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Résumé : Dans ce rapport de recherche, nous nous intéressons a la décomposition de ré-
seaux urbains de grande taille en sous réseaux de taille limitée. Nous cherchons & minimiser
les connexions entre sous réseaux. En d’autres termes, nous cherchons & minimiser le nombre
de noeuds situés a la frontiére entre sous réseaux.

Ce travail s’intégre dans une démarche qui a pour but de fournir aux conducteurs de véhi-
cules automobiles un support qui leur permet de trouver le chemin le plus rapide entre deux
localisations données.

Deux algorithmes notés RP-1 et RP-2 sont présentés dans ce qui suit. Dans chacun de ces al-
gorithmes, chaque noeud constitue initialement un sous réseau. Dans le premier algorithme,
deux sous réseaux sont agrégés a chaque pas. Les deux sous réseaux choisis sont ceux qui
conduisent au sous réseau de densité minimale. La densité d’un sous réseau est le quotient
du nombre de noeuds situés sur la frontiére par le nombre de noeuds du sous réseau. Dans
le second algorithme, nous choisissons le sous réseau de densité maximale et nous lui agré-
geons le sous réseau densité maximale qui lui est connecté. Nous poursuivons le processus
jusqu’a atteindre la taille maximale acceptée, puis nous recommengons le processus jusqu’a
épuisement des noeuds. Dans le second algorithme, I'intensité est définie comme le rapport
entre le nombre de connexions entre les sous réseaux et le nombre de noeuds dans le sous
réseau agrégé.

Ces deux algorithmes sont ensuite comparés, puis appliqués a un vaste réseau de la Ville de
Paris.

Mots-clés :  Flux du trafic, Décomposition d’un graphe, Temps de transport, Chemin le
plus rapide

* INRIA Rocquencourt, Project IMARA, domaine de Voluceau, B.P. 105, 78153 Le Chesnay Cedex,
France

T INRIA Rocquencourt, Project IMARA, domaine de Voluceau, B.P. 105, 78153 Le Chesnay Cedex,France

1 INRIA / SAGEP, Université de Metz, Ile du Saulcy, 57000 Metz, France

Unité de recherche INRIA Rocquencourt

Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex (France)
Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30



Decomposition of large scale urban networks

Abstract: The research report presents an approach for decomposition of large scale urban
networks into sub-networks of limited size with very few interconnections between them. In
other words, we are trying to minimize the number of boundary nodes.

The objective behind this work is to develop an aid for drivers to find out the fastest path
between an origin and a destination on the network. Two algorithms entitled ‘RP-1" and
‘RP-2’ have been proposed in this paper. Initially, each sub-network consists of a single
node, therefore the number of sub-networks is equal to the number of nodes.

In the algorithm RP-1, at each iteration we combine two connected sub-networks whose
combination leads to the sub-network of minimum density. The density of a sub-network
is defined as the number of externally connected nodes of a sub-network divided by its
cardinality.

In algorithm RP-2, we select the sub-network of highest density and we combine it with
the connected sub-network of highest density. The difference between RP-1 and RP-2 is
that RP-1 leads to minimization of minimum density at each step whereas RP-2 leads to
minimization of maximum density at each step. Note that the number of nodes in a sub-
network never exceed a predefined value provided by the user. Finally, these algorithms are
compared and tested by application on a part of Paris Network.

Key-words: Traffic flow , Graph partitioning, Travel Time, Fastest Path
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1 Introduction

Graph Partitioning Algorithms have been used for a long time to divide a graph, network
or a system into a collection of smaller parts or components. The objective is to simplify the
system by breaking a large system into sub-systems so that they can be handled and imple-
mented separately. The graph partitioning problem is known to be NP-complete. Therefore,
in general it is not possible to compute optimal partitioning for graphs of interesting size
in a reasonable amount of time. This fact, combined with the importance of the problem,
has led to the development of several heuristic approaches. These can be classified as either
geometric, combinatorial, spectral or multilevel methods.

Geometric techniques (1,2,3,4,5,6,7) compute partitions solely on the basis of the coordinate
information of the nodes. They attempt to group together nodes that are spatially close to
each other. For e.g. Recursive Coordinate Bisection (RCB) also referred to as Coordinate
Nested Dissection (CND) is a recursive bisection scheme that performs partitioning in a way
such that the number of boundary nodes among the sub-networks are minimized. This is
achieved by splitting the mesh in half normal to its longest dimension. e.g. normal to the
x-axis. An improvement in partitions obtained from the CND scheme was noticed by using
Recursive Inertial Bisection (RIB). The RIB scheme improves upon the CND scheme by
finding the inertial axis of the mesh (not necessarily normal to x, y, or z axes) and then
bisecting along a line orthogonal to inertial axis. Figure 1 illustrates the RIB approach.
Another kind of techniques are space filling curves. The curves are continuous curves that
completely fill up higher dimensional spaces such as squares or cubes. A number of such
curves [21] have been defined that fill up space in a locality-preserving way. These produce
orderings of the mesh elements with the desired characteristic that the elements that are
near to each other in space are likely to be ordered near to each other as well. After the
ordering is computed, the ordered list of mesh elements is split into k parts resulting in k
subdomains. Figure 2 illustrates the space-filling curves method.

The combinatorial approach (8,9,10,11,12) attempts to group together highly connected ver-
tices regardless of location in space. Two well known schemes are Levelized Nested Dissection
(LND) and Kernighan-Lin (KL) / Fiduccia-Mattheyses (FM) Algorithm. In Levelized Nes-
ted Dissection, an initial vertex is chosen and assigned to level 0. All vertices adjacent to
the initial vertex are assigned to level 1. All vertices adjacent to the selected vertices are
assigned to the next level. This continues until half of the vertex weight is in the group of
selected vertices. The KL / FM algorithm takes as an input a graph that has been par-
titioned (sub-optimally) and improves the partition while maintaining load balance of the
partitions obtained. The idea in the KL algorithm is to repeatedly find a pair of vertices,
one from each sub-domain, and swap their sub-domains. The FM algorithm moves a single
vertex at a time. Both algorithms use gain to make decisions regarding the vertices to move,
where the gain is the amount by which the edge-cut will decrease if the vertex is moved to
the other sub-domain. Figure 3 illustrates the Kernighan Lin method.

