
HAL Id: inria-00000907
https://inria.hal.science/inria-00000907

Submitted on 7 Dec 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Software Framework for Vehicle-Infrastructure
Cooperative Applications

Sebastián Bengochea, Angel Talamona, Michel Null Parent

To cite this version:
Sebastián Bengochea, Angel Talamona, Michel Null Parent. A Software Framework for Vehicle-
Infrastructure Cooperative Applications. IEEE ITSC ’ 05, IEEE, Sep 2005, VIENNA. �inria-00000907�

https://inria.hal.science/inria-00000907
https://hal.archives-ouvertes.fr

Abstract - A growing category of vehicle-infrastructure
cooperative (VIC) applications requires telematics software
components distributed between an infrastructure-based
management center and a number of vehicles. This article
presents an approach based on a software framework, focusing
on a Telematic Management System (TMS), a component suite
aimed to run inside an infrastructure-based operations center,
in some cases interacting with legacy systems like Advanced
Traffic Management Systems or Vehicle Relationship
Management. The TMS framework provides support for
modular, flexible, prototyping and implementation of VIC
applications. This work has received the support of the
European Commission in the context of the projects REACT
and CyberCars.

I. INTRODUCTION
ELEMATICS, the technology that enables remote access to
vehicle data over a mobile wireless network, regularly

combines technologies of precise positioning using global
navigation satellite systems and data communications using
a cellular network. A wide category of vehicle-infrastructure
cooperative (VIC) applications makes use of telematics
software distributed between an infrastructure-based
management center and the vehicles for safer and more
efficient road transport solutions. The growing complexity
and need of functionality integration of VIC systems require
modular, reusable software components in order to improve
application prototyping and implementation. This article
presents an approach based on a software framework for
VIC applications, focusing on a Telematic Management
System (TMS), a component suite that usually runs inside an
operations center, in some cases interacting with legacy
systems, like Advanced Traffic Management or VRM
systems as shown in Fig. 1.

Fig. 1. The Telematic Management System is a link in the chain of vehicle-
infrastructure applications. The TMS handles the connections of multiple
vehicles and their data, providing services and integrating several
applications (decision modules) over the same fleet.

The TMS framework provides infrastructure to integrate
different decision modules, vehicle-management center
communication support and an extensible data module. The
pluggable decision modules are the key part of the TMS as
they incarnate the logic for the VIC applications. The user of
the framework develops and combines such modules for
specific applications. Examples of decision modules include
trip management for car-sharing, dynamic traffic modeling
or proxy to third-party (eventually legacy) systems. A chain
of dependencies is provided for each decision module and
each module dependency is represented as a directed acyclic
graph. The framework resolves, performing a topologic sort
over the graph, the correct order of execution. An event
system has been developed to maintain low coupling
between the TMS framework and the decision modules
interaction.

The framework provides the multithreading support for
creating and handling the communication channels with the
vehicles. The asynchronous communication is resolved
using queues and a producer/consumer model between the
different threads. Messages received from vehicles are
propagated to the decision modules using an event system.

The data module provides a way to access both the
vehicle (fleet/traffic) and infrastructure (cartography) data
using interfaces. These modules can be extended by the user
and provide a set of multi-threading tools for a synchronized
data access.

The proposed architecture targets a current research need
in vehicle-infrastructure cooperative systems [1].

Within the next section the TMS general architecture is
presented. Section III contains the class and interface design
for some of the key components of the architecture.
Conclusion and further work follows.

II. ARCHITECTURE OVERVIEW
This section presents a high level overview of the TMS

framework architecture, describing briefly some of the
design decisions taken for each part. The TMS is divided in
three main modules; the Kernel, the Communication
Subsystem (CS) and the Data Module. The user of the
framework provides a set of decision modules and telematic
protocol software to resolve the communication with the
vehicles.

The Kernel defines a set of software interfaces that are
used by the decision modules for accessing both the CS and

A Software Framework for Vehicle-Infrastructure Cooperative
Applications

Sebastian Bengochea, Angel Talamona, Michel Parent
INRIA, BP 105, 78153 Le Chesnay, France

T

the data module. This module also provides a set of
mechanisms for handling concurrent access to the data. The
Kernel initializes the server and the decision modules. To
maintain low coupling between the TMS and the decision
modules, an extensible event system has been developed.
This low coupling approach allows dynamically adding and
removing listeners without changing the predefined internal
behavior of the TMS.

The decision modules and their dependencies are
specified in an XML file that contains the id, the class that
implements the decision module and their execution
dependencies. This approach allows a declarative way for
specifying the logic components used by the system. The
execution dependencies are embedded as a list of decision
modules that run before the current one is executed. This
defines a direct acyclic graph of executing dependencies
between all the decision modules. A topologic sort over this
graph provides the execution order for each module (cyclic
dependencies are not allowed in the current
implementation). As previously stated, the modules are
executed when an event (such as vehicle logged in or a new
message received from vehicle) occurs, but it is also
possible that the decision module runs in parallel to the
TMS, for example working as proxy to a Trip Supply-
Demand Management System for car-sharing. The decision
modules are loaded in runtime, allowing the administrator of
the system to replace or modify certain logic without
stopping the execution of the VIC application.

