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Abstract— In third generation mobile networks, transmission
rates can be assigned to both real time and non real time
applications. We address in this paper the question of how to
allocate transmission rates in a manner that is both optimal
and fair. As optimality criterion we use the Pareto optimality
notion, and as fairness criterion we use a general concept of
which the max-min fairness (which is the standardized fairness
concept in ATM networks) and the proportional fairness (which
characterizes fairness obtained by some transport protocols for
the Internet) are special cases. We show that the problem is a joint
optimization system of the transmission rate and the power. We
formulate the fair allocation problem as an optimization problem
and propose both exact as well as approximating solutions. We
consider both uplink and downlink problems and study also
macrodiversity.

I. I NTRODUCTION

Rate control of calls is an important network management
issue in third generation mobile networks. Indeed, not only
data transfer but also real time audio and video applications
can be transmitted at various rates by selecting an appropriate
Codec. In the case of voice applications, UMTS will use the
Adaptive Multi-Rate (AMR) codec that offers eight different
transmission rates of voice that vary between 4.75 kbps to 12.2
kbps, and that can be dynamically changed every 20 msec. Of
course the transmission rate has an impact on the perceived
quality. The reduction of the transmission rate is necessary
for maintaining a call whose received energy per bit is too
small, and it allows to maintain a larger number of calls in
the system; it will be studied here in conjunction with power
control which is yet another tool that can be used to increase
the received energy per bit (but which also has an impact on
the interference experienced by other calls).

A well studied problem is that of choosing transmission
rates so as to maximize the system’s throughput, see [1].
Alternatively, if two mobilesA and B transmitting at the
same rate have the same received power at their base station
and if A has larger attenuation thanB, then it transmits with
larger power thanB, thus causing more interference thanB
in the base stations of neighboring cells. Hence systemwise,
it is profitable to assign to mobileA lower throughput than to
mobile B if there are not sufficient radio resources to assign
the maximum throughput to both. This suggests large differ-
ences in throughputs assigned to mobiles according to their
attenuation level when seeking the system optimal viewpoint.

Yet, a second important consideration in assigning through-
puts in networks is fairness. Several fairness concepts have
been suggested and implemented in various network architec-
tures, but let us first recall the concept of global optimization.
Global optimization Consider a system withN transmitting
source. Letr = (r(1), ..., r(N)) be a assignment vector of
transmission rates. The global optimization maximizes the
total throughput

∑

n∈N r(n). It can lead to situations in which
the allocation is null for one or several sources, and is therefore
not consider as fair.
Max-min fairness In ATM networks, the standardized fairness
concept in traffic whose rate is controlled (the ABR - Available
Bit Rate class) is the so called ”max-min fairness” [2]. An
assignment vector of rates is said to be max-min fair if one
cannot increase the assignment of a sourcei without decreas-
ing the assignment of a sourcej for which r(j) ≤ r(i) [2], [3].
The quantity that is assigned fairly in ATM is the excess of
the throughput beyond a prenegociated minimum transmission
rate. Another related standardized fairness concept in ATMis
the ”weighted max-min fairness” in which the quantity that
is to be assigned fairly is the excess throughputs (beyond
the minimum guaranteed) weighted by some multiplicative
constant depending on the connections.
Proportional fairness In the Internet, the large majority of
transfers use the TCP/IP transport control mechanism. The
assignment of throughput to various connections using TCP/IP
(and other related protocols) can be described using the
concept of ”proportional fairness” as was shown in [4]. An
assignmentr is said to be proportionally fair if it is feasible
(satisfies the system’s constraints) and if for any other feasible
assignmentr∗, the aggregate of proportional changes is non-
positive:

N
∑

i=1

r∗(i) − r(i)

r(i)
≤ 0. (1)

The proportional fairness is known to maximize the quantity
∏

i r(i). Equivalently, it is an assignment that maximizes
∑

i log r(i). A (weighted version of the) proportional fairness
is also advocated for future developments of TCP, see e.g.
[5]. The way TCP shares bandwidth between connection has
become a reference for other real-time applications over the
Internet that do not use TCP; such applications are called ”TCP
friendly”.



Both proportional fairness and max-min fairness possess
optimality properties: they are both Pareto optimal1. The pro-
portional fairness is a good compromise between the system
global optimum (i.e. the sum of all mobiles’ rates) and the
welfare maximization approach of max-min fairness.
Generalized fairness criterion It has been shown in [6] that
all three approaches: the system optimization, the max-min
fairness and the proportional fairness are all special cases of a
generalized fairness concept. Given a positive constantα 6= 1,
consider the optimization problem:

Maximize
∑

i

r(i)1−α

1 − α

subject to the problem’s constraints. Assume that ther(i) are
defined on a convex set. Then since the objective function is
concave and the constraints are linear, this defines a unique
allocation which is called theα-fair allocation. It turns out
[6] that this allocation corresponds to the globally optimal
allocation whenα → 0, to the proportional fairness when
α → 1, to the harmonic mean fairness (another well known
fairness concept) whenα → 2, and to themax-min allocation
whenα → ∞.

