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Estimation du coefficient de queue de type Weibull basée
sur une combinaison linéaire des plus grandes
statistiques d’ordre

Résumé : Nous présentons une nouvelle famille d’estimateurs du coefficient de queue
de type Weibull. Ce paramétre est I’indice de variation réguliére de ’inverse du taux de
panne. Nos estimateurs sont construits & partir d’une combinaison linéaire du logarithme
des espacements entre les plus grandes statistiques d’ordre. La normalité asymptotique de ce
type d’estimateur est établie et illustrée sur deux cas particuliers d’estimateurs choisis dans
cette famille. Les performances des estimateurs sont présentées sur quelques simulations.

Mots-clés : Coeflicient de queue de type Weibull, valeurs extrémes, statistiques d’ordre,
variations réguliéres.



Estimation of the Weibull tail-coefficient 3

1 Introduction

Let X, Xo,..., X, be a sequence of independent and identically distributed random vari-
ables with cumulative distribution function F'. We address the problem of estimating the
Weibull tail-coefficient 8 > 0 defined when the distribution tail satisfies

(A1) 1 - F(2) = exp(—H()), x > 30 > 0, H(t) = inf{z, H(z) >t} = t%4(¢),

where £ is a slowly varying function i.e.
L(Ax)/l(x) — 1 as x — oo for all A > 0.

The inverse failure rate function H* is said to be regularly varying at infinity with index 6
and this property is denoted by H* € Ry. As a comparison, Pareto type distributions sat-
isty (1/(1 — F))* € R4, and v > 0 is the so-called extreme value index. We refer to [7] for
more information on regular variation theory. We also assume a second order condition on £:

(A.2) There exist p < 0 and b(z) — 0 such that uniformly locally on A > 1

log (8;()\;))) ~ b(z)K,(\), when z — oo,

with K,(A) = [ u~'du.

1

It can be shown [11] that necessarily |b] € R,. The second order parameter p < 0 tunes the
rate of convergence of £(Az)/¢(x) to 1. The closer p is to 0, the slower is the convergence.
Condition (A.2) is the cornerstone in all proofs of asymptotic normality for extreme value
estimators. It is used in [14, 13, 3] to prove the asymptotic normality of estimators of the
extreme value index 7.

When /£ is a constant function, this problems reduce to estimating the shape parame-
ter of a Weibull distribution. In this context, simple and efficient methods exist, see for
instance [2], Chapter 4 for a review on this topic. Distributions with non-constant slowly
varying functions include for instance normal, gamma and extended Weibull distributions
(see Section 3 for their definitions). Such distributions are of great use to model large claims
in non-life insurance [5]. Dedicated estimation methods have been proposed since the rele-
vant information on the Weibull tail-coefficient is only contained in the extreme upper part
of the sample. A first direction was investigated in [6] where an estimator based on the
record values is proposed. Another family of approaches [8, 4, 12] consists of using the k,
upper order statistics X,_g,+1,n < ... < X, where (k,,) is an intermediate sequence of
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4 Gardes & Girard

integers such that 1 < k,, < n. Our family of estimators is
kn—1
Z az’,n(log(ani+1,n) - log(ankn+1,n))
én(()é) = =1 B 1 ; Oin = W(Z/kn) + Ei,na (1)

> in(log, (n/) — logy (n/kn))

where we have defined log, (¢t) = log(log(t)), ¢ > 1, and €;,, ¢ = 1,...,k, — 1 is a non-
random sequence. W : [0,1] — R is a smooth score function, verifying

(A.8) W has a continuous derivative W' on (0,1),

(A.4) There exist M > 0,0 < g < 1/2 and p < 1 such that, for all z € (0,1): |[W(z)| <
Mx=7 and W'(z) < Mz=P~9.

Let us highlight that (A.3) and (A.4) are classical assumptions when studying linear
combinations of order statistics (see for instance [17]). We refer to [9, 19] for similar works
in the context of the estimation of the extreme-value index.

