and graphically in Fig. 8.

λ 0 10−3 10−2 10−1

L∞ error 0.164e-00 0.165e-00 0.170e-00 0.196e-00
RMSE 0.308e-02 0.310e-02 0.312e-02 0.375e-02

Table 3: Maximal L∞ error and RMSE for the surfaces in Example 1 for the surfaces in Example 2 computed making use of
1725 basis functions and progressively bigger smoothing parameter λ. The maximum length of the box containing the model
in Fig. 7 is equal to two.

Example 3. In this example, the point cloud is obtained by evaluating a trivariate function defined over
the unit sphere S2. More precisely, the points are sampled from the function

fS2(x, y, z) = max{0, sin (2πx) sin (2πy) sin (2πz)} + 1 , (x, y, z) ∈ S2 . (35)

The data we get is composed of 540000 points, while the set of basis functions has been built over a quad
mesh, MS2 , approximating the unit sphere composed of 96 faces. We notice from the error color plot in
Fig. 9-(d) that, understandably, the regions in which the error is concentrate involve the peaks present in
the point cloud and the lower part of them where there is, in fact, a noticeable slope created by the presence
of the max function in (35). Table 4 shows the numerical results for the errors.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: (a): point cloud obtained sampling the function in (34). (b) to (d): approximating surfaces obtained by using
the same number of basis function and point cloud with smoothing parameter λ = 0, λ = 10−2 and λ = 10−1, respectively.
(e): multipatch coloring of the surface in (d). (f): error color plot of the ℓ2 distances for the surface in (d). Bounding box with
maximum length: 2. Notice how the wrinkles nearby the middle peak diminish when the smoothing parameter increases from
(b) to (d).

5.2. Point cloud from ACC surfaces

We provide now fitting examples obtained from big data sets. The point clouds utilized in this section
are provided by randomly sampling the Approximate Catmull-Clark surfaces obtained from the construction
in [29]. Figs. 10 to 15 show the data we use for our investigation obtained from the ACC surfaces, starting
from parameters sampling: the dimension of the clouds goes from a minimum of 549180 to a maximum
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Figure 8: Experimental behavior obtained from the errors represented in Table 3.

(a)

(b)

(c) (d)

Figure 9: fS2 . (a): point cloud obtained sampling the trivariate function defined in (35) over the unit sphere S2. (b): quad
mesh used to define the G1 space. (c): final least square surface. (d): error color plot of the ℓ2 distances. Bounding box with
maximum length: 3.

dim
(
G1(MS2)

)
L∞ error RMSE

fS2 1512 0.539e-01 0.107e-01

Table 4: Spline space dimension, maximal error L∞ and RMSE for the fitting presented in Example 3. The point cloud in
Fig. 9 is surrounded by a box with longest size 3.

of 968704 points. In all the experiment presented here we do not consider any smoothing parameter, i.e.
λ = 0, but few iterations of parameter correction [18] are performed to optimize the fitting error; the errors
in Table 5 are obtained using the formulas in (32). Since ACC surfaces are not G1 at the EVs, it is not
surprising to see that the maximal fitting error is located around the extraordinary vertices.

5.3. Quadrilateral mesh generation, parametrization and fitting

In the previous experiments, all the point clouds were already equipped with a parametrization; this is
because the goal of the paper is to show the quality of the fitting with the basis functions we propose, rather
than improving upon parameter computation. Nevertheless, we now present few examples in which both
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(a) (b)

(c) (d)

Figure 10: Bird. (a): point cloud obtained sampling an ACC surface. (b): quad mesh used to define the G1 space. (c): final
least square surface. (d): error color plot of the ℓ2 distances. Bounding box with maximum length: 100.

bird dinosaur hammer hand rabbit venus
dim

(
G1(M)

)
, nP 100386, 549180 29885, 680124 48580, 685800 28227, 575424 60220, 968704 55018, 676592

L∞ error 0.138e-00 0.251e-01 0.667e-02 0.417e-01 0.120e-01 0.131e-01
RMSE 0.325e-02 0.348e-03 0.138e-03 0.616e-03 0.302e-03 0.210e-03

3 × parameter correction
L∞ error 0.754e-01 0.162e-01 0.555e-02 0.320e-01 0.114e-01 0.611e-02
RMSE 0.648e-03 0.205e-03 0.596e-04 0.341e-03 0.145e-03 0.610e-04

Table 5: Maximal error L∞ and RMSE for the fitting examples presented in Figs. 10 to 15 with a description of the spline
space and point cloud features. All the above mentioned models are contained in a box whose longest length is 100.

the parametrization of an unorganized point cloud and the construction of a coarse quadrilateral mesh are
derived.

Starting from an input point cloud, we first reconstruct a triangular mesh by using the algorithm in [6];
then we apply the so-called 4-8 subdivision scheme [46] to obtain a quadrangular representation of the
previous triangular mesh. This procedure leads to a mesh, which is much more refined than we would need
for our bases computation. Hence, we coarsen it using Rhino 3D modeler QuadRemesh (see [39]), which
reduces the faces of the quad mesh without modifying its topology. This quad mesh M is the mesh on which
we define the G1 space and bases.

In order to associate parameters to a point Pi = (xi, yi, zi) of the point cloud, we compute its orthogonal
projection P⊥

i = (x⊥
i , y

⊥
i , z

⊥
i ) onto the G1 spline surface G, constructed for the quad mesh M as in [32].

