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Multi-tasking resource-constrained agents reach higher
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Abstract. Agents have been previously shown to evolve their ontologies while
interacting over a single task. However, little is known about how interacting over
several tasks affects the accuracy of agent ontologies. Is knowledge learned by
tackling one task beneficial for another task? We hypothesize that multi-tasking
agents tackling tasks that rely on the same properties, are more accurate than
multi-tasking agents tackling tasks that rely on different properties. We test this
hypothesis by varying two parameters. The first parameter is the number of tasks
assigned to the agents. The second parameter is the number of common properties
among these tasks. Results show that when deciding for different tasks relies on
the same properties, multi-tasking agents reach higher accuracy. This suggests
that when agents tackle several tasks, it is possible to transfer knowledge from
one task to another.

Keywords: Cultural knowledge evolution · Knowledge transfer · Multi-tasking.

1 Introduction

Agents have been previously shown to improve their accuracy as a result of cultural
knowledge evolution. The latter studies agents that evolve their knowledge representa-
tions, based on their perception and the feedback they receive from other agents. Re-
cent work on cultural knowledge evolution focuses on agents tackling a single task:
taking an abstract decision within an abstract domain. In [3], agents are forced to take
identical decisions regarding a set of environment objects. Eventually, agents learn to
agree over a single decision task, yet not necessarily on the same basis. For example,
two agents may both decide to visit Barcelona. Agent α may base its decision on
the temperature property, while agent β may base its decision on the ticket price
property.

However, several tasks may exist. We build on previous works by introducing agents
capable of taking abstract decisions within several domains. To do so, agents classify
objects into ontology classes and associate these classes with different decisions for dif-
ferent tasks. We consider that realistic agents should not be able to develop ontologies
containing all class descriptions. Thus, we limit the number of classes to be maintained

⋆ Author version of the paper appeared in: Vadim Malvone, Aniello Murano (eds), Proc. 20th
European conference on multi-agents systems (EUMAS), Napoli (IT) Lecture notes in com-
puter science 14282:425-434, 2023
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within an agent’s ontology. When this limit is reached, agents will try to forget knowl-
edge that is not relevant to the tasks they favor. Deciding for different tasks may rely
on a set of common properties. For example, the property temperature may be used
in order to choose a destination (task 1). The same property may also be used to de-
cide whether to wear a T-shirt (task 2). However, the property temperature may be
completely irrelevant to choosing a movie (task 3). We assume that when this set is
not empty, agents carrying several tasks may develop multi-purpose knowledge, i.e.,
knowledge that can be transferred among different tasks. Based on this, we formulate
the following hypothesis: multi-tasking agents tackling tasks that rely on the same prop-
erties, are more accurate than multi-tasking agents tackling tasks that rely on different
properties. We test this hypothesis by varying two parameters. The first parameter is the
number of tasks assigned to each agent. The second parameter the number of common
properties shared among the different tasks. Two variations of the second parameter are
examined. Tasks either rely on the same properties, or rely on different ones. We then
evaluate agent ontologies based on their contribution to promote successful interactions
and provide accurate decisions. Based on this evaluation, the following is shown: when
agents tackle tasks based on common properties, knowledge built by an agent while
tackling one task, improves its accuracy on another task. We thus conclude that it is
possible to transfer knowledge from one task to another.

After discussing related work in §2, preliminaries regarding the entities that consti-
tute the environment as well as the notation that describes it, are introduced in §3. In
§4, an outline of the experiment is provided, including how agents learn their initial on-
tologies, interact with each other and adapt when they disagree. Section 5 presents our
hypothesis and the protocol used to test it. Results are presented in §6 and conclusions
are provided in §7.

2 Related work

It has been shown that referential games[9] facilitate the establishment of communi-
cation protocols between communicating agents. [11] argues that a communication
protocol emerges when agents attempt to minimize the computational complexity of
semantic interpretation. [7] studies a framework where two agents develop a language
in order to succeed in a referential game. [6] shows that implicit cultural transmission
leads to greater language compositionality. While our work relies on successfully com-
municating agents, our focus is on how this successful communication allows for better
task completion.