In Section 2 we state the asymptotic normality of these estimators. Some examples of
distributions satisfying (A.1) and (A.2) are given in Section 3. In Section 4, we provide
two examples of weights a verifying (A.3) and (A.4). The first one leads to the estimator
of 6 proposed by Girard [12]. The second one gives rise to a new estimator for Weibull
tail-distributions. The behavior of these two estimators is investigated on finite sample
situations in Section 5. Finally, proofs are given in Section 6.

2 Asymptotic normality

In this section, we state our main result on the limiting behavior of én(a). Its proof is

postponed to Section 6. In the sequel, we note |[¢]|n,c0 = _max l€s,n|. We also define
1
Ww) = [ We)log(1/a)da,
0
1 1 . 1—
GQ(W) — / / W(ZU)W(y) mln(may)( ma‘x(xay))dxdy’
o Jo Ty
a(W)
c,W) = 6 :
O =

INRIA



Estimation of the Weibull tail-coefficient 5

Theorem 1 Suppose (A.1)—(A.4) hold. Then
kY2(0n(c) — 0) S N(0,0%(0, W),
for any sequence (ky,) satisfying k, — 0o, kn/n — 0 and
ky/? max{b(log(n/kn)), 1/ 1og(n/kn), |lelln,00} = O- (2)

Some examples of application of this result are given in Section 4, Corollary 1 and Corol-
lary 2.

3 Some examples of Weibull tail-distributions

In this section, we give some examples of distributions satisfying assumptions (A.1) and
(A.2).

Gaussian distribution N (u,0%), ¢ > 0. From [10], Table 3.4.4, we have H* (z) =
z/24(x) and an asymptotic expansion of the slowly varying function is given by:

o logz

g(.’L’) = 21/20' — W

+ O(1/x).
Therefore § = 1/2, p = —1 and b(z) = log(x)/(4x).

Gamma distribution I'(a, ), @,8 > 0. We use the following parameterization of the
density

[¢]

@) = L™ e (=50).
From [10], Table 3.4.4, we obtain H* (z) = z{(x) with

1 n a—1llogz
B B
We thus have # =1, p = —1 and b(z) = (1 — a) log(z)/z.

(z) = +0(1/2).

Weibull distribution W(a, A), a, A > 0. The inverse failure rate function is H< (z) =
Az!/® and then £(z) = A for all > 0. Therefore b(x) = 0 and we use the usual convention
p = —00.

RR n° 5571



6 Gardes & Girard

Extended Weibull distribution W (a,8), a € (0,1), € R This distribution is
introduced in [15]. Its distribution tail is given by:

1— F(z) = r(z) exp(—z®),

where r € Rg. It follows that H* (z) = z'/*4(z) and the following asymptotic expansion
holds:

Uz) =1+ %10593 +0(1/2).

It is easily seen that § = 1/a, p = —1 and b(z) = —Blog(z)/(a’z). In [15], it is remarked
that this model encompasses the normal and gamma distributions.

The parameters 6 and p as well as the auxiliary function b(z) associated to these distributions
are summarized in Table 1.

4 Some examples of estimators

First, we show in Paragraph 4.1, that our family of estimators (1) encompasses the Hill type
estimator éﬁ proposed in [12]. Moreover, it will appear in Corollary 1 that the asymptotic
normality of éf stated in [12], Theorem 2 is just a consequence of our main result Theorem 1.
Second, in Paragraph 4.2, we use the framework of Section 1 and Section 2 to exhibit a
new estimator of the Weibull tail-coefficient and to establish its asymptotic normality in
Corollary 2.

