N

N

Integrating dynamic resources in corporate semantic
web: an approach to enterprise application integration
using semantic web services

Moussa Lo, Fabien Gandon

» To cite this version:

Moussa Lo, Fabien Gandon. Integrating dynamic resources in corporate semantic web: an approach
to enterprise application integration using semantic web services. [Research Report] RR-5663, INRIA.
2006, pp.35. inria-00070345

HAL Id: inria-00070345
https://inria.hal.science/inria-00070345
Submitted on 19 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00070345
https://hal.archives-ouvertes.fr

ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Integrating dynamic resources in corporate semantic
web: an approach to enterprise application integration
using semantic web services

Moussa LO, Fabien GANDON

N° 5663
Aofit 2005

THEME SYM

apport
de recherche

% INRIA

SOPHIA ANTIPOLIS

Integrating dynamic resources in corporate semantic
web: an approach to enterprise application integration
using semantic web services

Moussa LO', Fabien GANDON 2

Théme SYM - Systémes symboliques
Projet Acacia

Rapport de recherche n® 5663 — Aofit 2005 - 35 pages

Abstract:

We present our experiment in integrating semantic web services in the existing semantic web
server architecture used by the ACACIA team to implement corporate memories. We rely on
CORESE, a semantic web search engine, to provide web applications based on the semantic
web services it can identify. Thus, CORESE is used as a semantic UDDI registry and allows us
to automatically discover and invoke corporate applications wrapped into semantically anno-
tated web services. Using rules and an extension to the existing semantic web service frame-
works, we also demonstrate how (i) to compose the web services with queries on the knowl-
edge stored in the corporate memory to automatically populate the service inputs and (ii) to turn
CORESE into a composable service of the memory.

Keywords: Corporate semantic web services, enterprise application integration

Acknowledgments: we thank AUF for partially supporting this work through the post-doctoral
fellowship held by Moussa LO.

! Laboratoire d’ Analyse Numérique et d’Informatique, Université Gaston Berger — BP 234 Saint-Louis,
Sénégal, lom@ugb.sn

2 INRIA National Institute of Research in Computer Science of Sophia Antipolis, France, Fa-
bien.Gandon@sophia.inria.fr

Unité de recherche INRIA Sophia-Antipolis
2004, route des Lucioles, 06902 Sophia-Antipolis (France)
Téléphone : +33 (0)4 92 38 77 77 — Télécopie : +33 (0)4 92 38 77 65

Intégration de ressources dynamiques dans un web sé-
mantique d’entreprise : une approche d’intégration
d’applications d’entreprise utilisant les services web

sémantiques

Résumé: Nous présentons notre premicre expérience d’intégration de services web sémanti-
ques dans 1’architecture de serveur web sémantique qu 1'équipe ACACIA utilise pour implé-
menter des mémoires d’entreprise. Nous utilisons CORESE, un moteur de recherche sémanti-
que, pour fournir des applications web basées sur des services web sémantiques qu’il peut iden-
tifier. D’abord, CORESE est utilis¢é comme registre sémantique UDDI et permet la découverte
automatique et I’invocation dynamique d’applications d’entreprise transformées en web servi-
ces annotés. En utilisant des régles de production et une petite extension des infrastructures de
services web sémantiques existants, nous démontrons aussi comment (i) composer les web ser-
vices avec des requétes sur la connaissance stockée dans la mémoire et (ii) transformer CO-
RESE en service composable avec la mémoire.

Mots clés: services web sémantiques d’entreprise, intégration d’application d’entreprise

Remerciements: nous remercions I'AUF pour avoir partiellement financé le post-doc de Moussa
LO au sein de 1'équipe ACACIA .

INRIA

H W N —

O 00

Table of contents

INEFOAUCLION ...ttt e re e en e s re e e s ennenenens 3
Motivating scenario: corporate application managementcocoeeerereeererreererereneneenenes 4
Corporate semantic webs as document-based corporate memories...........occecceeeereeeereenenne 5
SEMANLIC WED SETVICES ...cueuveteiriieueenetecet ettt ettt see sttt e ettt s b e s et et eseeae s enensen 7
4.1 OVEIVIEW ON WED SETVICESc.eeuivirreuierienenteiieseenenteneesestete e seent e e seesesessesseneesessenseneencs 7
4.2 Positioning w.r.t. SEMAaNtic WEb SETVICESveveerrerrerrieieriereseeseesee s e e see e sees e sneeees 9
421 OWLNS st e et e et e e e n e e s 10
422 SWWS et e et e n e en 10
423 WSDL-S ettt e e e b e e en 11
424 TRS ettt et et e A e et £ e et et ettt et s et et eseneeneseneean 11
425 WSDF L.ttt ettt ettt et et s e et e e eeen 11
4.2.6 Our position in the SWS Stack.........coeoiiieoieieiceeeeeee e 11
43 Composing SEMAaNtiC WED SEIVICES.....cccvverrirreererrerriereesesreseeeeseesesseessessesseeeeseensens 12
Corporate semantic web services: discovering corporate applicationceceevevverereneene 14
5.1 Semantic annotation of corporate applicationsceceererreereerenienienseeseesesseeeenees 14
5.2 CORESE as a corporate semantic UDDI regiStryc.ceoerereenenerenireeeseeseneeens 15
53 Semantic Web portal to corporate services
5.4 CORESE-based interactive COMPOSITIONccueeeeerieeierieeeieieseeieseeeeeseeeseseeseeseeeens
55 Discovering sequential compositions of services using CORESE paths 21
Composing services with the knowledge of the corporate semantic web...............c..c...... 23
6.1 Mapping inPut tyPes t0 QUETIESecveereruerrrerrerieereesteseereeseesesresseessesseesesssessessessesssens 23
6.2 CORESE as a semantic web service to access to the corporate memory.................. 24
DiSCuSSiON and PEISPECLIVESe.eerirreriierierererrereeresessestesesessesssessessesessessesessessessesessensensen 27
ACKNOWIEAGMENLSeetiieeieieieeeeeeiee et eeieeste et esee et eetene e seeneeneessanseeseaneansesnsaneensaneen 28
BibliOGIAPNY ..eeuivveieiiiririenteteeriest ettt e esse s se sttt st e b sr e e e enesaes e e e sseneene s 29

RR n° 5663

INRIA

Corporate Semantic Web Services 3

1 Introduction

Until the end of the 90's, enterprise modeling has been mainly used as a tool for enterprise en-
gineering. But the new trends and the shift in the market rules led enterprises to become aware
of the value of their memory and of the fact that enterprise model has a role to play in knowl-
edge management (KM) too. Just as data-integration problem can benefit from corporate-level
models, technology and application integration problem can benefit from these same models.
This was recognized by practitioners of Enterprise Application Integration but it requires a pro-
gramming paradigm at a level of abstraction high enough to ease its implementation.

In the past, the ACACIA team experimented with agent-based architecture for distributed KM
[18]. At that time semantic web frameworks had not yet met the web services frameworks and
all our architectures being at the knowledge level, we relied on agent-based frameworks for
their implementation. With the emergence of frameworks to semantically annotate web services
[1] [34][54], a new paradigm can now be used to integrate enterprise applications in a model-
based memory.

In this report we describe our first experiment in integrating semantic web services with
CORESE the existing semantic web search engine we use to build corporate semantic webs.

The three first sections introduce the issues and the state of the art. In section 2 we briefly in-
troduce the need to get unified and integrated access to corporate applications and services and
to integrate them with the corporate memory; we describe the needs to take into account dy-
namic resources which led us to integrate web services into corporate semantic webs. In section
3 we recall the vision of a corporate semantic web as developed by the ACACIA team and we
summarize our previous work on corporate semantic webs. Section 4 is a survey of existing
semantic web service frameworks and a positioning of our work; in particular we give our posi-
tion in the semantic web service stack.

Section 5 presents our current implementation embedded in the semantic web server architec-
ture. We describe our architecture which relies on CORESE, a semantic web search engine, and
provides automatic discovery and invocation of annotated web services. Using production rules
we also demonstrate how to facilitate services composition.

Finally section 6 tackles the original issue of composing corporate web services with knowl-
edge from the corporate memory. We explore two paths: using semantic types to attach queries
to service inputs and turning CORESE into a composable service of the memory.

RR n° 5663

4 Moussa LO, Fabien GANDON

2 Motivating scenario: corporate application management

"Organizations that are able to integrate their applications and data sources have a
distinct competitive advantage: strategic utilization of company data and technology
for greater efficiency and profit. But IT managers attempting integration face daunt-
ing challenges — disparate legacy systems; a hodgepodge of hardware, operating
systems, and networking technology, proprietary packaged applications; and more.
Enterprise Application Integration (EAI) offers a solution to this increasingly urgent
business need. It encompasses technologies that enable business processes and data
to speak to one another across applications, integrating many individual systems into
a seamless whole." [27]

More and more often, the ACACIA team must face scenarios requiring not only knowledge
access but also computation, decision, routing, transformation, etc. Until now, our corporate
semantic webs focused on providing us with a unified and integrated access to a range of
knowledge sources; but there is a growing demand to get the same facility to access corporate
applications and services and to integrate both worlds.

Users expect IT managers to get very different computing systems (desktops, mobile phone,
PDA, mainframes, etc.) to talk together and, even worse, to get the variety of applications that
run on them to talk together. But what does it mean to talk together? Who talks to whom? What
are the flows and processes? What are the purposes?

Users don't only want to get access to the needed pieces of information, they want this infor-
mation in a format they are used to, with some certification of quality or of provenance, with
appropriate tools to analyze it, modify it, etc.

