
HAL Id: inria-00070660
https://inria.hal.science/inria-00070660

Submitted on 19 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computationally Sound, Automated Proofs for Security
Protocols

Véronique Cortier, Bogdan Warinschi

To cite this version:
Véronique Cortier, Bogdan Warinschi. Computationally Sound, Automated Proofs for Security Pro-
tocols. [Research Report] RR-5341, INRIA. 2004, pp.23. �inria-00070660�

https://inria.hal.science/inria-00070660
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

 IS
R

N
 IN

R
IA

/R
R

--
53

41
--

F
R

+
E

N
G

ap por t
de r ech er ch e

Thème ?

2aINSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Computationally Sound, Automated Proofs for
Security Protocols

Véronique Cortier and Bogdan Warinschi

N° 5341

Octobre 2004

Unité de recherche INRIA Lorraine
LORIA, Technopôle de Nancy-Brabois, Campus scientifique,

615, rue du Jardin Botanique, BP 101, 54602 Villers-Lès-Nancy (France)
Téléphone : +33 3 83 59 30 00 — Télécopie : +33 3 83 27 83 19

Computationally Sound, Automated Proofs for Security
Protocols

Véronique Cortier? and Bogdan Warinschi

Thème ? —
Projet Cassis

Rapport de recherche n° 5341 — Octobre 2004 — 23 pages

Abstract: Since the 1980s, two approaches have been developed for analyzing security protocols.
One of the approaches relies on a computational model that considers issues of complexity and
probability. This approach captures a strong notion of security, guaranteed against all probabilistic
polynomial-time attacks. The other approach relies on a symbolic model of protocol executions in
which cryptographic primitives are treated as black boxes. Since the seminal work of Dolev and
Yao, it has been realized that this latter approach enables significantly simpler and often automated
proofs. However, the guarantees that it offers have been quite unclear.

In this paper, we show that it is possible to obtain the best of both worlds: fully automated
proofs and strong, clear security guarantees. Specifically, for the case of protocols that use signatures
and asymmetric encryption, we establish that symbolic integrity and secrecy proofs are sound with
respect to the computational model. The main new challenges concern secrecy properties for which
we obtain the first soundness result for the case of active adversaries. Our proofs are carried out
using Casrul, a fully automated tool.

Key-words: security protocols, computational security, cryptography, secrecy, automated proof.

? Véronique Cortier’s work was partly supported by the ACI Jeunes Chercheurs and the RNTL project
PROUVE-03V360.

Preuves automatiques des protocoles de sécurité, correction
vis-à-vis du modèle probabiliste

Résumé : Depuis les années 1980, deux approches ont été développées pour analyser les protocoles
de sécurité. L’une de ces approches repose sur un modèle probabiliste qui prend en compte des as-
pects de complexité et de probabilité. Cette approche permet de traiter une notion forte de sécurité,
garantissant la sécurité contre n’importe quelle attaque probabiliste polynomiale. L’autre approche
repose sur un modèle d’exécutions symbolique dans lequel les primitives cryptographiques sont
considérées comme des boites noires. Depuis les premiers travaux de Dolev-Yao, on a montré que
cette dernière approche permet des preuves beaucoup plus simples et souvent automatiques. Cepen-
dant, les garanties offertes par cette approche sont souvent peu claires.

Dans ce papier, nous montrons qu’il est possible d’obtenir le meilleur des deux mondes : des
preuves complètement automatiques et des garanties fortes et claires de sécurité. Plus précisément,
pour des protocoles utilisant des signatures et du chiffrement asymétrique, nous avons établi que les
preuves symboliques de secret et d’authentification étaient correctes vis-à-vis du modèle probabi-
liste. Le principal apport de cet article est le traitement des propriétés de sécurité pour lesquelles
nous obtenons le premier résultat de correction dans le cas d’un adversaire actif. La vérification
de nos propriétés d’authentification et de secret est faite à l’aide de Casrul, un outil complètement
automatique.