4.1 Girard estimator

Girard [12] proposes the following estimator of the Weibull tail-coefficient:

kn—1
> (og(Xn—it1,n) = 108(Xn—, 1,n))
NG _ i=1
oG = =L - ®)
Z (log, (n/t) — log, (n/kn))
=1
Clearly, éﬁ is a particular case of én(a) with o, = 1 for all i = 1,...,k, — 1. Thus, we

have W(z) =1for all z € [0,1] and &;, =0 for all s = 1,...,k,. The asymptotic normality
of 69 is then a direct consequence of Theorem 1. Remarking that in this case o2(W) = 1
and u(W) =1, yields the following result,

Corollary 1 Suppose (A.1) and (A.2) hold. Then,

kY265 - 0) 5 N (0,6%),

INRIA



Estimation of the Weibull tail-coefficient 7

for any sequence (k) satisfying kn, — o0, kn/n — 0 and
kL/? max{b(log(n/kn)),1/ log(n/kn)} = 0.

which is exactly Theorem 2 in [12].

4.2 Zipf estimator for Weibull tail-distribution

We propose a new estimator of the Weibull tail-coefficient based on a quantile plot (QQ-
plot) adapted to our situation. It consists of drawing the pairs (log, (n/i),log (Xn—it+1,n))
fori=1,...,n— 1. The resulting graph should be approximatively linear (with slope 8), at
least for the large values of i. Thus, we introduce 675 the least square estimator of 8 based
on the k,, largest observations:

kn—1
Z (logy (n/i) — Tn) log(Xn—i+1,n)
ég — z:kln_1 , (4)
Z (logy (n/i) — o) log, (n/1)

where
kn—1
1

Tn = — ; log, (n/i) .

This estimator is similar to the Zipf estimator for the extreme value index proposed by
Kratz and Resnick [16] and Schultze and Steinebach [18]. One can prove that §Z belongs to
family (1) with a score function W (z) = —(log(z) + 1) and thus apply Theorem 1 to obtain
the asymptotic normality of 6Z:

Corollary 2 Suppose (A.1) and (A.2) hold. Then,
k267 — 6) 4 N(0,262),
for any sequence (ky,) satisfying k., — 00, kn/n — 0 and
ky/? max{b(log(n/kn)),10g” (kn)/ log(n/kn)} = 0. (5)

Its proof is given in Section 6.

5 Numerical experiments

The finite sample performance of the estimators é,ZL and é,(f are investigated on 5 different
distributions: I'(0.5,1), I'(1.5,1), A'(1.2,1), W(2.5,2.5) and W(0.4,0.4). We limit ourselves

RR n° 5571



8 Gardes & Girard

to these two estimators, since it is shown in [12] that ég gives better results than the other
approaches [8, 4]. In each case, N = 200 samples (X, ;)i=1,..n of size n = 500 were
simulated. On each sample (X, ;), the estimates égz(kn) and éf ;(kn) are computed for
kn = 2,...,250. Finally, the Hill-type plots are built by drawing the points

1 N 1 N
- AZ. - AG‘
(kn, ~ ;0"”(k")> and (kn, ~ ;Hn,z(kn)> .

We also present the associated MSE (mean square error) plots obtained by plotting the

points
1SN /sy 2 1 g 2
(km N ;:1 <0n,i(kn) - ‘9) ) and <kn7 N ;:1 (on,i(kn) - ‘9) ) .

The results are presented on figures 1-5. It appears that for both estimates the sign of
the bias is driven by function b in (A.2). It is appealing that, in all plots, the graphs
obtained with 67 are smoother than these associated with §¢, making the choice of k,
less difficult in practice. The results obtained with the two estimators are very similar on
Weibull distributions (figure 4 and figure 5), especially in terms of mean square error. For
other Gamma and Gaussian distributions (figures 1-3), 95 gives better results in terms of
bias and mean square error.

6 Proofs

For the sake of simplicity, in the following, we note k for k,. We first quote a lemma
providing classical results on the asymptotic behavior of exponential order statistics (see
[12], Lemma 1 for a detailed proof).