Another method of solving the bisection problem is to formulate it as the optimization of a
discrete quadratic function. A class of graph partitioning methods called spectral methods
(13,14,15), relax this discrete optimization problem by transforming it into a continuous one.

RR n® 5473
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Edge cut:5

Fia. 3 — Kernighan-Lin Method

The minimization of the relaxed problem is then solved by computing the second eigenvector
of the discrete Laplacian of the graph. The first step of this algorithm is to obtain the Lapla-
cian matrix of the graph. The Laplacian matrix LG of the graph is = A - D (the adjacency
matrix - the degree matrix). The second step is to compute the second eigenvector (Fiedler
vector) of LG . The Fiedler vector associates a value with each vertex and this value is used
later to order the vertices and in the third step the list is split in half. Figure 4 illustrates
spectral partitioning approach.

Recently, a new class of partitioning algorithms have been developed based on the multi-
level paradigm (16,17,18,19,20). This paradigm consists of three phases : graph coarsening,
initial partitioning, and multilevel refinement. In the graph coarsening phase, a series of
graphs is constructed by collapsing together selected vertices of the input graph in order to
form a related coarser graph. This newly constructed graph then acts as the input graph for
another round of graph coarsening, and so on, until a sufficiently small graph is obtained.
Computation of the initial bisection is performed on the coarsest (and hence smallest) of
these graphs, and so is very fast. Finally, partition refinement is performed on each level
graph, from the coarsest to the finest (i.e., original graph) using a KL/FM-type algorithm.
Figure 5 presents the multilevel partitioning method.

The partitioning algorithms that we are going to present in this paper can be classified into
the combinatorial algorithms category. The objective is to decompose an urban network into
sub-networks of limited size such that the number of connections among the sub-networks
is minimized. In other words, the traffic flow between the sub-networks is reduced.

Note that the decomposition of sub-networks presented in this paper is used for developing
a route guidance system that aids drivers to find out the fastest paths between a given

RR n® 5473
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origin-destination paper in the following manner :

Step 1 :

Find the sequence Sy, S1,S3, .., SN, Sp of the sub-networks to be visited in order to reach
destination D from an origin O where O € Sy and D € Sp. This sequence is obtained using
dynamic programming and is based on statistical data.

Step 2 :

Computation of fastest paths and the corresponding travel times for the sub-networks ob-
tained from step 1. This is done using the decision rules which are generated as a result of
statistical analysis on traffic data.

Figure 6 illustrates this approach.

Origin
©

Destination
(D)

Global Path

Network Limit ~ -—-=-=-=---

------------- Subnetwork boundaries Local Path

Fi1G. 6 — Route guidance approach

Suppose that the step 1 indicates that the vehicle should pass through the points O —
S} — 52 — D in order to join O to D. Let us assume that the vehicle is currently at position
O. Therefore, it must exit at point Si in order to leave the current sub-network. At this
stage, we will find out the fastest path between O and S5 using the decision rules obtained
from statistical analysis. When the vehicle exits the sub-network 1 and enters sub-network
2, then the fastest path between the entry node S3 and exit node S3 is computed. Finally,
the vehicle arrives the sub-network 3 at entry node S3 and the fastest path between this
node and the final destination D is computed as explained before. To summarize, we can
say that in order to find the fastest path between a given origin-destination pair on a large
network, our approach first performs the decomposition of the network into sub-networks,

INRIA
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then computes a global path using dynamic programming in order to obtain the sequence
of sub-networks to be visited alongwith their respective entry and the exit points. Finally,
the fastest path on the sub-networks also called as the local path is computed using the
decision rules obtained from statistical data analysis. In this paper, we will focus only on
the decomposition of large scale networks into sub-networks.

2 Recursive Progression - 1 (RP-1)

The first algorithm proposed for decomposition of large scale urban network is called
RP-1. It is iterative in nature and partitions the networks into sub-networks recursively.
The different characteristics of the algorithm RP-1 are :

2.1  Objective

The criteria’s used in RP-I for decomposing a large network into sub-networks are :

1. The sub-networks should be as least as possible connected to each other. In other
words, we are trying to minimize the number of boundary nodes. These nodes are the
points through which a vehicle enters (or leaves) a sub-network.

2. The sub-networks should have limited size.

Note that a limitation on the number of boundary nodes is put in order to meet the require-
ments of another algorithm namely fastest path algorithm for our route guidance approach.
The computational efficiency of this algorithm depends on the number of O-D pairs.
Remark : We consider that a boundary node acts as an exit node for one sub-network and
an entry node for another sub-network. However, this remark does not applies to the nodes
which are the origin or the destination nodes of the network. Let us consider Figure 7.

We can divide this network into two sub-networks namely S; and So where
S1=1{1,2,3,4,5,6,7,8,9,10,11} and So = {12,13,14,15,16,17,18,19, 20,21, 24}.

In this decomposition, node 1 is the entry node and node 10 is the exit node for sub-network
S1. For S5, the entry node is 10 and the exit nodes are 21 and 24. Since the boundary node
10 appears in both the sub-networks namely S; and S;, we can also write :

Sy ={10,12,13,14,15,16,17,18,19, 20, 21, 24}.

