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Problémes de programmation linéaire pour ’estimation
L, optimale de frontiéres

Résumé : Nous proposons de nouveaux estimateurs optimaux pour la frontiére, supposée
lipschitzienne, d’un ensemble de points. Plus précisémment, nous considérons des estima-
teurs & noyau, suffisamment réguliers, couvrant tous les points et dont le support associé
est de surface minimale. Ils s’écrivent comme une combinaison linéaire de fonctions noyau
appliquées aux points de I’échantillon. Les coefficients de cette combinaison linéaire sont cal-
culés par résolution d’un probléme de programmation linéaire. Nous prouvons que l'erreur
L1 entre la frontiére estimée et la frontiére réelle converge presque stirement vers zéro et que
la vitesse de convergence est optimale.

Mots-clés : Estimation fonctionnelle, programmation linéaire, erreur L, estimation de
frontiére.
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1 Introduction

Many proposals are given in the literature for estimating a set S given a finite random
set of points drawn from the interior. This problem of edge or support estimation arises
in classification (HARDY & RASsoN [20]), clustering problems (HARTIGAN [21]), discrim-
inant analysis (BAUFAYS & RASSON [2]), and outliers detection (DEVROYE & WISE [g]).
Applications are found in medical diagnosis (TARASSENKO et al [26]) as well as in condi-
tion monitoring of machines (DEVROYE & WISE [§]). In image analysis, the segmentation
problem can be considered under the support estimation point of view, where the support
is a convex bounded set in R? (KOROSTELEV & TSYBAKOV [24]). We also point out some
applications in econometrics (e.g. DEPRINS, et al [7]). In such cases, the unknown support
can be written

SE{(z,y): 0< z< 15 0< y < fla)), (1)

where f is an unknown function. Here, the problem reduces to estimating f, called the
production frontier (see for instance HARDLE et al [I8]). The data consist of pair (X,Y)
where X represents the input (labor, energy or capital) used to produce an output Y in a
given firm. In such a framework, the value f(x) can be interpreted as the maximum level
of output which is attainable for the level of input z.

An early paper was written by GEFFROY [I0] for independent identically distributed ob-
servations from a density ¢. The proposed estimator is a kind of histogram based on the
extreme values of the sample. This work was extended in two main directions.

On the one hand, piecewise polynomials estimators were introduced. They are defined lo-
cally on a given slice as the lowest polynomial of fixed degree covering all the points in the
considered slice. Their optimality in an asymptotic minimax sense is proved under weak
assumptions on the rate of decrease « of the density ¢ towards 0 by KOROSTELEV & TSY-
BAKOV [24] and by HARDLE et al [19]. Extreme values methods are then proposed by HALL
et al [I6] and by GUIBELS & PENG [I1] to estimate the parameter «. Estimating f can also
been considered as a regression problem Y = f(X)+e¢ with negative noise €. In this context,
local polynomial estimates are introduced, see KNIGHT [23], or HALL et al [I7] for a similar
approach.

On the other hand, different propositions for smoothing Geffroy’s estimator were made in
the case of a Poisson point process. GIRARD & JACOB [14] introduced estimators based on
kernel regressions and orthogonal series method [12, [[3]. In the same spirit, GARDES [9]
proposed a Faber-Shauder estimator. GIRARD & MENNETEAU [15] introduced a general
framework for studying estimators of this type and generalized them to supports writing

S={(z,y): z€E ; 0< y < f(x)},

where f is an unknown function and E an arbitrary set. In each case, the limit distribution
of the estimator is established. We also refer to ABBAR [I] and JACOB & SUQUET [22] who
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4 Girard & Iouditski € Nazin

used a similar smoothing approach, although their estimators are not based on the extreme
values of the Poisson process.

The estimator proposed in BOUCHARD et al [6] can be considered to belong to the intersect
of these two directions. From the practical point of view, it is defined as a kernel estimator
obtained by smoothing some selected points of the sample. These points are chosen auto-
matically by solving a linear programming problem to obtain an estimated support covering
all the points and with smallest surface. From the theoretical point of view, this estimator
is shown to be consistent for the L; norm.

In this paper, we propose several modifications of the above method. First, a bias corrected
kernel is proposed. Second, some regularity constraints are introduced in the optimization
problem. We show that the resulting estimator reaches the optimal minimax L; rate (up to
a logarithmic factor). The estimator is defined in Sectionl Some preliminary properties are
established in Section B, and the main result is presented in Section @l Proofs are postponed
to Section

2 Boundary estimator

Let all the random variables be defined on a probability space (2, F, P). The problem under
consideration is to estimate an unknown positive function f : [0, 1] — (0, c0) on the basis of
observations (X;,Y;);=1,.. ~ with independent pairs (X;,Y;) being uniformly distributed in
the set S defined as

SE{(z,y):0<2<1,0<y< fa)}. 2)

Letting )
cr 2 [ s, (3)

each variable X; is distributed in [0, 1] with p.d.f. f(-)/C; while Y; has the uniform condi-
tional distribution with respect to X; in the interval [0, f(X;)]. In what follows we assume
[ € X8, Ly s ), 0 < B <1 that is function f : [0,1] — (0, c0) is S-Lipschitz with constant
L;s :

[f(@) = fW)| < Lygle —ul” Ya,uel0,1]. (4)
The considered estimator fy : [0,1] — [0,00) of the frontier is chosen from the family of
functions:

N
Fn(x) = ;a Kn(e, X)),  Kn(zt) = @K (z;t) | 5

>0, i=1,...,N,

where K is a sufficiently smooth basic kernel function K : R — [0,00) integrating to one
and having the interval [—1, 1] as its support; the bandwidth parameter h € (0,1/2) depends

INRIA



L1 optimal frontier estimation 5

on N such that h — 0 as N — oo; and the function

z/h -1
g(z) = / K@dt) . eel01], (6)
(@—1)/h

corrects the basic kernel K at the boundaries, i.e., when x € [0,h) or € (1 — h, 1]. Indeed,
g(z)=1on x € [h,1 — h], while g(z) > 1 when z € [0,h) or z € (1 — h,1].
One may easily observe that

