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Abstract: This paper presents a new pairing protocol that allows two CPU-constrained
wireless devices to establish a shared secret at a very low cost.

Our scheme requires that the devices being paired, A and B, are shaken during the key
exchange protocol. This is to guarantee that an eavesdropper cannot identify the packets
sent by A from those sent by B. A can then send the secret bit 1 to B by broadcasting an
(empty) packet with the source field set to A. Similarly, A can send the secret bit 0 to B by
broadcasting an (empty) packet with the source field set to B. Only B can identify the real
source of the packet (since it did not send it, the source is A), and can recover the secret
bit (1 if the source is set to A or 0 otherwise). An eavesdropper cannot retrieve the secret
bit since it cannot figure out whether the packet was actually sent by A or B. By randomly
generating n such packets A and B can agree on a n-bit secret key.

This paper presents the details of the protocol and the results of some experimentations.
To our knowledge, this is the first practical pairing scheme that does not rely on expensive
public-key cryptography, out-of band channels (such as a keyboard or a display) or specific
hardware. The proposed protocol has very small computation and storage requirements.
It is therefore well adapted to CPU-constrained devices (such as sensors) that have very
limited capacities and are easy to shake.
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Shake Them Up!

A movement-based pairing protocol for CPU-constrained
devices

Résumé : Ce rapport présente un nouveau protocole qui permet & deux terminaux sans-fil
A et B avec des capacités trés limiées de d’échanger une clé secréte.

Note protocole nécessite de secouer les terminaux pendant la phase d’échange de clé afin
de rendre l'identification de la source des paquets difficiles. A peut alors envoyer le bit 1 &4 B
en diffusant un paquet dont le champs “adresse source ” est positionnée a4 A. Il peut envoyer
le bit 0 en diffusant un paquet dont champs “adresse source ” est positionnée & B. Seul B
peut identifier la source réel du paquet (étant donné qu’il n’a pas envoyé le paquet, la source
est A), et recupérer le bit secret (1 si le champ source est positionné 4 A, 0 autrement). En
répétant ce protocole n fois, une clé de longueur n bits peut étre échangée entre A et B.

Ce rapport présente les détails du protocole et des résultats expérimentals. D’aprés nos
connaissance, il s’agit du premier protocole d’échange de clé qui n’utilise pas la cryptographie
ou des canaux sécurisés.

Mots-clés : capteurs, échange de clés, sécurité
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1 Introduction

The current trend in consumer electronics is to embed a short-range wireless transmitter and
a microprocessor in almost everything. The main motivation is to facilitate communication
and cooperation amongst wireless devices in order to reduce their size/cost and increase
their functionalities. In this context, each device can be seen as a peripheral of the others.
For example, a user can use the display and the keyboard of a PDA to access his cellular
phone or personal server [16]. Similarly, a user can use its cellular phone or PDA to retrieve
temperature data sensed by a local sensor [15].

The main security challenge is to securely associate the devices together. For example,
when a device receives data from a sensor, it needs to make sure that the data is received
from the sensor it has selected and not from an impostor. Furthermore, integrity and privacy
are often very important too.

The process of securely associating two wireless devices is often referred to as pairing.
This process allows two devices, communicating over a short-range radio, to exchange a
secret key. This key can then be used to authenticate or encrypt subsequent communication.
It is important to notice that the key exchanged in a pairing protocol does not need to
be authenticated since the identities (often provided by certificates) do not matter in this
context. A user who is pairing two devices together only needs assurance that a key was
exchanged between the devices he/she has selected (for example, the two devices he/she is
holding in his/her hands).

In summary, a pairing protocol is composed of two separate sub-protocols:

1. Key exchange sub-protocol: this protocol is run between the two wireless devices and
results in a secret key shared between the two devices.

2. Pairing validation sub-protocol: this protocol is executed between the two wireless
devices and the user. Its goal is to guarantee (with some large enough probability) to
the user that a key was exchanged between the two devices he/she actually wished to
pair.

Motivations and design constraints: The motivation of this work is to design a pairing
protocol for CPU-constrained devices, such as sensors. Designing pairing protocols for such
environment is very challenging because sensors have limited CPU and memory. Also,
because of their low costs, most of them cannot rely on tamper resistant components. The
consequence of the limited computing and storage capabilities is that modular arithmetic
is difficult and therefore, asymmetric cryptography cannot be used. In particular, standard
Diffie-Hellman (DH)[4] key exchange protocols are excluded. Even low exponent RSA[14]
techniques that allow to minimize encryption cost are prohibitive when sensors are involved.
Our goal is to design a pairing protocol that meets these constraints.

More specifically, we aim at designing a protocol that does not use public key cryp-
tography and does not rely on some preconfigured information. Furthermore, the designed
protocol must not increase the complexity and the cost of the sensors by requiring addi-
tional hardware (such as a display, an I/O interface or an out-of band channel, such as an
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4 C. Castelluccia and P.Mutaf

infrared one). Finally, it should not require exotic wireless technologies, but instead work
with current wireless networking standards such as 802.11 or 802.15.4 (an emerging Wireless
PAN (WPAN) technology, designed for low power sensors). The proposed protocol must be
secure against passive and active attacks. In other words, it must not allow active or passive
attackers to learn the key exchanged between two paired devices. It must provide protec-
tion against Man-in-the-Middle (MitM) attacks that attempt to impersonate one or both
of the devices during key agreement (i.e., how to make sure that the key is exchanged with
the correct device?) It must also provide some protection against Denial-of-Service (DoS)
attacks, i.e. prevent attackers from disrupting the pairing protocol and from exhausting the
devices’ resources, such as their battery.

Contributions: We present a novel secure pairing technique based on a key agreement
protocol that does not depend on CPU-intensive operations. Two CPU-constrained wireless
devices A and B can establish a shared secret over an anonymous broadcast channel. An
anonymous channel is a channel on which an eavesdropper can read the packets that are
exchanged but is unable to identify the source. Using such a channel, A can send the secret
bit 1 (resp. 0) to B by broadcasting an (empty) packet with the source field set to A (resp.
B). Only B can identify the real source of the packet (since it did not send it, the source is
A), and can recover the secret bit (1 if the source is set to A or 0 otherwise). An eavesdropper
cannot retrieve the secret bit since it cannot figure out whether the packet was actually sent
by A or B. By randomly generating n such packets A and B can agree on a n-bit secret
key.