Usage scenarios are moving from a unified access to information to a unified access to infor-
mation and applications. Corporate memories not only include information mediums but more
generally:

e information storage services including: information diffusion systems (digital libraries,
mailing-lists, forums, blogs, etc.) and dedicated systems (corporate or public databases,
ERP, data warehouse, etc.);

e information creation services including: sensors (e.g. location tracking, presence &
availability), computation and inference systems (e.g. data analysis tools);

o information flows management services including: secured transport channels, business
rule engines and workflow systems, connectivity management, privacy enforcement
and trust propagation;

e information mediation services including: matchmaking directories, translation and
mapping services, contract and service quality enforcement;

e information presentation services including: multimedia transformation and translation,
contextual adaptation, dynamic customization and manipulation interfaces;

All these services may be internal or external to the company yet users want them to interop-
erate smoothly and, even better, to automatically integrate their workflows at the business layer.

INRIA

Corporate Semantic Web Services 5

3 Corporate semantic webs as document-based corporate memories

Semantically annotated information worlds are, in the actual state of the art, an effective way to
make information systems smarter. If a corporate memory becomes an annotated world, corpo-
rate applications can use the semantics of the annotations and through inferences help the users
use the corporate memory.

The ACACIA team at INRIA focuses on knowledge management solutions based on seman-
tic Web technologies. As shown in Figure 1 from [18], we use RDF Model, RDF Schema and
OWL (essentially OWL Lite) to describe ontologies and implement knowledge models. Organ-
izational entities and people are annotated in RDF and its XML syntax is used to store and ex-
change the annotations. This choice enables us to base our system on the W3C recommenda-
tions that benefit from all the web-based technologies for networking, display and navigation.
This clearly is an asset for the integration to a corporate intranet environment that often relies
on web technologies. Relying on W3C standards also enables us to integrate access to external
sources in the corporate memory (e.g. digital libraries offering references in the application
domain), interconnect parts of intranets to form extranets, generate focused portals for custom-
ized access (e.g. to address device independence, mobile access, etc.), etc. Clearly relying on
open standards is important for effective knowledge representation and knowledge management
solutions.

This work resulted in the development of a semantic Web search engine (CORESE [9]) ena-
bling us to analyze, query and infer from descriptions in RDF(S)/OWL. CORESE implements a
query language close to SPARQL [44] and a production rule language used to declare domain-
dependent inference rules. CORESE was tested with a variety of schemas such as the Gene
ontology (13700 concept types). It also provides approximate search capabilities (vital to in-
formation retrieval systems) and comes with a semantic web server providing the user with
presentation capabilities to dynamically generate query interfaces and templates to render re-
sults.

The Ontology, the Annotations and the State of Affairs form a virtual world capturing these
aspects of the real world that are relevant for knowledge management.
m i The memory is com- m ----- > The Annotations and the

posed of the Docu- . State of affairs are formalized
+ M¢mory 4 | ments, their Annota- using the conceptual vocabu-
tions, the State of af- . lary provided by the Ontol-
m o fairs (user profiles and m<—:u ogy.
organization model) The Annotations refer to the
and the Ontology. The Documents using their URI
whole follows a proto- and the objects of the State of
typical lifecycle, affairs (e.g. document written
evolving and interact- by Mr. Doe for the division
ing with each other. Customer Service)

The Ontology defines model-
ing and annotation primitives
at the intensional level. The
State of affairs and the Anno-
tations instantiate these

The Ontology and the |,
State of affairs form i

the model on which is |!
Annotated Archives | based the structuring
of the memory. The

a

Model

1

1

1

1
Intensional : Extensional
Level 1 Level
1
1
1
1
1

archive structure relies| — ----=-- 1 primitives describing models
on the Annotations of and annotations of the mem-
the Documentary re- ory at the extensional level.
sources.

Figure 1. Four main elements of a corporate semantic web

RR n° 5663

6 Moussa LO, Fabien GANDON

We can summarize our approach in three stages:

oTo apply scenario-driven knowledge engineering techniques in order to capture the
needed conceptual vocabulary. We then specify the corporate memory concepts
and their relationships in an ontology and we formalize them in RDFS or OWL.

oTo use the conceptual vocabulary of the ontology and the scenario analysis to develop
corporate and user models. These models are implemented in RDF and instantiate
the RDFS/OWL ontology description.

oTo structure the corporate memory using RDF annotations on the documents: these
annotations instantiate the RDFS/OWL ontology description and make reference to
the corporate and user models.

Among the domain applications where the ACACIA team implemented corporate semantic
webs and used CORESE are:

*SAMOVAR: a system supporting a memory of vehicle projects for the car manufac-
turer Renault [20], and answering queries such as: “Find all fixing problems that
occurred on the dashboard in a past project”.

eCoMMA: a multi-agent system for corporate memory management supporting the in-
tegration of a new employee and technological watch [18]. It answers distributed
queries over distributed annotation bases such as “Find users who are interested in
the technological news that was submitted about GSM v3”.

oKMP: a public knowledge management portal to cartography skills of firms in the
Telecom Valley of Sophia Antipolis [26]. It answers queries such as: “Who are the
possible industrial partners knowing how to design integrated circuits within the
GSM field for cellular/mobile phone manufacturers?”.

eLife-line: a virtual staff for a health network [13] that guides physicians discussing the
possible diagnoses and the alternative therapies for a given pathology, according to
the patient’s features.

eMEAT: a memory of experiments of biologists on DNA microarray relying on auto-
mated annotation of scientific articles [23]. It answers queries such as "Find all the
articles asserting that the HGF gene plays a role in a lung disease".

INRIA

Corporate Semantic Web Services 7

4 Semantic web services

4.1 Overview on web services

Web services, sometime called application services, are a standardized way of integrating ap-
plications over the Web. They rely on a collection of open standards used for exchanging
XML-formatted data between applications or systems over Internet protocols.

“A Web service is a software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the Web service in
a manner prescribed by its description using SOAP messages, typically conveyed using
HTTP with an XML serialization in conjunction with other Web-related standards.”[4]

A Web service may be defined as a task-oriented, coarse-grained, XML-based online business
service that is widely-accessible and that may be composite. A Web service provides a fixed
function interface that may be invoked by any client; it is usually described through metadata
for service consumers (name, description, version, QoS, etc.) Unlike traditional Web cli-
ent/server models, Web services do not provide the user with a GUI but they offer a program-
matic interface to share business logic, data and processes across a network. Thus, typically, a
call to a Web service will be embedded in an application offering the GUI to interact with the
users. Used primarily in B2B as a means for businesses to communicate with each other, Web
services allow organizations to connect their IT systems with regard to a set of focused interac-
tions and without intimate knowledge of each other's systems. Thanks to standardized data for-
mat and protocols, Web services are not tied to any programming language, operating system or
platform and allow heterogeneous applications from different sources to communicate with
each other.

The most prominent solution adopted to date in the industry to locate, describe, and invoke
Web services is the trio of standards SOAP, WSDL and UDDI depicted in Figure 2.

e SOAP [47]: Since a broad range of applications will eventually be interconnected
through the Web, the XML Protocol Working Group of the W3C is in charge to create
simple protocols that can be ubiquitously deployed and easily programmed through
scripting languages, XML tools, interactive Web development tools, etc. The goal is a
layered system which will directly meet the needs of applications with simple inter-
faces, and which can be incrementally extended to provide the security, scalability, and
robustness required for more complex application interfaces. They focus on the SOAP
protocol, a simple XML-based messaging and remote procedure call (RPC) systems,
layered on standard Web transport protocols such as HTTP and SMTP.

o WSDL [48]: One of the requirements for the development of Web services is the abil-
ity to describe the interface, i.e., the boundary across which applications (Web services
user agents and Web services) communicate. The Web Services Description Working
Group of W3C is chartered to design the following components of the interface: (i) the
message, a definition for the types and structures of the data being exchanged; (ii) the
message exchange patterns, the descriptions of the sequence of operations supported
by a Web service; and (iii) the protocol binding, a mechanism for binding a protocol
used by a Web service, independently of its message exchange patterns and its mes-
sages.

e UDDI [33]: The Universal Description Discovery & Integration (UDDI) is a definition
of a set of services and markup languages supporting the description and discovery of
(i) organizations, and in general Web services providers, (ii) the Web services they
make available, and (iii) the technical interfaces which may be used to access those
services. Based on a common set of industry standards, including HTTP, XML, XML
Schema, and SOAP, UDDI aims at offering an interoperable, foundational infrastruc-

RR n° 5663

Moussa LO, Fabien GANDON

ture for a Web-service-based software environment for both publicly available services
and services only exposed internally within an organization.

Service
Broker
W UDD]
wsDL, WsDL
' s0aP |
) -
Service Service
Reguester Provider

Figure 2. Service-oriented architecture [S2]

A number of extensions have been proposed to address some shortcomings of the classic
Web services technologies:

INRIA

WSMF [41]: The Web Services Management Framework is a logical architecture for
the management of resources, including Web services themselves, through Web ser-
vices. This framework is based on the notion of managed objects and their relation-
ships: a managed object essentially represents a resource and exposes a set of man-
agement interfaces through which the underlying resource could be managed. Simi-
larly, relationships among managed objects represent relationships among underlying
resources.

OWL-S [34]: Early efforts were made to define Web Service ontologies and markup
such as DAML-S and its successor OWL-S. To make use of a Web service, software
needs a computer-interpretable description of the service. Relying on semantic Web
frameworks, service providers could be provided with a set of basic classes and prop-
erties for declaring and describing services. The OWL-S initiative of the American
DARPA/DAML project aims at providing such an OWL-based Web Service Ontol-
ogy, as well as supporting semantic Web tools to enable: automatic Web service dis-
covery, automatic Web service invocation, automatic Web service composition and in-
teroperation, and automatic Web service execution monitoring.