Different examples of multi-tasking agents exist in literature. Indicatively, multi-
task learning has been shown to significantly improve classification in a variety of ar-
eas, e.g., adversary robustness [10], visual interconceptual similarity [4] and phenotype
learning [5]. Agents have also been used to study the impact of multi-task learning
on emerging communication protocols. In [12], cooperative multi-agent reinforcement
learning is considered. Our work is related to these works, since they consider agents
that perform several tasks. However our focus is not on agents that improve their ac-
curacy individually. Here we study agents that improve their accuracy through social
transmission.
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Social transmission among agents has been studied in [3] and [13]. In [13], the
authors examine how concepts are organized and how their collective behavior can be
established autonomously. In [3], a two-stage experiment is used, where agents first
learn a classifier and then interact in pairs. Through an adaptation mechanism, it is
shown that the agents achieve better knowledge, without adopting identical ontologies.
We differentiate from these, by introducing memory-limited agents that tackle several
tasks.

3 Experimental framework

3.1 Environment

Agents evolve in an environment populated by objects described by a set P of boolean
properties. Objects are therefore described by the presence or absence of a property
p ∈ P , denoted by p and ¬p respectively. Hence, there are 2|P| object types, that are
gathered in a set I.

3.2 Tasks

The term task refers to a piece of work, carried out by an agent. Here, we will con-
centrate on a set of decision tasks: making a decision about an object. There may be
different tasks t ∈ T associated to a different set of possible decisions Dt. Each object
o can be considered with respect to any task t ∈ T . A function h∗(o, t) → Dt provides
the correct, unknown to agents, decision for an object o with respect to a task t. For
example, h∗(tomato, coloring) will provide the decision red.

3.3 Agents

Agents are autonomous, co-existing entities, able to perceive and distinguish objects
based on their properties. In this context, a population of multi-tasking agents A is
assigned different subsets of T . To tackle these tasks, agents build and evolve private
ontologies, expressed in ALC [2]. Each agent α uses its ontology to compute a function
hα(o, t) → Dt which, given an object o and a task t, provides a decision hα(o, t). The
right part of Figure 1 shows an example of a multi-task ontology constructed by an
agent α. The bottom part represents the private ontology Oα of agent α, allowing it
to classify objects of the environment. The top part shows a set of decision ontologies,
each one containing the valid decisions for a respective task t. An agent α learns at most
one decision for an object o and a task t. Thus, each leaf of Oα cannot be aligned more
than once with the same decision ontology.

4 Experiment outline

In this paper, we examine if knowledge can be transferred from one task to another.
To this end, a two-stage experiment is used. In the first stage, agents induce private
ontologies based on randomly selected labeled examples. In the second stage, agents
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go through a fixed number of interactions. For each interaction, two randomly selected
agents will have to decide with respect to an object o and a task t. When agents disagree,
one of the two agents adapts its ontology. More details about how agents learn, are
assigned tasks, interact, release resources and adapt their ontologies are presented in
subsections 4.1, 4.2, 4.3, 4.4 and 4.5 respectively.

4.1 Initial ontology induction

We approach multi-task learning as a problem of inducing an ontology capable of pro-
viding a decision for any task t ∈ T . Different algorithms may be used, affecting the
final accuracy of agents. This paper does not examine how different learning algorithms
impact the achieved accuracy. This paper examines how cultural evolution improves the
accuracy of multi-tasking agents. Thus, details about the learning algorithm are omitted.
A learning example can be seen in figure 1. By the end of its initial ontology induction
phase, the agent α is able to classify an object described by p1⊓p2 but unable to decide
about the task t1.

Object p1 p2 p3 p4 Task Decision

o1 1 1 0 0 t1 d1
o2 1 0 0 1 t2 d1
o3 0 1 0 1 t1 d2
o4 0 0 1 0 t2 d2
o5 1 1 0 1 t1 d1
o6 1 1 0 0 t2 d1
o7 0 1 1 0 t1 d2
o8 1 0 1 1 t2 d2

=⇒
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Fig. (1) Given a set of labeled examples, agents will induce a decision tree. The latter is subse-
quently transformed into an ontology. Each color represents a different decision.