We should mention that other aspects of fair resource
assignment in wireless networks have been studied previously.
These were aspects related to scheduling back logged packets
[7]–[9], so as to achieve already given average transmission
rates of different sources. Our study aims, in contrast, to fairly
assign the transmission rates.

Our main contributions are
1. A methodology for combined rate and power control for
achieving arbitrary tradeoff between fairness and system’s
global maximum for both downlink and uplink as well as for
macrodiversity.
2. Transforming a non convex optimization problem into a
convex problem with linear constraints. This extends our
results in [10] in which only the uplink was considered and
which proposed only an approximation in order to derive a
convex optimization problem.

The structure of the paper is as follows. We first mention in
the next section some other works on rate control in wireless
networks (not directly related to fairness concepts). We then
introduce in Section III our model and show how the fair
assignment problem can be formulated as one of two possible
optimization problems: one in which transmission rate can be
assigned any real value within some given interval, and one in
which finitely many transmission rates are available for each
mobile. We analyze the properties of the system in Section IV.
We then apply our results to the uplink problem in Section V
and propose exact and approximating solutions. The downlink
problem is examined in Section VI and the macrodiversity is
studied in Section VII. Numerical results are given in Section
VIII. A concluding section ends this paper with extensions to
utility-based fairness concepts.

1An assignmentr is Pareto optimal if one cannot increase the assignment
of one sourcei without strictly decreasing an assignment of another sourcej

II. RELATED WORK ON RATE CONTROL IN WIRELESS

NETWORKS

We briefly mention in this section some recent papers on
rate control in CDMA wireless systems.

The paper that mostly relates to ours is [1]. It considers the
problem of optimizing transmission rates and powers. Discrete
available rates. The problem is formulated mathematicallyas
a mixed linear-integer programming, for which polynomial
optimization algorithms are not available. A heuristic approxi-
mation approach based on a Lagrangian is proposed and tested.

Another related paper is [11], where the authors study
the optimal control of both the power, and spreading gain
(the latter is equivalent to controlling the throughput). The
authors restrict to a single cell and to the uplink. The model
includes channel coding (FEC, Forward Error Correction), and
a general function for BER (Bit Error Rate) as a function of the
SIR (Signal to Interference Ratio). Similar models are studied
in [12], [13].

Several papers study optimizing throughput assignment for
non-real time traffic.

In [14], the quantity that is maximized is the effective data
rate: the transmission rate times the BER , where the latter is
a function of the SIR and the transmission rate. A Lagrangian
approach is used. There is no a priori target SIR. This approach
is useful for NRT (Non Real Time) traffic. Note that if we
assign to a source a transmission of rateR with 0 percent
losses, the effective throughput is the same as if we transmitted
at 2R and lost half the information. In contrast to NRT, for
RT (Real Time) applications, the two scenarios would give
different utility (quality perception). In [14] the function of
the SIR is taken in an example to be the Shannon capacity;
note that approaching that capacity requires long blocks of
codes which makes the scheme not useful for RT. There is
also a part that considers both RT and NRT (sec VI) but only
the throughput of NRT is optimized.

In [15], the authors consider uplink CDMA with two
classes, mobiles of the first class (RT) transmit all the time,
the other mobiles (NRT) are time-shared. The benefits of time
sharing is studied as well as the conditions for silencing some,
where one of the studied objectives is that of maximizing
throughputs (while keeping the SIR at acceptable levels). The
paper takes into account that when a mobile is silent, it still
requires energy (for synchronization). We also note that the
amount of information to transmit is not changed by the
scheduling.

In [16], the author studies the Erlang capacity as a function
of the throughputs assigned to NRT applications. Unlike the
framework in [1], which we adopt in this paper as well for
RT applications, the volume of information transmitted by
NRT applications (such as a file transfer) is not affected by
the assigned throughput. Thus a static optimization problem,
as done in previously mentioned papers, is not adequate
to describe the effect of throughput assignment for NRT
applications. The model in [16] takes into account the impact
of throughput assignment on the call duration in order to



compute the Erlang capacity as a function of the assigned
throughput.

Another related research direction has been the assignment
of instantaneous rate of packet transmission at the buffersin
CDMA wireless systems. In these papers, the actual transmis-
sion rate of the source is not controlled.

In [17] the packet transmission rates at the link layer buffers
is allocated at as a function of the traffic profiles and is
computed according to required bounds on packet losses at
these buffers. The paper uses effective bandwidth notions for
CBR/VBR traffic (Constant/Variable Bit Rate), and others for
ABR (Available Bit Rate). Some other closely related papers
are [18]–[20].

In [21], the author considers combined power and rate
control of each of a number of queue so as to minimize
power and delay. In the considered model, the power and
rate assignments determine loss probabilities and there isa
given constraint on the loss rate. No retransmissions and no
scheduling are considered.

In [22], the authors describe the feasible set of powers/rates
in a single cell. They show that this is not a convex set.
Convexification is possible by an appropriate time sharing
or scheduling of packets. The results are used for assigning
transmission rates at the buffers (again, the source rates are
given and not controlled), so as to achieve required bounds
on delays. The scheduling decisions are taken according to
the traffic profile of each mobile which is characterized by the
average rate and the burstiness (the so-calledσ−ρ constraints).