Lemma 1 Let {Eip,...,Enn} be the order statistics generated by n independent standard
exponential random variables. Suppose k — oo and k/n — 0. Then,

() En_iy1.n/log(n/i) 5 1, uniformly oni=1,...,k, and

(i) K2 (B py1,n —log(n/k)) 3 N(0,1).

In order to be self-contained, we quote a lemma which is quite useful when dealing with
linear combinations of order statistics. It summarized some results on L-statistics established
in [17].

Lemma 2 Let Y1, < ... <Y, , be order statistics associated to n independent random
variables with common distribution function F. Let J be a continuous function defined on
[0,1]. If for somer >2,8>2,6 >0 and M > 0,

|J(z)] < Ma'/m=1/2(1 — g)Y/5=Y2 for all z € (0,1),

INRIA



Estimation of the Weibull tail-coefficient 9

and,
|J'(@)| < Mg=3/241/r+8(1 — g)=3/2+1/s%6

and if fol /71— z)Y/*dF~1(z) < oo, then,
e (L~ Yy ) 2
n <n;J(n+1) Yin u) = N(0,0%),
where p = fol J(z)F~Y(x)dx and 0® = fol fol J(z)J (y)(min(z,y) — zy)dF~1(z)dF~1(y).

The proofs of the following lemmas are postponed to Appendix. The next lemma presents
an expansion of 0, (a).

Lemma 3 Suppose k — oo and k/n — 0. Under (A.1) and (A.2), the following expansions
hold:
4 T 4 T80 + (14 0p(1)b(Eppy1,2) T

where we have defined
=
1) _ . ) —
T = ] ; ain(log, (n/i) —logy (n/k)),
=
T® = —) Z i n(log(Xn—it1,n) — 10g(Xn—k+1,n)),
i=1
k—1
1 F; . _
T(S’p) = — —i nK 1 _ ikl <0
n k—l;ak s p( +En—k+1,n y PSU,

and where

o En_kt1,n s the (n — k + 1)th order statistics associated to n independent standard
exponential variables.

o {Fik_1,-..,Fx_1,,_1} are ordered statistics independent from E,,_i41,, and generated
by k — 1 independent standard exponential variables.

The following lemma provides an expansion of
=
=T > (log, (n/i) —log, (n/k)),

i=1

which frequently appears in the proofs.

RR n° 5571



10 Gardes & Girard

Lemma 4 If k — oo and k/n — 0 as n — oo then,

s (120 (52 o0 ste)

The next lemmas are dedicated to the study of the different terms appearing in Lemma 3.
First, we focus on the non-random term T,sl).

Lemma 5 Suppose k — oo and k/n — 0. Under (A.1)—(A.4), the following expansion

hold:
w _ #W) -1 1
T, = Tog(n/F) {1 + 0 (log(k)k" ) + O (71% (n/k)) +0 (||5||n700)} .

Second, we focus on the random term T,§3”’ ).

Lemma 6 Suppose k — oo and k/n — 0. Under (A.1)—(A.4), the following expansion
hold for all p < 0:

(3,0) 4 _u() { o(W), 172 (#) }
" P 1+ M(W)k & +0p Tog (/%) +Op (|lelln,c0) ¢ 5

where &, 5 N(0,1).

We are now in position to prove Theorem 1 and Corollary 2.

Proof of Theorem 1. From Lemma 3, we have

1/2/4 d 1/2 TT(L3’O) 1/2 T(b3’p)
k/2(0n(a) —0) L 6k oM +k b(En_kH,n)W(l-l-oP(l))

= T 474D,

Lemma 5 and Lemma 6 yield for all p < 0:

T(3:0) d log(n/k) {1 +
TT(LI) En—k+1,n

Q

o(W)

k*l/Z n
w)

1 -1,
+ Op (W) + Op (”EHn,oo) +0 (k 1 g(k))} .