The protocol is secure if and only if the packets of A and B cannot be distinguished by
an eavesdropper. On a wireless channel, this property is difficult to achieve through protocol
design since an eavesdropper can measure the signal strength of each packet and may be
able to determine the real source of each packet. Therefore, we propose that during key
agreement, the user(s) be very close to each other and shake their devices (i.e. randomly
turn and move one around the other) in order to randomize the reception power of their
packets by a potential eavesdropper and make power analysis very difficult.
Organization: The paper is structured as follows: Section 2 presents the related work.
Section 3 presents the basic ideas of our scheme. Section 4 describes our proposal in detail.
Section 5 presents experimental results and analysis. Finally, Section 6 concludes the paper.

2 Related work

The problem of secure pairing of wireless devices has been tackled by several researchers
and the proposed solutions can be classified into three main categories:

1. Public-key cryptography based solutions:

These solutions rely on public-key based key exchange protocols such as Diffie-Hellman
or RSA [5, 9, 10]. In Diffie-Hellman based schemes, devices exchange their Diffie-
Hellman components and derive a key from them. In RSA-based schemes, one of the
devices selects a secret key and encrypts it under the other device’s public key.

INRIA



Shake Them Up! 5

The main problem of these solutions is performance. They require that devices perform
very CPU-intensive operations such as exponentiation, which are prohibitive for CPU-
constrained devices.

2. PIN-based schemes:

In Bluetooth, two wireless devices derive a shared key from a public random value,
the addresses of each device and a secret PIN number. The PIN number is provided
to each device by the user via an out-of-band channel, such as a keyboard. While this
solution is computationally efficient, it requires that both devices be equipped with
some kind of keyboard or input interface. As a result, this solution cannot be used to
pair devices lacking input interfaces, such as sensors.

3. Physical contact or imprinting:

In [15], Stajano and Anderson propose a solution based on physical contact. Two
devices get paired by linking them together with an electrical contact that transfers
the bits of a shared secret. No cryptography is involved, since the secret is transmitted
in plaintext. Furthermore, the key validation phase is not necessary since there is no
ambiguity about the devices that are involved in the binding (i.e. MitM attacks are
impossible).

While this solution is interesting, it requires to equip each device with some additional
hardware to perform the electrical contact. Similarly, it might be possible to transmit
a secret key through an infrared channel to a nearby node. Infrared transmissions
require absolute line-of-sight links, making it more difficult for third-party intercep-
tion. Nevertherless, in both cases, i.e. physical contact or infrared transmission, the
complexity and the cost of the devices would increase '. This violates one of our de-
sign requirements, that the pairing protocol should not require extra equipment. We
wish to achieve key agreement through an existing channel which may also be used for
communication.

Note that all the previous schemes (except the last one) require some additional mecha-
nism to validate that the pairing was performed between the two intended devices (pairing
validation). The only solution proposed in the literature so far is to provide to the user
some evidence that both devices computed the same secret key. For example, the devices
can both display a hash of the secret key [5]. These solutions are not always practical since
they require devices with a display and/or a keyboard.

3 Basic ideas

This section describes the main ideas of our scheme. We first describe how two devices,
communicating over an anonymous channel, can exchange a secret key without expensive

ISince infrared channels require line-of-sight links, they cannot be efficiently used for the actual commu-
nication between the sensors.
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6 C. Castelluccia and P.Mutaf

computation. We then define formally what we mean by anonymous channels and describe
how they can be implemented in practice.

3.1 Pairing over anonymous channels

This section describes a new technique that allows two parties to securely exchange a secret
over an anonymous channel while preventing eavesdroppers from determining its value (or
actually any of its bits). By anonymous channel, we mean a broadcast channel that hides
the origin of the messages. On an anonymous channel, a passive wiretapper can read the
message that are broadcast but is unable to identify the source. Anonymous channels require
a property that we call Source Indistinguishabilily. This property is defined and discussed
in Section 3.2.

Our key exchange protocol was inspired from the protocol proposed by Alpern and
Schneider in [1]. In this paper, the author presents a protocol that allows two parties to
agree on a secret key on channels for which an eavesdropper cannot tell “who” broadcasts each
message. The technique is called “Key exchange using keyless cryptography”, or “Keyless
key agreement”.

For users Alice (A) and Bob (B) to agree on a n-bit key K 4p[n], each first chooses its
own random 2n-bit string:

RA[]']a RA[2]7 sty RA[Qn]

RB[l], RB[Q], ceey RB[QH]

User A then broadcasts 2n anonymous messages (without sender identifier), one for each
bit in R4. Similarly, user B broadcasts 2n anonymous messages (without sender identifier),
one for each bit in Rp. The secret key is then defined by the bits R4[j] sent by A such that
R4[j] # RB[j]- Note that there are on the average n such bits. The salient property of the
protocol is that the message content is not hidden. All messages are accessible to potential
eavesdroppers, which however cannot determine the origin of each message. As a result,
they are unable to identify the packets sent by A and therefore identify the correct bits.
Since A knows her bits, she can easily identify the bits sent by B. Similarly since B knows
his bits, he can easily identify the bits sent by A. Note that the packets transmitted by A
and by B must be interleaved. Otherwise it might be easy for an eavesdropper to identify
the bits sent by a same source from a timing analysis. R4[1] and Rp[1] should be sent first,
followed by R4[2] and Rp[2], and so on. Of course the transmission order must be random.
In fact if A always sent first, an eavesdropper can easily recover the key.

The protocol presented by Alpern and Schneider requires the broadcast of 4n messages
for A and B to agree on a n-bit secret key. We propose an optimization that reduces the
number of broadcast messages to n. The overview of our protocol is the following (a more
detailed description is presented in Section 4):

1. A selects n/2 random bits R4[1], Ra[2], ..., Ra[n/2]
2. B selects n/2 random bits Rp[1], Rg[2], ..., R[n/2]

INRIA
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3. A builds n/2 messages m4[1],ma[2], ..., ma[n/2], where the source identifier of m 4[j]
is either set to A if R4[j] = 1 or set to B if R4[j] = 0.

4. B builds n/2 messages mp[1], mp[2], ..., mp[n/2], where the source identifier of mp[j]
is either set to B if Rp[j] =1 or set to A if Rp[j] = 0.

- A and B send their messages synchronously but in a random order. In other words,
the first messages of A and B are sent (in a random order), followed by the second
messages (in a random order), and so on. In total, n messages, m., are sent.

- For each message my, that A (resp. B) receives, it checks whether the source identifier
is set correctly (note that only A and B can perform this verification) and sets K 4p[k]
to 1 if the source is correct or to 0 otherwise.