4.2 Task assignment

Agents are assigned with different subsets of T of the same size. The latter varies from
1 to |T | and remains constant for the duration of an experiment. Based on it, all possible
task permutations of the same size are initially produced. Each permutation correspond-
ing to a different subset of T , is then assigned to an even number of agents. Thus, the
number of agents is always a multiple of the number of the different subsets of T .

4.3 Interaction

For each interaction, two randomly selected agents α and β are asked to provide a
decision for an object o with respect to a task t. The agents provide their decisions
based on the respective functions hα(o, t) and hβ(o, t). If an agent is unable to provide
a decision, then one decision is randomly selected. The agents will then disclose their
decisions to each other. If hα(o, t) = hβ(o, t), the agents agree and their interaction is
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considered as successful. On the contrary, their interaction ends as a failure. In this case,
one of the two agents may adapt its ontology. In order to decide which agent will adapt,
an evaluation set is randomly selected. It contains samples labeled with respect to the
task t. The agents are evaluated against this set and a score is assigned to each one of
them. The agent with the lowest score may adapt its ontology.

4.4 Resources release

When an agent’s resources are exhausted, it tries to forget knowledge as follows (Fig-
ure 2). Leaf nodes that satisfy the following criteria are removed: (a) they have the
same immediate parent node (b) they are associated with the same decision regarding
all tasks assigned to the agent. The process is repeated recursively, as long as leaf nodes
satisfying (a) and (b) exist.
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Fig. (2) Let an agent α assigned the task t2, with t2 relying on the property set Pt2 . The property
p1 /∈ Pt2 , thus p1 does not allow for distinguishing different decisions for the task t2. In this
example, the agent has associated the same decision (in red), to both p4⊓¬p1 and p4⊓p1. These
two classes can be removed without any loss of accuracy with respect to t2. For the task t2, the
parent node will now be associated with the decision d2 (red). For the task t1, the parent node
will now be associated with one of two decisions previously associated with its former descendent
nodes. Here, the decision d3 (gray) was randomly selected.

4.5 Adaptation

Our adaptation mechanism extends the one presented in [3]. Based on it, an agent can
either replace an existing decision or split a class into two sub-classes (Figure 3). The
agent does this on the basis of a property that distinguishes the current object from the
objects classified by the class to be split. Only the decisions concerning the current task
are affected.

5 Experimental setting

5.1 Hypothesis
– Multi-tasking agents tackling tasks that rely on the same properties, are more accu-

rate than multi-tasking agents tackling tasks that rely on different properties.
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Fig. (3) The agent α will split the class claws into two sub-classes using the property poison.
The first (claws ⊓ ¬poison) will be associated with the decision of the agent β. The second
(claws⊓poison) will be associated with all decisions previously associated with the class claws.

5.2 Parameters

The experiment is executed under 6 setups. Each setup is run 20 times and its results
are averaged. One run consists of 80000 interactions with each interaction taking place
among two randomly selected agents. The total population of agents is 18. Their en-
vironment contains 64 different object types, each one perceivable through 6 different
binary properties. The agents are initially trained with respect to 3 tasks. Taking 1 out of
4 decisions with respect to each task relies on 2 properties. These properties are either
the same for all tasks, or different for each task. Agents induce an initial ontology based
on a random 10 % of all existing labeled examples. The agents are assigned 1 to 3 tasks.
Agent evaluation is based on 60% of all samples.

5.3 Measures

Success rate, as introduced in [3] is defined as the proportion of successful interactions,
over all performed interactions until the nth interaction. Task accuracy adapts the accu-
racy measure introduced in [3] to different tasks. It is defined as the proportion of object
types for which a correct decision would be taken with respect to a task t, by an agent
α on the nth iteration of the experiment.

tacc(α, n, t) =
|{o ∈ I : hα

n(o, t) = h∗(o, t)}|
|I|
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6 Results and discussion