Lemma 1(ii) entails that

log(n/k) §1+ P( —1/2 >
En ki1 log(n/k) )"

INRIA



Estimation of the Weibull tail-coefficient 11

Consequently, we have

TP 4 (W), 1
n = L S—— /2 - q—1
Tr(ll) 1+ ,U(W) k 5" +O0p <log (n/k)) +Op (”E“n,oo) +0 (k IOg(k)) ) (6)
and thus
/2
(41 4 a(W) k' 1/2 q—1/2
T O+ O \iog iy ) +OF (k ||e||n,oo) +0 (k log(k))

= N(0,0%(6,W)),
with (2) and since ¢ < 1/2. Equation (6) also implies that

T7S.4’2) g

EY20(E, j10)(1 +0p(1))
L kY/2b(log(n/k))(1 + op(1))
£ o.

with (2) and after remarking that b(E,_k+1,,)/b(log(n/k)) converges to 1 in probability,
since Ep_pt1,n/ log(n/k) converges to 1 in probability (see Lemma 1(i)) and |b| € R,. The
result is proved. [

Proof of Corollary 2. First remark that (4) can be rewritten as

kn—1

Z aiZ,n(IOg(Xn—i-l-l,n) —log(Xn—k+1,n))
é‘g _ =1

kn—1 ’

>~ afl,(10g, (n/i) ~logy (n/F))

where
af, = log(n/ky) (logy (n/i) =)
_ log(k/1) \ _
= log(n/k) (log (1 + Toa(n/k) Tn
_ . log?(k)
_ : log” (k) log(k)
= log(k/i)—14+0 <log(n/k) +0 A ,
uniformly on ¢ = 1,...,k with Lemma 4. Therefore, we have afn = W(i/k) + €in with

W(z) = —(log(z) + 1) and ¢;,, = O(log®(k)/log(n/k)) + O(log(k)/k), uniformly on i =

RR n® 5571



12 Gardes & Girard

1,...,k. Then, it is easy to check that W satisfies conditions (A.3) and (A.4) and that
condition (2) reduces to condition (5). We conclude the proof by remarking that

w(W) = /0 log(z)(log(z) + 1)dz =1

and

min(z,y)(1 — max(z,y))
Ty

(W) = /0 /0 (log(z) + 1)(log(y) + 1) dody = 2.

INRIA
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Appendix: proof of lemmas

In the sequel, we note J(z) = W(1 —z) for z € (0,1).

Proof of Lemma 3. Let us consider

k—1
1
T = 2 0on 108 (Xnihr.0) 108Xk,
andlet Ey p, ..., E, , be ordered statistics generated by n independent standard exponential

random variables. Under (A.1), we have

k—1

1
TP £ 3" ain(log H (Bnit1,n) = log H (Bn_p41,n))
k-1 P
p 1 = E,_; (E )
L 9g— - 1o n—z—i—l,n) a: - 1o ( n—i+1,n >
T 2 5= _12 log (i)
Define 2, = Ep_pt1,n and A = Ep_ijt1,n/En—gy1,n- It is clear, in view of Lemma 1(i)

that z,, 5 % and Xin 51 Thus, (A.2) yields that uniformly ini=1,...,k— 1:

= £
T2 4 a—k 1Zai,nlog <7n_z+1’">

im1 En—k—i—l n
+ 1+ 0p(1))0(Ep_ks1m) Zaz n ("7“) .
n k+1,n
The Rényi representation of the Exp(1) ordered statistics ([1], p. 72) yields
E,_; Fr_;in_
{ nz+1n} i{1+ kz,kl} 7 (7)
En_ki1,n =1,....,k—1 En_ki1,n i=1,...,k—1
where {F1 k_1,...,Fr_1,k—1} are ordered statistics independent from E,,_j1 , and gener-
ated by k — 1 independent standard exponential variables {F,...,Fr_1}. Therefore,
k-1
1 F;
e 4 ainlo (1 N M)
" Z & En k+1,n