Mots-clés : protocoles de sécurité, modèles probabilistes, cryptographie, secret, preuves automa-
tiques.

Computationally Sound, Automated Proofs
for Security Protocols

Véronique Cortier1 and Bogdan Warinschi2

1 Loria, CNRS, Nancy, France
2 Computer Science Department, University of California at Santa Cruz, USA

1 Introduction

Security protocols are short programs designed to achieve various security goals, such as data privacy
and data authenticity, even when the communication between parties takes place over channels con-
trolled by an attacker. Their ubiquitous presence in many important applications makes designing
and establishing the security of cryptographic protocols a very important research goal. Unfortu-
nately, attaining this goal seems to be quite a difficult task, and many of the protocols that had been
proposed have been found to be flawed.

Starting in the early ’80s, two distinct and quite different methods have emerged in an attempt
to ground the security of protocols on firm, rigorous mathematical foundations. They are generically
known as the computational (or the cryptographic) approach and the symbolic (or the Dolev-Yao)
approach.

Under the computational approach, the security of protocols is based on the security of the un-
derlying primitives, which in turn is proved assuming the hardness of solving various computational
tasks such as factoring or taking discrete logarithms. The main tools used for proofs are reductions: to
prove a protocol secure one shows that a successful adversary against the protocol can be efficiently
transformed into an adversary against some primitive used in its construction. Here, quantification is
universal over all possible probabilistic polynomial-time (p.p.t.) adversaries and the execution model
that is analyzed is specified down to the bit-string level. Two important implications stem from these
features: proofs in the computational model imply strong guarantees (security holds in the pres-
ence of an arbitrary probabilistic polynomial-time adversary). At the same time however, security
reductions for even moderately-sized protocols become extremely long, difficult and tedious.

The central characteristics of the symbolic approach are a very abstract view of the execution
and a significantly limited adversary. More precisely, in this model, the implementation details of
the primitives are abstracted away, and the execution is modeled only symbolically. Furthermore, the
actions of the adversary are quite constrained. For instance, it is postulated it can recover the plaintext
underlying a ciphertext only if it can derive the appropriate decryption key. The resulting execution
models are rather simple and can easily be handled by automated tools. In fact, many security proofs
have already been carried out using model checkers [13] and theorem provers [16]. Unfortunately,

? Véronique Cortier’s work was partly supported by the ACI Jeunes Chercheurs and the RNTL project
PROUVE-03V360.

4 Véronique Cortier and Bogdan Warinschi

the high degree of abstraction and the limited adversary raise serious questions regarding the security
guarantees offered by such proofs, especially from the perspective of the computational model.

Recently, a significant research effort has been directed at linking the two approaches via com-
putational soundness theorems for symbolic analysis [3, 15, 5, 14]. Potentially, justifying symbolic
proofs with respect to standard computational models has tremendous benefits: protocols can be an-
alyzed and proved secure using the simpler, automated methods specific to the symbolic approach,
yet the security guarantees are with respect to the more comprehensive computational model.

In this paper we demonstrate for the first time that fully automated security proofs with strong
computational implications are possible. Our road-map is the following. First, we give a language for
writing protocols that use random nonces, digital signatures and public-key encryption. We then give
two kinds of executions for protocols, each performed in the presence of a powerful active adversary
that controls and potentially tampers with the communication between an unbounded number of
sessions of the protocol. The first model is a computational model in which the adversary is an
arbitrary p.p.t. algorithm. The second model is symbolic, and the adversary is a typical Dolev-Yao
adversary. One crucial property of the latter model is that it actually coincides with the execution
semantics used by an existing automated tool called Casrul. We then link the two models in several
ways.

Our first contribution (Theorem 1) is a soundness theorem for proofs of trace properties: if all
symbolic traces of a protocol satisfy a certain predicate (i.e. the protocol is secure in the symbolic
model), then the concrete traces satisfy the same predicate with overwhelming probability against
p.p.t. adversaries (i.e. the protocol is secure in the computational model). We note that many impor-
tant integrity property such as entity and message authentication can be written as trace properties.