/1Kh(a:,u)du—l Vz €0,1] (7)
0

and, consequently, due to interplacing the integral and the derivative,

19
/8—Kh(x,u)du:0 Vael0,1]. (8)
0 X

Note, that equation ([§) may be verified directly, as it is demonstrated in the Appendix,
Subsection
Denote Ky 2 max K (t), gmax = max g(z), as well as functionals

[I>

1
Cote) 2 [ WPletldr, pec (=11, ©)
Co(K,K') 2 gmax KmaxCs(K) + C(K'). (10)
We also denote by L, a Lipschitz constant for function ¢ : R — R, that is
lo(s) — @(t)] < Ly|s — t| with L, < oco. (11)
The indicator function is denoted by 1{-} which equals 1 if the argument condition holds
true, and 0 otherwise.
As it is proved below in Lemma [l the surface of the estimated support

Sn2{(z,y): 0<z<1,0<y< fn(z)} (12)

may be approximated as follows:

1 R N
/0 fn(x)de = Za +0(h). (13)
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Girard & Iouditski € Nazin

This suggests to define the parameter vector « = (a1,...,an

optimization problem

* A
Jp =

subject to

)T as a solution to the following

N

minZai (14)
=1

n(Xi)2Y:, i=1,..,N, (15)

log N
Nh2’

T4 (X3) < Ly g gmaxCis(K, K) i=0,...,N+1,  (16)
N
S ail{(j—1)/mn < Xi <j/mn} < Coh, j=1,...mn, (17)
=1
0<a;, i=1,...,N, (18)

where parameter my, is defined to be the integer part of 1/h. This optimization problem
may be formally written as linear program (LP)

_Lf,ﬁ gmaxcﬁ (I(7 K/)

Jp 2 min 15 (19)

subject to
Y < Ac«, (20)
1?\%;] Iy < Ba < Ljj gmaxCp(K, K') 1?\%;7 1y, (21)
DTa < Cuh1,, , (22)
0 < a. (23)

There is one positive parameter C,, in the constraints (I7) and [ZZ): its value will be
discussed in Section @l Moreover, the following notations have been introduced:

Xo

In
A

B

D
Y

20, Xym 21, (24)
2 1,1,..., )T eRrRY (25)
£ | Kn(X; s Xilllijmr, N (26)
. d
= || 5= Kn(z, X;) (27)
dx x|
“llg,5=1,....,N
£ G -1)/mr< X5 < J/mntlizy  Noj=1. (28)
L2 (v,...,.ya)T. (29)

3 Preliminary results

The basic assumptions on the unknown boundary function are:

INRIA



L1 optimal frontier estimation 7

Al 0 < fimin < f(2) < fimax < 00, for all z € [0, 1],

A2, |f(@) = fW)| < L;g |z — y|?, for all ,y € [0,1], with Lis<ocand 0 <fp<1.

The following assumptions on the kernel function are introduced:

Bl. K :R — [0,00) has a compact support: supp,cp K (t) = [-1,1],

1
BZ./ K(t)dt =1,
—1

B3. K is three times continuously differentiable.

Note, that gmax = 2 for any unimodal even kernel K (-) meeting conditions B1-B2. We quote
two preliminary results on the estimator fN. First, the surface of the related estimated
support Sy is approximatively Zf\il «;. Second, the function fy is Lispchitzian. Proofs
are postponed to Subsection Bl

Lemma 1 Suppose B1, B2 are verified and 0 < h < 1/4. Moreover, let conditions () and
(@) hold true for m;, = |h='|. Then the surface of the estimated support [IH) meets the
following inequality:

1 N
20, K maxh < / Fn(@)de =" i < 4Ca(gmax — 1) Kmaxh. - (30)
0 i=1

Remark 1 In fact, only one part of Lemma [ is used in what follows, that is the upper
bound for the estimator surface given by the right hand side (30).

Remark 2 Lemmad as well as the further results may be easily extended to basic kernels
K () having also negative values: then K., = max|K(t)|, and g(z) > 0V € [0,1] should
be additionally assumed.

Lemma 2 Suppose A1 and B1-B38 are verified. Let estimator fAN be defined by LP (I4)-
(Z3). Moreover, let h — 0 as N — oo such that

. log N B
N Ny =0 (81

Then, there exists almost surely finite Ny = Ny(w) such that for any N > N4 the Lipschitz
constant for the estimator fn over the interval [0, 1] is bounded as follows:

L. 2 [ 32
ot max (F@) (32)
log N
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8 Girard & Iouditski € Nazin

Remark 3 As it can be seen from the proof of Lemma@, namely from (&8)-([Z2), one might
slightly decrease the number of constraints ([B) on the estimator derivative [I)-{I3). In
fact, one could impose those type of constraints not at each point X;, + = 1,...,N: It
would be enough to do at the points with the distance O ((hlog N/N)l/Q) between them, or
at least o ((hlog N/N)l/z) in order to keep the same Lipschitz constant for fN as is given
by Lemma [A.

It appears that the estimator fN being the solution to the optimization problem ([I)—
(@) or to its equivalent LP version ([d)-(3) defines the kernel estimator of the support
covering all the points (X;,Y;) and, approximately, having the smallest surface, up to the
term O(h) specified in Lemma[ll Moreover, constraints ([&)—(T7) or EI)—(EJ) ensure fy €
Y11, L fN) with a particular Lipschitz constant L 7, &iven in Lemma [ The constraint
a; > 0foralli=1,...,N ensures that fN(a:) > 0 for all = € [0, 1] since the basic kernel K
is chosen to be non-negative; this seems to be natural for function f(-) is positive. Finally,
note that the above described estimator (@), ([A)—-(E3) may be treated as the approximation
to Maximum Likelihood Estimate related to the estimation family (B); see BOUCHARD et
al [6, B] for the demonstration.

4 Main results

In the following theorem, the consistency and the convergence rate of the estimator towards
the true frontier is established with respect to the L; norm on the [0, 1] interval.