Among all the research directions we mentioned above, our
paper is related to the first two references as it is concerned
with the actual assignment of transmission throughput rates at
the sources (rather than inside the network) of real time appli-
cations. We consider a multicell environment with particular
attention on uplink and downlink rate control, and include
a study on macrodiversity. (This is in contrast to [11] who
considers only the uplink control in a single link, or [1] whose
framework seems more adapted to the uplink multicell case.)
Yet, an important feature of our paper is the introduction of
new fairness considerations into the rate allocation problem.

III. T HE MODEL

We use the notations of [1] applicable for both the uplink
and the downlink and extend their model. Consider a cellular
radio system withS transmitting sources. Sources can trans-
mit with total powerps,tot within the interval[0, ps,tot]. In the
following, if sources has different channels,ps,t will denote
the power of the signal emitted by sources to destinationt.
Also, pNC,s represents the power of the non-power controlled
channels. Therefore:

ps,tot =
∑

t

ps,t + pNC,s. (2)

We take the following notations:

m a mobile unit
b a base station

(m, b) =

{

(s, t) in the uplink case,
(t, s) in the downlink case.

cm the cell of mobilem
M the number of mobile units
Nc the number of mobiles in cellc
N(m, b) the background noise power at the receiver (it

represents thermal noise and also radio inter-
ference from non-power controlled channels.)

C a multiplicative constant
p′m,b the normalized power:∃Ks,t, p′m,b = Ks,tps,t.

We will show that :

Ks,t =

{

gm,b (the link gain) in the uplink,
1 in the downlink.

Given a power vectorP = (p1,tot, ..., ps,tot), the received
signal to interference ratio of mobilem is given by

SIRm(P ) =
p′m,b

N(m, b) + C
∑

m′ 6=m

m′∈cm

p′m′,b

1 ≤ m ≤ M. (3)

As p′s,tot is bounded, thenp′m,b is bounded by a value that
we will denote byp′m,b. The values ofC, N and p′ will be
expressed in Section V for the uplink and Section VI for the
downlink.

As explained in [1], the above model can be useful for both
uplink and downlink. However, we shall later use the particular
structure of the uplink and of the downlink in order to simplify
the solution.

We next describe two possible settings for the power and
transmission rate control.

A. The continuous model

In the first model, mobilem can use any value of throughput
between a minimum guaranteed valueMRm and a maximum
valuePRm. This can be achieved if a packet mode is used with
an appropriate scheduling (see e.g. [23], [24] and references
therein). Denoter(m) the transmission rate assigned to mobile
m andR = (r(1), ..., r(M)) the rate vector. We assume that,
for each mobile, there is a minimum required value ofSIRm

per transmitted bit per second, which we denote byδm.
Let (Eb/Io)i be the ratio of bit energy to interference

power spectral density of mobilem, and Wm the spreading
bandwidth at chip rate for mobilem. We then have

δm ≤
1

Wm

(

Eb

Io

)

m

=
SIRm(P )

r(m)
, (4)

implying δmr(m) ≤ SIRm(P ).2

2Note that we implicitly assume that(Eb/Io)m does not depend on the
transmission rater(m). This is a standard assumption in modeling literature,
see e.g. [1]. In practice, however, it may depend onr(m), see e.g. [25, p.
151, 222, 239]. But as we see from [25, Fig. 10.4, p. 222], it isclose to a
constant throughout long range of bit rates. For example, between 16Kbps and
256Kbps, the maximum variation around the median value is less than 20%.
We thus propose to take for the value of(Eb/Io)m its average or median
value over the range[MRm, PRm]. However, if the exact dependence is
available analytically, it can be included into our model.



Thus the solution of our joint power and transmission rate
assignment problem is constrained to belong to the setΠc =
(P,R), defined through:






































0 ≤ ps,tot ≤ ps,tot, 1 ≤ s ≤ S,

MRm ≤ r(m) ≤ PRm,
1 ≤ m ≤ M.

δmr(m) ≤
p′m,b

N(m, b) + C
∑

m′ 6=m

p′m′,b

,

(5)

A fair allocation can now be obtained using the following
optimization problem:

Find (P,R) ∈ Πc that Maximizes
M
∑

m=1

r(m)1−α

1 − α
.

B. The discrete model

There is a finite number of available transmission rates for
each mobile. Letr1

m < r2
m < ... < r

K(m)
m be the available

transmission rates for mobilem.
One way to formulate the discrete model is to use the

continuous model and add a constraint on the discrete values
that the throughputs can have:

Find (P,R) ∈ Πc that Maximizes
M
∑

m=1

r(m)1−α

1 − α
, (6)

with r(m) ∈ {r1
m, r2

m, ..., rK(m)
m }. (7)

We present below an alternative formulation of the problem
following [1].

To properly receive messages at transmission raterk
m with

tolerable error probability, mobilem is expected to attain an
SIRm(P ) not less than a targetγk

m.
Let Y = (yk

m) be a 0-1 matrix such that for every mobile
m and raterk

i ,

yk
m =

{

1, if mobile m is transmitting with raterk
m,

0, otherwise.

