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Abstract: XPath is the standard declarative notation for navigating XML data and
returning a set of matching nodes. In the context of XSLT/XQuery analysis, query opti-
mization, and XML type checking, XPath decision problems arise naturally. They notably
include XPath containment (whether or not for any tree the result of a particular query is in-
cluded in the result of a second one), and XPath satisfiability (whether or not an expression
yields a non-empty result), in the presence (or the absence) of XML DTDs.

In this paper, we propose a unifying logic for XML, namely the alternation-free modal
mu-calculus with converse. We show how to translate major XML concepts such as XPath
and DTDs into this logic. Based on these embeddings, we show how XPath decision prob-
lems can be solved using a state-of-the-art EXPTIME decision procedure for mu-calculus
satisfiability. We provide preliminary experiments which shed light, for the first time, on
the cost of solving XPath decision problems in practice.

Key-words: XML, XPath, queries, types, containment, satisfiability, overlap, coverage,
logic, mu-calculus



Résolution de problèmes de décision XPath basée sur le

mu-calcul

Résumé : XPath est le langage standard pour naviguer dans des données XML et renvoyer
un ensemble de noeuds. Dans le contexte de l’analyse de XSLT/XQuery, de l’optimisation de
requêtes, et de la vérification de types XML, les problèmes de décision de XPath surgissent
naturellement. Ils incluent notamment l’inclusion de XPath (si pour n’importe quel arbre
le résultat d’une requête est inclus dans le résultat d’une seconde), et la satisfaisabilité de
XPath (si une expression donne un résultat non vide), en présence (ou absence) de DTDs
XML. Dans cet article, nous proposons une logique unificatrice pour XML, à savoir le mu-
calcul modal sans alternance avec programmes inverses. Nous montrons comment traduire
les concepts principaux de XML tels que XPath et les DTDs dans cette logique. Grâce à
ces traductions, nous montrons comment les problèmes de décision de XPath peuvent être
résolus en utilisant une procédure de décision en temps exponentiel pour la satisfaisabilité
du mu-calcul considéré. Nous menons des expérimentations qui permettent d’obtenir, pour
la première fois, une évaluation empirique de la résolution des problèmes de décision de
XPath.

Mots-clés : XML, XPath, requêtes, types, inclusion, intersection, satisfaisabilité, logique,
mu-calcul



Mu-Calculus for XML 3

1 Introduction

XPath [9] is the standard declarative language for querying an XML tree and returning a
set of nodes. It is increasingly popular due to its expressive power and its compact syntax.
These advantages have given XPath a central role both in other key XML specifications and
XML applications. It is used in XQuery as a core query language; in XSLT as node selector
in the transformations; in XML Schema to define keys; in XLink and XPointer to reference
portions of XML data. XPath is also used in many applications such as update languages
[34] and XML access control [14].

Several XPath decision problems arise naturally in these use cases. The most basic
decision problem for a query language is satisfiability [6]: whether or not an expression yields
a non-empty result. XPath satisfiability is important for optimization of host languages
implementations: for instance, if one can decide at compile time that a query is not satisfiable
then subsequent bound computations can be avoided. Another basic decision problem is the
XPath equivalence problem: whether or not two queries always return the same result. It
is important for reformulation and optimization of the query itself, which aim at enforcing
operational properties while preserving semantic equivalence [1, 26].

These two decision problems are reducible to XPath containment: whether or not, for
any tree, the result of a particular query is included in the result of another one. Query
containment is itself critical for static analysis of XML specifications and especially for
type-checking transformations [27, 37].

Other XPath decision problems needed in applications include for example coverage
(whether or not the nodes selected by an expression are always contained in the union of the
results selected by several other expressions) and overlap (whether or not the intersection
of the results of two expressions is empty).

A variety of factors contribute to the complexity of XPath decision problems such as
the operators allowed in XPath queries and the combination of them. We present here the
common distinctions between XPath fragments found in the literature, taken from [6]:

• positive vs. non-positive: depending whether the negation operator is considered or
not inside qualifiers.

• downward vs. upward: depending whether queries specify downward or upward traver-
sal of the tree, or both.

• recursive vs. non-recursive: depending whether XPath transitive closure axes (for
instance “descendant” or “ancestor”) are considered or not.

• qualified vs. non-qualified: depending whether queries allow filtering predicates or
not.

• with vs. without data values: depending whether comparisons of data values express-
ing joins are allowed or not.

RR n° 5868



4 Genevès & Layaïda

LXPath e ::= /p | p | e1 p e2 | e1 ∩ e2
Path p ::= p1/p2 | p[q] | a::n
Qualifier q ::= q and q | q or q | not q | p
Axis a ::= child | descendant | self | parent | ancestor | following |

preceding | descendant-or-self | ancestor-or-self |
preceding-sibling | following-sibling

NodeTest n ::= σ | ∗

Figure 1: XPath Abstract Syntax.

From the results of [6, 33], we know that the combination of some previous factors with
data values may lead to undecidability of decision problems such as the containment. In
the remaining part of the paper, we focus on a large XPath fragment covering all factors
except data values. This fragment (whose abstract syntax is given on Figure 1) is the largest
considered so far in the literature.

XPath decision problems are also considered in the presence of XML types such as DTDs
[8] or XML Schemas [13]. Combining XPath decision problems with types raises additional
challenging research problems such as backward navigation in XML types.

In this paper, we are interested in finding an appropriate logic for XML, expressive
enough to capture a significant range of XML decision problems, yet reasonably efficient in
order to provide effective decision procedures.

From [28], we know that XPath expressive power is close to first-order logic (FO). How-
ever, FO does not fully capture regular tree types [7]. One of the most expressive (yet
decidable) known logic is Monadic Second Order Logic (MSO) over tree structures, which
extends FO by quantification over sets of nodes. Specifically, the appropriate MSO variant
which exactly captures regular tree types is the weak monadic second-order logic of two
successors (WS2S) [36, 12]. From [4, 25], we know that WS2S is exactly as expressive as
the alternation-free fragment (AFMC) of the propositional modal µ-calculus introduced in
[23]. However, the satisfiability problem for WS2S is non-elementary1 while in EXPTIME2

for AFMC. Moreover, the AFMC subsumes all early logics such as CTL [10] and PDL
[15]. Furthermore, the work in [38] adds backward modalities to the propositional modal
µ-calculus and shows that the resulting logic still admits an EXPTIME decision procedure
for satisfiability.

1We recall that the term elementary introduced by Grzegorczyk [20] refers to functions obtained from
some basic functions by operations of limited summation and limited multiplication. Consider the function
tower() defined by:

{

tower(n, 0) = n

tower(n, k + 1) = 2tower(n,k)

Grzegorczyk has shown that every elementary function in one argument is bounded by λn.tower(n, c) for
some constant c. Hence, the term non-elementary refers to a function that grows faster than any such
function.

2The complexity class EXPTIME is the set of all decision problems solvable by a deterministic Turing
machine in O(2p(n)) time, where p(n) is a polynomial function of the input size n.