Theorem 1 Let the above mentioned assumptions A1, A2 and B1-B3 hold true and the
estimator parameter Cy > 6 frax- Moreover, let h — 0 as N — oo such that

. . . logN . log N
ninf 5 >0 >0, Jin mrmE =0 (34)
Then estimator ([A)-(Z3) has the following asymptotic properties:
~ 240
1Fx = fll < (Coa(BF +2C4(BR2(0g N/N)TF) (1 +0(1)) as.  (35)
with
C'12 (ﬂ) £ 2Lf,ﬁ 9max Oﬁ(Kv K/) + 4Ca(gmax - 1)Kmax1{/6 = 1} (36)
and ) )
20; \ "7 (1) e 2c; \ 7
Ca(B) 2 2L, 4 || =L S) 0 gmanCs(K K | L .37
Lig P Ly

Corollary 1 The mazimum rate of convergence which is guaranteed by Theorem [

J<]

Ifx = fli=0 ((logN/N)W) a.s.

INRIA



L1 optimal frontier estimation 9

is attained for h meeting the following asymptotics:

1
~(log N\ ™7 ~ _

th(Og ) , 0<p<p ™7, (38)

N

which reduces the upper bound ([F3) to

5
) log N\ ™7 -~ ~ ~

sy (52) T 7l < Colp” + 209570 as (39)

Let us highlight that (%) shows that Fn reaches (up to a logarithmic factor) the minimax
L, rate for Lipschitz frontier f, see KOROSTELEV & TSYBAKOV [24], Theorem 4.1.1.

Remark 4 The second condition in (34)) may be extended to

. log N
lim

RNy < 00 (40)

which leads to another, more general formula for constants in (33)—{Z3).

5 Proofs

The proof of Theorem [l which is given in Subsection 4 is based on both upper and lower
bounds derived in Subsection and Subsection respectively. When proving these
bounds, we assume that the sequence of the sample X -points (X;);=1,... ~ is already increase
ordered, without changing notation from X; to X(;y for the sake of simplicity, that is

X < Xip, Vi (41)
We essentially apply the uniform asymptotic bound O(log N/N) on AX; £ X;—X; 1 proved
in auxiliary Lemma [l Before that, we prove in Subsection Bl the two preliminary results.
5.1 Proof of preliminary results

Proof of Lemma [Il Note that definitions (H)—(@l) imply the following decomposition.

1-h

ij(a:)dz = /h+/+/1 I (z) da (42)
0 h —h

RR n° 5466



10 Girard & Iouditski € Nazin

Since «; and kernel K are non-negative, it follows that

szm%K( Jars 3o [ x(5

i=1

) da = XN: a; (45)

and therefore,

1 N h 1
/ dx—Zaz < 9‘“‘*"_ g =L S o /+/ Y|z — Xi| < hyde (46)
0 i=1 i=1 0 1Zn
S (gmax - l)Kmax (Z (6% 1{0 S Xi S Qh} (47)
i=1
N
+ Zail{l—thXi§1}> (48)
=1
S (gmax - 1)Kmax4cah . (49)

The inequality 3) follows from () since both intervals in ([)—ER) are of the length 2h
and thus may be covered by two related intervals of the form [(j — 1)/mp,j/mp] in ({ID).
Consequently, we have proved the upper bound for the difference in the left hand side (#H).
The lower bound is proved in the same manner. Indeed, decomposition [E2)—E4) implies,
since the term (4 is non-negative,

1 0 1+h X
/ dw— S > —Zal /+/ ( i)dm (50)

0 =1 1
> —Kumax <Z a; 1{0 < X; < h} (51)

i=1

N
+ Zail{l—thi§1}> (52)

i=1
Z _Kmax 2Oah . (53)
This completes the proof of Lemma [l [ |

INRIA



L1 optimal frontier estimation 11

Proof of Lemma 2l Remind that we assume {I). By applying auxiliary Lemma Bl and
Lemma [ we first arrive at

e | (@) (54)
T e (@) (55)
LS L [(Xz——xufwe[xl STACEI| CD

with Cx > 4C/ fimin. The maximum term in &) is bounded as follows: for any = € [0, 1]

@l < Y e K, X) (58)
i=1
83
< sup 5 = K  1{]z — X;| < h} (59)
S gmafo(uh_4 : 3Co¢h7 (60)
since (see Lemma [l for the detailed demonstration)
o3 < 4
S;'}’E) ﬁ Kh(’U7 ’U,) ~ gmaxLK//h (61)

where
Lz, £ L 4 3Lk Kmax9max + Licmax (3Lk + 10K7 \ gmax) + 6K hoGax - (62)
Substituting (&), (60) into BD) yields

logN 3 log N
mrél[%)i] |fN( )| < Lfﬁ gmaxcﬁ (Ka KI) N h2 + g gmaxLK//C (CX Nh2 ) h (63)
log N
under additional assumption (which hold true for all sufficiently large N):

3C2C, Lz, logN

> XTe Ry 98 (65)
8L, ;Cs(K,K') N

The result follows. [ |

RR n° 5466



12 Girard & Iouditski € Nazin

5.2 TUpper bound for ]?N in terms of J},
Lemma 3 Let the assumptions of Theorem Ol hold true. Then for any finite

and almost all w € Q there exist finite numbers N1 = N1(w,~) such that for all N > Ny the

LP {13)-23) is solvable and
Jp < Cp+hP. (67)

Proof of Lemma B Consider arbitrary N > Ny(w) with No(w) from Lemmal@l Introduce
function f,(u) = f(u) +vh” and pseudo-estimators

U TR 1+ 6y [+
& = — 1/ fo (1) du + — N/ fyw)du, i=1,...,N (68)
2 Xioa 2 Xi

where §;; stands for Kronecker symbol. Below we demonstrate that condition (B6) ensures
the vector of pseudo-estimators & = (&j ...,an)? to be an admissible point for the LP
([@-3), for any sufficiently large N. This implies solvability of the LP ([@)- @3] and

N 1
Tp < Yo = [ () +h®) du=Cy 4. (69)
i=1 0
Let Cx > 4C%/ fmin. For the sake of simplicity, we impose the additional assumptions

log N . f fmax 1 }
h? < ==~ < min s 0 70
~ pNh — { v pCx (70)

which hold true for all NV large enough.