3.2 Source indistinguishability: definition and requirements

The described key exchange protocol requires the source indistinguishability property. In
other words, if two parties, A and B, run the previously described key exchange protocol,
an eavesdropper should not be able to distinguish the packets sent by A from the packets
sent by B. Failing to achieve this property actually leads to an insecure protocol, since the
eavesdropper could then recover some (if not all) bits of the exchanged key.

This notion of source indistinguishability is very similar to the notion of ciphertext
indistinguishability in encryption schemes [7]. The basic idea behind indistinguishability
of an encryption scheme is to consider an adversary (not in possession of the secret key)
who chooses two messages, m; and my, of the same length. Then one of the messages is
encrypted and the ciphertext is given to the adversary. The encrypted scheme is considered
secure if the adversary cannot tell which of the two messages was encrypted.

We define source indistinguishability in a similar way as follows: a communication scheme
between two parties A and B is source indistinguishable if for a given packet P, emitted by
A or B, an eavesdropper cannot tell whether the packet was sent by A or B. More formally,
the difference between the probability that the packet was sent by A and the probability
that the packet was sent by B should be very small:

Pr[source(P) = A] — Pr(source(P) = B] < €

In practice, source indistinguishability requires the communication to be temporally and
spatially indistinguishable. In the following sections, we discuss these requirements in detail
2

2We assume that packets do not carry information that can help identify the source address. Thus we
concentrate our efforts on temporal and spatial indistinguishability problems.
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8 C. Castelluccia and P.Mutaf

3.2.1 Temporal indistinguishability

Given two parties A and B communicating together, an eavesdropper should not be able,
using timing analysis, to identify the packets emitted from A from those emitted from B
with a probability larger than 1/2. Furthermore, the eavesdropper should not be able to
group packets emitted by the same source.

It is clear from the previous definition that a communication system that uses a TDMA
(Time Division Multiplexing Access) based MAC (Medium Access Control) protocol cannot
provide temporal indistinguishability. In a TDMA-based system, each terminal is given one
or several time slots and can transmit only during one of its slots. As a result, it is very easy
for any eavesdropper to identify the packets transmitted by a source or at least identify the
packets sent by a same source.

Random access MAC protocols, such as CSMA (Carried Sense Multiple Access) are
more appropriate. CSMA protocols such as Ethernet or wireless Ethernet, multiple nodes
are allowed to use the same channel in a random fashion. Before transmitting data a node
listens to the channel. If the channel is busy then it waits for a random time and then
listens again. If the channel is not busy, then it transmits its packet. In CSMA, collisions
may happen when two terminals transmit simultaneously. CSMA /CD (Collision Detection)
enables devices to detect a collision. After detecting a collision, a device waits a random
time period and then attempts to re-transmit its message. As we will show in Section 5,
with a CSMA-based system, the order of the packets sent by the different users can easily
be randomized. This feature is crucial for the security of our approach. In this case, it will
be very difficult for an eavesdropper to use timing information to identify the source.

3.2.2 Spatial indistinguishability

Given two parties A and B communicating together, an eavesdropper should not be able,
using spatial analysis (or signal strength analysis), to distinguish the packets emitted by A
from those emitted by B with a probability larger than 1/2. In other words, the eavesdropper
should not be able to detect the packets’ source from their reception power.

This property is very difficult to achieve in practice since wave attenuates according to

the free space propagation law and the eavesdropper can easily identify the location of the
transmitter from the reception power of a received packet, i.e. from power analysis. More
specifically, according to free space propagation law, the reception power (in Watts) Sp of a
packet transmitted with power St by a transmitter that is located at a distance d is defined
as:
Sp = St x Gt * Gr x K x 1/d?, where Gt is the antenna gain of the transmitter, Gr is the
antenna gain of the receiver and K is a constant that depends on the signal frequency (or
wavelength). If the receiver knows St and the gain, it can easily estimate d. An eavesdropper
listening to a communication between two parties A and B can also use the reception power
to identify the source of the packets with a probability larger than 1/2.

Let’s assume that A and B use the same type of antenna (i.e. they have the same
gain) and let’s define k = Gt * Gr x K. If A and B transmit their packets with a power

INRIA
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uniformly distributed between [St; St + delta] then A receives the packets from B with a
power uniformly distributed in [k.St/d?; k(St + delta)/d?]. Similarly, B receives the packets
from A with a power uniformly distributed in [k.St/d?; k(St+delta)/d?]. If the eavesdropper
is listening with a large antenna (i.e. Gr' is large s.t. k' = Gt +*Gr' * K > k) and it is closer
to A than to B (i.e. d4 < dp) then:

1. the power of A’s packets received by the eavesdropper is uniformly distributed in
(k' * St/d%; k' x (St + delta)/d?] and,

2. the power of B’s packets received by the eavesdropper is uniformly distributed in
(k' * St/d%; k' * (St + delta)/d%).

Therefore the eavesdropper can identify all the packets received with a power in [k’ x
St/d%; k' x St/d%] as belonging to B and all the packets received with power in [k’ (St +
delta)/d%; k' = (St + delta)/d?%] as belonging to A. The scheme can only be secure if of one
the two following conditions is met:

1. Condition 1: dg = dg. The scheme is secure because the power of the packets sent by
A is statistically indistinguishable from the power of the packets sent by B. If d4 # dp,
the eavesdropper can identify some of the bits of the secret. The number of bits that
can be identify depends of the values of d4 and dg. If dg > (St—{—delta/St)l/2 xdy, the
eavesdropper can guess the source of all the packets exchanged between A and B and
therefore all the secret. If dq < dg < (St + delta/St)'/? x d4, the eavesdropper can
guess the source of some percentage of the packets. This percentage depends on the
difference between d4 and dg. Note that if the eavesdropper can monitor at several
locations, and receive the same packets with different reception powers, it will be even
easier for her to identify the source of the packets.

2. Condition 2: A and B should move during the pairing phase such that d4 and dp
(and therefore their respective powers) are statistically indistinguishable. This is the
approach that we are alluding to in our scheme.

4 Movement-based pairing

This section describes a new protocol that can be used to pair two devices A and B se-
curely and without using expensive public-key cryptographic protocols. Our key agreement
protocol is based on the combination of the two following novel and original ideas: we first
optimize Alpern and Schneider’s keyless key agreement protocol and adapt it to an ad hoc
configuration. Secondly, we show that the protocol can be secured against power analy-
sis by shaking the two devices around each other. We show that it is secure against DoS
(Denial-of-Service) and MitM (Man-in-the-Middle) attacks.