2.2 Notations

Let us consider a network of N nodes. If i € {1,2,..N}, then P(i) denotes the prede-
cessors of 7 and S(i) denotes the successors of i. If P(i) = ¢ then i is an entry node of the
network. If S(i) = ¢, then 7 is the exit node of the network. The density of a node i, denoted
by ¢(i), represents the number of predecessors or successors nodes of i. In the example of
Figure 7 :

P(3)=1,5(3)=1{6,7},4(3) = 3.
This means that the predecessor of node 3 is node 1, the successors are nodes 6 & 7 and the

RR n® 5473
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FiG. 7 — A simple Network

density of node 3 is equal to 3/1 = 3.

The density of a sub-network is defined as the ratio of the total number of nodes externally
connected to the nodes of the sub-network divided by the total number of nodes present
inside the sub-network. If an exterior node is a successor or a predecessor of multiple nodes
of the sub-network, then it is counted only once.

For example in Figure 7 :

q(22,23,24) = 1/3 because the only predecessor or successor node of this group of nodes is
node 15. This is the only exterior node of this group while the group itself contains three
nodes. Therefore, the density is equal to 1 divided by 3.

Similarly, the predecessors of a sub-network are defined as the predecessors of all the consti-
tuent nodes of the sub-network excluding the predecessor nodes that are present in the group
itself. Therefore,

P(8,9,10,11) = {5,6, 7}.

and

S5(8,9,10,11) = {12}.

2.3 Methodology

The algorithm RP-1 explores all pair of connected sub-networks at each iteration in
order to obtain sub-networks that can be united to form a sub-network which has the
minimum density among all the other combinations possible. The properties of the resulting
sub-network are :

— It consists of connected sub-networks i.e. at least one arc exists that has its head in

one sub-network and the tail in the other sub-network.

INRIA
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— The sum of the number of nodes of the sub-network does not exceed a value provided
by the user.

— The density of the sub-network is greater than a value provided by the user. The
density of a sub-network is the ratio of the number of nodes externally connected to
this sub-network divided by the cardinality of the sub-network. If this density is small,
then this sub-network is relatively isolated and we do not try to unite it with other
sub-networks. Remember that if we choose a very high density limit, then we force the
sub-networks to have a high number of interconnections. This density should therefore
be chosen with care. Of course, this density will never exceed 1 because this signifies
that we are more interested by the sub-networks that have higher number of external
nodes than the internal ones, which is of course not the case.

2.4 Algorithm

The algorithm RP-1 is presented stepwise as follows :
A. Introduction of data
— N : Total number of nodes of the network.
— A : Total number of arcs of the network.
— H : {ni1,n2,ng,.ny} group of nodes of the sub-networks.
— @ : Maximum density of a sub-network. By definition, the density of a sub-network
) is given by q(rg) = Cac;(;(’;)k)
connected nodes of r; and card(ry) represents the cardinality of the sub-network ry.
— W : Maximum number of nodes in a sub-network.
B. Initialisation
- K=N.
K is the variable that contains the number of sub-networks at each instant.
— For k=1,2,.K,do r, = {k} .
Initially each sub-network consists of a single node.
~ For k=1,2.K, do q(rs) = { 5o }.
C. Computation
1. Don =0.
2. Fori=1to K — 1.
21Forj=i+1to K.
2.1.1 If (r; and r; are connected) and (card(r;) +card(r;) < W) and (q(r;) > Q)
and (q(rj) > Q) :
21.11Don=n+1.
2.1.1.2 Do s, = r; Ur;.
2.1.1.3 Calculate g(s,) = —o)

card(sy) "
2114 1f (n=1) do
2.1.1.4.1 s* = s,,.

where C(ry) represents the total number of externally

RR n® 5473
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2.1.1.4.2 ht = 1.

2.1.1.4.3 h} = j.

2.1.1.4.4 q¢* = q(sn)-

2.1.1.5If (n > 1) and ¢(s,) < ¢*, do

2.1.1.5.1 s* = s,,.

2.1.1.5.2 I = 1.

2.1.1.5.3 h} = j.

2.1.1.5.4 ¢* = q(sn).

3. If n =0, stop. Print ri for £ = 1,2..K. Terminate the algorithm.
4. Do Thy = Sn.
5. q(rny) = q(s").
6. If h < K do:
(a) Fori=h}to K —1dor; =141 and q(r;) = q(rit1)-
7. K=K -—1.
8. goto 1.

Steps 4 to 8 unite two sub-networks at each iteration and replace it by the new sub-network
obtained from step 2.

2.5 Numerical Example

Consider the numerical example of Figure 7. N represents the total number of nodes of
the network. The maximum number of nodes of each sub-network is denoted by W. K is the
variable that contains the number of sub-networks at each iteration of the algorithm. For
this example, we have W = 8 and Q = 0.1. Let r; and r; be the sub-networks that we unite
at each step (or iteration) in order to obtain a sub-network s,. The cardinality, density and
the number of externally connected nodes of a sub-network r; are denoted by card(r;), q(r;)
and C(r;). The maximum density of a sub-network is denoted by Q. Initially, we have 24
sub-networks each containing a single node. Therefore K = N = 24. At each step, we unite
two sub-networks on the basis of the following criteria’s :

— They are connected.

— Their density is greater than ¢ = 0.1.

— Their reunion leads to a sub-network whose cardinality does not exceeds W = 8.

— After grouping, they lead to a sub-network that has minimum density among all the

other combinations possible.
Table 1 presents the results obtained from RP-1.