INRIA



Mu-Calculus for XML 5

It follows that the alternation-free modal µ-calculus with backward modalities sounds as
the ultimate logic for XML: expressive enough to capture a significant class of XPath decision
problems, while potentially providing efficient and practically effective decision procedures.

In this paper, we propose the alternation free modal µ-calculus with backward modalities
as the appropriate logic for effectively solving XPath decision problems. We present a linear
translation of a large XPath fragment into µ-calculus. In addition, we embed regular tree
types, including DTDs, in the µ-calculus. This yields decision procedures for XPath deci-
sion problems needed in applications such as XPath satisfiability, containment, equivalence,
overlap, coverage, in the absence or in the presence of DTDs. We build on our translations
of XML concepts and show how to effectively answer XML decision problems in practice.
Using a state-of-the-art EXPTIME decision procedure for µ-calculus satisfiability, we give
preliminary experimental results. These results shed light, for the first time, on the cost of
solving XML decision problems in practice.

The remaining part of the paper is organized as follows: in Section 2 we introduce the
logic we propose for reasoning on XML trees; in Section 3 we describe the translation of
XPath queries into this logic; Section 4 embeds regular XML types into the logic. Based on
these translations, Section 5 explains how to formulate and solve common decision problems.
We present experimental results in Section 6, before discussing related work in Section 7
and concluding in Section 8.

2 A Logic for XML

We consider an XML document as a finite ordered and labeled tree of unbounded depth
and arity. Tree nodes are labeled with symbols taken from a countably infinite set Σ. There
is a straightforward isomorphism between sequences of unranked trees and binary trees. In
order to describe it, we first define the set T n

Σ of unranked trees:

T n
Σ 3 t ::= σ(h)

where σ ∈ Σ and h is a hedge, i.e. a sequence of unranked trees, defined as follows:

HΣ 3 h ::= σ(h), h′ | ()

A binary tree t is either a σ-labeled root of two subtrees (σ ∈ Σ) or the empty tree:

T 2
Σ 3 t ::= σ(t, t′) | ε

Unranked trees can be translated into binary trees with the following function:

β(·) : HΣ → T 2
Σ

β(σ(h), h′) = σ(β(h), β(h′))
β(()) = ε

RR n° 5868



6 Genevès & Layaïda
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Figure 2: N -ary and Binary Tree Representations.

The inverse translation function converts a binary tree into a sequence of unranked trees:

β−1(·) : T 2
Σ → HΣ

β−1(σ(t, t′)) = σ(β−1(t)), β−1(t′)
β−1(ε) = ()

For example, Figure 2 illustrates how a sample unranked tree is mapped to its binary
representation and vice-versa.

Note that the translation of a single unranked tree results in a binary tree of the form
σ(t, ε). Reciprocally, the inverse translation of such a binary tree always yields a single
unranked tree. When modeling XML, we therefore restrict our attention to binary trees of
the form σ(t, ε), without loss of generality.

We now introduce the logic we propose for reasoning over these structures.

2.1 The µ-Calculus

The propositional µ-calculus is a propositional modal logic extended with least and greatest
fixpoint operators [23]. A signature Ξ for the µ-calculus consists of a set Prop of atomic
propositions, a set Var of propositional variables, and a set Prog of atomic programs. In the
XML context, atomic propositions represent the symbols of the alphabet Σ used to label
XML trees. Atomic programs allow navigation in trees.

The µ-calculus with backward modalities3 [38] augments the propositional µ-calculus by
associating with each atomic program a its converse a. A program α is either an atomic
program or its converse. This is the only difference between the propositional µ-calculus that
lacks backward modalities. It is important to note that the addition of converse programs
preserve the EXPTIME upper bound for the satisfiability problem [38].

The set Lµ of formulae of the µ-calculus with backward modalities over the signature Ξ
is defined as follows:

Lµ 3 ϕ ::= > | ⊥ | p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 |
[α]ϕ | 〈α〉ϕ | X | µX.ϕ | νX.ϕ

3The µ-calculus with backward modalities is also known as the full µ-calculus, or alternatively as the
two-way µ-calculus in the literature.

INRIA



Mu-Calculus for XML 7

J·KK
V : Lµ −→ 2W

J>KK
V = W

J⊥KK
V = ∅

JpKK
V = L(p)

J¬ϕKK
V = W \ JϕKK

V

Jϕ1 ∨ ϕ2K
K
V = Jϕ1K

K
V ∪ Jϕ2K

K
V

Jϕ1 ∧ ϕ2K
K
V = Jϕ1K

K
V ∩ Jϕ2K

K
V

J[α]ϕKK
V = {w : ∀w′(w,w′) ∈ R(α) ⇒ w′ ∈ JϕKK

V }
J〈α〉ϕKK

V = {w : ∃w′(w,w′) ∈ R(α) ∧ w′ ∈ JϕKK
V }

JµX.ϕKK
V =

⋂

{W ′ ⊆W : JϕKK
V [X/W ′] ⊆W ′}

JνX.ϕKK
V =

⋃

{W ′ ⊆W : JϕKK
V [X/W ′] ⊇W ′}

Figure 3: Semantics of the µ-Calculus.

where p ∈ Prop, X ∈ Var and α is a program.
The semantics of the full µ-calculus is given with respect to a Kripke structure K =

〈W,R,L〉 where W is a set of nodes, R : Prog → 2W×W assigns to each atomic program a
transition relation over W , and L is an interpretation function that assigns to each atomic
proposition a set of nodes.

The formal semantics function J·KK
V shown on Figure 3 defines the semantics of a µ-

calculus formula in terms of a Kripke structure K and a valuation V . A valuation V :
Var → 2W maps each variable to a subset of W . For a valuation V , a variable X , and a set
of nodes W ′ ⊆W , V [X/W ′] denotes the valuation that is obtained from V by assigning W ′

to X .
Note that if ϕ is a sentence (i.e. all propositional variables occurring in ϕ are bound),

then no valuation is required. For a node w ∈ W and a sentence ϕ, we say that ϕ holds at
w in K, denoted K,w |= ϕ iff w ∈ JϕKK .

The two modalities 〈a〉ϕ (possibility) and [a]ϕ (necessity) are operators for navigating
the structure.

The syntax of Lµ formulae as given previously is in fact redundant. Actually, we only
have to deal with a subset of Lµ composed of formulae in negation normal form. We say that
a formula is in negation normal form if and only if all negations in the formula appear only
before atomic propositions. Every formula is equivalent to a formula in negation normal
form [23], which can be obtained by expanding negations using De Morgan’s rules together
with standard dualities for modalities and fixpoints (c.f. Figure 4). For readability purposes,
translations of XPath expressions given in Section 3 are not given in negation normal form.

For XML, we are in fact interested by a specific subset of Lµ, namely the alternation-free
modal-µ-calculus with backward modalities over finite binary trees.