RR n° 5457
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terminal A Start (K termlrlal B
P »
Y
1 roundo  Src:A dst:B > 1
0 < src:A dst:B 0
1 < round 1 src:B dst:A 1
1 src:A dst:B > 1
round 2 . .
1 < src:B dst:A 1
0 src:B dst:A > 0
1 round3  Src:A dst:B > 1
0 < src:A dst:B 0
hash(A|B|key)
'
P hash(B|A|key)
Y
SECRET KEY

Figure 1: Key agreement protocol for movement-based pairing.
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4.1 Key agreement

In our pairing protocol, key agreement is performed using the protocol described in Figure
1. This protocol is an optimization of the approach proposed by Alpern and Schneider [1].
The number of messages per secret bit is reduced (1 instead of 4), making the protocol more
energy efficient.

The protocol starts by a START message transmitted by one of the two parties, either
A or B. This message contains the value k, which is the number of rounds the protocol
should execute, and the address of the packet’s source. Upon reception of this message, the
other party replies with another START message that contains its address. This exchange
allows each device to learn the other party’s address and the size of the desired shared key.
It should be trigger by the user, by, for example, pushing a button of the devices.

At each round j, A broadcasts its (empty) packet at time t4,;, where t4,; is randomly
selected in the interval [(j — 1) * T, j * T'], where T is a constant. Similarly, B broadcasts its
packet at time tp ;, where tp ; is randomly selected in the interval [(j — 1) *T,j *T]. As a
result, the order of transmission of these two packets is random in the interval [(j—1)*T, j*T].
An eavesdropper is then unable to detect the source of the packets using timing information.
Secret bits are represented by the correct or inversed placement of source and destination
addresses. If the sender and recipient addresses are correct the terminals A and B presume
a secret bit TRUE (1), otherwise they presume FALSE (0). For example, in Figure 1, the
first message is sent by A. Furthermore, the source address is set to A and the destination
address is set to B. Since the packet was actually sent by A, the resulting bit (the first bit)
of the secret key is then set to 1 by A and B. Note that an eavesdropper cannot identify
the real source of the packet and therefore cannot identify the value of the exchanged secret
bit. Each message identifies one bit of the secret key. At the end of the k rounds, A and
B share a 2 * k-bit long secret key. Therefore, if a 60-bit long key is required, the protocol
should contain 30 rounds, i.e. 60 messages.

The protocol is terminated by two messages, that are used to validate the exchanged key.
The message sent by A contains the value a = hash(A|B|key), where key is the exchanged
key. The message sent by B contains the value b = hash(B|A|key). The order of these two
messages is also random. When B receives the value a, it can verify that A has the same
key. Similarly, A can verify, upon reception of b, that B computed the correct key.

4.2 Achieving spatial indistinguishability: Shake them up!

As described in Section 4, the previous scheme is secure only if the source of the packets are
indistinguishable.

Time indistinguishability is provided by randomizing the order of transmission of packets
sent by A and B, as described in the previous section. An eavesdropper can therefore not
guess who is going to transmit next. Also, we are using CSMA-based wireless systems, such
as 802.11, to guarantee that the access to the channel is also random and does not reveal
any information about the source.

RR n° 5457



12 C. Castelluccia and P.Mutaf

As explained previously, spatial indistinguishability is more difficult to achieve. We pro-
pose to achieve this property with user assistance. The user(s) should shake (i.e. move and
turn) the devices during key agreement in order to equalize the average signal strength of
the two devices measured by a potential eavesdropper.

The required movements depend on the type of antennas used. For truly omni-directional
antennas, antenna orientation will not reveal any signal strength difference between two
devices. In these cases, it will be sufficient to take both devices and turn them one around the
other, in order to equalize the effect of distance (between each terminal and the eavesdropper)
on the signal strength measurements performed by an eavesdropper. If the antennas are
not truly omni-directional, randomizing the distance will not be enough to achieve spatial
indistinguishability. Different orientation of the devices may reveal a serious signal level
difference. In order to avoid this problem, during key agreement the two devices must be
randomly turned to different directions (in our experimentations we used commodity 802.11
cards which are not omni-directional, therefore Section 5 contains much more detail on this
issue).

Clearly, in both cases, having small and lightweigth devices (e.g. sensors or small PDAs)
will reduce the user burden for key agreement. The user can take one device in each of
his hands and randomly move them one around the other according to the horizontal and
vertical axes. If the devices are very small, he can take both of them in one hand and shake
his arm, like he would do with an orange juice bottle.

The security of the proposed scheme depends on the quality of the movement. Users of
our scheme should be aware that it is their responsibility and in their best interest to move
the devices properly during the pairing phase. Note that movement-based operations or
“protocols” are quite frequent and accepted in our everyday lives. For example, orange juice
or shaving cream bottles are universally shaken prior to usage. This is now a well-known and
quite a natural protocol. Furthermore it is commonly accepted that it is the responsibility
and interest of the consumers to perform this shaking operation properly.

4.3 Protection against MitM and DoS attacks
4.3.1 Protection against MitM attacks

Defeating a MitM (Man-in-the-Middle) attack requires assurance for a terminal A that a
secret key is really being exchanged with the intended terminal B and not an impostor’s
device. This is the goal of the Pairing Validation protocol, as described in Section 1.

In our case, this problem is reduced to the following issue: “how the two devices reliably
determine each other’s address in a communication channel where many devices are present?”
This is a more general question which may have different answers in different systems.

Once the two devices obtain each other’s address correctly, MitM attacks will be impos-
sible in our scheme. This is mainly because the devices are very close to each other (which
is required for spatial indistinguishability) and hence they can easily detect maliciously in-
serted messages that impersonate them. Also, the short distance between the devices will
help the devices to reliably determine each other’s address using signal level measurement.

INRIA
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I.e. it can be required that “START” messages be received with a high signal level. A distant
impostor may attempt to foil this technique by increasing its transmission range. In this
case, however, the “START” messages from the same device will be received at a higher rate
(i.e. bogus ones mixed with the real ones). Such anomalies can be easily detected in our
case.

One of the devices, say device B, may be down and an impostor may profit from the
situation by imitating B to A. To our knowledge such an attack has no solution if we do
not use CPU-intensive cryptographic techniques (that we wish to avoid in this paper). The
devices must probably inform the user about their status, i.e. up or down, using for example
a periodic led signal.