The initial network data is presented in step 0 or column 2 of table 1. It can be seen
that initially there are 24 sub-networks each containing a single node. Two sub-networks
are combined consecutively at each iteration using the criteria’s described before. Column 3
presents the results obtained from the first iteration of algorithm RP-1. The sub-networks

INRIA
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TAB. 1 — Results obtained from RP-1

Step 0 | Step 1 Step 2 Step 3 Step 4 - - Step 20
o) {1} {1} {1} {1} {1} - - {1,2,3,4,5,6,7,8}
qn 3 3 3 3 3 - - 0.25
r2 | {2} {2} {2} {2} {2} - - {9,10,11}
q2 3 3 3 3 3 - - 0.667
r3 {3} {3} {3} {3} {3} - - {13,15,22,23,24 }
q3 3 3 3 3 3 - - 0.375
ra | {4} {4} {1} {1} {1} — - [{12,14,16,17,18,19,20,21 }
qa 2 2 2 2 2 - - 0.4
rs | {5} {5} {5} {5} {5} -
s 2 2 2 2 2
re | {6} {6} {6} {6} {6}
a6 3 3 3 3 3
re | AT} {7} {7} {7} {7}
q7 3 3 3 3 3
rs | {8} {8} {8} {8} {8}
as 5 5 5 5 5
ro | {9} {9} {9} {9} {9}
g0 2 2 2 2 2
o | {10} | {10} | {10} 110} {10}
q10 3 3 3 3 3
| {0 | 00 | {10 0 Y
q11 2 2 2 2 2
re | {12} | {12} {12} {12} {12}
q12 3 3 3 3 3
rs | {13} | {13} {13} {13} {13}
q13 2 2 2 2 2
o | {4) | (4 | {4 14 11
q14 3 3 3 3 3
s | {15) | {15} | {15} {15} 115
q15 4 4 4 4 4
re | {16} | {16} {16} {16} {16}
q16 3 3 3 3 3 -
rr | {17} | {17} {17} {17} {17,18,19,20,21} | -
qr | 2 2 2 2 0.2
rs | {18} | {18} | {18,20,21} | {18,19,20,21} {22}
718 3 3 0.6667 0.5 2
ro | {19} | {19} {19} {22} {23}
q19 3 3 3 2 2
roo | {20} | {20,21} {22} {23} {24}
q20 2 1 2 2 2
| 207 | 22 | {28 24
q21 2 2 2 2
5 1 {22} 23 24
ki st | 1% 24}
23 {23} {24}
q23 2 2
724 {24}
G24 2
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chosen for reunion at step 0 are rog and ro1. The sub-networks chosen are ro¢ and r4; because
they are connected, their density is greater than 0.1, their reunion leads to a sub-network
whose cardinality does not exceeds W (2<8) and whose density leads to the minimum
density among all the other densities. Their combination gives rise to sub-network ryy of
column 3. Likewise we can see that in step 2 (column 4) the sub-network rig is obtained
by the reunion of sub-networks r15 and 79 from step 1. The sub-network rig(column 4)
is composed of three nodes 18,20,21. Therefore W = 3 < 8 and its density = 0.667 which
is minimum among all the other densities. In the step 3, the sub-network rig is obtained
by combination of sub-networks rig and 719 of step 3. In step 4, the sub-network ry7 is
obtained by the grouping of sub-networks 717 and 715 of column 5 (or step 3). Note that
the cardinality of 717 in step 4 is 5 which is less than the permitted value i.e. 8 and has
density = 0.2 which is the minimum among all the other densities. The final results of the
algorithm RP-1 are present in the last column of table 1. Four sub-networks namely S; =
{1,2,3,4,5,6,7,8}, So = {9,10,11}, S5 = {13,15,22,23,24} and Sy = {12,14,16,17,18, 19, 20,
21} are obtained. These results are graphically presented in Figure 8.

Subnetwork 2

Subnetwork 3

Subnetwork 1

S~ -

Subnetwork 4

Fia. 8 — Decomposition through RP-1

It can be observed from table 1 and figure 8 that sub-network 1 contains 8 nodes namely
1,2, 3,4, 5,6, 7, 8 and has a density = 0.25. It has one input node namely node 1 and
one output node namely node 8. Sub-network 2 contains 3 nodes namely 9,10,11. It has a
density equal to 0.667, has one input node namely node 8 and one output node namely node
10. Sub-network 3 contains 5 nodes namely node 13, 15, 22, 23 and 24 and has a density =
0.375. It has two input nodes namely node 13 and 15 and one output node namely node 24.

INRIA
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Finally, we can see that sub-network 4 contains 8 nodes namely 12, 14, 16, 17, 18, 19, 20, 21
and has a density equal to 0.4. It has one input node i.e. node 10 and three output nodes
namely nodes 12, 14 and 21.
Note also that at each consecutive iteration we obtain a reduction in the density of the
sub-network obtained from reunion. For example, in table 1 we can see that g(r20) = 3 (step
1)> q(rig) = 0.666 (step 2) > q(ris) = 0.5 (step 3) > q(r17) = 0.2(step 4). The algorithm
stops after 20 iterations because it is no more possible to find a couple of sub-networks which
are :

— connected,

— Will lead, after union, to a sub-network whose cardinality will not exceed 8§,

— Will lead, after union, to a sub-network whose density remains greater than 0.1.
We emphasize that in the algorithm RP-1, the density is calculated not on the basis of
boundary nodes, but on the number of connections with other sub-networks.

2.6 Algorithm Analysis.
2.6.1 Complexity.

The complexity of the algorithm HRP presented here is its worst case complexity. It is
calculated in two steps as follows :

1. Calculation of the complexity of each step.
2. Calculation of the total complexity.

Assume that the step A of HRP entitled ‘Introduction of data’ takes ¢; units of time. The
step B of algorithm HRP entitled ‘Initialisation’ takes 1 + Nt, + Nt, where t, and t, are
the times for the initialisation of 7 and g(rx) respectively. In the step C entitled ‘Computa-
tion’, the steps number 1,4,5,7,8 each take 1 unit of time (sum = 5 units of time). Since the
computations of step 2 are executed Zi\il N —i= W times, therefore the computation

time for step 2 is th assuming that each loop of step 2 takes t3 units of time. The
computation times for step 3 and step 6 are Nty and (N-1)¢5 where ¢4 represents the time
required for printing the sub-networks obtained at the end of step 2 and t¢5 represents the
time for computing the size and the density of sub-networks obtained by the integration of
two sub-networks at each iteration.