INRIA



L1 optimal frontier estimation 13

1. First, we prove constraints ([3) under a;; = &;, i = 1,..., N. For arbitrary = € [0, 1],
N N
N41
_ K (2, Xi) + Kn(z, Xi-1)
= Z/X . 5 (72)
+% 0 Jy(w) du (Kp(z, X1) — Ki(z,0)) (73)
= ) (i, Xo) = K, 1) (74)
= / fy(w) Kp(z,u) du (75)
N+1
N Z /f’y (Kh x, X)—I—th(a: , Xio1) —Kh(a:,u))du (76)
1 x
+3 ; fy(w) du (Kp(z, X1) — Kn(2,0)) (77)
1
+% . fy(u) du (Kp(z, Xn) — Kp(z,1)) . (78)

Now we separately bound each of the summands ([Z3)—([Z8) from below. Due to (@), the main
term ([[3) is bounded as follows:

F(@) + kB ¢ / (f(w) - (@) Kn(z,u)du  (79)

f@)+ (v = Lj g gmaxCs(K))h . (80)

/ fry(u) Kp(z,u) du
0

Y

RR n° 5466



14 Girard & Iouditski € Nazin

The i-th summand from ([f6)) is decomposed and then bounded basing on trapezium formula

error as follows:

X . .
/ £(u) (Kh(x,Xl) +2Kh(x,Xl_1) —Kh(x,u)> du
Xi-1
X . .
. f’v(I)/ <Kh(:c,Xz) +2Kh(:c,XH) —Kh(:c,u)> du
Xi—1
X;
Kn(z, Xi) + Kp(z, X,
= 150 - gy (o) [FRERIERET) g
Xi-1
. _ X, 3 2
> _(fmax+'7hﬁ) (Xz 15171) ulél[%)i] 0 I((;;E;?au) ]_{|$—XZ| §2h}

X
—Lyp /
_Xv

i—

2h?

By applying Lemma [Bl the first term is bounded as follows

IOgN ? fmax gmaxLK’
> _ X; — Xi1) 1{|z — X;| < 2h},
€D > - (Cx BN ) Tt D - Xi| < 28)
and the second one is bounded by:
gmafo)ﬁ Lk log N Xi 3
) > s T o 1{|x—Xi|§2h}/Xil|u—m| du.

Moreover, from Lemma Bl one can show first that

N+1
i=1

Cxlog N
N )

and second that

N+1

X
S 1l - Xy < 2h}/ lu — 2| du
Xi-1

i=1

x+2h
/ lu — x|’ du
z—2h—Cx (log N)/N

IN

log N
(4h+CX o8 > max |v|®
N v€[—2h—Cx (log N)/N,2h]

log N log N p
(4h+CX N ><2h+CX N ) .

IN

IN

du

m'xL
u—2)° 1w — X,| < 20} T (4 X, ) + (X — w)] du
1

(87)

INRIA



L1 optimal frontier estimation 15

Thus, we arrive at the bound for the sum (Z8) as follows:

N+1 .Xx,;
! Kp(x, X;) + Kp(x, X;—
> [ nt (FUEREREE ) du (92)
i=1 Y Xi1
log N log N Cx fmaxLk log N
> T Ymax AT 4
2 ~gmaxCx —p ( +Ox Nh)( 6 Nh (93)
L, 4Lk log N\ "
£,8 3 g
e h (2+CX N ) ) (94)
5 log N\ > _
> _ggmaxOX <%) (OXfmaxLK/+3ﬁ+lp 1LfﬁLK)- (95)

At last, it is similarly demonstrated that both summands () and ([(8) are bounded above
by O((log N/(Nh))?). For instance, for ([[7), one obtains

X1

| fv(u)dU(Kh(%Xl)—Kh(ﬂcao))‘ < (fumax +907) X1 [ K (2, X1) — Ki(2,0)]

< of Lic (22N i (96)
= max Jmax /K X Nh .
Thus, from [I)-@4) it follows for each j = 1,..., N that
~ log N 2
IN(X5) > F(X5) + (v = Ly gmaxCs(K))A® + O (( N ) ) >Y; (97)

for sufficiently large N > Ny(w) when both inequalities ([[l) and the following one hold true:

log N 12Lx

2
— 5 L L
L K [t B+1_-1.8
v 1.8 glnaxcﬁ( ) > 6 gmaxCX (Nhl 5/2) (CX fmax ( K+ 5 ) +3 ) .

2. Similarly, constraints ([ hold true under o; = @;, ¢ = 1,..., N. Indeed, for arbitrary
x € ]0,1], we now have to bound the absolute value of

N N
~ _d o~
o) = ZaiEKh(:v,Xi) = a; Kz, X)) (99)
i=1 i=1
instead of ([{1l). Here
N d
Kp(z,u) 2 e Kp(x,u) (100)

RR n° 5466



16 Girard & Iouditski € Nazin

(see Subsection Bl with the following upper bound

r—u

’f(h(x,u)‘ < h 2 gmax {‘K’< - K <‘T;“) ‘} : (101)

deduced form ([Z3), ([Z6). Hence, one may repeat the arguments of ([Z2)—([®) by changing

K, for Kj,. Therefore, all the rates from (BI)—(@1) should be divided by 5, while the absolute
value of the main term of decomposition, due to (B), is bounded as follows:

> ‘ + Jmax Kmax

[ s Ratayan] = | [ (7 - £0)) 2 Kale) du (102)
0 0
< Lf)ﬁ gmaXCB(Ka K/)hﬁ_la (103)

instead of (Z3)—(). Remind the definition (@)—(T) for Cs (K, K') which follows from ().
Thus, for sufficiently large N > Ny(w) and for each X; we arrive at

log? N
N2p3

log N
pNh2'

Namely, inequality () holds true almost surely for all those N > Ny(w) such that ([Z0) is
verified and

log N 5 log N \?
Lf)ﬁ Oﬁ(K7 K’) (M - 1) > ggmaXCX (W) (105)

7))

S Lfﬁ gmaxcﬁ(K; Kl)hﬁ_l + O ( ) S Lf,ﬁ gmaxCﬁ(K7 K/) (104)

121 - L, L~
: <fomax (L;(, + —5K) + 3"*17“; K)(106)

where (see Lemma [ for the detailed demonstration)

Lf{ = LK’ + LK gmameaX7 L}}/ = LK” + LK’ gmameax . (107)

3. Finally, the constraints ([I7) with
Co > 6 fmax (108)

also hold true under o; = oy, i = 1,..., N. Indeed, by Lemma Bl the following inequalities
hold a.s. for all N > Ny(w) and for each j = 1,...,my, where m, = [h™!] :

log N

N
SO E A )/ < X < fmn} £ (ot 30 (10420
=1

) (109)
< 6 maxh, (110)

under additional assumptions ([[{0). Thus, constraints () are fulfilled under ([OX) almost
sure, for any sufficiently large N.