4.3.2 Protection against DoS attacks

We can differentiate between two kinds of DoS (Denial-of-Service) attacks on a key agreement
protocol. In the first one an attacker may exploit the key agreement protocol to force a victim
to perform computationally expensive operations, with the goal of draining its battery or
preventing it from performing useful work. Unlike public-key cryptography-based schemes,
our protocol is not based on CPU-intensive operations and therefore immune against such
DoS attacks. Another DoS attack may consist of sabotaging the key agreement, i.e. making
it impossible for the two parties to agree on a same secret key. Our basic protocol illustrated
is Figure 1 is vulnerable against such attacks and in this section we describe a solution.

In the protocol illustrated in Figure 1, it is very easy for an attacker to insert a bogus
packet with source address A and destination address B (or vice versa) and perform what we
call a key poisoning attack. Such a packet inserted by a third party would generate different
secret bits at the terminals A and B. The attacker can insert an arbitrary number of bogus
packets, and make it impossible for A and B to agree on a secret key.

The protocol depicted in Figure 4.3.2 defeats the key poisoning attack. In this protocol,
each secret bit is constructed using one packet from A and another from B, i.e. both
terminals contribute to the construction of each secret bit 3. Each secret bit is given a
sequence number (which also corresponds to the round number). In order to generate the
secret bit #i the two terminals generate a packet with correct or flipped address positions,
in random order (that is the probability that the first packet #¢ will be transmitted by A
is 0.5). The result of the two packets #¢ are combined by taking their sum (mod 2), or
exclusive OR. The result is the secret bit #i.

To corrupt the bit #4, an attacking node can insert x packets with the same sequence
number, where x = 1,2,3,.... In this case both sides will note z + 2 bits with the same
sequence number, but only two of them will be the same at both sides. Let {ay,...,az4+2}
and {b1,...,by 42} the set of bits (with the same sequence number) that the terminals A and
B have agreed upon. Then we have

3This protocol requires twice as many messages as the basic protocol. However, this protocol is only
necessary when the user believes that his devices are under DoS attacks. Otherwise, the basic scheme should
be used.
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Figure 2: A protocol that resists what we call a key poisoning DoS attack. When this
protocol is used for key agreement, an active attacker cannot poison (i.e. corrupt) the secret
key by inserting bogus messages with the addresses of A and B (see text for details). This
protection is obtained at the cost of two messages per secret bit.
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if x is odd.

Key poisoning can be defeated by taking the sum (mod 2) of every bit with the sequence
number ¢, as usual (except that in normal operation x = 0). If the attacker inserted an
odd number z of packets, the terminal A must invert the resulting secret bit #4. In these
conditions, an attacking node cannot poison the key shared by A and B by inserting bogus
secret bits.

Note that this protocol fails when A and B do not receive the same messages. This
might happen when some of the messages are lost. We therefore suggest that A and B
append to each of their messages a hash of all the previous messages they have seen since
the beginning of the protocol. As a result, if one or several messages are lost, A and B can
detect it immediately (instead of waiting until the end of the protocol and comparing a hash
of the derived keys).
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5 Experimentations and analysis

In this section, we analyse, by experimentations, the security of the proposed pairing scheme.
More specifically, we show that signal power and timing analysis can not be used by an
attacker to retrieve the key exchanged between two devices that use our pairing protocol.
We also evaluate the energy cost of our protocol and show that eventhough it requires several
messages, it is much more energy-efficient than a Diffie-Hellman based pairing protocol.

5.1 Setup and methodology

We built a testbed with lightweight laptops equipped with a PCMCIA Lucent IEEE 802.11
Wavelan card operating at 2.457Ghz (802.11 channel 10) and 11Mbps bit rate and in ad
hoc mode. Our cards support RSSI (Received Signal Strength Indicator) and allow us
to visualize and evaluate the power of received packets. Our signal level cryptanalyzer
is built upon Linux wireless tools?, and in particular swspy that allows to get per node
link quality. The iwspy command takes as argument a MAC address M, and outputs the
received signal and noise levels of packets whose source address is M. Figure 3 depicts a
typical measurement that can be carried out by any user using the jwpsy tool and a simple
sampling script. Note that iwspy also outputs the noise level which is about -96dBm in our
environment.
The received signal strength depends on at least 3 distinct factors:

1. Transmission power: all packets in our experiments are transmitted at our cards’
default value which is 15 dBm5.

2. Distance between the source and the signal level analyzer.

3. The relative angle between the source and the signal level analyzer: the cards that
we use are not omni-directional and the received signal level heavily depends on the
relative angle of the two cards.

During each experiment, refered as ‘scenario’, Eve (eavesdropper, or cryptanalyzer) mea-
sures the signal strength of the packets sent by Alice (terminal A) and Bob (terminal B)
during key agreement. Many different experiments were carried out and in this paper we
provide the most representative ones that we consider generic and applicable to almost all
situations because they perfectly reflect the points (2) and (3) listed above. Our first sce-
nario, denoted scenariol, is illustrated in Figure 4. In this scenario Alice and Bob are close
to each other (within 0.5 meter) and make two kinds of movements in order to equalize their
average signal strength captured by Eve:

4 Available at: http://www.hpl.hp.com/personal/Jean Tourrilhes

5Note that the spatial indistinguishability property requires that the two devices set the same transmission
power. We observed that almost all vendors set it to 15 dBm. In case of exceptions, the devices should
modify their transmission power to a well-known value (that we do not precise in this paper) and keep it
constant during key agreement.
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Figure 3: A typical iwspy output. In this example, the “iwspied” terminal is stationary
while the first ~100 samples are taken and then it moves to a location that is closer to the
signal level analyzer machine. The distance between the two cards is very well captured
using signal strength analysis. Almost all modern wireless Ethernet cards support RSSI and
Linux wireless tools are freely downloadable by any Internet user. Consequently, we note
that the attack that we call power cryptanalysis is not only a theoretical threat; it can be
easily mounted by any user with average system and programming skills.
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Figure 6: Scenario3

e We use commodity wireless Ethernet cards and they are not omnidirectional. Thus,
in order to confuse Eve, Alice and Bob must turn their laptop in randomly changing
directions (at a reasonable speed). The process requires reasonable effort from the
user and takes around 16 seconds for agreeing upon a 80-bit secret key. The details of
movement speed and its effect on security will be discussed later.

e Alice and Bob move their devices one around another with a reasonable effort, i.e
randomly and at a moderate speed. This helps Alice and Bob to hide their rela-
tive distance between their cards and a potential eavesdropper that may be located
anywhere.