The architecture and components that integrate a telematic
system implemented using the framework is presented in
Fig. 2.

Fig. 2. The TMS framework propagate events to the Decision Modules,
whereas these use the Kernel to access vehicle data or send messages to
specific vehicles of the fleet.

The CS implements asynchronous communication for the
TMS. The network protocol used is TCP/IP, which runs
over a wide range of wireless links such as GPRS, Wi-Max,
UMTS, SAT and IEEE 802.11x. Thus, the user of the
framework defines the communication protocol used at the
application level. Vehicles open a TCP/IP connection with
the TMS and for each new connection established the CS

creates a vehicle worker thread for handling the
communication with the specific vehicle. For sending data to
a vehicle, each vehicle worker contains a local queue and
the worker sends data messages stored in this queue to the
specific vehicle. The vehicle worker stores data received
from the vehicle in a general queue that is part of the CS.
The information of this queue is processed by certain
number of dispatcher threads, each dispatcher pass the data
message to the Telematic Protocol component.

The Telematic Protocol component is loaded at the startup
of TMS. This component processes the incoming messages
of the vehicles and may propagate events to the decision
modules (or other listeners) each time a new message
arrives. Different types of events can be defined and
propagated by the user through this component. The user
can provide different implementations of the Telematic
Protocol (only one at a time is used). The latter allows
different application-level protocols to operate with the
TMS, such as SOAP-XML [2] or INRIA Lightweight
Vehicular Telematics Protocol (LVTP) [3]. The CS internal
composition is presented in Fig. 3.

Fig. 3. The internal elements of the CS. The Communication API stores the
received messages in the specific vehicle worker queue. When new
messages arrive from the vehicle the worker stores this in a global queue.
The dispatchers access the global queue, passing the message to the
Telematic Protocol component, which is an event source propagating user
specific events.

The proposed queue system, which is based on a
producer-consumer model, makes possible to achieve certain
level of asynchronous server-vehicle communication. It is
also posible to distribute the work of the dispatchers and the
vehicle workers under several servers, improving the
scalability of the system.

III. INTERFACE SPECIFICATION
This section will introduce the class and interface designs

of the Event System, Decision Modules and the Telematic
Protocol. The user of the framework provides some of these
interfaces to implement different system behaviors. The
TMS framework is currently implemented in Java.

A. Event System
The event system used in the TMS is defined using three

interfaces, the ITMSEventSource, ITMSEventListener and
ITMSEvent, the UML class diagram for these interfaces is

presented in Fig. 4.

Fig. 4. Event system UML class diagram. The three central interfaces that
define the event model system.

ITMSEventListener instances are registered to listen
events from a specific event source (ITMSEventSource
instances). Each ITMSEventListener instance provides the
list of dependencies that should be executed before itself,
defining a partial execution order for all the listeners.

ITMSEventSource instances are active components that
propagate certain TMS or user defined events (ITMSEvent
instances). Event source instances can be linked in a chain
of event propagation, using the method setSourceParent of
ITMSEventSource. When an event is propagated, the
following protocol steps should be respected by each event
source:

1. Executes default action event for the current event

source.
2. Executes the listenEvent method for all registered

listeners of the current event source, respecting the
predefined order.

3. Propagates the event to the parent of the current
event source (repeat the process from step 1).

ITMSEvent instances are the event objects that contain the

event source target and some data related to the event. The
event source target is the logic element of the TMS that
generates the event, for example, if a vehicle logged in event
is propagated then the event source target is the vehicle id.

B. Decision Modules
The TMS framework instantiates decision modules using

a factory configurable by an XML. A default
implementation for the factory is provided by the TMS, this
factory loads the XML information, resolves the
dependencies and allows the runtime instantiation of each
decision module. The UML class diagram for the decision
modules is presented in Fig. 5.

Fig. 5. UML class diagram for the decision modules. The decision module
is initialized using the init method. Each instance will be registered by
default to the events propagated through the TMS framework.

Each declared decision module in the XML is an instance
of ITMSDecisionModule interface. All the decision modules
are initialized with the Kernel interface (API to the TMS
framework), including the decision module name and
dependencies list (information declared in the XML). The
ITMSDecisionModule instance may run in parallel of the
TMS (for example as a proxy to other legacy system), or be
activated and executed only under certain events propagated.

C. Telematic Protocol
The Telematic Protocol component processes the

communication messages received from the vehicles,
propagating the corresponding events in each case. This
component is divided in three interfaces; IMessage,
IMessageFactory and ITelematicProtocol.