4. Since all @; > 0, constraints (I&) hold true, and Lemma B is proved. [ |
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L1 optimal frontier estimation 17

Remark 5 By applying Lemmald, under additional assumptions (ZI3) on h, one may ame-
liorate the related bounds in (22)-(28) and (IIA)-(II8). Indeed, Lemmald, being applied with
its parameter v € (1,2), states that

N+1 v
hlog” N
E o — Xi| <2h}(X; = Xim1)® =0 (T) (111)
i=1

hence, the sum of the term ([84) is negligible with respect to that of @83). It means, roughly
speaking, that we may remove the term Ly from (Z3), (@8) as well as L, from (II8).
Howewver, it does not change much in the main result of the Theorem. That is why we
restrict ourselves to the pointing out this possibility here.

5.3 Lower bound for ]?N

Lemma 4 Under the assumptions of Theorem [, for almost all w € Q there exist finite
numbers No(w) such that for any x € [0,1] and for all N > Ny(w)

Fire) = fia) - S (REX) (12

with constant C4(3) defined in (32).

Proof of Lemma M Let us take use of Lemma [ and its Corollary B introducing

1

2C;log N | '*°
5y =Ly 560, 6,2 <ffLiN> . (113)
min f”B

Thus, for any N > Ng(w) and any x € [0,1] there exists (with probability one) an integer
ir € {1,..., N} such that

|z — X | < 0g (114)
and
Now, the estimation error at a point z can be expanded as
fla) = In(@) = [f(@)— f(Xi,) (116)
+ ) - Fn(Xa)] (117)
+ [ - Iv@)]. (118)

The term in the right hand side ([I6) may be bounded as follows

|f(z) = f(X3,)| < Lf,ﬁ |z — Xiklﬁ < Lf,ﬁ 557 (119)
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18 Girard & Iouditski € Nazin

as well as the term ([IX)

o~

(X)) = Fn(z) <Ly, |z — X, | < Lg, 6, (120)
with a Lipschitz constant L]?N for the function estimator fN(x) Remind that fN (Xi,) > Y;
due to ([H) or 20). Thus, ([II5) implies

F(Xi) = Fn(Xi) < (Yi, +6,) = i, =6, (121)
Combining all these bounds we obtain from ([T that for all N > Ng(w),
f(x) = n(@) <6y + Ly 0l + Ly, 0, (122)

Therefore, applying Lemma [l and substituting expressions ([I3) for ¢, and 4, into ([22)
lead to the lower bound

In(@) = f@) = (2L5500 + Ly, 0.) (123)
> flz) - 02(26) (10]gVN)W (124)

for any sufficiently large N (starting from random a.s. finite integer, which does not depend
on z). The first inequality in (4] has been applied here in order to simplify the lower bound.
Lemma M is proved. [ ]

5.4 Proof of Theorem [I]
1. Since |u| = v — 2ul{u < 0}, the Li-norm of estimation error can be expanded as
o~ 1 ~
Fx = £l = [ [Fx@) - f@)] da (125)
0

+ 2/01 [f(w) — fN(x)} 1{fN(x) < f(m)} dz. (126)

2. Applying Lemmas [l and Bl to the right hand side ([ZH) yields

limsup h=" (/01 {fN(x) - f(m)} dm) <A 4+4C,(gmax — 1) Kmax1{f =1} as. (127)

N—o0
Note, that one may fix v = 2L 5 gmax C3(K), for instance.

3. In order to obtain a similar result for the term (I2H), note that Lemma H implies

(nv(z,w) 2 erp(N) [f(ac) - fN(x)} < Cy(B) <o as.
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L1 optimal frontier estimation 19

uniformly with respect to both x € [0,1] and N > Ny(w), with
2+

B
1 [log N\ 1+8
aLB<N>éﬁ( :: ) . (128)

Hence, one may apply Fatou lemma, taking into account that u1{u > 0} is a continuous,
monotone function:

1 ~ ~
tmsup (V) [ [f@) = Fv@)] 1{f@) < @} ar (2
< / limsup (v (z,w) 1{¢n(z,w) > 0} dz (130)
0 N—oo
< Cu4(B) <00 as. (131)

4. Thus, the obtained relations together with (IZH) and ([Z8) imply (B&). Theorem [I is
proved. [ ]

6 Appendix

In Subsection [EJ] we establish some properties related to the corrected kernel. Subsection
presents some auxiliary lemmas which have been used to prove Theorem[Il Finally, we collect
in Subsection some lemmas dedicated to the proof of Remark

6.1 Corrected kernel

Let the basic kernel function K be defined as in Section Bl and the bandwidth h € (0,1/2).
Remind the estimator fy defined in (@) as follows:

N
]/C\N(CL') = ZaiKh(,T,Xi) (132)
i=1

a; > 0, i=1,...,N,

where the kernel function

Ky (z,t) :hilK((z—t)/h) Vo e (h,1-h) (133)
while
z/h -1
Kp(z,t) = hilK((:c —t)/h) </ K(t) dt) YV €0,h) (134)
and
1 -1
K (z,t) :h_lK((m—t)/h) (/ K(t) dt) Vzell—h1]. (135)
(z—1)/h
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20 Girard & Iouditski € Nazin

Thus, the kernel function Kj(x,t) is defined for any (z,¢) € [0,1] x R, and the estimator
(I32) is defined for any = € [0, 1] via the kernel K}, (x,t) corrected at the “boundaries”. One
may easily observe that

1
/ Kn(@u)du=1 Vazel01] (136)
0
and, consequently, due to exchanging the integral and the derivative,