1 k= Foip
+ (1 + Op(]-))b(En—k:—i-l,n)m Zai,nKp (1 + M) ]
i=1

En—k+1,n

Changing i to k — 4 in the above formula and remarking that Ko(z) = log(z) conclude the
proof. ]
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Proof of Lemma 4. We have
Tn = ﬁ§10g<1+%>
= og n/k Zlog k/i)
- (e () - )
= L o0

log(n/k) ™

The inequality —z%/2 < log(l +z) —x <0, z > 0 yields:

-2 < _ 1
Il < 21og® n/k Zlog i/k) = (logz(n/k)>’

since L

- 1

207,/ 2 _
1 ;log (k/7) —>/0 log”(z)dx

as k — oo. Furthermore, remark that

1 ) 1 k!

) = 1 —|= log ( — | -
Tn k—10g<Hk> k—1°g<kk>

Using Stirling’s formula:

leads to

1 1
M—-_- (= - - _
T ] (2 log(27k) k+0(1)> 1+0 ( ok

Collecting (8) and (9) concludes the proof.

log(k)> _

INRIA
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Proof of Lemma 5.

k—1

Since o, = W(i/k) + €i,n, we have

log(k/1)
ZW i/k)log <1+1 o(n /k))

T?’S,l’l) + Tr(blvz) )

T =

The first term can be expanded as

=
+ 1 izzlsi,nlog (1+

1
Tt ODL _IZW i/k)log(k/i)
1= log(k/1) log(k/1)
* e e s (1 ) - et )
T”(vl,l’l) 1,1,2
= log(n/k) I,

Let us define H(z) = W(z)log(1l/z), z € (0,1).

compared to p(W) by:

T — (W) <

./k

_ kzz

sup
z/k<z<(z+1)/k

Then, the Riemann sum

T(lvlal)

k=1 .(i4+1)/k 1/k
Z/ |H(z/k)—H(a:)|da:+/O |H (z)|dx + O(1/k)

1/k
|H'(z)] +/0 |H (z)|dz + O(1/k)

= D 4 TR 4 O(1/k).

log(k /i)
log(n/k)

can be

Assumption (A.4) implies that there exists M’ > 0 such that |H'(z)] < M'z=%"1 for all

€ (0,1] and thus,

k—1 .\ —q—1
T(lvlylil) < %’ 1 !
" = a2 2 \k

MI

- ' —q—1 q| — 0( )
T (/l/kt d“’“)‘{oaog( K)/H)

if ¢ #0,
if g=0.

Assumption (A.4) also yields |H(z)| < Mz~ ?log(1/z) for all z € (0,1] and thus,

|T7(L171’1’2)| S

1/k
M/ x~%1og(1/z)dz
0

= O (k% 'log(k)) .

RR n° 5571
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Collecting (10) and (11) implies that
7MY = p(W) + Ok~ log(k)). (12)
Besides, the well-known inequality |log(1 + z) — z| < 2%/2, z > 0 and (A.4) lead to

k-1

1,1,2 1 . log(k /1) log(k /1)
T < Fjgywwwk%@+mmm)—mmm
k—1
9 log];/fn/k) k 1 1 Z(i/k)_q 10g2 (k/4)
1
:O(m%wﬁ’ a3)

since
1 k—1 1
— > (i/k)""log? (k/i) — / z %log?(1/x)dz < +o0,
= 0

)

when k — co. Finally, T is bounded by

k—1 .
1 log(k/7)
T(1’2) < n,007 1 E 1 1 T N ] n,ooTn
llelln,00
0 ey (4
by Lemma 4. Collecting (12), (13) and (14) gives the result. [ |

Proof of Lemma 6. Since ag—;n = J(i/k) + €x—i,n, We have,

k—1
TG0 — b Z J(i/k)K, 1+ _Fikr
n k—1 P . E, ktin

= P
- oK1 ek
+ k o 1 ;Ek vme ( + En_k+17n

=: Tﬂ(,3,p,1) + TT(L3,P,2)‘

INRIA
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The first term can be expanded as