Introduce arbitrarily chosen constantsAk
m that represent the

transmission power that mobilem needs in order to attainγk
m,

regardless of the interference power. More precisely, theycan
be chosen arbitrarily so as to satisfy

Ak
m ≥ γk

m

(

N(m, b) + C ×
∑

m′ 6=m

m′∈cm

p′m′,b

)

for all m and k (we allow in the definition to haveAk
m ≥

p′m,b). Hence the constantsAk
m satisfy

Ak
m ≥ max

P

p′m,bγ
k
m

SIRm(P )
,

which is in fact the condition that defines these constants in
[1].

Then the solution of our joint power and transmission rate
assignment problem is constrained to belong to the setΠd =
(P, Y ) such that:






























0 ≤ ps,tot ≤ ps,tot, s = 1, . . . , S,

yk
m ∈ {0, 1},

∑Ki

k=1 yk
m ≤ 1,

m = 1, . . . ,M.

p′m,b + (1 − yk
m)Ak

m ≥
p′m,bγ

k
m

SIRm(P )
.

The first constraint represents the power constraints. The
second states that at most one bit rate can be allocated to
a mobile. The third constraint reduces to the constraint on
SIRm when rk

m is the rate allocated to mobilek. For rk
m

which is not the allocated rate, the inequality constraint is just
a consequence of the definition ofAk

m.
A fair allocation can now be obtained using the following

optimization problem:

Find (P, Y ) ∈ Πd that Maximizes
M
∑

m=1

(

K
∑

k=1

yk
mrk

m

)1−α

1 − α
.

(8)
In this section we made explicit the system of equations

corresponding to the continuous and the discrete models. In
particular, we showed the need for a join allocation of rates
R and powerP vectors. In the following section, we focus on
the first model.

IV. PROPERTIES OF THE SYSTEM

A. Equivalent problem

We provide here an equivalent formulation of the problem
based on a simple change of variables.

Lemma 1: The continuous problem (see section III-A) is
equivalent to finding(P,C) in Π̂c = (P,C) that maximizes

Z(C) :=
M
∑

m=1

1

1 − α

(

ρ(m)

1 − δmρ(m)

)1−α

where Π̂c = (P,C)

is given by:






































0 ≤ ps,tot ≤ ps,tot, 1 ≤ s ≤ S,

MRm

1 + δmMRm

≤ ρ(m) ≤
PRm

1 + δmPRm

,

1 ≤ m ≤ M.

δmρ(m) ≤
p′m,b

N(m, b) + C
∑

p′m′,b

,

(9)
Proof: Let C be the N -dimensional vector such that

∀m = 1 . . . M , ρ(m) =
r(m)

1 + Cδmr(m)
. We should notice

thatδmρ(m) = 1−
1

1 + δmr(m)
and simply make the change

of variables fromR to C in the inequalities (5).
Lemma 2: The objective functionZ is concave if for any

C in the set of feasible solutions, we have:∀m, 1 ≤ m ≤ M ,
2δmρ(m) ≤ α.



Proof: Note that the denominator1 − δmρ(m) is
nonnegative over the feasible solutions (from the second
inequality of system (5)). To determine whether the ob-
jective function is concave, we differentiate it twice with

respect toρ(m), m = 1, ..., Nc and obtain
∂2Z(ρ)

∂ρ(m)2
=

2δmρ(m) − α

(1 − δmρ(m))3ρ(m)

(

ρ(m)

1 − δmρ(m)

)−α

. This is nonpositive

for all feasibleρ(m) if 2δmρ(m) ≤ α.
Remark 1: A sufficient condition for the objective function

to be concave isα ≥ 2. This condition can further be
weakened. Let

w = max
m=1,...,Nc

δmPRm

1 + δmPRm

.

Then a weaker sufficient condition for the objective function
to be concave is thatα ≥ 2w. Quite oftenw is close to zero
(see e.g. discussion before Lemma 1 in [26]).

In the following, we will call acceptable transmission
rate vector any vector R (respectivelyC) that accepts at
least one feasible assignmentP satisfying the constraints
(5)(respectively (9)).

B. Properties of acceptable rate vectors

We should start by noticing that:
Lemma 3: For any feasibleC and for any cell:

C
∑

m′

δm′ρ(m′) < 1.

Proof: Let c be a cell andb its associated base station.
Consider the last inequality of system (9):

∀m, δmρ(m) ≤
p′m,b

N(m, b) + C
∑

m′ p′m′,b

.

As N(m, b) > 0, thenδmρ(m) <
p′m,b

C
∑

m′ p′m′,b

. By summa-

tion, C
∑

m′

δm′ρ(m′) <
C
∑

m′ p′m′,b

C
∑

m′ p′m′,b

= 1.

Lemma 4: Consider the last inequality of system (9) when
replaced by equality. We obtain: For a given cellc with base
stationb, ∀m ∈ c,

δmρ(m) =
p′m,b

N(m, b) + C
∑

p′m′,b

, (10)

Then one can prove that this linear system ofNc equations
of Nc variables admits one and only one solutionPP for any
feasibleC.