BPEL4WS [2]: The Business Process Execution Language for Web Services provides
a language for the formal specification of business processes and business interaction
protocols. Processes in BPEL4AWS export and import functionality by using Web ser-
vice interfaces exclusively. By doing so, BPEL4WS extends the Web services interac-
tion model and enables it to support business transactions. BPEL4WS defines an inter-
operable integration model that should facilitate the expansion of automated process
integration in both the intra-corporate and the business-to-business spaces.

BPML [3]: The Business Process Modeling Language (BPML) is a meta-language for
modeling business processes, just as XML is a meta-language for modeling business
data. BPML offers an abstracted execution model for collaborative and transactional
business processes based on the concept of a transactional finite-state machine. BPML
considers e-business processes as made of a common public interface and as many pri-
vate implementations as process participants. This enables the public interface of
BPML processes to be described independently of their private implementations.

Corporate Semantic Web Services 9

e WSCI [49]: The Web Service Choreography Interface is an XML-based interface de-
scription language that describes the flow of messages exchanged by a Web service
participating in choreographed interactions with other services. WSCI describes the
dynamic interface of the Web service participating in a given message exchange by
means of reusing the operations defined for a static interface. WSCI works in conjunc-
tion with WSDL. WSCI describes the observable behavior of a Web service by means
of a message-flow oriented interface. This is expressed in terms of temporal and logi-
cal dependencies among the exchanged messages, featuring sequencing rules, correla-
tion, exception handling, and transactions. WSCI also describes the collective message
exchange among interacting Web Services, thus providing a global, message-oriented
view of the interactions.

o SWWS [41]: The IST project "Semantic Web enabled Web Services" aims at over-
coming the initial limitations of UDDI for service discovery by relying on semantic
Web technologies to: (i) offer a comprehensive Web service description framework;
(ii) define a Web service discovery framework; and (iii) offer a scalable Web service
mediation middleware.

e XLANG [55]: This is a notation for the specification of message exchange behaviors
among participating Web services. XLANG is expected to serve as the basis for auto-
mated protocol engines that can track the state of process instances and help enforce
protocol correctness in message flows.

e WSCL [50]: The Web Services Conversation Language allows the abstract interfaces
of Web services, i.e., the business level conversations or public processes supported by
a Web service, to be defined. WSCL specifies the XML documents being exchanged,
and the allowed sequencing of these document exchanges. WSCL conversation defini-
tions are themselves XML documents and can therefore be interpreted by Web ser-
vices infrastructures and development tools. WSCL may be used in conjunction with
other service description languages like WSDL, e.g., to provide protocol binding in-
formation for abstract interfaces, or to specify the abstract interfaces supported by a
concrete service.

o WSFL [51]: The Web Services Flow Language is an XML language for the descrip-
tion of Web services compositions. WSFL considers two types of Web services com-
positions: (i) the first type specifies the appropriate usage pattern of a collection of
Web services, in such a way that the resulting composition describes how to achieve a
particular business goal (typically, the result is a description of a business process); (ii)
the second type specifies the interaction pattern of a collection of Web services (in this
case, the result is a description of the overall partner interactions).

One of the assets of web services is that they not only provide a standard way to advertise and
invoke business services over the web, they also aim at enabling the composition of these ser-
vices available online to provide complex services with high added-value. Literature splits the
problem of coordination of Web services into several sub problems: (i) service discovery, (ii)
dynamic service composition planning, and (iii) service execution monitoring. Up to now there
is no commonly agreed technique to compose services and monitor the execution of such a
composition.

4.2 Positioning w.r.t. semantic web services

Web services standards (WSDL, UDDI, SOAP) [11] reach their limits when we want to auto-
mate some tasks like discovery, invocation or composition. So many approaches, mainly rely-
ing on Semantic Web technologies, have been proposed recently to overcome these limits
mainly due by the absence of semantics in the current web services description and registration
technologies.

Semantics Web Services (SWS) are services which are described using enriched markup lan-
guages and able to be automatically discovered, executed and composed. Semantic Web Ser-

RR n° 5663

10 Moussa LO, Fabien GANDON

vices frameworks allow service developers to enrich the service descriptions with formal anno-
tations of their capabilities. These semantic descriptions aim at enabling applications to dis-
cover, to invoke and to compose the annotated services in an automatic manner [28]. Many
frameworks have been proposed [6] among which the main ones are OWL-S, WSMO, WSDL-
S and IRS.

4.2.1 OWL-S

OWL-S [29] [34] is a set of ontologies for describing web services. It has been developed to
provide the building blocks for encoding rich semantic service descriptions based upon OWL
the semantic web language recommended by W3C. It consists of three main upper ontologies
used to describe three facets of the services:

o The Profile facet is essentially used for describing the non-functional properties (ser-
vice name, category, quality of service, etc.);

o The Process facet gives a detailed description of a service operation, its inputs and out-
puts and can even detail its internal processes and, if it is the case, it identifies the other
services it is composed of;

e The Grounding facet provides details on how to interoperate with a service via mes-
sages.

The service profile gives the information needed for an application to discover a service. The
service model and service grounding offer the information needed for an application to make
use of a service.

In [45], the authors show how OWL-S can be used with UDDI to perform a discovery
mechanism based on semantic search. They propose OWL-S/UDDI matchmaker which takes
advantage of proliferation UDDI registries in the web services technology infrastructure and of
the explicit capability representation of OWL-S. OWL-S profile descriptions are stored inside
an UDDI registry and can be processed with an OWL-S matchmaker module associated to the
UDDI registry. A mapping technology is also provided to transform OWL-S profile into the
UDDI data model. The matchmaking algorithm used in this approach defines a flexible mecha-
nism based on the subsomption mechanism of OWL. When a request is submitted, the algo-
rithm finds an appropriate service by first matching the output of the request against the outputs
of the published advertisements, and then, if any advertisement is matched after the output
phase, the inputs of the request are matched against the inputs of the advertisements matched
during the output phase. The degree of match between two outputs or two inputs depends on
the match between the concepts they represent.

4.2.2 SWWS

Semantic Web enabled Web Services (SWWS) [5] is a project [41] which aims at providing a
web service description framework, a web service discovery framework and a mediation plat-
form for web services. This work relies on a conceptual architecture. A result of the SWWS
project is the Web Service Modeling Framework (WSMF) [29]. WSMF provides a conceptual
model for developing and describing web services and their composition. It consists of four
main elements: ontologies that provide the terminology used by other elements, goal reposito-
ries that define the problems that should be solved by web services, web services definitions
that define various aspects of a web service, and mediators for interoperability problems [6].

The Web Service Modeling Ontology (WSMO) [54] is an ontology for describing various as-
pects related to Semantic Web Services following WSMF. To describe semantically Web Ser-
vices, WSMO proposes two kinds of attributes: a capability which is a non functional descrip-
tion of a Web Service (preconditions, post-conditions, assumptions, effects), and service inter-
faces which specify the behavior of the service to achieve its functionality by offering
information about the operational competence on the web service (how a client can communi-
cate with the service, how the overall service functionality can be achieved from other ser-
vices).

INRIA

Corporate Semantic Web Services 11

WSMO relies on a proprietary language defined in the SWWS project, WSML (Web Service
Modeling Language) [53]. WSML uses logical formalisms to enable the description of various
aspects related to Semantic Web Services.

The reference implementation of WSMO is WSMX (Web Service Execution Environment)
[22] which provides dynamic discovery, mediation, selection and invocation.

4.2.3 WSDL-S

While OWL-S and SWWS approaches are essentially top-down approaches (i.e. started at the
knowledge level and then grounded in the WSDL) the WSDL-S approach [1] considered start-
ing from WSDL and augmenting its expressivity with semantic descriptions. Using extension
slots of WSDL, WSDL-S provides a mechanism to add annotations in a WSDL description in
order to describe semantically the capabilities and requirements of Web services (inputs, out-
puts, preconditions, effects, operations). Again, these annotations are based on formal descrip-
tions of concept types provided by external ontologies.

This approach is a refinement of the original WSDL-S proposed in the METEOR-S (Manag-
ing-End-To-End-OpeRations for Semantic Web Services) project [30].

4.2.4 IRS

IRS-II (Internet Reasoning Service) [32] is a SWS framework and implemented infrastructure
which allows service developers to semantically describe and execute web services. It builds on
past results in knowledge modeling and in particular on the UPML framework [17] which al-
lows developers to separate services from problem specification. This framework partitions
knowledge into ontologies, domain models, task models, and problem solving methods which
are connected via bridges. The main goals of IRS-II are to support the publication, location,
composition and execution of heterogeneous web services augmented with semantic description
of their functionalities. Descriptions are in OCML (Operational Conceptual Modeling Lan-
guage).

IRS-III [14] is a platform and infrastructure for creating WSMO-based Semantic Web Ser-
vices, built upon the IRS-II implementation.

4.2.5 WSDF

The Web Service Description Framework (WSDF) [15] is a suite of tools providing Web ser-
vices with semantic annotations allowing the ad-hoc invocation of a service without any prior
knowledge of the API. The sole prerequisite is a shared ontology defining major domain con-
cepts; WSDF requires client and server to offer a mapping from the local structures to a com-
mon domain ontology at design time. WSDF can be applied to clients and services written in a
conventional object oriented programming language.