RR n° 5868



8 Genevès & Layaïda

¬ [α]ϕ = 〈α〉 ¬ϕ
¬ 〈α〉ϕ = [α]¬ϕ
¬µX.ϕ = νX.¬ϕ[X/¬X ]
¬νX.ϕ = µX.¬ϕ[X/¬X ]
¬(ϕ1 ∧ ϕ2) = ¬ϕ1 ∨ ¬ϕ2

¬(ϕ1 ∨ ϕ2) = ¬ϕ1 ∧ ¬ϕ2

¬¬ϕ = ϕ

Figure 4: Dualities for Negation Normal Form.

We recall that a Lµ formula ϕ in negation normal form is alternation-free whenever the
following condition holds4: if µX.ϕ1 (respectively νX.ϕ1) is a subformula of ϕ and νY.ϕ2

(respectively µY.ϕ2) is a subformula of ϕ1 then X does not occur freely in ϕ2.
The following section now introduces the additional restrictions of Lµ related to finite

binary trees.

2.2 XML Constraints on Kripke Structures

In this section, we restrict the satisfiability problem of Lµ over Kripke structures to the
satisfiability problem over finite binary trees.

The propositional µ-calculus has the finite tree model property : a formula that is satis-
fiable, is also satisfiable on a finite tree [24]. Unfortunately, the introduction of backward
modalities causes the loss of the finite model property [38]. Therefore, we need to reinforce
the finite model property and introduce some others to ensure we work on finite binary trees
encoding XML structures.

First, each XML node has at most one Σ-label, i.e. p∧ p′ never holds for distinct atomic
propositions p and p′.

Second, for navigating binary trees, we only use two atomic programs 1 and 2, and their
associated relations R(1) =≺fc and R(2) =≺ns whose meaning is to respectively connect a
node to its left child and to its right child. For any (x, y) ∈ W ×W , x ≺fc y holds iff y
is the left child of x (i.e. the first child in the unranked tree representation) and x ≺ns y
holds iff y is the right child of x in the binary tree representation (i.e. the next sibling in
the unranked tree representation).

For each atomic program a ∈ {1, 2} we define R(a) to be the relational inverse of R(a),
i.e., R(a) = {(v, u) : (u, v) ∈ R(a)}. We thus consider programs α ∈ {1, 2, 1, 2} inside
modalities for navigating forward and backward.

We now define restrictions for a Kripke structure to form a finite binary tree [35]. A
Kripke structure t = 〈W,R,L〉 is a finite binary tree if it satisfies the following conditions:

(1) W is finite

4For instance, νX.(µY. 〈1〉 Y ∧ p) ∨ 〈2〉X is alternation-free but νX.(µY. 〈1〉Y ∧ X) ∨ p is not since X

bound by ν appears freely in the scope of µY .

INRIA



Mu-Calculus for XML 9

(2) the set of nodes W together with the accessibility relation ≺fc ∪ ≺ns define a tree

(3) ≺fc and ≺ns are partial functions, i.e. for all m ∈ W and j ∈ {1, 2} there is at most
one mj ∈ W such that (m,mj) ∈ R(j).

We say that a finite binary tree t = 〈W,R,L〉 satisfies ϕ if t, r |= ϕ where r ∈ W is the
root of the tree t.

For accessing the root, we use the Lµ formula

ϕroot =
[

1
]

⊥ ∧
[

2
]

⊥

which selects a node provided it has no parent.
For ensuring finiteness, we rely on König’s lemma which states that a finitely branching

infinite tree has some infinite path or, in other words, a finitely branching tree in which every
branch is finite is finite. The expression νX. 〈1〉X ∨ 〈2〉X is only satisfied by structures
containing infinite or cyclic paths. To prevent the existence of such paths, we negate the
previous formula and, by propagating negation using the rules presented on Figure 4, we
obtain:

ϕft = µX. [1]X ∧ [2]X

ϕft states that all descending branches are finite from the current context node. In our case
we need ϕft to hold at the root (i.e. ϕroot ∧ϕft must hold), in order to ensure we work with
a finite structure. This is for condition (1) to be satisfied.

We still need to enforce (2) and (3). We do this by rewriting existential modalities in
such a way that if a successor is supposed to exist, then there exists at least one, and if
there are many all verify the same property. This is a way to overcome the difficulty that in
µ-calculus, one cannot naturally express a property like “a node has exactly n successors”.
Technically, we denote by ϕFBT the formula ϕ where all occurrences of 〈α〉ψ are replaced
by 〈α〉 > ∧ [α]ψFBT. This replacement is enough to enforce conditions (2) and (3).

Proposition 1 A Lµ formula ϕ is satisfied by a finite binary tree model if and only if the
formula ϕroot ∧ ϕft ∧ ϕFBT is satisfied by a Kripke structure.

The detailed proof is described in [35]. The "if" part iteratively constructs a tree model and
proceeds by induction on the structure on ϕ. The "only if" part is almost immediate.

Proposition 1 gives the adequate framework for formulating decision problems on XML
structures in terms of a µ-calculus formula.

3 XPath

XPath expressions are directly used for querying unranked XML trees. We first recall XPath
denotational semantics over unranked trees [39]. The evaluation of an XPath query returns

RR n° 5868



10 Genevès & Layaïda

a set of nodes reachable from a context node x in a tree t. The formal semantics functions
Se and Sp define the set of nodes respectively returned by expressions and paths:

SeJ·K·· : LXPath × Node × T n
Σ −→ Set(Node)

SeJ/pK
t
x = SpJpK

t
root()

SeJpK
t
x = SpJpK

t
x

SeJe1 p e2K
t
x = SeJe1K

t
x ∪ SeJe2K

t
x

SeJe1 ∩ e2K
t
x = SeJe1K

t
x ∩ SeJe2K

t
x

SpJ·K·· : Path × Node × T n
Σ −→ Set(Node)

SpJp1/p2K
t
x = {x2 | x1 ∈ SpJp1K

t
x ∧ x2 ∈ SpJp2K

t
x1
}

SpJp[q]K
t
x = {x1 | x1 ∈ SpJpK

t
x ∧ SqJqK

t
x1
}

SpJa::σKt
x = {x1 | x1 ∈ SaJaKt

x ∧ name(x1) = σ}
SpJa::∗Kt

x = {x1 | x1 ∈ SaJaKt
x}

The function Sq defines the semantics of qualifiers that basically state the existence (or
absence) of one or more paths from a context node x:

SqJ·K·· : Qualifier × Node × T n
Σ −→ Boolean

SqJq1 and q2K
t
x = SqJq1K

t
x ∧ SqJq2K

t
x

SqJq1 or q2K
t
x = SqJq1K

t
x ∨ SqJq2K

t
x

SqJnot qKt
x = ¬ SqJqK

t
x

SqJpK
t
x = SpJpK

t
x 6= ∅

Eventually the function Sa gives the denotational semantics of axes:

SaJ·K·· : Axis × Node × T n
Σ −→ Set(Node)

SaJchildKt
x = children(x)

SaJparentKt
x = parent(x)

SaJdescendantKt
x = children+(x)

SaJancestorKt
x = parent+(x)

SaJselfKt
x = {x}

SaJdescendant-or-selfKt
x = SaJdescendantKt

x ∪ SaJselfKt
x

SaJancestor-or-selfKt
x = SaJancestorKt

x ∪ SaJselfKt
x

SaJprecedingKt
x = {y | y � x} \ SaJancestorKt

x

SaJfollowingKt
x = {y | x� y} \ SaJdescendantKt

x

SaJfollowing-siblingKt
x = {y | y ∈ child (parent(x)) ∧ x� y}

SaJpreceding-siblingKt
x = {y | y ∈ child (parent(x)) ∧ y � x}

in which root(), children(x) and parent(x) are primitives for navigating unranked trees, �
is the ordering relation (x � y holds if and only if the node x is before the node y in the
depth-first traversal order of the tree), and name() is the mean to access the labeling of the
tree.