Proof: It is sufficient to prove that theNc equa-
tions are linearly independent. They can be written as:
∀m, δmρmN(m, b) = pm,b − Cδmρm

∑

m′ pm′,b It is of the
form AX = Y with: Y = (δiρiN(i, b))i, X = (pi,b)i and
A = IdNc

− B with IdNc
the identity matrix of sizeNc and

B the matrix

B =









b1 . . . b1

b2 . . . b2

. . .
bNc

. . . bNc









. (11)

with ∀i, bi = Cδiρi. If U is an eigenvector ofA associated to
eigenvalueλ, thenAU = λU = U − BU . ThereforeU is an
eigenvector ofB with eigenvalue1−λ. But rank(B) = 1 and
trace(B) =

∑

i bi. ThenA has only two eigenvalues that are1
and1−C

∑

i δiρi. ThereforeA is singular (1−C
∑

i δiρi 6= 0
by Lemma (3)) andPP exists and is unique.

Proposition 1: For any acceptable fixed transmission rate
vector R (respectivelyC), there corresponds a unique mini-
mum (component wise) powerP ′ min that satisfies the system
(5) (respectively (9)). MoreoverP ′ min

= PP .
Proof: As the problems (5) and (9) are equivalent, we

only prove the proposition in the first case.
We extend the proof of Lemma 1 in [26] which only

considers the single cell case. Suppose that there exists a
feasible power assignmentP ′

0 satisfying the constraints (5).
We construct a sequence of power assignmentsP ′

i where

(p′m,b)i+1
= δmr(m)



N(m, b) + C
∑

m′ 6=m

(p′m′,b)i



 .

We have
0 ≤ (p′m,b)i+1

≤ (p′m,b)i
.

Therefore the decreasing sequence converges to an assignment
P ′ min satisfying∀n, P ′ min

≤ P ′
n component wise and

∀m, p′m,b

min
= δmr(m)



N(m, b) + C
∑

m′ 6=m

p′m′,b

min



 .

Lemma 5: Let C be a fixed acceptable transmission vector.
The set of feasible power assignments satisfies:






























0 ≤ ps,tot ≤ ps,tot, 1 ≤ s ≤ S,

δmρ(m)

[

C
∑

m′

δm′ρ(m′)[N(m′, b) − N(m, b)]

+N(m, b)

]

≤
(

1 − C
∑

m′ δm′ρ(m′)
)

p′m,b,

1 ≤ m ≤ M.
(12)

Proof: We consider the last inequality of system (9)

p′m,b ≥ δmρ(m)

(

N(m, b) + C
∑

m′

p′m′,b

)

, (13)

We can now consider cellc separately, and reduce the un-
known variables to the power and transmission rate within
that cell only. We then sum over all mobiles of cellc:

(

∑

m′∈cm

p′m′,b

)(

1 − C
∑

m′∈cm

δm′ρ(m′)

)

≥

∑

m′ δm′ρ(m′)N(m′, b).

(14)



We finally combine this with (13) to obtain the second
inequality of (12).

From Proposition 1 and Lemma 5, we get:
Lemma 6: For a given acceptableR (respectivelyC), P ′ min

is given by∀m = 1 . . . M , p′m,b

min
= δmρ(m)×

N(m, b) + C
∑

m′

δm′ρ(m′)[N(m′, b) − N(m, b)]

1 − C
∑

m′

δm′ρ(m′)
. (15)

We finally conclude that:
Theorem 1: A rate vectorC is acceptable if and only if it

satisfies the two following conditions.

(C1)
MRm

1 + δmMRm

≤ ρ(m) ≤
PRm

1 + δmPRm

,

(C2) ∀m, m = 1 . . . M , 0 ≤ pmin
s,tot ≤ ps,tot, with pmin

s,tot

defined by (2) and (15).
Proof: If C is feasible, then (C1) is verified. Proposition

1 states thatP ′ min is a solution of the system, so that (C2) is
also satisfied.

Equivalently, if condition (C2) is satisfied, thenP ′ min is a
solution vector (it satisfies the first and the third inequalities
of (9)). Finally, (C1) is the last inequality of (9).

In this section, we focused on the continuous model and
provided an equivalent system of equations based on a change
of variables (Lemma 1). We then expressed a sufficient
condition for the objective function to be concave (Lemma 2
and Remark 1). We showed three properties of this system
(Proposition 1, Lemma 5 and Lemma 6). In particular, we
showed that if a rate vector is acceptable (that is to say if it
corresponds to at least one feasible power assignment), then
all the corresponding power vectors are greater (component
wise) than the feasible power vectorP ′ min given by:p′m,b

min
=

δmρ(m)×

N(m, b) + C
∑

m′ δm′ρ(m′)[N(m′, b) − N(m, b)]

1 − C
∑

m′ δm′ρ(m′)
.

We finally concluded with a sufficient and necessary condition
for a rate vector to be acceptable (Theorem 1).

V. THE UPLINK CASE

In this section, we apply the results of the previous section
to the uplink case.