The IMessage interface represents a message to exchange
with the vehicle. The implementation of this interface
provides the methods marshal/unmarshal which receive
Input and Output Streams respectively. These methods
allows the message to be serialized and deserialized using
different formats provided by the user, making transparent
to vehicle workers and dispatchers the real stream format
exchanged over the network protocol. The IMessageFactory
instance, provided as part of the Telematic Protocol
component by the user, will be the creator of the IMessage
instances. The ITelematicProtocol instance is responsible
for processing the messages received from the vehicles,
before different events may be propagated. A UML class
diagram of the Telematic Protocol interfaces is presented in
Fig. 6.

Fig. 6. Telematic Protocol UML class diagram. The user should provide an
implementation of these interfaces, different implementation can support
different telematic protocols.

The received messages are processed in two
asynchronous process. The first process is handled by the
vehicle worker that receives messages from the TCP
connection. The received messages are stored in a general
queue, after this the vehicle worker continues listening for
new messages. This process is presented as an UML
sequence diagram in Fig. 5.

Fig. 7. Vehicle Worker UML Sequence Diagram. The io parameter used in
the unmarshal method, is a stream of bytes received from the socket
(previously opened by the communication subsystem). The enqueue method
of the IQueue instance is non blocking. The iterative process is repeated
until the vehicle worker thread is stopped.

The second process is handled by the dispatcher, if no
messages are present in the general queue, then the
dispatcher is blocked until a new message arrives. When a
new message enters the general queue, it is passed by the
dispatcher thread to the ITelematicProtocol instance for
handling it. The dispatcher process is presented in the UML
sequence diagram in Fig. 6.

Fig. 8. Dispatcher UML sequence diagram. Each dispatcher thread iterates
obtaining a message from the general queue. The message is passed to the
ITelematicProtocol instance, which process the message and propagates
user events.

Messages are sent to a specific vehicle (broadcast is also
possible) creating and storing an instance of IMessage in the
local queue of the specific vehicle worker. The vehicle
worker will process the message through the TCP
connection using the marshal output stream method.

IV. CONCLUSION AND FUTURE WORK
The TMS framework is currently under test at INRIA for

in two different VIC applications. One of the applications
manages a CTS (Cybernetic Transportation System) based
on a fleet of automatic vehicles (cybercars). The fleet
management system was tested with a fleet of three
cybercars in the city of Nancy. The second one is an
application with probe vehicles (driven cars equipped with

sensors for atmospheric and infrastructure conditions). The
cars transmit field data to the management system and get
back safety warnings and route advises. Both applications
share a dynamic traffic congestion model to send the
vehicles route data in order to optimize the use of the road
infrastructure, minimizing traffic congestion.

The current implementation of the queue system at the CS
is a simple FIFO proposal while further versions of the TMS
will implement distributed priority level queues for handling
emergency or high priority messages. The TMS event
system will be extended to work in a way similar to DOM
Bubble event system [4]. The execution order of the
decision modules, which is a direct acyclic graph (defined
by their dependencies), will propagate events from decision
modules to their fathers, and so on. This approach will
improve the control of the decision modules over the
propagated events, for example a module will be able to stop
or modify an event under propagation.

Further versions of the TMS will work inside other
standard servers, such as OSGi Server [5] or J2EE [6]
application server. This will improve the framework with a
set of advantages including component reusability,
distributed deployment, integration with non-Java systems
and application interoperability [7].

ACKNOWLEDGMENT
This work has received the support of the European

Commission in the context of the projects CyberCars
(www.cybercars.org) and REACT [8].

REFERENCES
[1] T. Gordon, R. Lay, J. Misener, S. Shladover, “Research Needed to

Support Vehicle-Infrastructure Cooperation”, TRB Committee on
Vehicle-Highway Automation, January 2005

[2] SOAP - Simple Object Access Protocol, specifications by the W3C
XML Protocol Working Group.
Available: http://www.w3.org/TR/soap

[3] Lightweight Vehicular Telematics Protocol Definition and Examples.
Available: http://www.cybercars.org/LVTP

[4] DOM - Document Object Model Events, Level 2 specification by the
W3C. Available: http://www.w3.org/TR/DOM-Level-2-Events

[5] OSGi - Open Services Gateway Initiative, specifications and
definitions for a standardized, component oriented, computing
environment for networking using Java 2 Plataform.
Available: http://www.osgi.org

[6] Java 2 Platform Enterprise Edition (J2EE) software is developed by
Sun Microsystem Inc., additional documentation and tools are
available at http://java.sun.com/j2ee

[7] V. Matena, B. Stearns, “Applying Enterprise JavaBeans: Component-
Based Development for the J2EE Platform” (second edition),
Addison-Wesley, 2003. ISBN: 0201914662.

[8] REACT - Realizing Enhanced Safety and Efficiency in European
Road Transport. Available: www.react-project.org

[9] T. Sivaharan, G. Blair, A. Friday, M. Wu, H. Duran-Limon, P.
Okanda, C. F. Sørensen, “Cooperating Sentient Vehicles for Next
Generation Automobiles”, Workshop on Applications of Mobile
Embedded Systems, 2004.

[10] S. Katoh, H. Yanagawa, “Research and Development on On-board
Server for Internet ITS”, Symposium on Applications and the Internet
(SAINT), 2002.