Since step C can be executed to a maximum of N times, therefore the total complexity of
the algorithm HRP is :

N(N - 1)
2

Therefore, in the worst case, the complexity of the algorithm RP-1 is O(N?), where N is the
total number of nodes of the network.

N(1+ Nty + Nty +5+ ts 4+ Nty + (N — 1)t5) = O(N®)
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2.6.2 Properties.

At each iteration, the algorithm RP-1 unites the pair of sub-networks which meet the
following conditions :

— They are connected.

— The total number of nodes in each sub-network do not exceed a given limit, namely

W as shown in the numerical example of section 2.5.
— The density of both the sub-networks is greater than a limit, which lies between 0 and
1. It is noted @ in the numerical example of section 2.5.

The algorithm then combines the two sub-networks whose union leads to the minimum
density.
The algorithm contains N sub-networks (one node per sub-network) at the start and loses
one sub-network at each consecutive series of iterations, it will converge necessarily when
no iterations would be possible, i.e. when there exists no more pairs of sub-networks whose
cardinalities are less than or equal to W and whose densities remain greater than or equal
to @. This gives rise to the following properties :
Property 1 :
The algorithm RP-1 converges after a certain number of iterations. This number is less than
or equal to N—1.
Proof : In algorithm HRP, two sub-networks are combined at each iteration to form a new
sub-network whose size and density constraints do not exceed a value predefined by the user.
The algorithm terminates when either size constraint or density constraint or both the size
and density constraints of resulting sub-network are violated. Since, this situation can occur
at the earliest after the first iteration (i.e. 1) or at the most at the last (i.e. N—1) iteration.
Hence, the number of iterations required for the convergence of algorithm HRP is less than
or equal to N—1. This proves the property 1.
Property 2 :
Let r1 and ro represent two sub-networks and s = r1 Ur2. We denote ¢(z) as the density of
a sub-network z. We suppose that the number of exterior nodes connected to s is equal to
the sum of the number of exterior nodes of 7y which are connected to r; and the number of
exterior nodes of 1 which are connected to rs.
Then :

q(s) < Maz{q(r1),q(r2)}
Proof : We denote :

ay,2 : Total number of nodes of r, which are connected with nodes of 7;.

az,1 : Total number of nodes of 1 which are connected with nodes of 7.

ny 3t Total number of exterior nodes of ro which are connected with nodes of r;.
nyT: Total number of exterior nodes of r; which are connected with nodes of rs.
N : Total number of nodes in .

N3 : Total number of nodes in 5.

ms 5 : Total number of exterior nodes of s which are connected to s.
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Then :
( a12+mn,3 ( a1 + Mgy 7
) = 1q(re) =
qlr1 N1 ;4 \T2 NQ
Mmss .
aW8) = § N, With Mz =zt

Let us assume that ¢(r;) < ¢(s). This leads to :
(N1 + N2)ay 2 + Ning 5+ Nony 3 —ms3N1 <0
But m = ny5+ Ny, therefore :
(N1 + N2)ar,2 + Nany 5 — Ning 1 <0 (1)
Similarly, using ¢(r2) < g(s), we obtain :
(N1 + N2)ag1 + Ning 1 — Nan;5 <0 (2)

Suppose that (1) holds true. Then, Nin,1 > Nan, 5 is not possible for (2) and vice versa.
Consequently, we cannot obtain simultaneously ¢(r1) < ¢(s) and ¢(r2) < ¢(s), which proves
the results.
Corollary
The maximum density of a group of sub-networks reduces inversely with the number of
iterations of the algorithm. The reason is the number of internal nodes of the resulting sub-
network increases and the number of externally connected nodes decreases at each iteration.
The density of the resulting sub-network is less than or equal to the maximum density among
the densities of the two combining sub-networks at each iteration as proved in property 1.
The property (3) completes the previous ones.
Property 3 :
Using the previous notations and assuming that m,s = Nyg+nyg:

L q(s) < q(r1) and g(s) < q(r2) if

|N2n17§ — N1n25| < (Nl + Ng)Min(aLg, a271).

2. If the previous condition is not verified, and if a; » = as 1, then :
2.1 q(r1) < q(s) < g(ra) iff % < l2i

2.2 q(r2) < q(s) < q(r) iff % < L
Proof :
1. After (1), q(r1) > q(s) if and only if :

33
MM

3
=

2

(Nl + Ng)alyg + Ngnlj — NanE >0
Similarly from (2), ¢(r2) > ¢(s) if and only if :

(N1 4+ Na)az1 + Ningg— Nang5 20
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These two relations are always verified if :
|N2n1’§ — N1n2’T| < (N1 + NQ)MiTL(CLLQ, a271)

Hence, proved.

2. q(r1) < q(s) if and only if (1) is verified.
q(r2) > q(s) if and only if :

(N1 + N2)ag,1 + N1n25 — Ngnlg >0 (3)
By subtracting (1) from (3) and taking into account that a1 2 = a1, we obtain :

Nani — Ngnlé >0

Ny  TNo7y

N1 TL1§

The condition (2) can be explained in an identical way.
Remark : Assuming that the following properties are verified i.e.
1. Symmetric : a12 = az 1.
This property signifies that the number of connections of sub-network r; with another
sub-network 75 is equal to the number of connections of ro with 1.
2. Additivity : ms 5 = nyz+ Ny
This property signifies that, when two sub-networks are combined, then the number

of exterior links of the resulting sub-network is equal to the sum of the exterior links
of the two sub-networks minus two times the links between these two sub-networks,

Then :

). q(s) < Maz{q(ri), q(r2)} (4)
b). q(s) < q(r1) et g(s) < q(rq) iff

|N2n17§ — N1n25| < (N1 + Ni)aq o (5)
¢). q(r1) < q(s) < qlra) iff {2 < 221 (6)
d). qr2) < q(s) < q(m) iff 2 < 722 (7)

The conditions hold true if a ‘link’ between the sub-networks represents the number of arcs
that connect these sub-networks.