Assume that the point P⊥
i is laying on the ℓ-th patch of G. Let G(ℓ) be the geometry map associated with

the patch ℓ defined in (30). We define the parameters (ui, vi) associated with the point Pi as

(ui, vi) = (G(ℓ))−1(P⊥
i ) ;

This parameter computation is repeated for all the points of the point cloud.
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(a) (b)

(c) (d)

Figure 11: Dinosaur. (a): point cloud obtained sampling an ACC surface. (b): quad mesh used to define the G1 space. (c):
final least square surface. (d): error color plot of the ℓ2 distances. Bounding box with maximum length: 100.

(a) (b) (c) (d)

Figure 12: Hammer. (a): point cloud obtained sampling an ACC surface. (b): quad mesh used to define the G1 space. (c):
final least square surface. (d): error color plot of the ℓ2 distances. Bounding box with maximum length: 100.

Figures 16, 17 and 18 present three examples of point cloud fitting obtained using the pipeline presented
in this section. Particular interest goes for the example in Fig. 17, whose initial point cloud presents
areas with no points and other with an accumulation of them. Moreover, in all the numerical examples a
regularization parameter λ = 10−1 has been used in order to have a well-posed problem. Table 6 summarizes
the key points of the experiments presented in this section.
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(a) (b) (c) (d)

Figure 13: Hand. (a): point cloud obtained sampling an ACC surface. (b): quad mesh used to define the G1 space. (c): final
least square surface. (d): error color plot of the ℓ2 distances. Bounding box with maximum length: 100.

(a) (b) (c) (d)

Figure 14: Rabbit. (a): point cloud obtained sampling an ACC surface. (b): quad mesh used to define the G1 space. (c): final
least square surface. (d): error color plot of the ℓ2 distances. Bounding box with maximum length: 100.

(a) (b) (c) (d)

Figure 15: Venus. (a): point cloud obtained sampling an ACC surface. (b): quad mesh used to define the G1 space. (c): final
least square surface. (d): error color plot of the ℓ2 distances. Bounding box with maximum length: 100.

5.4. Comparison with C0 fitting

Here we present a comparison between surfaces obtained by fitting a point cloud using our proposed
G1 basis functions and using the standard C0 Bernstein basis on (the faces of) a quad mesh M, which is
denoted by C0(M). In Table 7 we can notice that, despite the higher dimension of the continuous bases, the
errors we get are comparable with the ones obtained from the G1 construction using fewer basis functions;
Figures 19 and 20 present the reflection lines for the treated examples.
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(a)
(b)

(c) (d)

Figure 16: Uniform toy. (a): input point cloud. (b): reconstructed quad mesh used to define the G1 space. (c): final least
square surface. (d): error color plot of the ℓ2 distances. Bounding box with maximum length: 2.

(a)
(b)

(c) (d)

Figure 17: Non-uniform toy. (a): input point cloud. (b): reconstructed quad mesh used to define the G1 space. (c): final least
square surface. (d): error color plot of the ℓ2 distances. Bounding box with maximum length: 2.

nP nF coarse quad mesh dim
(
G1(M)

)
L∞ error RMSE

Uniform toy 113846 2104 33280 0.190e-01 0.248e-02
Non-uniform toy 30908 1860 29391 0.250e-01 0.277e-02

Icosahedron 208708 7892 125205 0.189e-01 0.142e-02

Table 6: Points in the input cloud, quad mesh and corresponding spline space details, maximal error L∞ and RMSE for the
fitting examples in Fig. 16, 17 and 18. All the models are contained in a bounding box whose longest length is 2.

dim
(
C0(M)

)
dim

(
G1(M)

)
L∞

C0 error L∞
G1 error RMSEC0 RMSEG1

fS2 2402 1512 0.455e-01 0.539e-01 0.728e-02 0.107e-01
Uniform toy 52602 33280 0.165e-0.1 0.190e-01 0.224e-02 0.248e-02

Table 7: C0 and G1 dimensions and errors for the examples in Figure 9 and 16.

6. Conclusion

In this work we provided an explicit construction of a basis of the space of biquintic G1 functions over
a quad mesh. In particular, the functions of this space are G1 smooth around extraordinary vertices and
at least C1 elsewhere. The Bézier points defining the multipatch basis functions are explicitly computed
starting from the equations defining the space, which are obtained with the use of quadratic gluing data
functions defined over the extraordinary edges. Furthermore, we provide an analysis of the resulting basis
as well as a combinatorial dimension formula for the G1 spline space. Finally, several numerical experiments
demonstrate the quality of the basis functions in point cloud data fitting problems. These experiments show

20



(a) (b) (c) (d)

Figure 18: Icosahedron. (a): input point cloud. (b): reconstructed quad mesh used to define the G1 space. (c): final least
square surface. (d): error color plot of the ℓ2 distances. Bounding box with maximum length: 2.

(a) (b) (c) (d)

Figure 19: Reflection lines on the C0 (a) and G1 (c) surfaces obtained from the point cloud in Fig. 9-(a) and relative zooms,
(b) and (d), around an EV.

(a)
(b)

(c)
(d)

Figure 20: Reflection lines on the C0 (a) and G1 (c) surfaces obtained from the point cloud in Fig. 16-(a) and relative zooms,
(b) and (d), around an EV.

that the overall construction is computationally efficient, even in presence of point clouds with complex
geometries, high amount of data or sparse and unequally spaced data.

All the experimental results presented have been obtained using implementations developed in the Julia
language for the computation of the basis functions and the G+Smo library (cf. [31]) for the numerical
simulations.

An interesting future research is in relation to the isogeometric analysis methodology. More precisely, we
would like to investigate and provide an extension of the Bézier bases set presented in this paper to splines
patches with inner knots in order to obtain nested spaces of analysis-suitable basis functions to be used in
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the numerical solution of partial differential equations.
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