A. Continuous case

Let us consider a mobilem in cell c. Let gm,b be the link
gain between sourcem (the mobile) and a destinationb (the
base station). We assume that time intervals are sufficiently
short for gm,b to be constant within the interval.pm,b is the
power of the signal emitted by mobilem to its corresponding
base station. As mobilem emits only one signal, we have:
ps,tot = pm,b. Finally, νb represents the thermal noise at
destination. Then, theSIRm of mobile m can be written:

SIRm =
gb,m pm,b

νb +
∑

m′ in any cell,m′ 6=m

gm′,b pm′

. (16)

We make the following approximating assumption that is
frequently used for the uplink case (see e.g. [27]):

Hypothesis 1: The interference caused by mobiles from
other cells is proportional to the interference due to the mobiles
in cell c, i.e. there is a constantλ such thatIother = λIown.
In other words:

∑

m′ in any other cell

gm′,b pm′ = λ
∑

m′ in cell c

gm′,b pm′ . (17)

Under hypothesis 1, the uplink can therefore be modeled
with system (5) (equivalently with system (9)) with:

C = λ + 1, N(m, b) = νb, p′m,b = gm,bpm,b.

We then can apply the results of Section IV. In particular,
we obtain (see also [16], [27]):∀m ∈ [1,M ]:

pmin
m,b(ρ) =

1

gb,m

(

νbδmρ(m)

1 − (1 + λ)
∑Nc

m′=1 δm′ρ(m′)

)

. (18)

Moreover, conditions (C2) of Theorem 1 is now:

0 ≤ νbδmρ(m) ≤ gb,mpm,b

(

1 − (1 + λ)
∑

m′∈cm

δm′ρ(m′)
)

.

Hence, the problem can then be summarized by: FindC that
maximizes

Z(C) :=

M
∑

m=1

1

1 − α

(

ρ(m)

1 − δmρ(m′)

)1−α

s.t.



















MRm

1 + δmMRm

≤ ρ(m) ≤
PRm

1 + δmPRm

,

0 ≤ νbδmρ(m) ≤ gb,mpm,b

(

1− (1 + λ)
∑

m′∈cm

δm′ρ(m′)

)

.

(19)
Remark 2: The set of constraints is now a (convex) poly-

tope.
Remark 3: A sufficient condition for all rate vectors to

satisfy Lemma 3 is :

∀c, (1 + λ)
∑

m′∈c

δm′PRm′

1 + δm′PRm′

< 1.

We conclude that forα ≥ 2w (and in particular for
α ≥ 2, see Lemma 2 and Remark 1), the multicell problem
of controlling jointly the power and the transmission rate
can be reduced to a standard minimization problem with
linear constraints and concave objective function that canbe
easily solved by either decentralized Lagrangian algorithms
or efficient centralized methods based on SDP (Semi Definite
Programming), see e.g. [28].

We finally note that for the single cell case, the above
solution is an exact one.

B. Further approximations for the uplink solution

The conditionα ≥ 2w does not cover the interesting case
of α = 0 which corresponds to the problem of maximizing the
global throughput. We therefore propose below two approxi-
mations, both applicable for allα ≥ 0.



1) First approximation scheme: approximating the objec-
tive function.

One can approximate the objective functionZ(ρ) by
M
∑

m=1

(ρ(m))
1−α

1 − α
, i.e. neglect the termδmρ(m) in the de-

nominator, as it is quite often much smaller than 1 (as
mentioned before). With this new objective function replacing
the previous one, we obtain a convex optimization problem
for any α > 0 (exceptα = 1). We note that the constraints
(and thus the set of feasible solutions) for this approximating
method are the same as in the initial problem. We also note
that the value obtained from this approximation is a lower
bound for the original optimization problem.

2) Second approximation scheme: approximating the con-
strained set.

An alternative approximation can be obtained by consid-
ering the original formulation (5) in terms of the rate vector
R rather thanC, in which the objective function is already
concave but the constraint set is not convex (see more details
on this set in [22] that considers the single cell case). Our
approximation then consists in replacing the last constraint in
(5) by:

δmr(m) ≤
gb,mpm,b

νb +
∑

m′∈cm
gb,m′pm′

, m = 1, ...,M. (20)

We can now proceed as in Prop. 1 and consider the equality
constraint instead of the inequality, which provides the mini-
mal solution of (20), given by

pmin
m,b(r) =

1

gb,m

(

νbδmr(m)

1 − (1 + λ)
∑

m′∈cm
δm′r(m′)

)

(21)

(see the derivation of Eq. (18).
Substituting this into our new approximation problem, we

obtain the equivalent optimization problem of maximizing
∑

m

r(m)1−α

1 − α
over the setΠapp of vectorR satisfying

Πapp











MRm ≤ r(m) ≤ PRm,
0 ≤ νbδmr(m)

≤ gm,bpm,b

(

1 − (1 + λ)
∑

m′incm
δm′r(m′)

)

.

We see that the set of constraints is now a (convex) polytope.
Furthermore, let us consider a couple(pmin, R), where

pmin is computed in (21) for thatR. If it is finite then the
couple satisfies the third constraint in original constraint set
Πc. Therefore we replaced the set of constraints by a strict
subset of that set. We conclude that the approximating problem
gives in fact alower bound on the throughput assignment for
eachm and a lower bound for the objective function.