1
/ 3Kh(:c,u) du=0 Vaxe€]0,]1] (137)
0 Oz

Note, that equation ([I37)) may also be verified directly. For instance, on the left boundary,
i.e. for z € [0, h], we have

z/h -1
K, t) = bV K (@ — £)/h)g(a), g<x>—</_ 1 K(t)dt) s

Denoting

Kp(z,u) = %Kh(:zr,u), (139)

we thus have

z/h —2
g (z) = — (/1 K(t) dt) h'K(z/h) = —g*(x)h 'K (x/h) (140)

and
Kn(z,u) = h'K((x—u)/h)g'(z) + g(x)h K’ ((x — u)/h) (141)
g()h~? (h—lK' (w - “) ~K (w - “) Kn(z, 0)) . (142)

Hence, the integral

/Olffh(x,u) du:—gz(;)K(%)/olK(%> du+g(lf) {_K (I;“)]u_l (143)

u=0

equals zero for x € [0,h]. A similar proof might be repeated for « € [1 — h,1]. Finally,
equality (I3A) holds true for all x € (h,1 — h) too, since g(x) = 1 over this interval.

In what follows, we use more general formulas ([B)—(f) instead of [I3X), that is

z/h

-1
Kp(z,t) =h 'K((x —t)/h)g(z), g(z)= </( K(t) dt) , xe€l0,1. (144)

z—1)/h
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L1 optimal frontier estimation 21

Therefore, as follows from (39, ([Z4) for any z € [0, 1],

Kn(z,u) = h'K((x—u)/h)g (z) + g(x)h*K'((z — u)/h) (145)
@ (%K’ <$ - “) +K <$ - “> (Kn(z,1) — Kn(a, 0))) . (146)

The following Lemma proves Lipschitz-like constants in (I07) and (61)—-(62).

Lemma 5 Let kernel K), defined in @@)-(B) meets the assumptions B1-B3, and the band-
width h € (0,1/2). Let K,, be defined by (I39). Then the following upper bounds hold true:

’I?h (:17, u)‘ S gmaxh_2 (LK + gmafonaX) ) (147)
) L, 82 ~ »
% Kh(l' u) < Gmaxh Lf(u ou a9 Kh(w u) < gmaxh Lf{/ , (148)

where Lz = Ly + L gmaxKmax and L, = L + L' gmaxKmax - Moreover,

3 4
’ 53 Kn(z,u)| < gmaxLg,h™ (149)
where
L}}// =  Omax [LK” + 3LK/ maxJmax + 3LKgmaxKr2nax (1 + 3gmax) (150)
+ (L + 20max K max) (1 + 2max) | - (151)

Proof of Lemma Bl The upper bound (1) follows directly from ([4H)-(I46). Further-
more, taking ([48), ({I46) into account, one easily may come to ([II7) since

0 =~ _ _
’% Kh(x, u) < gmaxh 3 (LK’ + Lk gmameax) = gmaxh 3Lf{ ) (152)

and, similarly,

< gmaxh ™ (L + L gmaxKmax) = Gmaxh *Lz, . (153)

‘WK}ICCU

RR n° 5466



Girard & Iouditski € Nazin

22

from (IBA)—(II6) as follows:
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Moreover, from ([[Z4) the derivatives follow

J@) = e (x(50) -k (5)). (165)
i@ = g on k(T - x (7)) (169)
+g*(x)h™? <K’<I;1)—K’ %)) (170)
therefore,
19'(@)] < ghaxKmaxh ™", (171)
9"@)] < giax (L + 20maxKfae) 77 (172)

Finally, using the bounds ([ZI)-([72) in ((EJ)-({ED) and the definition of K, ([Zd) we
arrive at the bound (EI)-(&2):

83
W o En(@,w)| < G (Lic+ 20maxK fax) (Lic + Gmax Kia) (173)
+ 2grznameaX (LK' + LKgmameaX (174)
+ Kpaxh? max |I~(h(x, w)|) (175)

+ gmax(Lr7 + Licr gmax Kmax + 2L h® max | Ky (z,u)|  (176)

+ Kpaxh® max |0 K (z,u)/0z|) 177

IN

(177)
Imax [Lr7 4+ 3L K gmaxKmax (178)
+ 3Lk gmax (Ui + K2y Gmax) (179)
+ KmaxFmax (3Kmax L + 2K3 0xImax) | (180)
= Gmax [Lrr + 3Lk KiaxGmax + 3Lk Gmax K 2y (1 4 3gmax) (181)
+ (L% + 2070 Koo (1 + 2gmax)] - (182)

Here we applied the upper bound ([[Z7) as well as the one, followed from ([[Za)-(Z8) and
([[52)-([I53):

0 ~
h3 max 6— Kh (117, U) < gfnameax (LK + gmaxKﬁlax) (183)
T, x
—|—gmaxh73 (LK’ + LKgmameaX (184)
+ Kmax9max (LK + Kr%laxgmax)) . (185)
Lemma Bl is proved. [ ]
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6.2 Auxiliary lemmas. 1

The following results are proved here for the sake of completeness.

Lemma 6 Let function f : [0,1] — R meets the assumption A1 and sequence (X;)i=1,... N
be obtained from an independent sample with p.d.f. f(z)/Cy by increase ordering ([{1)),
where C; is defined by (3). Denote Xo = 0 and Xnyy1 = 1. Then for any finite constant
Cx > 4C}/ fmin there exist almost surely finite number Ny = No(w) such that

log N

N+1

with probability 1. For instance, one may fix constant Cx as follows:

C(X - 5fmax/fmin . (187)

Proof of Lemma [l Introduce a uniform partition of the interval [0, 1] onto m, subinter-
vals Ay with equal Lebesgue measures

((Ag) 2 1/my < COxlogN/(2N), k=1,...,my, (188)

where size of partition

my 2 min{integer m : m > 2N/(Cx log N)} (189)
2N 2 N
< <259 (190)
CxlogN = Cxlog N
for an arbitrary € > 0 and for any sufficiently large N. Hence, the event
Ay 2 {w ﬂmaxHAXi < Cxlog N/N} (191)
my [N
> lU (X, € Ay} (192)
k=1 Li=1
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Basing on Borel-Cantelli lemma we prove that the complementary event A%, 20\A N may
occur only finite number of times (with probability 1). Evidently,