4.2.6 Our position in the SWS stack

Because OWL-S is directly expressed in OWL and because our approach to corporate semantic
webs relies on OWL too, we relied on OWL-S for our work. However, in our current scenarios,
we only use the profile and the grounding of OWL-S plus the input and output description in
the process description. This corresponds in WSMO to the services capabilities and input out-
put description and also to the semantics added by WSDL-S to annotate services. Figure 3 ap-
proximates the double stack of semantic web services and the grey area symbolizes the parts we
implemented: XML 1.0, WSDL 1.1 et SOAP 1.2 (JWSDP 1.3), RDF(S) 1.0, OWL-S 1.1.

RR n° 5663

12 Moussa LO, Fabien GANDON

" ow S "
SOAP SPARQL
WSDL RDF RDFS & OWL
XML & XSD

Figure 3. Implemented parts in the semantic web services stacks

4.3 Composing semantic web services

One of the main objectives of SWS frameworks is to provide automatic composition of ser-
vices. Several surveys have been done about web service composition issue [46][31][8][39].

One can note that, in the majority of SWS frameworks, the proposed composition approach is
just an interactive one. In such composition methods, users hold the control of the definition
and are assisted by the software for the discovery and filtering of candidate web services.

[43] proposes an interactive composition approach using matchmaking algorithms to assist
users to filter and select services during composition process. Web services are described with
OWL-S annotations which are used to dynamically build up a filtering panel where constraints
about some properties of the service may be entered. But, the composition process must be
guided by a human with domain knowledge for the task. The presented framework just helps
the user in a semi-automatic manner by offering relevant choices at each step; then, the user can
makes selection.

[40] presents an interactive composition approach based on the IRS-III framework. A graphi-
cal Java tool has been developed to support users for the definitions of dynamic composition by
recommending goals according to the context at each step of a composition. Recommendations
are done by matching the inputs and outputs of the goal that were previously selected consider-
ing also the subsumption links of the input and output types. During the process composition,
the user can also select mediators to map and perform transformations between goals; he is also
able to select an “If-Then-Else” control flow operator. A Java API is provided for orchestration
by instantiation of the service components and control operators defined in the composition
according to their data dependencies. The API enables to build, validate and write a composite
service to IRS server.

The framework presented in [25] also allows interactive composition of services. The system
assists users to construct a computational pathway by using semantic description of services;
the approach uses an analysis tool that helps users create compositions of web services. A com-
putational way consists of “a set of operations and a set of links that connects the operations
based on their input and output parameter constraints”. The framework has been applied to
compose computational pathways in earthquake science where engineers interactively compose
web services in order to answer their queries (i.e. analyze the hazard level of a given site). Task
and domain ontologies represented in description logic are used to add semantics on WSDL
descriptions of services, allowing to analyze a sketch of a composition of services based on the
definitions of task types and their input / output data types, and to generate error messages and
specific suggestions to users. The developed tool offers a text editor where users can select ser-
vices and make links by clicking their input and output parameters.

[21] describes a framework to design and compose SWS. The presented framework is based
on a set of ontologies that describe SWS at the conceptual (i.e. knowledge) level by making
explicit its features (access, descriptive, functional and structural) independently of a language.
The ontology set is composed of: an ontology describing the upper-level concepts that define
the features of a SWS based on OWL-S, an ontology of problem-solving methods based on the
UPML specification, an ontology used to describe the primitives of the knowledge representa-

INRIA

Corporate Semantic Web Services 13

tion model in which the domain ontology is described. This last one is built on the top of an-
other ontology based on the XML Schema Datatypes and used to describe the types of the con-
cepts and attributes. These ontologies can be instantiated to design and compose manually (or
in semi-automatic way) SWS at a knowledge level. The implemented prototype provides a
graphical interface where users can design and compose SWS at a conceptual level.

One of the rare ones to propose an automatic approach is Peer [38] that presents a tool, named
WSPlan, for automatic web service composition. The approach is based on the transformation
of web service composition problems into Al planning problems (expressed by PDDL specifi-
cations), and the dynamic choice of the most suitable planner for a particular task. A proprie-
tary lightweight service description format is used to describe the web service semantics; this
annotation format is used as a bridge between WSDL web service descriptions and PDDL
specifications. WSPlan transforms web service annotation data and information to PDDL
documents. Then, a planner able to process PDDL that fits the requirements imposed by the
particular domain definitions is used to identify a plan. The resulted plan is transformed into a
flow of web service operations to be invoked.

In our scenarios, we do need to offer high-level functionality through dynamic integration.
However we have not found ergonomic ways to describe and decompose service needs to sup-
port fully automatic composition. In addition, such a functionality seems to rely a lot on domain
knowledge, and we think that, as claimed in [25], in many contexts users will want to control
the composition process, influencing the service selection. We found more realistic to consider
for instance the request from business managers to be able to implement business workflows in
flexible (declarative) manners above the classical web services architectures. So, in our experi-
ment, we exploit some capabilities of CORESE to provide interactive service composition by
assisting users during the composition process. Also, by composing CORESE and corporate
web services, we are able to compose services with the knowledge of the corporate semantic
web.

RR n° 5663

14 Moussa LO, Fabien GANDON

5 Corporate semantic web services: discovering corporate application

5.1 Semantic annotation of corporate applications

As explained in the previous section, since our approach to corporate semantic webs relies on
OWL we relied on OWL-S for our annotations of the web services; OWL-S offers the frame-
work the closest to semantic web frameworks and thus is directly compatible with CORESE.
WSML or WSDL-S would have required mappings. We use the profile, the process part offer-
ing input and output descriptions and the grounding of OWL-S to annotate web services wrap-
ping corporate applications.

In our current prototype, to wrap a corporate application into an annotated service, one must
(i) write and deploy the corresponding web service; and (ii) annotate the web service with
OWL-S.

The OWL-S code below shows the annotation of a service based on an INRIA intranet
LDAP application allowing employees to get the phone number of a secretary of another em-
ployee.

<service:Service rdf:ID="PosteService Secretaire">
<service:presents rdf:resource="#Profile Poste Service Secretaire"/>
<service:describedBy rdf:resource="#PosteSecretaire"/>
<service:supports rdf:resource="#PosteGrounding Secretaire"/>
</service:Service>
<profile:Profile rdf:ID="Profile Poste Service Secretaire">
<service:presentedBy rdf:resource="#PosteService Secretaire"/>
<profile:has_process rdf:resource="#PosteSecretaire"/>
<profile:serviceName>PosteSecretaire</profile:serviceName>
<profile:textDescription>INRIA LDAP</profile:textDescription>
<profile:hasInput rdf:resource="#PosteSecr input"/>
<profile:hasOutput rdf:resource="#PosteSecr output"/>
</profile:Profile>
<process:AtomicProcess rdf:ID="PosteSecretaire">
<service:describes rdf:resource="#PosteService Secretaire"/>
<process:hasInput>
<process:Input rdf:ID="PosteSecr input">
<process:parameterType>&xsd; #string</process:parameterType>
<process:semanticType rdf:resource="&doc;#EmployeeName" />
</process:Input>
</process:hasInput>
<process:hasOutput>
<process:Output rdf:ID="PosteSecr output">
<process:parameterType>&xsd; #string</process:parameterType>
<process:semanticType rdf:resource="&doc;#AssistantPhone"/>
</process:Output>
</process:hasOutput>
</process:AtomicProcess>
<grounding:WsdlAtomicProcessGrounding rdf:ID="PosteSecrGrounding">
<grounding:owlsProcess rdf:resource="#PosteSecretaire"/>
(...)
<grounding:webserviceURL>
<xsd:anyURI rdf:value="http://localhost:8080/jaxrpc—-Poste/poste"/>
</grounding:webserviceURL>
</grounding:WsdlAtomicProcessGrounding>

(..)

Figure 4: Example of service description with OWL-S

In bold, we emphasized our small extension of the OWL-S Parameter concept: we added a
property named semanticType which provides us with the possibility to integrate services with
the corporate memory as we shall see in section 6. In this example, the given service gets an
employee name as input and provides an assistant phone as output.

The part in italic shows a small extension (webserviceURL attribute) to the grounding
OWL-S ontology to have the ability to store the service SOAP address. This information

INRIA

Corporate Semantic Web Services 15

(SOAP address) is the only one we need in our experiments; it is stored in the service WSDL
interface, and not present in the OWL-S part we use.

In the experiment presented in this report, all our services are based on JWSDP 1.3 for their
implementation and wrap services of our intranet.

5.2 CORESE as a corporate semantic UDDI registry

As shown in Figure 5, internally CORESE relies on a mapping to conceptual graphs and thus
leverages results of more than 20 years of research and implementation in that branch of
knowledge-based systems and knowledge representation.

In the corporate memories developed so far, the annotations generally describe documentary
resources or corporate structures, but, when relying on schemata as the ones surveyed in section
4.2, these annotations can describe web services available online (intranet, extranet, Internet).
This means that CORESE allows us to automate the identification of web services available to a
user. Following a service-oriented architecture and a find-bind-execute schema [35] CORESE
fits well in the picture with semantic web services as a semantic UDDI registry (Figure 5):

RDF

equester rovider
execute

Figure 5. CORESE as a semantic UDDI registry

In this new architecture, we moved from text-based UDDI search to the semantic search en-
gine CORESE to solve queries on the descriptions of the services, taking into account the on-
tologies used to characterize them and leveraging their semantics when solving query. With this
architecture, annotations of services corresponding to corporate applications are stored in the
corporate semantic web. Then, the services can be automatically discovered and dynamically
invoked without any prior knowledge of their descriptions.