INRIA



Mu-Calculus for XML 11

3.1 A Translation into the µ-Calculus

We now explain how an XPath expression can be translated into an equivalent formula in
Lµ over binary trees. The translation adheres to XPath formal semantics given above in the
sense that the translated formula holds for nodes which are selected by the XPath query.
Navigation as performed by XPath in unranked trees is translated in terms of navigation in
the binary tree representation.

3.1.1 Logical Interpretation of Axes

We first translate navigational primitives, namely XPath axes. The translation is formally
specified on Figure 6 as a translation function noted “A→J·K(·)” which takes an XPath axis
as input, and returns its translation in µ-calculus, in terms of the µ-calculus formula given
as a parameter to allow further composition. A→JaK(χ) holds for all nodes that can be
accessed through the axis a from some node verifying χ.

Figure 7 gives the intuition of the translation of the XPath axis “child”. In this case,
we start from a context, designated by the formula χ. Children of a node in the binary
tree representation form the inductively defined set of nodes composed of the left child and
closed under the ≺ns relation. Recursion in the right branch starting from the left child is
captured by a least fixpoint.

Other axis translations are built in a similar manner. Note that since we want the
translated formula to hold for target nodes which are selected by the axis, inverse modalities
are involved.

For readers more familiar with PDL and CPDL (PDL with converse programs) both
defined in [15], we give a correspondence of notations on Figure 5.

3.1.2 Logical Interpretation of Expressions

The translation of XPath expressions into µ-calculus is given on Figure 8. It is formally
expressed as a translation function noted “E→J·K(·)” which takes an XPath expression as
input, a µ-calculus formula as a parameter which indicates the context from which the
expression is applied. Absolute XPath expressions are interpreted from the root (selected
by the µ-calculus expression ϕroot), whereas relative expressions are interpreted relatively
to any context node.

The translation of expressions relies on the translations of paths shown on Figure 9.
XPath most essential construct p1/p2 translates into formula composition in Lµ, such that
the resulting formula holds for all nodes accessed through p2 from those nodes accessed from
χ by p1.

The translation of the branching construct p[q] significantly differs. The resulting formula
must hold for all nodes that can be accessed through p and from which q holds (c.f. XPath
denotational semantics given in Section 3). To preserve semantics, the translation of p[q]
stops the “selecting navigation” to those nodes reached by p, then filters them depending
whether q holds or not. We express this by introducing a dual formal translation function

RR n° 5868



12 Genevès & Layaïda

XPath µ-Calculus
π/following-sibling::∗ µZ.

〈

2
〉

π ∨
〈

2
〉

Z
π/child::∗ µZ.

〈

1
〉

π ∨
〈

2
〉

Z
π/descendant::∗ µZ.

〈

1
〉

(π ∨ Z) ∨
〈

2
〉

Z
π/descendant-or-self::∗ µZ.π ∨ µY.

〈

1
〉

(Y ∨ Z) ∨
〈

2
〉

Y
π/parent::∗ 〈1〉µZ.π ∨ 〈2〉Z
π/ancestor::∗ 〈1〉µZ.π ∨ 〈1〉Z ∨ 〈2〉Z
π/ancestor-or-self::∗ µZ.π ∨ µY. 〈1〉 (Y ∨ Z) ∨ 〈2〉Y
π/preceding-sibling::∗ µZ. 〈2〉π ∨ 〈2〉Z

XPath CPDL

π/following-sibling::∗
〈

2
∗
· 2

〉

π

π/child::∗
〈

2
∗
· 1

〉

π

π/descendant::∗
〈

(1|2)∗ · 1
〉

π
π/descendant-or-self::∗

〈

nil|(1|2)∗ · 1
〉

π
π/parent::∗ 〈1 · 2∗〉 π
π/ancestor::∗ 〈1 · (1|2)∗〉π
π/ancestor-or-self::∗ 〈nil|1 · (1|2)∗〉π
π/preceding-sibling::∗ 〈2∗ · 2〉 π

Figure 5: Logical Correspondences in terms of the Early CPDL Operators.

A→J·K(·) : Axis ×Lµ −→ Lµ

A→JselfK(χ) = χ
A→Jfollowing-siblingK(χ) = µZ.

〈

2
〉

χ ∨
〈

2
〉

Z
A→JchildK(χ) = µZ.

〈

1
〉

χ ∨
〈

2
〉

Z
A→JdescendantK(χ) = µZ.

〈

1
〉

(χ ∨ Z) ∨
〈

2
〉

Z
A→Jdescendant-or-selfK(χ) = µZ.χ ∨ µY.

〈

1
〉

(Y ∨ Z) ∨
〈

2
〉

Y
A→JparentK(χ) = 〈1〉µZ.χ ∨ 〈2〉Z
A→JancestorK(χ) = 〈1〉µZ.χ ∨ 〈1〉Z ∨ 〈2〉Z
A→Jancestor-or-selfK(χ) = µZ.χ ∨ µY. 〈1〉 (Y ∨ Z) ∨ 〈2〉Y
A→Jpreceding-siblingK(χ) = µZ. 〈2〉χ ∨ 〈2〉Z
A→JfollowingK(χ) = A→Jdescendant-or-selfK(A→Jfollowing-siblingK(η))
A→JprecedingK(χ) = A→Jdescendant-or-selfK(A→Jpreceding-siblingK(η))

where η is a shorthand for A→Jancestor-or-selfK(χ)

Figure 6: Translation of XPath Axes.
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w1

w2

w3

wn

K,w1 |= χ
K,w2 |=

〈

1
〉

χ
K,w3 |=

〈

2
〉 〈

1
〉

χ
...
K,wn |=

〈

2
〉

...
〈

2
〉 〈

1
〉

χ

Figure 7: Intuition for the “child” Axis.

E→J·K(·) : LXPath ×Lµ −→ Lµ

E→J/pK(χ) = P→JpK(
[

1
]

⊥ ∧
[

2
]

⊥)
E→JpK(χ) = P→JpK(χ)
E→Je1 p e2K(χ) = E→Je1K(χ) ∨ E→Je2K(χ)
E→Je1 ∩ e2K(χ) = E→Je1K(χ) ∧ E→Je2K(χ)

Figure 8: Translation of Expressions.