P(az) < 3P (ﬂ (X, ¢ m}) (193)
k=1 i=1

my N

- 1- O‘lf(U)dU) (194)
(N
s )
< oy (12 ) 199
(24 )N JminCx
_ O(lefmincx/<<2+s)cf>), (197)

Hence, condition C'x > 4C/ fmin implies the existence of positive ¢ ensuring the convergence
of series

i P(A%) < 00, (198)
N=1

and the Borel-Cantelli lemma applies. Note, that events ﬂfvzl {X; ¢ A} do not depend on
renumbering of (X;);—1,... ~ which lead to () from ([83); moreover, we have used both
definition [I89) and inequality 1 — z < e~ there in ([[O0)-{38). Lemma B is proved. [ |

Lemma 7 Let random sample {(X;,Y;)| i = 1,...,N} be defined as in Section @ Let
sequence 0, = 0,(N) be positive, and for some ¢ > 0

lim inf N1=56, > 0. (199)
Define
ms = min{integer m : m >, '} (200)

and assume a positive sequence 6y = 0y(N) < fmin meeting for all sufficiently large N the
inequality

log N

: (2-¢)C
5y21<am5 N with n>7f.

fmin
Then, under the assumptions of Lemma [, with probability 1, there exists finite number
Ng(w) such that for any N > Ng(w) there is such o subset of points {(X;,,Y:,), k=1,...,ms}
in the sample {(X;,Y;), i=1,...,N}, that the following inequalities hold:

(201)

(k_l)/mJSXik <k/m57 f(sz)_éy SY;k Sf(XZk) (202)
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Proof of Lemmal7l It is similar to that of LemmalBl Introduce an equidistant partition of
the interval [0, 1] onto subintervals [(k — 1)/my, k/mg], k =1,...,mz. Moreover, introduce
the related subsets in R?

Aké{(u,v):(k—l)/mégugk/mé,f(u)—5y§v§f(u)}, E=1,...,mgz. (203)

Hence, the event

Ay 2 {w:Vk=1,...omz;3i=1,...,N:(X;,Yi) € Ax} (204)
ms N

= N [U{(Xi,Yi)eAk} . (205)
k=1 Li=1

Basing on Borel-Cantelli lemma we prove that the complementary event A% = Q\ A, may
occur only finite number of times (with probability 1). Evidently,

mg N
P(Ay) < Zp<ﬂ{(Xi7Yi)¢Ak}> (206)
k=1 =1
mg N
= 1— | C7lf(u)dudv (207)
(1 [ crtrwi)
AN
< my (1— c, -Es) (208)
< (1+4") exp{—fmi““-logjv} (209)
C,
- O(lesffmin“/cf). (210)

Hence, condition k > (2 — €)C}/ fmin implies

> P(AR) <, (211)
N=1
and one may apply Borel-Cantelli lemma. Lemma [dis proved. ]

Corollary 2 Let 6, and §, meet the conditions of Lemmald Then, with probability 1, for
any N > Ng(w) and any x € [0, 1] there exists integer i, € {1,..., N} such that |x—X,, | < d,

INRIA



L1 optimal frontier estimation 27

Lemma 8 Let function g : [0, A] — R be twice continuous differentiable, A > 0. Then
2

A
< —— " )
max lg(x)| < max{|g(0)], |g(A)[} + 5 L1ax lg" ()] (212)

Proof of Lemma Bl Denote g, = max{|g(0)], |g(A)|}. It suffices to prove the case where
a point z1 € (0, A) exists with

lg(x1)] = max lg(z)] > gy - (213)

Then ¢g’(z1) = 0, and for any z € [0, A]

x t
g(z1) = g(z) —/ dt/ g" (u)du. (214)
] ]
Therefore, putting x = A one obtains from (ZI4)
A ‘ " P (A - I1)2 "
lg(@)l < lg(A)l+ [ dt | |g"(w)ldu < g, + ~———— max |g7(z)]. (215)
T T z€[0,A]
Similarly, fixing = 0 there in (£ZI4) leads to
T t I%
s <lo@1+ [ dt [ lg"wldu<g,+ G max [g"@]. (10)
0 1 IE[O,A]
Thus, combining ([2T3) and ([ZI6) we arrive at
1 .
l9(@1)] < g, + 5 min{(A — 21)* 27} max |g"(x)]. (217)
z€[0,A]
Since
' 2 a2} = & 215
A— = —
max min{(A — z)%, x T
the desired inequality ([2I2) follows immediately from Z13), @1I70)-EI8). [

6.3 Auxiliary lemmas. IT
Lemma [ states the results announced in the Remark B, Subsection

Lemma 9 Let numbers hy form a positive sequence, non-increasing for N > N1 and meet-
ing condition

S s
hn N

VN >N, (219)
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with finite, positive constants k and N1 and such that

. log N
1m e
N—oco Nhy

0. (220)
Then, under the assumptions of Lemmall, as N — oo, for an arbitrary v > 1 and for any
z €10,1]

s ANHAX-?’l X, < 2hy) — o [ Fv1og” N 221
N—;( )" Hr— Xy <2hn} =0 —z ) as (221)

where o(-) does not depend on x.