RR n° 5663

16 Moussa LO, Fabien GANDON

5.3 Semantic Web portal to corporate services

Our current implementation (Figure 6) is embedded in the CORESE semantic web server archi-
tecture.

End user's Web browsers

WST/O[MWS WS[I'WS WS{|’WS WS | WS
requirements|| sequences search query|| candidates invocation || input form inputs || outputs
\ \
Automatic WS Form Servlet Dynamic
omposition Discovery Invocation Servlet
S
SWS Web App
CORESE engine Corporate & public Web Services

4

_-Ontologies: domain ontologies, KM ontologies,

o
Corporate:. | service ontologies ACorpon'zte
Semantic |- Ipplications
Weh Semantic annotations: people, documents,

organization, services Semantic Web Server

Figure 6. Architecture of the portal

The CORESE semantic web server is developed in Java according to a 3-tier architecture.
We added to this architecture a web application for semantic web services. The web application
provides a semantic web portal to corporate (and external) services with three main functional-
ities:

1) Automatic web service discovery: it is achieved through Java Server Pages and XSLT
stylesheets and provides automatic discovery of web services using CORESE queries
upon their annotations just as for other resources of the corporate memory. Using the
interface of the portal, services can be discovered in three ways (Figure 7):

eby their category : selling service, information service, etc.;
eby giving an available input and a desired output;
eby traversing the list of atomic or composite services the annotations of which are
saved in the memory.
This requires IT managers or automatic crawlers to discover existing services and their
annotations, and add them to the corporate memory.

2) Dynamic invocation of web service: it is realized by two Java servlets allowing (i) to
get the necessary information about a service from the knowledge base of service de-
scriptions in order to generate a form offering an interface to call the web service and
(ii) to generate a dynamic client and the call to the web services.

INRIA

Corporate Semantic Web Services 17

To achieve the dynamic invocation of a selected atomic process, we perform the follow-

ing tasks:

e get information about the inputs and outputs of the process from the Process part of
the annotation : abstract name, data and semantic types ;

e for each input found in the Process, get its concrete name from the Grounding part
of the annotation (the concrete name is the same used in the WSDL interface of the
service);

e get the operation and port names, the URL of the service and its WSDL namespace
from the Grounding;
create a form to offer an interface for the inputs;
create a dynamic client with the information got from the knowledge base and the
inputs values provided by the end user. To generate the dynamic client, we use the
Dynamic Invocation Interface (DII) API provided with JWSDP. The DII technique
allows the possibility to access a previously unknown service.

3) Web service composition: it is achieved by some HTML pages and two Java servlets al-
lowing to assist end-users to perform service composition : interactive composition

(section 5.4), finding sequential compositions of services (section 5.5).

All the components of the portal rely on the CORESE engine (we use the CORESE API
2.1) to access service ontologies and annotations stored in the same knowledge base of the
corporate semantic web. This presents the main advantage to enable us to perform composi-
tion between the services and the knowledge of the corporate memory (see section 6).

Fichier Edition Afficher Aller & Signets Outils Fendtre Aide

i GO J @ w &2 [nhttp:riocalhosts0a0/myDemosjsp/service jsp | S5 Rechercher | Q_’;o “B

= (=8 4 Messagerie 4§ Accueil [My] Netscapefr C Recherche @&

Shopping E3Signets

<l [% Corese Demo Site | - Semi-automatic Composition of Servi | . Interactive Camposition of Services | (5]
e
CEESE B INRIA
CACet
Search... — Corporate Semantic Web Services
[Gol| | e L o [[[l [
i i | =) std -] none -]] Search | More | Rule| Clear |
S g | Style | ~i Display | =l List | _tore | Rule | |
Figload L
Ontolooy Service
Bules
Cuery.
Describe
Query... Category [none ~lgroup ™ counti™
Main (en)

tdain (fr) ~ s
Search —Find a Service

Describe [~

Input none ~

Output [none <

Atomic Process

Describe

Atomic Process |none ~Igroup I~ count ™
[~ Context: table i
| | Composite Process

.~ Search 7 Describe

| iE” ﬂ‘ . ‘ Composite Process [none v?group I~ countl

| [crerson

- Generic Query
Browse...

Concept tree
Concept table
(o] € ©F £} | Document : Terminé (2.743 s)

i] e

Figure 7: Semantic web portal to corporate services

RR n° 5663

18 Moussa LO, Fabien GANDON

As showed in the following example, when a service is selected by a user, instead of dis-
playing the resource as it is the case for documents for instance, we dynamically generate a
form thus offering an interface to call the service; on submitting the form, the inputs are used to
generate a dynamic client and the call to the web services. The output is then simply displayed
as a web page.

Figure 8 shows two windows:

e a window in the background showing the result of a query that retrieved a service de-
scription. This service is a mail-sender with a number of inputs. The user selected this
service and obtained:

e the second window providing a form to specify the inputs. Once submitted, this form
triggers a call to the web service which is then dynamically executed and provides a last
window displaying the possible outputs in the web interface.

ol :{1 z’; }’ﬁ http:,f,fChE:it'Un:SUSU,I'm'y‘DE:rrnD,l'SE:r"\-‘|et,I’C!Jl’eSB?.‘xE 3; “,, n?g:i - @
i P‘. Lt
mEETE—, Tl
[Query More See Process
| select 7y group ?p group °x display tahle where ‘http:/Tocalhost:3080/myDeno/resource |
| e op o7y =
| #p '= cos:isClassOf s
; 7% = http://localhost: 8080 /nyleno/resource/public/data/Enai 3“])]9“
Matification of change

0.00 s for 15 projections query & result

To

EmaiiSender (www)

N Moussa Lo@sophia.inria.fr

form>

E : _ _ W Priority

describedBy (www) |[EmaliService (www) G

1 Invoque | Invoque | high
EFrnail _From (www) MsgBody

Thiz iz a message to notify you of a
Frnail_FromAddress (www)
_Imvoque | From

Ernall_To fwww) . | —>
TRl S £l 2 EE @2 ‘7‘ I

Figure 8: Discovering and Invoking a corporate web service with CORESE.

We also give the ability to export the output as an XML document. This can be interesting
for instance to integrate the results in other applications. As we shall see later, it is the case of
the CORESE service which provides an RDF/XML document as output to answer a query re-
ceived as input.

5.4 CORESE-based interactive composition

When, according to a user need, no service is directly found from the portal, the user has the
ability to perform a composition. We distinguish tow cases:
e The user has an available input and wants to find a list of services having this input as
entry point;
e The user has a desired output and searches a list of services having this output as exit
point.

For the first case the following steps help users to perform a service composition according
to an available input:

INRIA

Corporate Semantic Web Services

19

1) The user provides an available input type, e.g. BookName;

2) The system proposes the list of services (atomic or composite process) able to receive
this input type as entry (Figure 9a); this is done by performing CORESE queries about
the semantic type attribute we have added to the OWL-S Parameter concept;

3) The user selects one of the proposed services. When at least two services are already
selected during the composition process, the user can decide to stop the process and
save his new composition in the form of an OWL-S composite process (Figure 9b and
Figure 9c). In the current state of our prototype, we only offer the possibility to create a

sequential composition of services.

4) If the user wants to continue and selects a service from the previous list, we search the
services able to be composed with the previous selected service (Figure 9c¢). This is re-
alized by matchmaking the semantic type attributes of the previous service and the
other services stored in the knowledge base.

If no service is found, it is proposed to the user to create a composite service with the

services he has already selected (Figure 9d).
Otherwise, the user is returned to step 3.

The composite services are saved in the service description knowledge base as OWL-S
composite process and can discovered and invocated. The invocation of a composite service is
done by invoking sequentially the processes it is composed of.

Fichier Edition Aficher Allera Signets Oufils Fenétre Aide

Q0,009 o &, 9

./ B, 4 Messagerie 48 Accueil [FMy] Netscape.fr QREcharchE) Shopping

% Interactive Composi I‘\. Corese Demo Site I“\‘; Finding Sequences. 1 Q

O 0 QO O o[mmmmn <, 5

. @ G2 Messagerie 4% Accueil [Netscapefr Q Recherche &) Shopping [3Signe
1| % Interactive Composition of Services } Q

Services already selected
null (ouiput : c.BookName)

@

| http:/Awewur.mindswap.org/2004/0wl-5/1.1/BookFinder.owi#BookFinderProcess v|

Services able to be composed with the previous

—

Services already selected

>ctp‘ ffwrarer. mindswap.org/2004/owl-5/1.1/BookFinder owl#BookFinderProcess
(ouzput : hitp./lmyDemo.orghBookinfo)

Services able to be composed with the previous

hittp:fwww mindswap org/2004/owl-s/1.1/BNPrice owl#BNPriceProcess =

http:/ferere. mindswap.org /2004 fowl-s/1.1/BookFinder.owl#BookFinderProcess
http:/fererw. mindswap.org/2004/0vwl1-5/1.1/BNPrice.owl#BNPriceProcess

hittp:/fwrerw. mindswap.org/2004/owl-5/1.1/BookBuy.owl#BookBuyProcess
(output : http.imyDemo.orghBookBuyNotification) (d)
End of the composition <

Create the Composite Process

_ Continue | _Continue |
5 () & ©4) | Document : Terming (1 277 53 ==
tarac poSItio vices' &

. Fichier Ediion Aficher &llera Signsts Outils Fenétre Aide Fichier Edition Aficher Allera Signets Oufils Fenétre Aide

» ‘ = 5 A o = = -
Q000 omasmess P 0OOQ o\#
. | @ | G2 Messagerie 4§ Accuell [%] Netscapefr Cy Recherche @) Shopping | £35i . @, 4 Messagerie 4% Accueil My Netscapedr C Recherche @N\opping 330
21 [% Interactive Composition of Services | %] & [% Interactive Compasition of Services | %]
Services already selected Services already selected

(cfervicm able to be composed with the previous

T mindswap.org/2004

http:/fwerorew. mindswap.org/2004/0wl-5/1.1/BookFinder owl#BookFinderProcess

http:/fsrere. mindswap.org/2004/owl-5/1.1/BNPrice. owl#BNPriceProcess
(output : hitp:/imyDemo.or giBookFrice)

1-/11/800KE Uy oV ocess v|
Continue |

Create the Composite Process |

3 3 @ 67 £ | Document - Terminé (086 5) S

S 4 & & £ | Document - Terminé (1 21 5) ey

Figure 9. Examples of steps in an interactive composition (from an available input)

For the second case, in order to help users to perform a service composition according to a
desired output, we provide almost the same steps as above:
1) The user provides a desired output type, e.g. BookBuyNotification;

RR n° 5663

20

Moussa LO, Fabien GANDON

2) The system proposes the list of services
this output type (Figure 10a);
The user selects one of the proposed se

3) rvices. When at least two services are already

(atomic or composite process) able to provide

selected during the composition process, the user can decide to stop the process and

save its composition in form of OWL-

10c).