We hypothesize that when tasks rely on common properties, it is possible for agents to
build multi-purpose knowledge. To test this hypothesis, the accuracy of the following
two populations was compared. The first consists of agents assigned up to 3 tasks for
which all properties are shared. The second consists of agents assigned up to 3 tasks for
which no properties are shared. Figure 4 depicts the evolution of the agents (a) average
accuracy, (b) accuracy on their best task and (c) success rate, for different number of
tasks and common properties. Figure 4a shows that assigining more tasks to agents,

0 10000 20000 30000

iteration

0.0

0.2

0.4

0.6

0.8

1.0
(a) average accuracy

0 10000 20000 30000

iteration

(b) accuracy on best task

0 10000 20000 30000

iteration

(c) success rate

common properties - 1 task
common properties - 3 tasks

independent properties - 1 task
independent properties - 3 tasks

Fig. (4) (a) average accuracy, (b) accuracy on best task and (3) success rate for different number
of assigned tasks and common properties.

significantly improves their average accuracy. This improvement is higher when agents
tackle tasks that rely on the same properties. On the one hand, when tasks rely on
different properties, agents tackling 3 tasks are 9% more accurate than agents tackling
1 task. On the other hand, when tasks rely on common properties, agents tackling 3
tasks are 55% more accurate than agents tackling 1 task. This shows that agents tackling
tasks relying on a common set of properties, may improve their accuracy on one task
by carrying out another task. Results thus support our hypothesis.

Figure 4b shows two things. First, agents tackling tasks that rely on the same prop-
erties achieve a higher accuracy on their best task, compared to agents tackling tasks
that rely on different properties. This indicates that while the agents may abstain from
some tasks, their ontologies contain multi-purpose knowledge, acquired during the ini-
tial ontoloy induction phase. This further supports our hypothesis. Second, when tasks
rely on different properties, the effect of the number of tasks assigned to each agent on
the accuracy for its best task, is statistically insignificant (p > 0.05). This indicates that
when tasks rely on different properties, learning to decide with respect to one task is
not related to learning to decide with respect to a different task.



8 A. Kalaitzakis and J. Euzenat

Figure 4c shows that tackling less tasks or having tasks that rely on common proper-
ties improves the success rate. This is due to two reasons. The first is that the fewer the
assigned tasks, the fewer are the decisions over which agents need to agree. The second
is that the more tasks rely on common properties, the less non relevant knowledge may
be present to an agent’s initially induced ontology. Furthermore, while success rate im-
proves over the course of the experiment, it does not converge to 1. This indicates that
the final ontologies do not allow agents to reach consensus. This can be explained by
the limitation of resources: agents may lack the resources required to learn to decide
accurately for all assigned tasks and objects. As a result, they are able to decide accu-
rately for different subsets of the existing object types at a given time. Thus, unless the
different subsets coincide for all agents, consensus cannot be achieved. The latter is true
even when agents interact over the same single task.

6.1 Statistical analysis

Analysis of variance shows that the number of common properties among different
tasks, has a statistically significant impact (p < 0.05) on all measures. The number of
assigned tasks has a statistically significant impact on (1) the success rate and (2) the
average accuracy. When tasks rely on common properties, the latter has a statistically
significant impact on the agents accuracy on their best task.

7 Conclusion

We hypothesize that agents tackling tasks that rely on common properties, benefit
from the formation of multi-purpose knowledge. We test this hypothesis by introducing
agents that learn and evolve ontologies with respect to several tasks. The experimental
results support this hypothesis. On the one hand, it is shown that when agents tackle
tasks that rely on common properties, knowledge is transfered from one task to another.
On the other hand, when these tasks rely on different properties, tackling additional
tasks does not affect the agents accuracy on their best task. Thus, deciding between
tackling one or several tasks depends on the agents objective and the environment setup.
The agent objective corresponds to whether they seek to optimize their accuracy on av-
erage or on their best task. The environment setup corresponds to whether the tasks
depend on common properties or not. The experiments rely on minimal hypotheses
about the environment, hence the results apply to a wide range of environment. These
may serve as an insight on how agents evolve their knowledge within more complex
environments. For example, one may consider environments where some tasks share
properties, while other tasks are completely independent.
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Data availability

The cultural evolution simulator used for our experiments can be found in [1]. Settings,
results and the data analysis notebook are available in [8].
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