P→J·K(·) : Path ×Lµ −→ Lµ

P→Jp1/p2K(χ) = P→Jp2K(P
→Jp1K(χ))

P→Jp[q]K(χ) = P→JpK(χ) ∧Q←JqK(>)
P→Ja::σK(χ) = A→JaK(χ) ∧ σ
P→Ja::∗K(χ) = A→JaK(χ)

Figure 9: Translation of Paths.
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14 Genevès & Layaïda

Q←J·K(·) : Qualifier ×Lµ −→ Lµ

Q←Jq1 and q2K(χ) = Q←Jq1K(χ) ∧Q←Jq2K(χ)
Q←Jq1 or q2K(χ) = Q←Jq1K(χ) ∨Q←Jq2K(χ)
Q←JnotqK(χ) = ¬ Q←JqK(χ)
Q←JpK(χ) = P←JpK(χ)

P←J·K(·) : Path ×Lµ −→ Lµ

P←Jp1/p2K(χ) = P←Jp1K(P
←Jp2K(χ))

P←Jp[q]K(χ) = P←JpK(χ ∧Q←JqK(>))
P←Ja::σK(χ) = A←JaK(χ ∧ σ)
P←Ja::∗K(χ) = A←JaK(χ)

Figure 10: Translation of Qualifiers.

for XPath qualifiers, noted Q←J·K(·) (and shown on Figure 10), which performs “filtering”
instead of navigation. Specifically, P→J·K(·) can be seen as the “navigational” translating
function: the translated formula holds for target nodes of the given path. On the opposite,
Q←J·K(·) can be seen as the “filtering” translating function: it states the existence of a path
without moving to its result. The translated formula Q←JqK(χ) (respectively P←JpK(χ))
holds for nodes from which there exists a qualifier q (respectively a path p) leading to a
node verifying χ.

XPath translation into µ-calculus is based on these two translating “modes”, the first one
being used for paths and the second one for qualifiers. Note that whenever the “filtering”
mode is entered, it will never be leaved. This differs from the denotational semantics given
in Section 3 in which the formal semantics functions for paths and qualifiers are mutually
recursive (and cause naive implementations to be unnecessarily complex, as pointed by [17]).
Translations of paths inside qualifiers are also given on Figure 10. They use the specific
translations for axes inside qualifiers, based on XPath symmetry, shown on Figure 11.

The cost of the translation is linear in the length of the XPath expression since there is
no duplication of subformulae of arbitrary length in the formal translations. Formulae in
which the formal parameter χ appears twice (see Figure 8 and Figure 10) do not cause such
duplication since the value of χ is either > or ϕroot constants.

Note that the translation of an XPath expression is a sentence. Indeed, for absolute
XPath expressions, the translation starts from the root (the initial formal parameter is ϕroot).
For relative expressions, the translated formula is closed by the initial formal parameter >
(all nodes).

We can prove that the translated Lµ formula over binary trees is semantically equivalent
to the original XPath expression over corresponding unranked trees. For instance, if we
relate our translations in Lµ to the XPath denotational semantics given in Section 3:

INRIA
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A←J·K(·) : Axis × Lµ −→ Lµ

A←JselfK(χ) = χ
A←Jfollowing-siblingK(χ) = A→Jpreceding-siblingK(χ)
A←JchildK(χ) = A→JparentK(χ)
A←JdescendantK(χ) = A→JancestorK(χ)
A←Jdescendant-or-selfK(χ) = A→Jancestor-or-selfK(χ)
A←JparentK(χ) = A→JchildK(χ)
A←JancestorK(χ) = A→JdescendantK(χ)
A←Jancestor-or-selfK(χ) = A→Jdescendant-or-selfK(χ)
A←Jpreceding-siblingK(χ) = A→Jfollowing-siblingK(χ)
A←JfollowingK(χ) = A→JprecedingK(χ)
A←JprecedingK(χ) = A→JfollowingK(χ)

Figure 11: Symmetry of Axes inside Qualifiers.

Proposition 1 Let t′ be an XML tree, t its binary representation, x′ and y′ nodes in t′,
and y the image of y′ in t, then for an XPath expression e:

(∀x′, y′ ∈ SeJeK
t′

x′) iff t, y |= ϕroot ∧ ϕft ∧ (E→JeK(>))FBT

The proof is done by a straightforward structural induction that “peels off” the compositional
layers of each set of rules. This result links XPath decision problems in the absence of XML
types to satisfiability in Lµ. We now show how XML types can also be translated in the
µ-calculus.

4 XML Types

XML types describe structural constraints for XML documents. Several formalisms exist for
describing classes of XML documents (see [31] for an overview). In this paper, we translate
the class of regular tree languages, that gathers all widely used formalisms for describing
types of XML documents (including the well-known DTDs) into Lµ over binary trees.

We begin with the syntactic definition of tree type expressions. We define a type T as
follows:

LCFT 3 T ::= ∅ | () | X | l[T ] | T1, T2 | T1 p T2 |
let (Xi → Ti)i≥1 in T

where l ∈ Σ and X ∈ TVar assuming that TVar is a countably infinite set of type variables.
Abbreviated type expressions can be defined as follows:

T ? = () p T
T∗ = let X → T in T,X p ()
T+ = T, T∗
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16 Genevès & Layaïda

Given an environment θ of type variable bindings, the semantics of tree types is given by
the denotation function J·Kθ:

J·K· : LCFT × (TVar → 2T
n

Σ ) → 2T
n

Σ

J∅Kθ = ∅
J()Kθ = {()}
JXKθ = θ(X)
Jl[T ])Kθ = {l′(t) | l′ ≺ l ∧ t ∈ JT Kθ}
JT1, T2Kθ = {t1, t2 | t1 ∈ JT1Kθ ∧ t2 ∈ JT2Kθ}
JT1 p T2Kθ = JT1Kθ ∪ JT2Kθ

Jlet (Xi → Ti)i≥1 in T Kθ = JT Klfp(S)

where ≺ is a global subtagging relation: a reflexive and transitive relation on labels5, and
S(θ′) = θ[Xi 7→ JTiKθ′ ]i≥1. Note that each function S is monotone according to the ordering
⊆ on TVar → 2T

n

Σ , and thus has a least fixpoint lfp(S).
Types as defined above actually correspond to arbitrary context-free tree types, for which

the decision problem for inclusion is known to be undecidable [21]. We impose the additional
restriction used in [22] to reduce the expressive power of considered types so that they
correspond to regular tree languages. The restriction consists in a simple syntactic condition
that allows unguarded (i.e. not enclosed by a label) recursive uses of variables, but restricts
them to tail positions6. This condition ensures regularity, and we name LRT the resulting
class of regular tree languages. It is well known that deciding inclusion of regular types
(i.e. containment of finite tree automata) is in EXPTIME, and the algorithm described in
[22] is effective in practice. From an XML point of view, regular tree types form a superset
of standards such as XML Schemas and DTDs. We further detail the connection with the
widely used DTD standard.