4) If the user wants to continue and selects

S composite process (Figure 10b and Figure

a service from the previous list, we search the

services able to be composed with the previous selected service (Figure 10c).
If no service is found, it is proposed to the user to create a composite service with the

services he has already selected (Figure 10d).
Otherwise, the user is returned to step 3.

Tt VRO RO S DO STy GO e

L=

. Fichier Edition Afficher Allera Signets Outils Fenétre Aide

0,0 Q O cEE=m <

00000

<9

Pl Messagerie 43 Accuell [iy] Netscapedr € Recherche @) Shopping

A B [Messagerie 45 Accueil W] Netscapefr G Recherche @) Sho

i[% Interactive Composition of Services] D

¢l f% Corese Detmo Site

I S Intetactive Composition of Servic

I
(@ (b

Services already selected
null (mput : ¢ BookBuyNet ification)

Services able to be composed with the previous

§rvices already selected

At/ e mindswap.org /2004 /owl-s/1.1/BookBuy.owl¥BookBuyProcess
)x’nput : hittp:HimyDema or ghBookFrice)

Services able to be composed with the previous

| hittpfwrwa mminclsviap.org/2004/owl-6/1.1/BookBuy owl#BoakBuyProcess ¥

E it/ mindswap. org/2004/owl-s/1. 1/BNPrice.owl BNPriceProcess

|

Continue |
=i |

] ETACLVEXEOmp US1HORIOTE

s

8 g g uslildniuisdigleas s digesigas

. Fichier Edition Aficher Allerd Signets Outils Fenétre Aide

0000 ormmmms <, 9

[Messagerie 4% Accuell] Netscape G Recherche 7 Shopping £35

o,

Fichier Edition Aficher Allerd Signets Oufils Fenétre AN

A

A @

00

(=4 Messagerie 43 Accuell [iy] Netscapedfr C Recherche

) Shopping

-

@

A

a

% Interactive Composition of Services

|

;‘J{ S Interactive Composition of Services]

Services already selected
hitp:/farror, mindswap.org/2004/0wl-s/1.1/BookBuy.owl¥BookBuyProcess
hitp: /s, mindswap.org 2004 ovwl-s/1.1/BNPrice.owl¥BNPriceProcess

agg

255

hitp:/farvrer, mindswap.org/2004/owrl-5/1.1/BookFinder.owl#BookFinderProc
(input . hitp:{imyDemo orghBookName)

End of the composition
@

Create the Composite Process

Figure 10. Examples of steps in an interac

INRIA

(C) Continue |

Services already selected
http:/fwrerw. mindswap.org2004/owl-5/1.1/BookBuy.owl#BookBuyProcess

http:/fererw, mindswap.org/2004/0wl-5/1.1/BNPrice.owl#BNPriceProcess
(input : hitp.{imyDemo.ov g Bookinfo)

Services able to be composed with the previous

| http:/Awww. mindswap.org/2004/owl-5/1.1/BookFinder. owl#BookFinderProcess v/

Create the Composite Process

tive composition (from a desired output)

Corporate Semantic Web Services 21

5.5 Discovering sequential compositions of services using CORESE paths

We have started to introduce means to discover compositions of services that match a user's
request expressed in terms of available inputs and desired outputs.

CORESE provides the possibility to search for resources linked by a path of (oriented or
non-oriented) relations [10]. For instance ?x cos:Property[4] 2y is a query that looks for
an oriented path of a maximum length of 4 relations between two resources.

This feature of CORESE is usually used to explore the relations between two resources in
the knowledge base (e.g.: to discover acquaintance networks). Applied to web services it can
be used to discover a special type of composition: sequences i.e. a succession of services com-
bined one after the other through their input and output types. The idea is to try to match the
requirements of a user on available inputs and desired outputs by finding a sequence of services
that link them.

Before doing so we had to formally define what it means for two services to be "compos-
able" in a sequence. This is done through a production rule encoding the sufficient condition of
the "composable" relation. To represent this relation, we perform another little extension of
OWL-S by adding a property named “composable” for the Process concept. The rule defined in
Figure 11 uses this new property and defines two services s1 and s2 as "composable" when the
input of s2 and the ouput of s1 are ontologically compatible i.e. the type of the output of s1 is
the same or a subtype of the type of the input of s2.

<cos:rule>
<cos:if>
?sl rdf:type proc:Process
?s2 rdf:type proc:Process
?sl proc:hasInput ?input
?s2 proc:hasOutput ?output
?sl != ?s2
?input proc:semanticType ?inType
?output proc:semanticType ?outType
?outType rdfs:subPropertyOf ?inType
</cos:if>
<cos:then>
?s2 proc:composable ?sl
</cos:then>
</cos:rule>

Figure 11. CORESE rule to formally define "composable" services

Applied to the knowledge base this rule generates the couples of "composable" services.
Since this rule allows us to identify all the services that can be composed together we can then
express queries over service descriptions to retrieve all sequences of services answering re-
quests like “Find all sequences of services having as input a BookName and as output a Book-
BuyNotification” (Figure 12).

?sl all::proc:composable[2] ?s2

?sl proc:hasInput ?paraml

?s2 proc:hasOutput ?param2

?paraml proc:semanticType c:BookName

?param2 proc:semanticType c:BookBuyNotification

Figure 12. CORESE query to find "composable' services

RR n° 5663

22 Moussa LO, Fabien GANDON

The Figure 13 and Figure 14 show an answer to this query with the Book services coming
with the OWL-S API. In response to the previous query, we obtained the composition of the
three services:

BookFinderProcess (input : BookName, output : BookInfo)

BNPriceProcess (input: BookInfo, output : BookPrice)

BookBuyProcess (input:BookPricé, output: BookBuyNotification)

Figure 13. CORESE answer to find "composable" services

We provide the ability to save sequences of services as OWL-S composite processes. These
composite services can then be retrieved and executed like the other corporate web services.
This feature can be used by an IT manager to create, save and propose new services from exist-
ing ones.

—Search for services More See

|
| select list * display table where
| 75l proc:composable 7s2
|
|
|

75l proc:hasInput 7x
?s2 proc:

?x proc:semanticType c:BookName
?y proc:semanticType o:BookBuyNotification

0.00 s for 1 projections

s1 | s2 | X | ¥ | v10_1
| |BookFinderProcess |BookBuyProcess |BookName [BookBuyNotif i BMNPriceProcess
|q |) {a) () i,) |
Invogue | Invogue | | Invogue | Invogue | | Invogue |

Figure 14. An example of a sequence of three services found by CORESE

INRIA

Corporate Semantic Web Services 23

6 Composing services with the knowledge of the corporate semantic web

In this section, we present how we use CORESE to demonstrate the composition between cor-
porate services and the knowledge of the corporate memory. The first kind of composition is a
mapping of services inputs types to CORESE queries and the second one is the use of CORESE
as a semantic web service to access the corporate memory.
6.1 Mapping input types to queries
Since we are in a semantic web environment, "knowledge is everywhere" and the idea consists
of using the knowledge stored in the corporate memory to populate, in an automatic way, the
service inputs during execution. This idea was suggested by a previous work on context-aware
service invocation [19]. The implementation was done in three steps:
eWe associated to service inputs a predicate from a domain ontology by means of the se-
manticType attribute;
oWe define these predicates using rules allowing to generate dynamically the needed infor-
mation from the memory;
eWhen generating dynamically an invocation form from the grounding and the process to
offer an interface to call the service, we also extract from the corporate memory the nec-
essary information to populate the service inputs.

In the following example, we consider the service described in Figure 4 with an input asso-
ciated to the domain ontology property EmployeeName. The CORESE rule defined in Figure
14 allows us to generate the candidate inputs from the corporate memory annotations; it defines
a sufficient condition of the predicate EmployeeName.

<cos:rule>
<cos:if>
?x rdf:type c:Employee
?x c:Name ?n
</cos:if>
<cos:then>
?x c:EmployeeName ?n
</cos:then>
</cos:rule>

Figure 15. CORESE rule to define an input type

By using the generic CORESE query "select ?value where ?x "+semanticType+"?value"
and by replacing semanticType by c:EmployeeName, we obtain from the memory the triples
generated by the previous rule. So, as showed in the Figure 16, we can select a service from the
result of a query on the directory, then we can pre-populate the input form (here we generate a
dropdown box with the name of the employees for the service wrapping the LDAP application
and described in Figure 4) and finally we display the result of the invocation. Again, every step
of this process (semantic rules and queries) leverages the ontological reasoning.