Proof of Lemma [

1. Remind that the sequence of random points (X;) is obtained from that of i.i.d. with
the p.d.f. f(:)/Cy for X; by their increase ordering. Furthermore, AX; £ X; — X;_1,
Xo = 0, and Xy = 1. Introduce o-algebras Fy = o{Xi,...,Xn}. Thus, (Sy,Fn) is a
non-negative stochastic sequence. Let us denote X the new point (hence, independent of
Fn) when passing from Sy to Sy41. With these notations and due to the evident inequality

1{|$ — X1| S 2hN+1} S 1{|l‘ — X1| S 2hN}

one may write

N+1 N+1
E(Syt1lFn) < EQ Y X €[X;m1, X))} | D (AX)*1{|e — Xi| < 2hn} (222)
j=1 i#j
+ (X = X;-1)° Y|z — X| < 2hn} (223)
+(X; - X H]e - X;| < 2hw}) | |Fw (224)
N+1
< Sy-— Zl{lw—Xﬂ §2hN}E{1{X€ [Xj_l,Xj)} (225)
j=1

(AXG) = (X = X;0)° = (X — X)°] | Fw} (226)
N+1
+ > E{(X - X; ) {X € [X; 1, X))} (1{|z — X| < 2hn} (227)

—1{|z — X;| < 2hn}) |FN} . (228)

2. The first need now is to evaluate the conditional expectation in ([22H)—226). A simple
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algebras imply
(AX))? = (X = X;1)° = (X; = X)? = 3(X(X; + Xj—1) — X? = X;X;1)AX;

which is non-negative for any X € [X;_1, X;). Therefore, the bounding from below leads to

E{1{X € [X; 1, X;)} [(AX;)? = (X = X;1)° = (X; — X)*] | Fn} (229)
— 3AX. Xj @( (X‘—i—X‘ )_ 2_X.X.-
= J T\Aj j=1) — T iXj-1)dx (230)
Xj-1 Of
fmin
> e ax) (231)

Substituting to [22H)-(226) and applying Iensen’s inequality for the convex function v (s) £
4/3
S b

(= >4/3 - S e — X5 < 2} (AX)' (232
#{|lz — X;| < 2hyn} #{|lz — X;| < 2hn} ’
lead to
Fuin SN
E(S )< Sy - 2
(Sn|Fn-1) < Sn-1 20, (NqN)1/3+rN (233)
where
X
gn = Nzll{lw—Xﬂ <2hy_1}=O(hn-1), (234)
i=
and 7y denotes the related sum in (E27)—228), that is
N
TN 2 ZE{(X — Xj_1)31{X S [Xj_l,Xj)} (1{|1‘ — X| < 2hN_1} (235)
j=1
—1{|z — X;| <2hn1}) [Fnoa) . (236)

Note, that one may define 0/0 = 0 to treat the case of zero denominators there in (Z32), for
instance.

The bound O(hy) for g stated in (234) is proved below in Lemma [l In order to
bound ry from above one may easily see that the difference between the two indicators in
(239)—230) is positive iff the first of them equals 1 while the second does 0. Due to Lemma [l
and the property ([ZZ0), i.e. log N/(Nhy) — 0, this may almost surely arise only for the
following event (for any sufficiently large N): o — 2hy_1 < X1 < X <z +2hy_1 < Xj.
Given a sequence (X;), this event arises only for one j, say j = j,, which depends on z.
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Thus,
X’.
Yo f(u) Jmax 4
< ~- X 3L du < X,
ry < /Xj 71(u on,l) o du < C, i:1T%§+1(X1 Xi—1) (237)
= O((logN/N)4), (238)

with non-random O(-) being independent of z, from Lemma [l

3. The next step is to come from the nonlinear inequality [233) to a linear one. The
convexity of function v (s) = s/ gives, for an arbitrary ay > 0, the lower bound as follows:

Y(S) > Yax) + ¥/ an)(Sx — ax) = xSy — zaif*.

Thus, inequality [Z33) and the choice ay_1 £ a®qn/N? with a > 0 lead to

1/3 4 1/3
2 min an— min an_
E(Sy|Fn-1) < Sn-1-— ?fC’f (]\vaq;) Sn-1+ J(ch (;q;) +rn (239)
3
p pa
< Sn-1-— NSNA T e TN (240)
where S
A 2Q [min
= " >9 241
TS >2+K (241)

for sufficiently large a.

4. Finally, using relations (234)-(£36) in ([239)-@40) and applying Lemma [0l we arrive at
the result of Lemma @ ]

Lemma 10 Let (wyn,Fn) be non-negative stochastic sequence meeting the inequality

dnhy

n
=% Nt

YN >N 242
¥ > M (242)

E(wn|Fy-1) < ( ) wN-1+
where p > p+ Kk, hy and k meet conditions of Lemma [, dy is Fn—_1-measurable, non-

negative and bounded a.s., and N1 < co. Then, as N — oo, for any v > 1

log” N
wy :o< ]g\]p hN) a.s. (243)
Proof of Lemma [T0. Introduce
A NP
2 _ S. 244
UN T nlog N 0N S (249)
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The inequalities log N > log(N — 1), hy_1 > hy, and [242) imply

I N P hy_1 dn
Bl Fr) £ (1) () I Ay
(onlFy-1) < N (N—1> iy N Nlog' N (245)
w—p—kK 1 d
< 1—— — _ —_— 24
= ( N +O(N)>”N ' Nlog' N (246)
Since - -
K—p—K _ dn
Z T =00 and Z m < o0 a.s., (247)
one may apply Robbins—Siegmund almost supermartingale convergence theorem ROBBINS
& SIEGMUND [25] which implies vy — 0 as N — co. Lemma [[0lis proved. [ |

Lemma 11 Let h = hy — 0 as N — oo. Then, under the assumptions of Lemma @ and
Lemmal[d, the bound ([Z37) holds true for any x € [0,1], that is

N

av 2 3" e - X] < 2y 1) = O(hy) (248)

j=1

where O(-) does not depend on .

Proof of Lemma [Tl Introduce

GE1{|r — Xi| <2hn_1} — P{|z — Xi| < 2hn_1} (249)
leading to the decomposition
| X
qnv = P{lz — X1| < 2hN,1}+NZQ. (250)
j=1
Since X; are i.i.d. with the bounded p.d.f. f(-)/C}, the probability
i)
P{lz — X;] §2hN,1}§/ C—du:O(hN,l) (251)
x—2hn_1 f

with O(-) being independent of x and of i. Furthermore, observe that |(;| <1 a.s., and
EG =0, EG <P{le—X;| <2hy 1} =0(hy_1). (252)

Thus, in order to bound the stochastic term in the right hand side ([220) one may apply the
Bernstein inequality (see, e.g., BIRGE & MASSART [3] or BosQ [], Theorem 2.6) with the
standard treatment via Borel-Cantelli lemma (e.g., as in BOUCHARD et al [B], Appendix,
Lemma 5). This directly yields

1/2
ax = O(h) + O <(W) ) — O(hy) as. (253)

Lemma [Tl is proved. ]
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