The property (4) gives the information about the maximum number of sub-networks obtai-
ned for a given value of W.

Property 4

The maximum number (p) of sub-networks obtained if the initial network contains N nodes
and if the size of a sub-network does not exceeds W is given by p = L%J, where |a] is the
integer number lesser than or equal to a.

Proof : If p represents the number of sub-networks, then we can form Cg couples, and the
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total number of occurrence of a node in such couple is p — 1. As a result, if we add the
number of nodes in these couples, we obtain (p — 1) N. But, the sum of the number of nodes
in the elements of a couple is less than W, which leads to the following inequality :

C;W < (p—1)N

By developing and studying this equation of second degree, we obtain p = L%J

3 Recursive Progression - 2 (RP-2)

The difference between the algorithms RP-1 and RP-2 lies in the way through which two
sub-networks are combined at each iteration.
In RP-1, the system searches two sub-networks whose reunion will lead to a minimum density
sub-network.
In RP-2, the system searches the sub-network of maximum density, then searches the sub-
network with the second largest density to which it is connected and such that :
— The resulting sub-network obtained from their union has a size less than or equal to
the maximum permitted size.
— The resulting sub-network has minimum density than the individual densities of the
two sub-networks.

3.1 Algorithm

1. Data Introduction
1.1 Introduce N.
N is the total number of nodes of the network.
1.2 Fori=1,2,..N
1.2.1 Introduce s;.
s; is the number of successors of i.
1.2.2 For k = 1,2, ..s;, introduce ls; x.
Is; 1 is the list of successors of i.

1.3Fori=1,2,.N

1.3.1 Compute the number of predecessors of 7 i.e. p;.
1.3.2 For k =1,2, .., p;, introduce the predecessors in the list Ip; j.

2. Initialisation
2.1Fori=1,2,..N, do:
2.1.1 ¢; = s; + p;
Since each sub-network consists of a single node at the start of the algorithm,
therefore q; initially represents the number of external connections of i. In the
rest of the program, q; denotes the number of connections of it" element of the
list with the exterior.
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2.1.2 nb; = 1.
nb; is initially equal to 1 because each element of the list is composed of a single
node.

213 e;1 =1

This is the first element of the it" sub-network (initially).

3. Search of the sub-network with the maximum density
3.1x=0.
x contains the maximum density (if it exists).
3.2 cont = 0.
cont is a flag that will be equal to 1 if a sub-network has “admissible” density, i.e. its
density is greater than a given density and the size is less than a given size is identified.
33Fori=1,2,..N, do:
3.3.1: w=g;/nb;.
w is the density of the it" element.
3.3.2: If (w > x) and (nb; < W) and (w > Q) do :
3.3.2.1 cont = 1.
3.3.2.2 i1 = 1.
3323z =w.
We search therefore a sub-network of maximum density :
a).whose size does not exceeds W
b).whose density is greater than Q.
i1 s the position of the sub-network retained and, simultaneously it is the identificator
of the first node of this sub-network.
3.4 If cont = 0, end. Print the results.
4. Search of the elements to be grouped
41Do j; =—-1and 2 =0.
4.2 Search among the successors of ;.

4.2.1For j=1to s; do:
421171 =1Is; ;.
4.2.1.2 w = gy /nb,.
4.2.1.3If (w > ) and (nb;, +nb, <=W) do :
421315 =r.
42132z =w.

We group the mazimum density sub-network with another connected sub-network ha-
ving the following properties :
a). It has the largest density.
b). After grouping with this sub-network, the resulting sub-network does not exceeds

the maximum size ‘ma’.
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5. If j4 = —1, print the results. Terminate the algorithm.

6. Regrouping of two sub-networks
6.1 Creation of new list of successors.
6.2 Creation of new list of predecessors.
6.3 Creation of the list of nodes of the new sub-network.
6.4 Put the new sub-network obtained from reunion in the place of the constituent
sub-network having lower position in the list.
6.5 Delete the constituent sub-network which is at a higher position in the list.
6.6 N =N —1.
6.7 goto 3.

Remark : The algorithm terminates if all the sub-networks have a density greater than
a predefined density and a size less than a predefined size. Note that the size condition is
always verified in the algorithm. We have however introduced two different limits. The size
limit has higher priority over the density limit.
The algorithm terminates equally when, after a sub-network is chosen, it is not possible to
find a sub-network which is connected to it and does not possesses the following properties :
— The sub-network has a density greater than a given value.
— Its association with initial sub-network leads to a sub-network with size lesser than a
given value (superior ou equal to previous one).