RR n° 5663

24

Moussa LO, Fabien GANDON

b http:/fcheiron: 3080 myDemo)servistfcorese

&% Process execution - Mozilla =g

| service

5 (A)

1 Invoque |
LS L |

FPastelorm (www)

talre (www)

BookFinderProcess fwww)

T
Invoque |

BookBUyProcess (www)
Ireenque |

PostelPro e E)
6 Invoque |

PosteErmail (www)
7 | Irnvoque |

GoagleSearch {www)

8 Invoque |
—

= Lmum e 3

- 3 T
S i .
B] s
B E

e

+

L
Process Ny
:http:/1ocalhost:8080/myDemeo/resource/public/d:

Fahbien Gandon

i Olivier Carly invoke

| Moussala M

: s
‘ | B
Sk b 2 E3) @2 cCharge | | | =B= = &

= \/ 5k
I" y a, §j§ !L http:ffcheiron: 8080 m | % [_:f =

Service output :

PosteSecr _output = 5317

Hibe £l w2 8 @2 Chargé | | =fo= *E] &

Figure 16. Leveraging the corporate memory to populate a SWS input

6.2 CORESE as a semantic web service to access to the corporate memory
The idea is to use semantic web services wrapping the CORESE engine in order to provide the

possibility:

e to use the result of a query over the corporate memory as a service input;
e to use a service output to add knowledge to the memory.

In order to do so, we provide the ability to compose a service which wraps a corporate ap-

plication with a CORESE semantic web service.

Two kinds of CORESE semantic web services can be used:

e a CORESE SWS which gets a query as input and gives the result as output; this service
can be composed with any other one to get knowledge from the memory in order to as-
sociate a CORESE query and the service input (top part of Figure 17);

e a CORESE SWS which gets an RDF annotation as input, save and load the annotation
into the memory; this service can be composed with another service to transform its
output into knowledge for the memory (bottom part of Figure 17). In this case, we in-
troduce an auxiliary XSLT service to transform a service output in a RDF annotation
(the template of the annotation is given through an XSL stylesheet).

INRIA

Corporate Semantic Web Services 25

CORESE Corporate WS Output
query g, > >
v SWS
Corporate s Corporate
Semantic o
Application
Web PP
LA Corporate R XSLT RDF | CORESE

’ SWS ’

WS
XSL T T XML doc.
template

Corpora_te Corporate
Application Semantic Web

. SWS

Figure 17. Connecting a corporate application and the corporate memory with CORESE

SWS

We consider the following scenario. When someone wants to know the email address of an
employee whose name he knows, he can use directly the service wrapping the LDAP applica-
tion which gets an employee name and gives his email address as output. Now, assume he is
searching the email address of the assistant of a given project (e.g. Acacia), but he doesn’t
know the name of this person. He could be able to perform a query (Find the name of the Aca-
cia project assistant) over the memory and to give the result directly to the service. He could
also add the new knowledge (email of the Acacia project assistant) to the memory for reuse.

The screenshot in Figure 18 shows the invocation of a service composed by:

A CORESE Web service which gets a query as input, performs the query over the
corporate semantic web and return the result; in this example, the query consists of
“finding the name of the Acacia project assistant” and the result is “Patricia
Maleyran”.

A corporate service receiving an employee name (here the output of the previous
service, i.e. “Patricia Maleyran”) and returns its email address.

In Figure 19, the screenshot shows the invocation of a service we can consider as the dual
of the one presented above. This service is composed of:

A service which receives an employee name and returns its email address;

A service getting an RDF resource (here an Employee Name), an RDF object (here
an email address), an RDF triple pattern and an empty XML document; it returns
an RDF triple;

A CORESE web service receiving an RDF triple, saves it as a new annotation and
loads it into the memory.

RR n° 5663

26 Moussa LO, Fabien GANDON

| 2 S Procass mscimen 1

http:/flocalhost:8080/my Demo/resource/ public/duta/ Corese SB.owl#Corese SB

v

Azaistant
jectiame c Acac
“servicelnput

Dirwcd BOF [Cavese RDF engine version 2.1.1.11

[Jearch : : PosteEmail_outpuz = Patricia, inriafr
an -i Search
CParion e Epart e output in XML

Figure 18. Example of connection from corporate memory to corporate application

r-mn Lo

serviceOurpur
r,uuu Lo#acphin. inria Ic

Service output :
PosteEmail_owrpur = Moussa.Lo@sophiainriafr

Eichier Ediion Affichage Signets Oyis cnnﬁwmn fide
JEEE Qews IR AGS

<xsliparan name='id' />
axsl:paran noves' servicelutput’ /3

Process
tepe/flocalhost:3080/myDemol fpublicidata/C Sl

7nusmn

Trml versione'l 0° encoding-' 180-GUG8-1 70

«xslivariable noses resourceld’s cxslivalue-of select="f1d'/>¢/xsl:variables
exslitenplate smatche' /'3,

‘ ardf 1 RDF sminser 3° wmlngirdfe'Srdf|’ mlnaicos='deosy’ rdf ROF smlne: rdfs'bttp. /fevw vl D(wll?ﬂ?lﬂ?/’d-tdfﬂyﬂtu'&\l‘
Artmlns cea'be s’ > Lnne “htep //wew w3 arg/1999/mhtal’ mina ce //myDenn. orge’
' { e waF 1 1Dt (1 14) :cuse'htbp: /fvvw. incin ffacaciafcoresed’

edfs- heep /s, vl 0cg/G0GD/01 /ede -bchense:

base='ht! !fny\‘wlo org
Exploye :gf e

<c:EnailAddresss axsl: vll-c’a!
i laelects Saervicelutput /e <fe:EnailAddressy
:/c Erployee>
“efrd RO,
<xsliapply-templates/s|
fuslitenplates

hia. incia fed /e Emaalhdd, H

“fzslistyloshonts

Figure 19. Example of connection from corporate application to corporate memory

INRIA

Corporate Semantic Web Services 27

7 Discussion and perspectives

In this report we presented a first experiment in integrating enterprise applications as web ser-
vices in an intranet relying on semantic web and semantic web services frameworks. We chose
to focus on a clearly identified family of scenarios: the integration of enterprise applications in
a knowledge management system.

We have used CORESE, a semantic web search engine as a semantic UDDI registry. This
allowed us to prototype a semantic web portal embedded in the CORESE semantic web server.
The portal offers (i) automatic discovery, (ii) dynamic invocation, (iii) interactive composition
and (iv) discovery of sequences of corporate and public web services.

The following improvements can be considered to enhance the current prototype:

o Improve the presentation of sequences of found services;

o Improve the creation of a composite service : for instance, provide the user with the

ability to add annotations to new service;

e Improve the execution of a composite service: for instance, allow the possibility to re-

place an unavailable service by another.

The main contribution of this experiment is the composition of corporate web services with
knowledge from the corporate memory:

e services inputs types are mapped into queries

e and the semantic search engine, CORESE, is used through a web service to connect

corporate applications with the memory knowledge.

This experiment allowed us to differentiate between needed functionalities and prospective
ones and to identify these layers of the semantic web service stack that we needed first.

A typical question, for instance, is the one of offering "manual vs. semi-automatic vs. fully
automatic composition and invocation of services". In our scenarios, we do need to provide
high-level functionality through dynamic integration. However we have not found ergonomic
ways to describe and decompose service needs to support fully automatic composition. In addi-
tion, such a functionality seems to rely a lot on domain knowledge, and we think that, as
claimed in [25], in many contexts users will want to control the composition process, influenc-
ing the service selection. We found it more realistic to consider for instance the request from
business managers to be able to implement business workflows in flexible (declarative) man-
ners above the classical web services architectures.

A second feedback we got from this experience is an urgent need for standardization and
unification of the different contributions that could be involved in a complete solution. Indeed,
these contributions are growing in number and complexity: WSDL, SOAP, OWL-S, WSMO &
WSML, WSDL-S, WSFL, WSCI, WSCL, XLANG, BPEL4WS, SAML, XACML, etc. We are
witnessing a multiplication of contributions for each and every stage of the life-cycles of web-
services and especially discovery and binding [56][37][12][36][24] and discovery and composi-
tion [25][42][43][21]. There is clearly a need to homogenize the different approaches before the
differences and incompatibilities (even the simply syntactic ones) hamper the foundations of
Semantic Web Services such as interoperability.

Finally we are currently studying the interaction and integration with emerging semantic
web extensions such as: SPARQL query language and protocol and SWRL rule description
language. We also consider the problem of dynamically generating ergonomic user interfaces to
semantic web services: web services are primarily designed for B2B programmatic interactions
but the services or compositions of services are finally called by users through a client. Since
their discovery, composition and invocation are dynamic this requires dynamically generated
ergonomic user interfaces.

RR n° 5663

28 Moussa LO, Fabien GANDON

8 Acknowledgments

We thank AUF for partially supporting this work through the post-doctoral fellowship held by
Moussa LO.