C. The discrete model

We finally briefly comment on the discrete model. The so-
lution of the model (8) can be found in the same way as in [1],
using a distributed algorithm based on Lagrangian relaxation.
Alternatively, one can use the formulation (6). Its solution
can follow a similar path as we had for the continuous case:

first express for given transmission rates the corresponding
minimum power that satisfies the constraint (4). Again the
approximation (17) can be used to obtain explicit expressions
for optimal power assignments for given transmission rates.
This reduces to the same optimization problems we had before,
with the same linear constraints, along with the new extra
integrity constraint (7).

VI. D OWNLINK SOLUTION

Following [29], we write a more precise expression for
the signal to interference ratio (Equation (3)) that mobile
m connected to base stationb experiences:SIRm,b =

Pb,mhb,m

νm + Iinter + Iintra

, with Iinter andIintra denoting respec-

tively the intercell and the intracell interference at mobile m.
We have :










Iintra = β(Ptot,b − Pb,m)hb,m + (1 − β)PSCH,bhb,m,

Iinter =

B
∑

b′=1,b′ 6=b

Ptot,b′hb′,m.

EquivalentlySIRm,b = Pb,m/

β
∑

m′ 6=m

pb,m′ + Psch + βPcch +
1

hb,m

[

νm +
B
∑

b′=1,b′ 6=b

Ptot,b′hb′,m

]

.

(22)
where we denote by:

• Pb,m the transmission power of base stationb to the
Dedicated Physical Channel (DPCH) of mobilem,

• PSCH,b the power of the (non orthogonal) synchroniza-
tion channel from base stationb,

• PCCH,b the power of the (orthogonal) common channel
from base stationb,

• Ptot,b the total output power from base stationb, given
by

Ptot,b =

Nc
∑

m′=1

Pb,m′ + PCCH,b + PSCH,b. (23)

• hb,m the path gain from base stationb to mobilem,
• νm receiver’sm noise.
• β the synchronization factor,
• B the number of base stations.

Let us denoteFb,m the ratio between the received intercell
and intracell power, defined as

Fb,m =
Iintra

Iinter

.

ThenSIRm,b =

Pb,m

(1 + Fb,m)
(

β
∑

m′ 6=m

pb,m′ + Psch,b + βPcch,b

)

+
νm

hb,m

.

(24)
As in [29], we shall further approximateFb,m by its average

value F , and assume thatPCCH,b and PSCH,b are the same
for all base stations (b is then omitted). They are known



parameters and are not subject to power control. Also,νm

does not depend onm.
Then, the downlink joint transmission rates are now deter-

mined as the solution of problem (5) (or equivalently problem
(9)) with:

ND(b,m) = (1 + F )(Psch + βPcch) +
ν

hb,m

,

CD = (1 + F )β and p′m,b = pb,m.

We thus obtain this optimization problem: FindC such that














































MRm

1 + δmMRm

≤ ρ(m) ≤
PRm

1 + δmPRm

,

0 ≤ pSCH + pCCH +
∑

m in cell c

δmρ(m),

ptot
b ≥

ND(m, b) + CD

∑

m′

δm′ρ(m′)
[

ND(m′, b) − ND(m, b)
]

1 − CD

∑

m′ δm′ρ(m′)
.

(25)
We can notice that for any values ofδ, ρ, N and CD we

obviously have:

∑

m δmρ(m)
(

ND(m, b) + CD

∑

m′ δm′ρ(m′)
[

ND(m′, b) − ND(m, b)
]

)

=
∑

m δmρ(m)ND(m, b).

(26)
Moreover1 − CD

∑

m′ δm′ρ(m′) > 0 (Lemma (3)). Then:
−(pSCH + pCCH)(1 − CD

∑

m′

δm′ρ(m′)) ≤ 0 ≤

∑

m

δmρ(m)ND(m, b).

The optimization problem is finally: FindC that maximizes

Z(C) :=

M
∑

m=1

1

1 − α

(

ρ(m)

1 − δmρ(m′)

)1−α

s.t.















MRm

1 + δmMRm

≤ ρ(m) ≤
PRm

1 + δmPRm

,

∑

m in cell c

δmρ(m)ND(m, b) ≤ ptot
b

(

1− CD

∑

m′

δm′ρ(m′)

)

.

(27)
Then, once again we obtain a minimization problem with

linear constraints. Forα ≥ 2w the objective function is
concave and therefore the general problem is convex and
solvable in polynomial time.

VII. M ACRO-DIVERSITY IN DOWNLINK

Many UMTS systems use the possibility for a mobile
to receive the signal from several stations. This is called
macrodiversity. This prevents the signal from a base station
from fading abruptly and as a consequence gives to the mobile
a better quality of service.

For the power control part, we shall follow [29]. We
consider below soft handover with two base stations or sectors
l and s; mobile k has an active link to both stations. We

assume maximum ratio combining where the sum of signal
to interference ratio should add up to the target valueδkr(k):

δkr(k) = SIRk,l + SIRk,s. (28)

Assume that the link to stations has better signal to interfer-
ence ratio. Denote

∆k =
SIRworst link

SIRbest link

=
SIRk,l

SIRk,s

≤ 1.