4.1 Document Type Definitions

As they are defined in the W3C recommendation, DTDs [8] are local tree grammars7, which
are strictly less expressive than regular tree types. In the XML terminology, a type expression
is often called the content model. DTD content models are described by the following syntax:

T ::= l | T1 p T2 | T1, T2 | T ? | T ∗ | T+ | ()

where l ∈ Σ. From the W3C specification, we see a DTD as a function that associates a
content model to each label taken from a subset Σ′ of Σ, such that Σ′ gathers all labels

5Subtagging goes beyond the expressive power of DTDs but a similar notion called “substitution groups”
exists in XML Schemas (see [22] for more details on subtagging).

6For instance the type “let (X → a[], Y )(Y → b[],X p ()) in X” is allowed.
7A local tree grammar is a regular tree grammar without competing non-terminals. Two non-terminals

A and B of a tree grammar are said to compete with each other if one production rule has A in its left-hand
side, one production rule has B in its left-hand side, and these two rules share the same terminal symbol in
the right-hand side.
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B(·) : LRT → LBT

B(∅) = ∅
B(()) = ε
B(X) = B(θ(X))
B(l[T ]) = let (X1 → B(T ))(X2 → ε) in l(X1, X2)
B(T1 p T2) = B(T1) p B(T2)
B(let (Xi → Ti)i≥1 in T ) = let (Xi → B(Ti))i≥1 in B(T )
B(∅, T ) = ∅
B((), T ) = B(T )
B(X,T ) = B(θ(X), T )
B(l[T1], T2) = let (X1 → B(T1))(X2 → B(T2)) in l(X1, X2)
B((T1 p T2), T3) = B(T1, T3) p B(T2, T3)
B((T1, T2), T3) = B(T1, (T2, T3))
B(let (Xi → Ti)i≥1 in T, T ′) = let (Xi → B(Ti))i≥1 in B(T, T ′)

Figure 12: Binarization of Tree Types.

used in content models. We thus represent the set LDTD of tree types described by DTDs
as follows:

LDTD 3 T ::= l | T1 p T2 | T1, T2 | T ? | T ∗ | T+ | () |
let (li → Ti)i≥1 in T

Note that LDTD ⊆ LRT is obvious, by associating a unique type variable to each label. In
the following, we therefore do not distinguish DTDs from general regular tree types anymore.

4.2 Binarization of Types

In section 2, we used a straightforward isomorphism between binary trees and sequences
of unranked trees. There is also an isomorphism between unranked and binary tree types,
which follows exactly the same intuition as for trees.

Binary tree types are described by the following syntax:

LBT 3 T ::= ∅ | ε | T1 p T2 | l(X1, X2) |
let (Xi → Ti)i≥1 in T

For any type, there is an equivalent binary type, and vice-versa. We use the translation
function shown on Figure 12 (adapted from the one found in [22]) to convert a type into its
corresponding binary representation. The function considers the environment θ : TVar →
LRT for accessing the type bound to a variable Xi by constructs of the form “let (Xi →
Ti)i≥1 in T ”.
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18 Genevès & Layaïda

4.3 Translation into Mu-Calculus

We now introduce the translation of regular tree types into µ-calculus, which is made simpler
by the binary representation of types:

J·K : LBT → Lµ

J∅K = ⊥
JεK = ⊥
JT1 p T2K = JT1K ∨ JT2K
Jl(X1, X2)K = l ∧ succ1(X1) ∧ succ2(X2)
Jlet (Xi → Ti)i≥1 in T K = JT K[Xi/µXi.JTiK]i≥1

where ϕ[Xi/ϕi]i≥1 denotes the formula ϕ in which all occurrences of Xi have been replaced
by ϕi

8. The function succ·(·) takes care of setting the tree frontier:

succ·(·) : Prog × TVar → Lµ

succα(X) =

{

[α]X if nullable(X)
〈α〉X if not nullable(X)

according to the predicate nullable(·) indicating if a type contains the empty tree:

nullable(·) : TVar ∪ LBT → {0, 1}
nullable(X) = nullable(θ(X))
nullable(∅) = 0
nullable(ε) = 1
nullable(l) = 0
nullable(T1 p T2) = nullable(T1) + nullable(T2)
nullable(l(X1, X2)) = 0
nullable(let (Xi → Ti)i≥1 in T ) = nullable(T )

5 XML Decision Problems

We have translated both XPath over unranked trees, and regular unranked tree types in our
unifying Lµ logic over binary trees. Owing to these embeddings, we now reduce XML deci-
sion problems (such as XPath satisfiability, containment, equivalence, overlap, coverage...)
to satisfiability in Lµ.

We first introduce some simplified notations. For an XPath expression e ∈ LXPath, we
note ϕe the translated formula E→JeK(>) ∈ Lµ. Furthermore, we note T the set of trees: by
default, T = T n

Σ , and whenever an optional DTD d ∈ LDTD is specified T = JdK∅. Finally,
we note ϕT the Lµ embedding of the tree language T . In the absence of DTDs ϕT = >,
and ϕT = JB(d)K in the presence of a DTD d ∈ LDTD .

8In practice, this formula is not built in memory but instead represented using a valuation of type variables
in order to avoid exponential blow-ups caused by the theoretical duplication of subformulae.
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Decision Problem Satisfiability Containment

Input e ∈ LXPath e1, e2 ∈ LXPath

Optional Input d ∈ LDTD d ∈ LDTD

Definition ∃t ∈ T : ∃x ∈ t : ∀t ∈ T , ∀x ∈ t,
SeJeK

t
x 6= ∅ SeJe1K

t
x ⊆ SeJe2K

t
x

ϕtested ∈ Lµ ϕe ϕe1
∧ ¬ϕe2

Decision Problem Overlap Coverage

Input e1, e2 ∈ LXPath e1, e2, ..., en ∈ LXPath

Optional Input d ∈ LDTD d ∈ LDTD

Definition ∀t ∈ T , ∀x ∈ t, ∀t ∈ T , ∀x ∈ t,
SeJe1K

t
x ∩ SeJe2K

t
x 6= ∅ SeJe1K

t
x ⊆

⋃

2≤i≤n SeJeiK
t
x

ϕe1
∧ ¬ϕe2

ϕe1
∧ ϕe2

ϕe1
∧

∧

2≤i≤n ¬ϕei

Table 1: Some XPath Decision Problems and their µ-Calculus Counterpart.

Table 1 presents how several decision problems needed in applications can be expressed
in terms of a Lµ formulae ϕtested.

Since we need to enforce the finite binary tree model property (as seen in Section 2.2),
we formulate decision problems from the root, and the actually tested formula becomes:

ϕroot ∧ ϕft ∧ (ϕT ∧ µX.ϕtested ∨ 〈1〉X ∨ 〈2〉X)FBT (1)

Intuitively, the fixpoint is introduced for “plunging” XPath navigation performed by ϕtested

at any location in the tree. It is for example necessary for relative XPath expressions that
involve backward navigation in the tree.