INRIA

Corporate Semantic Web Services 29

9 Bibliography

(1]

(2]

(3]
(4]

[3]
(6]
(7]

(8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

[19]
[20]

[21]

Akkiraju, R., Farrell, J., Miller, J.A., Nagarajan, M., Schmidt M-T., Sheth, A., Verma, K.
Web Service Semantics---WSDL-S, Technical Note, Version 1.0, April 2005,
http://www.alphaworks.ibm.com/g/g.nsf/img/semanticsdocs/$file/wssemantic_annotation.pdf
BEPL4WS, Business Process Execution Language for Web Services, http://www-
130.ibm.com/developerworks/webservices/, 2002.

BPML, Business Process Modeling Language, http://www.bpmi.org, 2004.

Booth D., Haas H., McCabe F., Newcomer E., Champion M., Ferris C., Orchard D., Web
Services Architecture, http://www.w3.0rg/2002/ws/arch/

Bussler, C., Fensel, D., Maedche, A., A Conceptual Architecture for Semantic Web En-
abled Web Services, ACM 2002.

Cabral, L., Domingue, J., Motta, E., Payne, T., Hakimpour, F., Approaches to Semantic
Web Services: An Overview and Comparisons, ESWS’04, 2004.

Cao T., Dieng-Kuntz R., Fi¢s B., An Ontology-Guided Annotation System for Technol-
ogy Monitoring, IADIS International WWW/Internet 2004 Conference, Madrid, Spain, 6-
9 October 2004.

Charif. Y., Sabouret N., An Overview of Semantic Web Services Composition Ap-
proaches, Electronic Notes in Theoretical Computer Science 85 N°. 6, Elsevier, 2005.
Corby, O., Dieng-Kuntz, R., Faron-Zucker, C., Querying the Semantic Web with the
CORESE search engine. In Proc. of the 16th European Conference on Artificial Intelli-
gence (ECAI'2004), Valencia, 22-27 August 2004, IOS Press, p. 705-709.

Corby, O., Dieng-Kuntz, R., Faron-Zucker, C., Gandon, F., Ontology-based Approximate
Query Processing for Searching the Semantic Web with Corese, INRIA Research Report,
July 2005.

Curbera F. et al, Unraveling the Web Services: An Introduction to SOAP, WSDL, and
UDDI, IEEE Internet Computing, vol. 6, n° 2, 2002.

Decker, K, Sycara, K, and Williamson, M. Matchmaking and Brokering, In proc. of the
Second International Conference on Multi-Agent Systems (ICMAS-96), The AAAI Press,
1996.

Dieng-Kuntz, R., Minier, D., Corby, F., Ruzicka, M., Corby, O., Alamarguy, L., Luong,
P.-H. Medical Ontology and Virtual Staff for a Health Network, EKAW?2004, 2004.
Domingue, J., Cabral, L., Hakimpour, F., Sell, D., Motta, E., IRS-III: A Platform and In-
frastructure for Creating WSMO-based Semantic Web Services, Workshop on WSMO
Implementations (WIW 2004), 2004.

Eberhart A., Ad-hoc Invocation of Semantic Web Services, IEEE International Confer-
ence on Web Services, July 2004.

Fensel, D., Bussler, C., The Web Service Modeling Framework WSMF, Electronic
Commerce: Research and Applications, Vol. 1., 2002

Fensel, D., Motta, E., Structured Development of Problem Solving Methods, IEEE Trans-
actions on Knowledge and Data Engineering, 13(6), pp. 913-932, 2001

Gandon, F., Distributed Artificial Intelligence and Knowledge Management: ontologies
and multi-agent systems for a corporate semantic web, PhD Thesis in Informatics, 7th of
November 2002, INRIA and University of Nice - Sophia Antipolis

Gandon, F. and Sadeh, N., Semantic Web Technologies to Reconcile Privacy and Context
Awareness, Web Semantics Journal. Vol. 1, No. 3, 2004.

Golebiowska, J., Dieng, R., Corby, O., Mousseau, Building and Exploiting Ontologies for
an Automobile Project Memory, K-CAP, ACM Press, 52-59, 2001.

Gomez-Perez, A., Gonzalez-Cabero, R., Lama, M., A Framework for Design and Compo-
sition of Semantic Web Services, First International Semantic Web Services Symposium,
AAALI, March 2004.

RR n° 5663

30

Moussa LO, Fabien GANDON

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]
[31]
[32]
[33]

[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Haller A., Cimpian E., Mocan A., Oren E., Bussler C., WSMX - A Semantic Service-
Oriented Architecture, In Proceedings of the International Conference on Web Service
(ICWS 2005). Orlando, Florida, 2005.

Khelif, K., Dieng-Kuntz., R., Ontology-Based Semantic Annotations for Biochip Domain,
KMOM Workshop ECAI2004 , 2004.

Kifer, M., Lara, R., Polleres, A., Zhao, C., Keller, U., Lausen, H., Fensel, D., A Logical
Framework for Web Service Discovery, workshop Semantic Web Services: Preparing to
Meet the World of Business Applications, at The Third International Semantic Web Con-
ference, Hiroshima, 2004.

Kim, J., Gil, Y., Towards Interactive Composition of Semantic Web Services, First Inter-
national Semantic Web Services Symposium, AAAI, March 2004.

KmP, http://www-sop.inria.fr/acacia/soft/kmp.html

Linthicum D. S., Enterprise Application Integration, Addison-Wesley Information Tech-
nology Series 1999, ISBN: 0201615835

Mcllraith, S., Son T. C., Zeng H., Semantic Web Services, IEEE Intelligent Systems,
16(2):46-53, 2001.

Martin, D., Paolucci, M., Mcllraith, S., Burstein, M., McDermott, D., McGuinness, D.,
Parsia, B., Payne, T., Sabou, M., Solanki, M., Srinivasan, N., Sycara, K., Bringing Se-
mantics to Web Services : the OWL-S Approach, SWSWPC’04, LNCS n° 3387, 2004.
METEOR-S: Semantic Web Services and Processes,
http://Isdis.cs.uga.edu/Projects/METEOR-S/.

Milanovic N., Malek M., Current Solutions for Web Service Composition, IEEE Internet
Computing, December 2004.

Motta, E., Domingue, J., Cabral, L., Gaspari, M., IRS-II : A Framework and Infrastruc-
ture for Semantic Web Services, ISWC’03, 2003.

OASIS, UDDI Specification, http://www.uddi.org

OWL-S Coalition, OWL-S Specification, http://www.daml.org/services/owl-s/1.1/, 2004.
Qusay H. M., Service-Oriented Architecture (SOA) and Web Services: The Road to En-
terprise Application Integration (EAI), April 2005,
http://java.sun.com/developer/technical Articles/'WebServices/soa/

Paolucci, M,, Kawamura, T., Payne, T. R, Sycara, K.; Semantic Matching of Web Ser-
vices Capabilities, In Proc. of the International Semantic Web Conference (ISWC’02),
Springer Verlag, Sardegna, Italy, June 2002.

Paolucci, M., Soudry, J., Srinivasan, N., Sycara, K., A Broker for OWL-S Web Services,
First International Semantic Web Services Symposium, AAAI, March 2004,

Peer J., A PDDL Based Tool for Automatic Web Service Composition, Workshop on
Principles and Practice of Semantic Web Reasoning (PPSWR), September 2004, LNCS
3208.

Rao J., SuX., A Survey of Automated Web Service Composition Methods, First Inter-
national Workshop on Semantic Web Services and Web Process Composition
(SWSWPC), LNCS 3387, July 2004.

Sell D., et al, Interactive Composition of WSMO-based Semantic Web Services in IRS-
111, First AKT Workshop on Semantic Web Services (AKT-SWS), December 2004.
Semantic Web Enabled Web Services Project, http://swws.semanticweb.org

Sirin, E., Parsia, B., Planning for Semantic Web Services, Workshop Semantic Web Ser-
vices: Preparing to Meet the World of Business Applications, at The Third International
Semantic Web Conference, Hiroshima, 2004.

Sirin, E., Parsia, B., Hendler, J., Composition-driven Filtering and Selection of Semantic
Web Services, First International Semantic Web Services Symposium, AAAI, March
2004,

W3C, SPARQL, http://www.w3.org/TR/rdf-sparql-query/

INRIA

Corporate Semantic Web Services 31

[45]
[46]
[47]
[48]
[49]
[50]
[51]
[52]

[53]
[54]

[55]

[56]

Srinivasan N., Paolucci M., Sycara K., An Efficient Algorithm for OWL-S Based Seman-
tic Search UDDI, SWSWPC’04, LNCS n° 3387, 2004.

Srivastava. B., Koehler J., Web Service Composition — Current Solutions and Open Prob-
lems, ICAPS’03, 2003.

W3C, SOAP Recommandation, http://www.w3.org/TR/SOAP

W3C, WSDL Recommandation, http://www.w3.org/TR/WSDL

W3C, WSCI, Web Service Choreography Interface (WSCI),
http://www.w3.org/TR/wsci/, 2002

W3C, WSCL, Web Services Conversation Language,
http://www.w3.0rg/TR/2002/NOTE-wscl10-20020314/, 2002

WSFL, Web Service Flow Language, http://www-
3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf, IBM, 2001.

Web service, From Wikipedia, http://en.wikipedia.org/wiki/Web_Service, 11 of August
2005.

WSML, Web Service Modeling Language, http://www.wsmo.org/wsml/

WSMO working group, Web Service modeling Language,
http://www.wsmo.org/2004/d2/

XLANG, Web Services for Business Process Design, http://www.ebpml.org/xlang.htm,
Microsoft, 2001.

Zein, O. K., Kermarrec, Y., An Approach for Describing/Discovering Services and for
Adapting Them to the Needs of Users in Distributed Systems, First International Semantic
Web Services Symposium, AAAI, March 2004.

RR n° 5663