In scenariol, we consider a pessimistic passive attack where Eve’s wireless Ethernet card
(the white arrow) is directly oriented to Alice and Bob and situated only 2.2 meters away.
This allows Eve to make relatively accurate signal level measurements. In practice, Alice and
Bob would probably notice the presence of a third person during key agreement, and look
for another place where eavesdroppers cannot approach them. However, in some situations
such countermeasures may not be practical. This scenario attempts to capture the cases
where the presence of a third person cannot be avoided. Note also that an eavesdropper may
have installed hidden signal level cryptanalyzers at strategical points. Thus, the absence of
a third person, does not necessarily imply a secure environment. In this scenario Alice and
BoB respect the key agreement requirements, hence the key will be secure as we will show
below.

In scenario2 (Figure 5), we demonstrate an inappropriate usage of our protocol that we
would like to disadvise. In this scenario Alice and Bob are not close to each other. They
both move their laptop randomly in every possible directions, but they are always far from
each other and their location does not change during key agreement. Eve profits from the
distance between Alice and Bob, and directs her card to Alice. Consequently, Alice’s packets
are received at a higher signal level than that of Bob, rendering the secret key weak.

The scenario3 (Figure 6) is even less secure and firmly disadvised. Alice is 4 times
closer to Eve than Bob. Eve is located between the two terminals and profits from the
situation by directing her wireless Ethernet card to Alice. Altough Alice and Bob’s cards
are perfectly turned in random directions, Eve can easily diffentiate between their packets.
As a consequence, the key will be extremely weak.
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5.2 Security Analysis

This section provides a security analysis of our key-exchange protocol in the settings of the
three scenarii presented previously. We first present the tools that we use for our analysis.
We then apply these tools to demonstrate the secrurity or insecurity of our proposal against
attackers that use power or timing analysis.

5.2.1 Method of Analysis

The security of the proposed scheme appears to be very similar to the security of systems,
such as smart cards, against power and timing analysis [2]. We therefore propose to use
similar security arguments.

If given two parties A and B and two collection of samples X 4 and X g that they emanate
during the key exchange (X can power or timing information), the proposed scheme is secure
(i-e. leakage-immune) if the variables X 4 and Xp are statistically indistinguishable.

The intuition behind this definition is that if the two variables are indistinguishable,
there isn’t any algorithm that an attacker could potentially use to differentiate the packets
of A from those of B. This definition is probably overly cautious, because in practice an
attacker do not have access to X4 and X separately but rather gets an aggregated view of
both of them. However, it seems difficult to come up with a less stringent definition that is
still practical.

Evaluating the indistinguishability properties of two sets of samples X and Y can be
performed using significant tests in statistics. Given two sequences of samples, a significance
test returns the probability a that an observed difference in some featuresof X and Y could
rise by chance assuming that that X and Y were generated by the same source. If the
resulting probability is small (typically less than 1% [2]), then the difference between the
two sequences is not due to chance but rather because the two sequences were generated by
two different sources. In this case, the sequences are not indistinguishable. If the resulting «
is larger than 1% then the two sequences are possibly indistinguishable. In fact, it might be
misleading at this point to conclude that the two sequences are statistically indistinguishable,
because further testing might reveal a genuine difference. However, by executing several
different significant tests on the sequences, one might get reasonable evidence that the
sequences are indistinguishable. In practice, 20 different tests should be applied before
consider the sequences possibly indistinguishable.

In this paper, we access the security of our scheme using two of the most popular tests,
namely the distance of mean (DoM) and the sum of rank (SoM) [6]. We use these tools to
analyse the difference of power signals (power analysis) and of timing information (timing
analysis) monitored by the attacker in the three scenarios described previously.

5.2.2 Signal power analysis

As described previously, an attacker could use the reception power of the packets it receives
to differentiate the packets sent by A from those sent by B. Obviously, if the attacker
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receives A’s packets with a much larger (or lower) power, it can easily identify the source of
each packet and our key exchange protocol becomes insecure.

In this section we analyse the signal power of packets sent by A and B in the three
scenarii presented previously. During an pairing, each terminal sent 80 packets. Each
packet is received by the attacker with a certain power. We denote P4 the sequence of
the 80 values that represent the reception power of the 80 packets sent by A. Similarly, Pp
defines the sequence of the 80 values that represent the reception power of the 80 packets
sent by B. The sequence P4 and Pp for the above three scenarii are displayed in Figure 7.

e Scenariol: we observe that the powers Alice and Bob’s packets are mixed and not
easily distinguishable by Eve (the reader may imagine that Eve’s vision has only one
color regardless of the sender’s ID). The only information available to Eve will be
the absolute value of signal level difference between two packets captured during each
round (1 packet from Alice, 1 packet from Bob). In Figure 8 we provide a frequency
diagram of these signal level differences. It should be noted that, when plotting these
histograms we have profited from additional information that is not available to Eve:
the sign of the observed differences (i.e. (+) when Alice’s packet is received with greater
signal level than that of Bob, and (-) otherwise). These histograms were plotted using
1000 round experiments in order to provide accurate results that correspond to the
average case (for a given scenario). Note also that, for our data collection purposes,
Alice and Bob performed the required laptop movements for a much longer time than
needed in practice: ~ 3.5 minutes for each experiment (in our experiments Alice and
Bob generated 0.2 packets per second, as we will explain later). The histogram that
corresponds to scenariol is centered on ~0 and roughly symmetric.

We furthermore executed the DoM and SoR tests on sequences P4 and Pg. The
results are summarized in Table 1. The values in this table indicate the probability a.
The values in brackets indicate the value €. Appendix A details how these values are
computed with the DoM significance test. Details on how to compute these parameters
for the SoR test can be found in ?7?.

The probabilities a computed with both tests in Scel are much larger than 1%. There-
fore, the observed difference between the two sequences is not significant and can be
attributed to chance. More tests are actually required to demonstrate that these two
sequences are statistically indistinguishable. However, the results of these two tests are
quite promising and we can probably conjecture that Alice and Bob’s packets cannot
be distinguished using signal strength analysis.