Note that for the containment problem, we actually test the unsatisfiability of ϕtested.
Indeed, checking that an XPath expression e1 is contained into another expression e2 consists
in checking that the implication ϕe1

⇒ ϕe2
holds for all trees. In other terms, there exists no

tree for which the results of e1 are not included in those of e2, i.e. the negated implication
ϕe1

∧ ¬ϕe2
= ϕtested is unsatisfiable.

The XPath equivalence problem can be tested by two successive and separate contain-
ment checks.

It is important to note that formula (1) is always alternation-free since both embeddings
of XPath and tree types produce alternation-free formulae, and the negation of an alternation
free sentence remains alternation-free. In practice, negated sentences introduced by XPath
embeddings are turned into negation normal form, by applying the rules given on Figure 4.

6 Preliminary Experiments

The objective of the section aims at testing the practical performance of our method. The
proposed approach has been fully implemented. A compiler takes XPath expressions as
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input, and translates them into Lµ formulae. Another compiler takes regular tree types
as input (DTDs) and outputs their Lµ translation. The formula of a particular decision
problem is then composed, normalized and solved.

The Lµ satisfiability solver is based on the tableau method described in [35]. It is special-
ized for the alternation-free µ-calculus with backward modalities. The time complexity of
the decision procedure is 2O(nlogn) with respect to the length n of the given formula, which
is more efficient than the complexity for the whole µ-calculus with backward modalities [38].
Whenever the containment does not hold, the solver outputs a counter-example XML tree.

We carried out several testing scenarios9, but for a lack of space we present only a few
of them. First, we used an XPath benchmark [16] whose goal is to cover XPath features
by gathering a significant variety of XPath expressions met in real-world applications. In
this first test series, we do not consider types yet, and only focus on the XPath containment
problem, since its logical formulation (presented in Section 5) is the most complex, as it
requires the logic to be closed under negation. The first test series consists in finding
the relation holding for each pair of queries from the benchmark. This means checking
the containment of each query of the benchmark against all the others. We note qi ⊆ qj
whenever the query qi is included into the query qj . Comparisons of two queries qi and qj
may yield to three different results:

1. qi ⊆ qj and qj ⊆ qi, the queries are semantically equivalent, we note qi ≡ qj

2. qi ⊆ qj but qj 6⊆ qi, we denote this by qi ⊂ qj or alternatively by qj ⊃ qi

3. qi 6⊆ qj and qj 6⊆ qi, queries are not related, we note qi 6∼ qj

Queries are presented on Figure 13. Corresponding results together with running times of the
decision procedure are summarized on Table 2. Times reported in milliseconds correspond
to the actual running time of the µ-calculus satisfiability solver without the extra time spent
for parsing XPath nor the (linear) cost of the translation into µ-calculus. Obtained results
show that all tests are solved in several milliseconds. This suggests that XPath expressions
used in real-world scenarios can be efficiently handled in practice.

As a second test series, we compare expressions found in research papers on the contain-
ment of XPath expressions. Figure 14 presents the expressions we collected. For this set of
expressions, the tree pattern homomorphism technique [30] returns false negatives, whereas
our approach is complete. Table 3 shows the results obtained with our system. This suggests
that our system is able to reasonably handle containment instances which are difficult to
solve using other techniques.

The third test series aims at showing the effectiveness of the system for XPath decision
problems in presence of DTDs. We used a small recursive DTD (given on Figure 15), and
real-world DTDs of the SMIL [19] and XHTML [18] standards. Table 4 gives hints on the
respective complexity of each DTD by presenting the number of symbols used (alphabet

9Experiments have been conducted on a Pentium 4, 3 Ghz, with 512Mb of RAM, running Eclipse on
Windows XP.
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q1 /site/regions/*/item
q2 /site/closedauctions/closedauction/annotation/description/parlist/listitem/text/keyword
q3 //keyword
q4 /descendant-or-self::listitem/descendant-or-self::keyword
q5 /site/regions/*/item[parent::namerica or parent::samerica]
q6 //keyword/ancestor::listitem
q7 //keyword/ancestor-or-self::mail
q8 /site/regions/namerica/item p /site/regions/samerica/item
q9 /site/people/person[address and (phone or homepage)]

Figure 13: XPath Queries Taken from the XPathmark Benchmark.

Relation
Time (ms)
⊆ ⊇

q1 6∼ q2 8 2
q1 6∼ q3 2 2
q1 6∼ q4 4 2
q1 ⊃ q5 6 7
q1 6∼ q6 4 3
q1 6∼ q7 5 2
q1 ⊃ q8 4 11
q1 6∼ q9 6 6
q2 ⊂ q3 12 3
q2 ⊂ q4 8 6
q2 6∼ q5 14 13
q2 6∼ q6 12 5
q2 6∼ q7 9 6
q2 6∼ q8 16 14
q2 6∼ q9 14 11
q3 ⊃ q4 1 2
q3 6∼ q5 3 4
q3 6∼ q6 1 3

Relation
Time (ms)
⊆ ⊇

q3 6∼ q7 2 2
q3 6∼ q8 4 7
q3 6∼ q9 3 5
q4 6∼ q5 4 5
q4 6∼ q6 1 2
q4 6∼ q7 2 2
q4 6∼ q8 4 7
q4 6∼ q9 3 4
q5 6∼ q6 4 4
q5 6∼ q7 5 4
q5 ≡ q8 12 12
q5 6∼ q9 8 8
q6 6∼ q7 2 2
q6 6∼ q8 5 7
q6 6∼ q9 4 5
q7 6∼ q8 6 8
q7 6∼ q9 4 6
q8 6∼ q9 11 10

Table 2: Results and Total Computation Times.
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e1 /a[.//b[c/*//d]/b[c//d]/b[c/d]]
e2 /a[.//b[c/*//d]/b[c/d]]

e3 a[b]/*/d/*/g
e4 a[b]/(b|c)/d/(e|f)/g
e5 a[b]/b/d/e/g|a/b/d/f/g

e6 a/b/s//c/b/s/c//d
e7 a//b/*/c//*/d

e8 a[b/e][b/f ][c]
e9 a[b/e][b/f ]

e10 /descendant::editor[parent::journal]
e11 /descendant-or-self::journal/child::editor

Figure 14: Instances Found in Research Papers.

Relation
Time (ms)
⊆ ⊇

e1 ⊂ e2 11 10
e3 ⊃ e4 10 14
e3 ⊃ e5 8 17
e4 ⊃ e5 13 19
e6 ⊂ e7 24 23
e8 ⊂ e9 1 2
e10 ≡ e11 1 1

Table 3: Results and Running Times.

<!ELEMENT people (person*)>

<!ELEMENT person (name,birthdate?,gender?,children?)>

<!ELEMENT name (firstname+, lastname) >

<!ELEMENT firstname (#PCDATA) >

<!ELEMENT lastname (#PCDATA) >

<!ELEMENT birthdate (#PCDATA) >

<!ELEMENT gender (#PCDATA) >

<!ELEMENT children (person+) >

Figure 15: (People.dtd) A Simple Recursive DTD.
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Small and Real-World DTDs Symbols Type Variables Binary Type Variables

People.dtd (given in appendix) 8 15 11
SMIL 1.0 [19] 19 13 29
XHTML 1.0 Strict [18] 77 104 254

Table 4: DTDs Used in Practical Experiments.

size) and the number of grammar production rules (type variables) in the unranked and
binary representations.