3.2 Numerical example

Let us consider the numerical example of Figure 7. The total number of nodes of the
network is denoted by N and the maximum number of nodes in a sub-network is denoted by
W. K represents the variable that contains the number of sub-networks at each iteration.
In the example, W = 8 and @ = 0.1. Let r; be the elements or the sub-networks that we
group at each iteration to obtain s,. The cardinality, density and the number of exterior
nodes of the sub-network r; are denoted by card(r;), q(r;) and C(r;). The maximum density
of a sub-network is denoted by . Initially, we have 24 sub-networks each containing single
node. Therefore K = N = 24. This situation is presented in the column 1 or step 0 of
table 2. It can be seen in step 1 (column 3) of table 2 that sub-network r¢ is obtained by
the combination of sub-networks rg and rg of column 2. These sub-networks are combined
because they are connected, their density is higher than 0.1, and they have the highest and
the second highest density respectively. Similarly in step 2 (column 4), the sub-network
r14 is obtained from the union of sub-networks ri4 and ri5 of step 1. In the step 3, 7o
is obtained by combination of sub-networks ro and rg of step 2. In the fourth step, r1 is
obtained by the grouping of sub-networks 1 and 73 of step 3 i.e. fifth column. The algorithm
terminates after 20 iterations to yield four sub-networks namely S; = {1,2,3,4,5,6,7,8},52 =
{9,10,11,12,13,14}, S5 = {22,23,24} and S, = {16,17,18,19,20,21}. These sub-networks are
graphically represented in Figure 9.

It can be seen in figure 9 that sub-network 1 contains 8 nodes namely 1, 2,3,4,5,6,7,8 and
has a density = 0.375. It has one input node namely node 1 and one output node namely
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Subnetwork 1
' Subnetwork 2 Subnetwork 3

! Subnetwork 4

Fia. 9 — Decomposition through RP-2
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TAB. 2 — Results obtained from RP-2
Step 0 | Step 1 | Step 2 Step3 | Step4 |- |- Step 20
81 {1} {1} {1} {1} {173} {172737475767778 }
Q1 3 3 3 3 2 0.375
9 {2} {2} {2} {2,6,8} | {2,6,8} {9,10,11,12, 13,14,15 }
q2 3 3 3 2.3333 | 2.3333 0.25
O 0 B € N B € N B € B O 1222321}
qs3 3 3 3 3 2 0.667
T4 {4} {4} {4} {4} {5} {16,17,18,19,20,21}
qa 2 2 2 2 2 0.4
rs | {5} {5} {5} {5} {7} -
qs 2 2 2 2 3
re | {6} | {68} | {68} {7} {9}
6 3 3 3 3 2
re | {7} {7} {7} {9} {10}
q7 3 3 3 2 3
rs | {8} {9} {9} {10} {11}
qs 5 2 2 3 2
ro | {9} | {10} | {10} {11} {12}
q9 2 3 3 2 3
o | (0] | (1) | () | {i2F | {13
q10 3 2 2 3 2 -
ri1 | {11} {12} {12} {13} {14,15} | -
qi1 2 3 3 2 2.5
rie | {12} {13} {13} {14,15} {16}
qi2 3 2 2 2.5 3
riz | {13} {14} | {14,15} {16} {17}
q13 2 3 2.5 3 2
ria | {14} {15} {16} {17} {18}
q14 3 4 3 2 3
ris | {15} | {16} | {17} {18} {19}
qi5 4 3 2 3 3
re | {16} | {17} | {18} {19} {20}
q16 3 2 3 3 2
e | (07 | 08} | (9F | (20F | (21
a7 2 3 3 2 2
rs | {18} | {19} | {20} {21} {22}
q18 3 3 2 2 2
ro | {19} | {20} | {21} {22} {23}
q19 3 2 2 2 2
o | 207 | 2} | (22F | (@) | 28
q20 2 2 2 2 2
ro1 | {21} {22} {23} {24}
q21 2 2 2 2
r | 1227 | (23] | 24
Q2. 2 2 2
MR | 24
23 2 2
T24 {24}
q24 2
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node 8. Sub-network 2 contains 7 nodes namely 9,10,11,12,13,14 and 15. It has a density
equal to 0.25, has one input node namely node 8 and two output nodes namely node 14 and
15. Sub-network 3 contains 3 nodes namely node 22, 23 and 24 and has a density = 0.667.
It has one input node namely node 15 and one output node namely node 24. Finally, we can
see that sub-network 4 contains 6 nodes namely 16,17,18,19,20,21 and has a density equal
to 0.4. It has one input node i.e. node 16 and one output node i.e. node 21.

3.3 Algorithm Analysis
3.3.1 Complexity of the algorithm.

We are going to first calculate the complexity of each step of algorithm RP-2 and then
its total complexity.
Let us consider the algorithm RP-2. The step 1 of the algorithm RP-2 entitled ‘Introduction
of data’ takes 1+ Nt/1 + Ntlll units of time, where we assume that ¢ and ¢~ are the times
required for the introduction of the list of successors and predecessors of N initial sub-
networks. The step 2 entitled ‘Initialisation’ takes 3N units of time for the initialisation of
the elements and the connections of each sub-network. In the third stage C entitled ‘Search
of the sub-network with the maximum density’, the computation time for 3.1 and 3.2 is 1
units each. Suppose that ts is the time required for searching the sub-network of maximum
density in step 3.3 and t3 is the time required for printing the results of step 3.4. Since the
steps 3.3 and 3.4 can be executed to a maximum of N times, the complexity is 24+Nto + Nt3
for the third step of algorithm RP-2. Suppose that step 4 takes ¢4 units of time, step 5 takes
N units of time and the steps 6.1-6.5 take t5 units of time. It is clear that steps 6.6-6.7 take
1 units of time each (total = 2).
Since the loop containing the steps 3-6 is executed maximum N times, the total complexity
of the algorithm RP-2 is given by :

N(1+ Nty + Nt) + 3N +2+4 Ntg + Ntz + t4 + N + t5 +2) = O(N?)

Therefore, the complexity of algorithm RP-2 in the worst case is O(N?), where N is the
total number of nodes of the network.

3.3.2 Properties of the algorithm.

In RP-2, the density of a sub-network is calculated as the ratio of the number of externally
connected arcs of this network divided by the cardinality of the sub-network. The definition
of density is therefore different between RP-1 and RP-2, although, in practice, these two
definitions are close to each other. The advantage of this new definition of density is that
the properties of symmetry and additivity introduced in the section 2.6 are verified. As a
result, the properties (4),(5),(6) and (7) are also verified.