In order to solve the joint power and transmission-rate
control, we proceed as in [29]. We make the simplifying
assumption that∆k does not depend onk (we can take the
average value among mobiles that are in soft handover).

Let I be the set of mobiles in cells that do not experience
handover. For such mobiles, we haveδir(i) = SIRi,s with
SIRi,s given by Equation (24).

Let j be a mobile in soft handover. Then,δjr(j) = (1 +

∆j)SIRbest link =
∆j

1+∆j
SIRworst link. Again, itsSIR is given by

Equation (24). Then, we can distinguish two sets of mobiles :
J is the set of mobiles which best link is with base stations,
andK is the set of mobiles also experiencing soft handover,
but which worst link is with base stations.

Equation (23) becomes:

Ptot,b =
∑

i∈I

Pi,b +
∑

j∈J

Pj,b +
∑

k∈K

Pk,b + PCCH,b + PSCH,b.

Define:







NI(b,m) = ND(b,m), CI = CD

NJ(b,m) = 1
∆+1ND(b,m), CJ = 1

∆+1CD

NK(b,m) = ∆
∆+1ND(b,m), CK = ∆

∆+1CD

Note, in contrast that the authors of [29] do not distinguish
between the setsJ andK, that is why their equation differs.
Also, they assume that the number of mobile in all cell is
constant, and that∀i, j, δir(i) = δjr(j).

Let i(m) be the set thatm is belonging to (i(m) ∈
{I, J,K}). We get the following optimization problem for
determining the transmission rates:

Find C that maximizes Z(C) =
M
∑

m=1

1

1 − α

(

ρ(m)

1 − δmρ(m′)

)1−α

s.t.



























MRm

1 + δmMRm

≤ ρ(m) ≤
PRm

1 + δmPRm

,

∑

m in cell c

δmρ(m)Ni(m)(b,m)

≤ ptot
b

(

1 − Ci(m)

∑

m′ δm′ρ(m′)
)

.

(29)

We thus obtain again an optimization problem with concave
objective function for allα ≥ 0, α 6= 1 and linear constraints,
which is standard to solve and has efficient solutions.



VIII. N UMERICAL TESTS

In the following, we show some of the results obtained using
the program (19) for the uplink. ForM mobiles, we consider
a single cell and set∀m, δm = 1, ν = 1, pm,b = 1/M ,
MRm = 1/4M , andPRm = 1. The position of the mobiles
is taken at random in the[−1;+1]× [−1;+1] square, and the
gain gb,m is equal to1/d2

m, wheredm is the distance of the
mobile to the center of the square. We takeM = 50.

On figures 1 and 2 we show some results obtained forα
equal to 0 and 1 corresponding to the global optimization
and the proportional fairness respectively. The base station is
represented as a black circle in the middle of the figure, and the
mobiles are represented with circles centered at their location,
and whose radius is proportional to the throughput assigned.
Clearly we see that the mobiles closer to the base station
tend to receive more bandwidth. Also many subtle differences
appear between the two fairness criteria. In particular, propor-
tional fairness allocate no mobile to its maximum throughput
demandPR and redistributes the bandwidth to in-between
users. Further users still receive the minimum bandwidthMR.

IX. CONCLUDING REMARKS AND EXTENSIONS

In this paper we addressed the problem of joint transmission
rate and power control in wireless networks so as to be both
fair and optimal.

A question not addressed here is how to achieve these
throughputs in practice if packet mode is used, or in other
words, how to schedule packets in order to achieve the
throughputs that were fairly assigned. This question has been
well studied see e.g. [7]–[9].

The paper is in line with many references [4], [6], [30],
[31] that considered the throughput as the object to be fairly
assigned, in other networking contexts. In the fairness analysis,
one may consider the case in which the utility corresponding
to the transmission rates should be fairly assigned, ratherthan
directly the throughputs. Indeed, since utility represents the
degree of satisfaction as a function of the assigned throughput,
which may be application dependent, assigning the same
throughput to two applications might be highly unfair. In fact,
mathematical frameworks for defining fairness indeed exist,
within the area of cooperative game theory, and they always
relate to utilities. The central concept of this type that has
been applied to fair resource allocation problems is the so
called Nash Bargaining solution [28], [31], [32]; it turns out
to agree with the proportional fairness concept when utilities
are linear. If fj(r(j)) is the utility for mobile j to have a
transmission rate ofr(j), then the Nash Bargaining Solution
is given by the solution of the optimization problem:

(PJ ) max

M
∏

i=1

(fi(r(i)) − fi(MRi)), (30)

where the maximization is over the appropriate constrained
set (Πc in the continuous model,Πapp for the corresponding
approximating problem, andΠd in the discrete problem), see
[28]. For real-time voice applications,fi are typically concave

functions over the interval[MRi, PRi], which implies that
the objective function in the above problem is concave. In
particular, if we consider use the approximating approach to
compute bounds for the continuous model and solvePj over
the constrained setΠapp, this is then again a standard concave
optimization problem with linear constraint for which many
efficient (polynomial) methods exist. In particular, several
solution methods are proposed in [28] for such problems if
we express the utilities using quadratic functions.
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