Table 1: Significance tests for Power Analysis

| | Scel | Sce2 |  Sce3 |

Distance of means | 0.36(0.91) | 0.0(9.745) | 0.0(23.49)
Sum of ranks 0.87(0.157) | 0.0(6.92) 0.0(11)
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e Scenario2: In practice, the results look satisfactory in scenario2. There is no well
defined technique (at least to our knowledge at time of writing) that will allow to
clearly distinguish Alice’s and Bob’s packets. Note for example that, above the line
-50dBm all packets are Alice’s packets. Similarly, below the line -35dBm, we have only
Bob’s packets. However, unlike the reader, this information is not provided to Eve.

On the other hand, the resulting key is clearly insecure in theory. As shown in Figure
7-b the signal level differences are important: the histogram is centered at 7.34 dBm.
Although it is unknown to the attacker, this difference is considerable (making us
uncomfortable) and reflects very well the fact that Eve’s wireless Ethernet card is
directed to Alice. Futhermore as shown in table 1, the probablity « is smaller than
1% in sce2, and therefore the sequences P4 and Pg are significantly different.

In conclusion, eventhough we could not propose any practical attacks, we showed some
evidence that both sequences are difference. We therefore disadvise the type of scenario
where Alice and Bob are ‘not’ close to each other.

e Scenario3: In the final scenario, the situation is clearly worse. The resulting key
is not only ‘theoretically’ breakable as shown by the frequency diagram (centered at
14.92 dBm), but also breakable in practice. Figure 7-c reveals what we call a “break
point” which is situated around -41dBm. There is a visible gap at that point where
Alice and Bob’s packets are clearly separated. The results of the significance test show
clearly that both sequences P4 and Pp are significantly difference. The protocol is
obviously insecure in the settings of this scenario.

5.2.3 Timing analysis

Another attack that Eve can mount is what we call a timing analysis attack. The attack
consists of measuring the time interval between each consecutive packet. Thus, care should
be taken during the protocol design phase in order to avoid timing flaws and satisfy the tem-
poral indistinguishability requirement described in Section 3.2. While this is essentially an
implementation issue, it has bearings on the theoretic security of the protocol and therefore
in this section we discuss this problem and describe solutions.

In order to defeat timing cryptanalysis attacks, Alice (and Bob) can insert a random delay
between each of one her consecutive packets. In this case, assuming a good random number
generator ¢, Eve could not distinguish the source of each packet using timing analysis.

Another alternative that satisfies the temporal indistinguishability property is illustrated
in Figure 9. This algorithm allows the packets to be transmitted at a constant rate, facili-
tating the user movements (to satisfy the spatial indistinguishability property against signal
level cryptanalysis). In this algorithm two constants T' and § are defined, where T is a con-
stant time interval before starting a round, and ¢ is the round duration. At the beginning

6A random number generator can be build from a hash function such as SHA1 at a very low cost. For
example, a random number r; can generated as r1 = SHAl(seed|i), where seed is a secret only known to
the device and ¢ is an counter that is increased by 1 each time a new random value is needed.
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Figure 7: Received signal level of terminal A (Alice) and terminal B (Bob) during key
agreement. The reader may imagine that Eve’s vision has only one color (i.e. all packets
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Figure 8: Frequency diagrams for signal level difference. In scenariol, the spatial indis-
tinguishability requirement is satisfied. The histogram is centered on zero and symmetric.
Thus, in this paper it is conjectured that an eavesdropper cannot distinguish the source of
the packets regarding signal level difference (in scenariol).
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Figure 9: A timing algorithm that satisfies the temporal indistinguishability property, while
allowing the packets to be broadcast at constant rate T. Each round takes § time units or
less. The first packet of each round is broadcast either by Alice or Bob (with 0.5 probability)
which chose the smaller ‘planned delay’ (see text).
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Figure 10: Time interval between messages sent by terminal A (Alice) and terminal B (Bob)
during key agreement. The reader may imagine that Eve’s vision has only one color (i.e. all
packets are black).

of each round, the two terminals choose a different random value a that is uniformly dis-
tributed over [0-4]. This random value can be called the ‘planned delay’, because only one of
the terminals needs to wait during its planned delay before broadcasting its packet. When
the first packet of the round is broadcast (either by Alice or Bob with 0.5 probability), the
other terminal has no reason to wait further and may broadcast its packet immediately (i.e.
before its planned time delay has elapsed). Another important feature of this algorithm is
that the second packet of each round can also be used for re-synchronization for the next
round as depicted in Figure 9. Thus, it also allows for quickly detecting packet loss within
a well-defined short time delay 4.

In our experiments, we have chosen a constant inter-round time which is 7' = 0.2 seconds.
This setting was suitable for satisfying the required laptop movements. Thus, using our basic
protocol with 1 message per secret bit, 16 seconds were needed to agree upon a 80-bit secret
key. For smaller devices that can be moved more rapidly and with better antennas (i.e. more
omnidirectional than our cards) that do not require turning the devices in every directions,
smaller T" values can be used.

Figure 10 displays the sequences T4 and Ts. We denote T4 the sequence of the 80 values
that represent the time interval between two consecutive packets sent by A. Similarly, Pg
is the sequence of the 80 values that represent the timing interval between two consecutive
packets sent by B. This figure shows that both signals look random. We furthermore executed
the significance test DoM and SoR on these sequences. The results, presented in Table 2,
show that the probability « is much larger than 1% for both tests and therefore these two
sequences are most likely indistinguishable. It appears then very difficult for an attacker to
differentiate A’s packets from B’s ones using timing analysis.
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Table 2: Significance tests for Timing Analysis

Distance of means | 0.82(0.22)
Sum of ranks 0.96(0.053)

5.3 Energy consumption considerations

In this section, we compare the power consumption of our scheme with the power consump-
tion of a Diffie-Hellman based pairing. For the purpose of this comparison, we assume that
the two devices being paired are sensors using TinyOS and that the size of the generated
shared key is 72 bits.

With our scheme, each device must receive and send 36 packets. Considering that a
TinyOS packet that has a header size of 7 bytes [11], each device must send and receive
2016 bits (36 * 8 x 7) (as explained in Section 4, in our basic protocol, packets do not have
to contain any payload). However transmitting one bit consumes about as much power as
executing 800-1000 intructions [8, 11]. Receiving one bit consumes about half as much power
as sending one bit. As a result, our protocol consumes as much energy as the execution of
about 2.72 % 10% instructions (2016 x 900 + 2016 x 450).