INRIA



Decomposition of large scale urban networks

25

TAB. 3 — Application of RP-1 on first three networks

Network | Number of | Number of | Number of | Density

Id nodes input nodes | exit nodes

1 10 9 9 1.3
10 6 7 0.6
10 9 6 1
10 7 8 0.7
1 3 1 5
6 6 5 2.3333
1 1 1 0
1 1 1 1
1 3 1 6

2 10 5 5 0.7
9 10 5 1.7778
10 7 4 0.6
10 9 7 1.1
10 5 5 0.6
1 1 1 0

3 10 7 7 0.6
2 3 1 2
10 6 10 1.1
10 6 5 0.8
10 3 6 0.8
2 4 1 2
2 2 2 3.5
1 5 1 8
1 1 1 0
1 2 1 2
1 3 1 6

4 Comparison between RP-1 and RP-2.

Tables 3 and 4 present the results obtained by the application of the algorithms RP-1
and RP-2 on networks of 50 nodes generated at random.

We have generated the networks at random as follows :

— Number of nodes : 50.

— Number of successors of a node : between 0 and 3.

— Number of experiments : 50 (We have retained only first 3 experiment results in the

tables 3 and 4).

— W = 10 : a sub-network can contain a maximum of 10 nodes.
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TAB. 4 — Application of RP-2 on first three networks

Network | Number of | Number of | Number of | Density
Id nodes input nodes | exit nodes
1 10 7 9 1.7
10 11 7 1.7
10 11 8 1.6
10 7 8 1.5
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
3 2 2 0.3333
1 1 1 0
2 10 15 9 3.2
1 1 1 2
3 4 2 1.6667
10 9 7 1.6
2 2 2 1.5
2 1 2 1.5
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
7 5 4 0.857143
7 3 4 0.714286
2 1 1 0.5
1 1 1 0
3 10 12 9 3.3
1 3 1 3
1 1 1 2
1 1 1 2
4 2 4 1.75
10 7 7 1.7
7 5 4 1.28571
1 1 1 1
1 1 1 1
3 2 1 0.666667
10 7 7 0.6
1 1 1 0
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- Q=0.1.
Note that the program for generation of graphs tries to eliminate neither the isolated nodes
nor the cycles. In other terms, the graph obtained can be cyclic and non-connex.
We observe from tables 3 and 4 that the algorithm RP-2 produces much more isolated
nodes than the algorithm RP-1. The reason is that certain nodes cannot be included in
the sub-networks due to limitation on the size or the maximum number of nodes in each
sub-network. We found that the sub-networks obtained by the algorithm RP-1 cover better
the network than the algorithm RP-2, which assures a more homogeneous partition. The
algorithm RP-1 is therefore more efficient than RP-2 though at a cost of higher number of
computations (see the complexity of these two algorithms in subsections 2.6.1 and 3.3.1).
Note that this observation might change if these algorithms are applied on networks of very
big size (more than 200 nodes).
Note that the algorithm RP-2 imposes a restriction in one particular situation. The situation
occurs when a largest density sub-network is not able to absorb a connected sub-network
due to the violation of sub-network size. In that case, the algorithm is forced to stop without
generating the partitions. However this situation can be overcome by considering the sub-
network with the second largest density for grouping in the algorithm.

5 Decomposition of the Paris network.

Two algorithms namely RP-1 and RP-2 were applied on a part of Paris (Figure 10). The
input parameters are N = 690, W = 40,Q = 0.8. The results of the algorithms RP-1 and
RP-2 on the Paris network are presented in the Figures 11 and 12 respectively.

In the figures 11 and 12, the colours are used to distinguish the sub-networks. Two

sub-networks of same colour but non-connected indicate two different sub-networks. RP-1
algorithm yields 109 sub-networks whereas RP-2 yields 98 sub-networks.
It was observed that the algorithm RP-2 produces more isolated nodes than RP-1. The
reason is that certain sub-networks cannot be grouped with other sub-networks due to the
limitation imposed on the number of nodes of a sub-network (W = 40) and on the density
( > 0.8) of a sub-network. We observed that if we eliminate the constraints on the density,
i.e. if we simply use density Q > 0, then the number of sub-networks obtained are less in
number than the case when ¢ = 0.8.

6 Conclusion.

Two algorithms namely RP-1 and RP-2 based on different definitions of density are
proposed for partitioning of large scale urban network into sub-networks. In the algorithm
RP-1, at each iteration the sub-networks are combined on the basis of connectivity and
reduction of density criteria. The density of a sub-network being equal to the number of
externally connected nodes of a sub-network divided by its cardinality. In the algorithm RP-
2, we group sub-networks that are connected and have high densities. The density being equal
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Fi1G. 10 — Paris Network under study
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Fia. 11 — Decomposition with RP-1

RR n° 5473



30

Anjali Awasthi, Michel Parent & Jean-Marie Proth

Fia. 12 — Decomposition with RP-2
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to the number of externally connected arcs divided by the cardinality of the sub-network.
The worst case complexity of the algorithm RP-1 is O(N?) whereas that of algorithm RP-2
is O(N?), where N represents the number of nodes of the network. During the study it was
found that the sub-networks obtained from RP-1 are more homogeneous than RP-2 though
at a cost of higher number of computations.

Improvements in the current algorithms can be done in two ways :

1. Usage of another definition of density. For example :
Density = (total of the input flows and the output flows)/(flows inside the network).
2. Elimination of the constraint on the size of the sub-network, i.e using only the density

criteria for sub-networks. This will permit us to control better the number of entry
and exit points of the sub-networks.

The next step of our work concerns the application of this work for finding fastest paths on
large scale urban networks.
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