1 1 k—1
T N J/K) i
" En—k+1,nk—1; (/) i,k—1
k—1
1 ; Fir— Fi g1
P K,1 > _ s
] ;J(z/k) { p ( + En_k+1m> Brkrin
3,p,1,1
=: M+T(3,p,l,2)-
En—k—l—l,n n

Now, (A.3) and (A.4) imply that the linear combination of exponential order statistics
TT(L3”’ 1) gatisfies the conditions of Lemma 2 and thus is asymptotically Gaussian. More

precisely, we have
T7(L3,Pa171) é /J/(W) + U(W)k'il/2£nu (15)

where &, & N(0,1),

=
=
I

/0 W (z)log(1/z)dx and

min(z,y)(1 — max(z,y))
Ty

, ~ 1 p1
occ(W) = /O/OW(Q:)W(y) dzdy.

,0,1,2)

The upper bound on T,(L3 is obtained by remarking that for all z > 0,

1—
K,(1+2)—a| < Tpgﬁ.

It follows that

1 k—1 F F
T(3,p,1,2) < J Z k ‘K (1 + Z,k—l ) _ ’L,k—l
" - k -1 ; | ( / )| g En7k+1,n En7k+1,n
k—1
1-p 1 1 _
< | TG/ k) F—y-
2 EfL_HLnk—l; k=1

Now, when k£ — o0,
= £ »
— k)| F2,_, = Op(1) and —n=k+ln B4
k_lizzl|‘](7’/k)| i,k—1 OP( ) and log(n/k) =L

by Lemma 1(i) and Lemma 2. Thus

1 1
T(37p7172)= O ( )7 16
n Fn i \log (n/F) (16)
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and then collecting (15) and (16),

7@ - 1 (p(W) +o(W)k~1/26, + Op (W)) .

En—k+1,n

Similarly, T>*"? is bounded by

T(S,P,Z) < € noo K <1+ zk 1 )
LoD < el 12 o

k—1
< lellnor Z E’Hl
n
k—1
i el 1
& _l®lmoo - E.
En—k:—i—l,nk_]-; !
L 0p (llnee)
~ el
Enfk—f—ln el

by the law of large numbers. Collecting (17) and (18) gives the result.

(17)
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9 b(z) P
llogz
N(u,0?) 1/2 iz -1
TBa#l) | 1 |(1- a)loix -1
W(a, \) 1/a 0 —00
EW(a,8#0) | 1/a —gloi”’" -1

Table 1: Parameters 6, p and the function b(z) associated to some usual distributions
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(a) Mean as a function of k,
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(b) Mean square error as a function of k.

Figure 1: Comparison of estimates 6Z (solid line) and S (dashed line) for the I'(0.5,1)
distribution. In (a), the straight line is the true value of 6.
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(a) Mean as a function of k,
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(b) Mean square error as a function of k.

Figure 2: Comparison of estimates 6Z (solid line) and ¢ (dashed line) for the I'(1.5,1)
distribution. In (a), the straight line is the true value of 6.
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(a) Mean as a function of k,
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(b) Mean square error as a function of k.

Figure 3: Comparison of estimates 6Z (solid line) and §% (dashed line) for the AV/(1.2,1)
distribution. In (a), the straight line is the true value of 6.
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(a) Mean as a function of k,
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(b) Mean square error as a function of k.

Figure 4: Comparison of estimates 82 (solid line) and 6¢ (dashed line) for the W(2.5,2.5)
distribution. In (a), the straight line is the true value of 6.
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(a) Mean as a function of k,
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(b) Mean square error as a function of k.

Figure 5: Comparison of estimates 6Z (solid line) and §S (dashed line) for the W(0.4,0.4)
distribution. In (a), the straight line is the true value of 6.
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