In comparison, with a Diffie-Hellman based pairing protocol, each device needs to ex-
change their Diffie-Hellman public component (i.e. g%, where z is the device’s private key).
A security equivalent to 72 bits requires to select a modulus of 1024 bits and an exponent
of 130 bits [12]. As a result, the device’s Diffie-Hellman public component is 1024-bit long.
Since the maximum number of payload bits in a TinyOS packet is 232, each device must send
(and receive) 5 packets. Therefore, the total number of bits sent and received is 1304 bits: 4
packets containing 232 bits and 1 packet containing 96 bits. This consumes as much energy
as the execution of 1.76 * 108 instructions (1304 x 900 + 1304 % 450). Upon reception of the
other party’s public component, each device has to exponentiate it with its Diffie-Hellman
private key. Exponentiating using the Montgomery algorithm requires 3«1 (I + 1) % (¢ + 1)
single-precision multiplications, where [ is the size of the modulus and ¢ the size of the expo-
nent [13]. With I = 1024 and ¢ = 130, each device must perform 4.12 x 10® single-precision
multiplications. In conclusion, the total power consumed by each device is therefore equiv-
alent to the power consumed by the execution of 1.76 x 108 4 4.12 % 108 instructions. This
cost is about 100 times larger than the cost of our scheme.

The bandwidth cost of the Diffie-Hellman based solution could be significantly decreased
with elliptic curves. In fact, the security of a 1024-bit Diffie-Hellman key exchange is equiv-
alent to the security of a 135-bit Elliptic Curve Diffie-Hellman (EC-DH) key exchange [12].
Therefore only one packet would be necessary to be exchanged by the two devices. This
would reduce the energy cost due to communication by 5. However, as shown in [3], EC-DH
key derivation cost is even more expensive than regular DH key derivation. Therefore the
total energy cost would still be much higher than the cost of our scheme.

Note the power consumption of imprinting and PIN-based solutions (see Section 2) is
much lower than the power consumption of our scheme. However, these schemes are not
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really comparable to ours since they both require additional interfaces which may increase
the cost of devices.

6 Conclusion

In this paper we presented a novel secure pairing scheme for CPU-constrained devices with-
out a need for special hardware or interfaces. Using an existing communication channel such
as 802.11 or 802.15.4, two devices that are close to each other can agree on a secret key using
an algorithm that does not depend on CPU-intensive operations. On the other hand, user
assistance is required for shaking the devices during key agreement in order to preserve key
secrecy.

One limitation of our scheme is that it is specific to random media access technologies.
For example, it is not suitable for TDMA-based protocols and, therefore, cannot be used with
Bluetooth devices. Our scheme requires CSMA-based systems, such as 802.11 or 802.15.4
(an emerging Wireless PAN (WPAN) technology, designed for low power sensors). Another
noticeable limitation is that it requires that the transmission power of both devices be
similar. This was the case with the 802.11 devices that we used for our experimentations.
However, for some wireless technologies, a power control protocol might be required to adjust
the transmission power accordingly.

Apart from these weaknesses, we believe that this is a very refreshing approach and offers
a new perspective to wireless communication system security. To our knowledge, this is the
first practical pairing protocol that does not rely on expensive cryptographic operations or
require a secure out-of band channel.

Objects with microprocessors and wireless transmitters surround us. Today’s users are
more and more technology and security-aware. Almost all users today learned that a system
access password should contain non-alphanumeric characters. We have learned (or are forced
to learn) how to handle computer viruses. Technology and information security have become
part of our everyday lives. Thus, we believe that future users can also learn when two small
devices must be shaken well before secure use. Note that this is actually a very common
protocol that we already execute in our everyday lives. For example, orange juice or shaving
cream bottles are universally shaken/moved before usage. This is now a well-known and
quite a natural “protocol”. Furthermore it is commonly accepted that it is the responsability
and interest of the consumers to perform this shaking operation properly. Similarly, in our
case by shaking the devices well, the user can make sure that the two devices are paired
securely.
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A The difference of means test’

The Difference of Means test (DoM) is a significance test that returns a probability « that
an observed difference in the means of two sequences X and Y rises by chance, assuming
that X and Y were generated by the same source.

By the virtue of the Central Limit Theorem, the experimental averages of X and Y (re-
spectivily X and V) are approximately Gaussian, independent, of expectations {u[X], u[y]}
and variances {o[X]?/n[X],o[Y]?/n[Y]}; where n[U] denotes the number of elements in the
set U. We can therefore compute the reduced Gaussian variable:

X-Y
Vo[XP/n[X] + o[Y ] /n[Y]

E =

and look-up its corresponding value in the Cumulative Density Function (CDF) Gaussian
table (Table 3) which yields the hypothesis’ significance « representing the probability that
the reduced deviation will equate or exceed in absolute value a given e.

Table 3: CDF Gaussian table

[ @ ]0.000 ] 0.010 [ 0.020 | 0.030 [ 0.040 | 0.050 [ 0.060 | 0.070 [ 0.080 | 0.090 |

0.00 00 2.576 | 2.326 | 2.170 | 2.054 | 1.960 | 1.881 | 1.812 | 1.751 | 1.695
0.10 | 1.645 | 1.598 | 1.5556 | 1.514 | 1.476 | 1.440 | 1.405 | 1.327 | 1.341 | 1.311
0.20 | 1.282 | 1.254 | 1.227 | 1.200 | 1.175 | 1.150 | 1.126 | 1.103 | 1.080 | 1.058
0.30 | 1.036 | 1.015 | 0.994 | 0.974 | 0.954 | 0.935 | 0.915 | 0.896 | 0.878 | 0.860
0.40 | 0.842 | 0.824 | 0.806 | 0.789 | 0.772 | 0.755 | 0.739 | 0.722 | 0.706 | 0.690
0.50 | 0.674 | 0.659 | 0.643 | 0.628 | 0.613 | 0.598 | 0.583 | 0.568 | 0.553 | 0.539
0.60 | 0.524 | 0.510 | 0.496 | 0.482 | 0.468 | 0.454 | 0.440 | 0.426 | 0.412 | 0.399
0.70 | 0.385 | 0.372 | 0.358 | 0.345 | 0.332 | 0.319 | 0.305 | 0.292 | 0.279 | 0.266
0.80 | 0.253 | 0.240 | 0.228 | 0.215 | 0.202 | 0.189 | 0.176 | 0.164 | 0.151 | 0.138
0.90 | 0.126 | 0.113 | 0.100 | 0.088 | 0.075 | 0.063 | 0.050 | 0.038 | 0.025 | 0.013

a is obtained by adding the two numbers appearing in the margins (for instance: for
e = 1.960, table[e] = 0.000 + 0.05 = 0.05).

"This appendix has been extracted from [2].
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