For each DTD, we built several XPath decision problems using the expressions shown on
Figure 16. Some decision problems and their results are presented on Table 5. The system
performs well for the relatively small “People” and “SMIL” DTDs, even if they are recursive.
The satisfiability test for p5 illustrates an additional benefit of the method which outputs a
valid SMIL document as a satisfying example:

<smil>

<head>

<switch>

<layout/>

</switch>

<meta/>

</head>

<body/>

</smil>

We use the XHTML DTD to test the scalability of the approach. The system can prove
properties such as links cannot be nested, image tags must be leaves, and that every element
is either in the header or in the body of an XHTML document. We observe that the
time needed is significantly more important, but proving these properties remains valuable
and practically feasible, especially for static analysis purposes where such operations are
performed at compile-time. Interestingly, a large amount of time is spent in the µ-loop
detection performed by the solver for avoiding potential cycles and infinite paths in the case
of finite recursion [35]. Our approach may thus benefit from being further developed by
taking advantage of XML peculiarities at the solver level.

These preliminary measurements shed light, for the first time, on the cost of solving
XPath decision problems in practice. They strengthen the hope for an effective static analysis
of standard XML transformations in the near future.

7 Related Work

From a theoretical perspective, several logical formalisms have been used to chart the de-
cidability frontier of XPath decision problems. Some EXPTIME upper bounds are already
known for satisfiability and containment of specific subsets of our XPath fragment.
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p1 people/*
p2 //person
p3 /descendant-or-self/people/person
p4 //children/person

p5 switch/layout
p6 smil/head//layout
p7 smil/head//layout[ancestor::switch]

p8 descendant::a[ancestor::a]
p9 /descendant::*
p10 html/(head p body)
p11 html/head/descendant::*
p12 html/body/descendant::*
p13 //img
p14 //img[not *]

Figure 16: XPath Expressions used with DTDs.

XPath Decision Problem Instance DTD Answer Time (ms)

Containment p1 ⊆ p2 People.dtd true 32
Coverage p2 ⊆ p3 ∪ p4 People.dtd true 41

Satisfiability p5 SMIL 1.0 true 80
Overlap p5 ∩ p6 6= ∅ SMIL 1.0 false 74

Containment p6 ⊆ p7 SMIL 1.0 false 90
Satisfiability p8 XHTML 1.0 false 98520

Coverage p9 ⊆ p10 ∪ p11 ∪ p12 XHTML 1.0 true 181872
Containment p13 ⊆ p14 XHTML 1.0 true 154931

Table 5: Some Decision Problems and Corresponding Results.
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Close in spirit to our paper is the constructive connection between XPath and formal
logics, which is actively studied [29, 6, 5]. In particular, [29] characterizes XPath in terms of
extensions of Computational Tree Logic (CTL) [10], which is equivalent to first order logic
(FO) over tree structures [28, 5] and whose satisfiability is in EXPTIME. Authors of [30]
first observed that a fragment of XPath can be embedded in CTL. However, regular tree
languages are not fully captured by such FO variants [7]. The work found in [2] proposes
a variant of Propositional Dynamic Logic (PDL) [15] with a similar EXPTIME complexity
for reasoning about ordered trees, but whose exact expressive power is still under study.

The complexity of XPath satisfiability in the presence of DTDs is studied in [6]. XPath
containment has specifically attracted a lot of research attention [3, 11, 30, 32, 33, 40, 41].
Prior work concentrated on various combinations of the previous factors for obtaining com-
plexity results (see [33] for an overview). Specifically, the focus was given to restricted
positive XPath subfragments without upward axes. In particular, [32] proves an EXPTIME
upper-bound for containment (in the presence of DTDs) of queries containing the “child” and
“descendant” axes, and union of paths. [11] considers XPath containment in the presence
of DTDs and simple XPath integrity constraints (SXICS). They obtain that this problem
is undecidable in general and in the presence of bounded SXICs and DTDs. Containment
for the fragment XP{∗,//,[ ]} is shown to be coNP-complete in [30], where the containment
mapping technique relies on a polynomial time tree homomorphism algorithm, which gives
a sufficient but not necessary condition for containment of XP{∗,//,[ ]} in general. Addition-
ally, the containment problem is shown to be in EXPTIME for the fragments XP{//,[ ]},
XP{//,[ ],|}, XP{//,|} in the presence of DTDs in [41].

Compared to all these previous works, the XPath fragment we consider is far more
complete and much more realistic. We also present a single unifying logical framework in
which all major XPath features but also regular tree types fit together. Moreover, our
framework yields effective decision procedures usable in practice for real world scenarios
(whereas no implementation has been reported in prior work). Finally, from a theoretical
perspective, we also see the connection between XML and the µ-calculus as a much simpler
way of deriving the EXPTIME upper-bounds of decision problems needed in applications.

8 Conclusion

In this paper, we proposed a new logical approach for XPath decision problems. XPath
queries and regular tree types are translated into the µ-calculus. XML decision problems
are expressed in terms of formulae in this logic, then decided using a state-of-the-art decision
procedure for µ-calculus satisfiability. This paper makes several contributions.

First, we propose a specific variant of the µ-calculus, namely the alternation-free modal
µ-calculus with backward modalities, as the appropriate logic for modeling XML data, XPath
queries and XML types. As a valuable outcome, we show a linear translation of XPath in
the µ-calculus, and a compatible embedding of regular tree types.

Second, we take advantage of these translations to reduce several XML decision problems
to satisfiability in Lµ. We obtain effective EXPTIME decision procedures, usable in practice.
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The considered XPath fragment includes union, intersection, path composition together with
all forward and backward axes, branching, boolean connectives, wildcards, and negation, in
the presence or absence of DTDs. This fragment is far more complete than other fragments
addressed in previous studies.

The global proposed approach has been implemented. We provide practical experiments
and detailed results that corroborate our claim that this approach is efficient in practice for
real-world XPath expressions and DTDs.

Eventually, an additional advantage of this technique is to allow generation of XML tree
examples when the containment does not hold. We believe this makes our method of special
interest for many applications including debuggers, or applications that can benefit from a
precise reporting during static analysis stages.

One direction of future work consists in specifically tuning the µ-calculus satisfiability
solver for XML, in order to obtain even more efficient decision procedures. Incorporating
XML peculiarities directly in the core of the µ-calculus solver may yield even more efficient
decision procedures for XML. A further characterization of the Lµ fragment actually needed
for XPath and XML types might be used for obtaining lower complexity bounds for XML
decision problems. It could also be used for characterizing XPath evaluation, which is
reduced to Lµ model-checking by our translations. Finally, another direction is to push the
“decidability envelope” even further by considering XPath data values, for which we do not
know any semantics-preserving translation into an appropriate formalism yet.
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