Our second main result concerns soundness of secrecy proofs. What makes this issue more chal-
lenging is that, unlike for trace properties, the formalization of secrecy properties is very different
between the two models. On the one hand, in the symbolic model a message is said to be secret if
the adversary cannot derive it3. On the other hand, the usual formalizations for secrecy in the com-
putational model seem much stronger: a message is secret if it is impossible for the adversary not
only to compute it, but also to compute any partial information about the message. Nevertheless, in
the case of nonces we are able to prove a soundness theorem stating that symbolic secrecy implies
computational secrecy.

We provide a computational justification for the proofs carried out using Casrul. We want to men-
tion, however, that we have also briefly considered other automatic tools, such as Proverif, Casper
and Securify. We strongly believe that soundness results similar to ours can be obtained for these
tools. Our choice was determined by our familiarity with Casrul, one of us being a close collaborator
of its developers.
RELATED WORK. The rationale behind the need for soundness theorems was outlined by Abadi [1]
and the first such result was obtained by Abadi and Rogaway [3]. Out of the soundness results that
have been published since, we only mention those closest to our work. These include the sound-
ness theorem for secrecy properties given by Abadi and Rogaway for symmetric encryption in the
presence of passive adversaries [3]. Another results is that of Laud [11] who shows soundness of

3 Secrecy can alternatively be defined using an equivalence based formulation, as in the spi-calculus [2] for
example, but in this paper we concentrate on the formulation used in Casrul.

INRIA

Computationally Sound, Automated Proofs for Security Protocols 5

confidentiality properties for symmetric encryption in a model with a priorly fixed number of ses-
sions. A soundness result for trace properties was proved by Micciancio and Warinschi [14] for a
language that used random nonces and public-key encryption. In this paper we extend their work
to also include digital signature and ciphertext forwarding. Soundness of trace properties for an
even richer language that includes in addition symmetric encryption and authentication was given
by Backes, Pfitzmann and Waidner [5] and work in progress is aimed at achieving soundness for
secrecy of symmetric keys [4]. While it is conceivable that building upon these results at least partial
automation of symbolic proofs can be achieved, this work still remains to be carried out.

The rest of the paper is structured as follows. In Section 2 we briefly introduce digital signa-
tures and public-key encryption schemes. We present the protocol syntax in Section 3 and the two
execution models in Section 4. In Section 5 we define the security properties and prove our sound-
ness theorems for trace and secrecy properties. Section 6 concludes with a discussion regarding the
implications of our results on the proofs done with Casrul.

2 Computational Cryptography

In this section we briefly recall the syntax of digital signature schemes and that of public-key encryp-
tion schemes and introduce a notion of security regarding their joint use in cryptographic protocols.
DIGITAL SIGNATURES, PUBLIC-KEY ENCRYPTION AND THEIR SECURITY. In this paper we will
use a generic digital signature scheme DS = (Ks, Sig, Vf) and a generic public-key encryption
scheme AE = (Ke, Enc, Dec). A description of the algorithms and of their functionality can be
found in Appendix A.

Traditionally, security is defined for each individual primitive. Since the protocols that we an-
alyze in this paper may use both encryption and digital signatures, it is more convenient to define
the security of signatures and encryption when used simultaneously, in a multi-user environment.
We develop a formal model for security that mixes definitional ideas from [10] (for digital signature
schemes) and from [17] and [6] (for asymmetric encryption). The precise definition can be found
in Appendix A. Here we only give an overview. We associate to a digital signature scheme DS ,
an asymmetric encryption scheme AE , an adversary A, a bit b and a security parameter η an ex-
periment. In this experiment the adversary A has access to an oracle denoted ODS,AE(b, η). The
adversary issues the following requests in any order and any number of times:

– creation of keys: the oracle generates (internally) keys for encryption, decryption, signing and
verifying and returns the public keys (i.e. keys for encryption and for verifying) to the adversary.

– signature request: the adversary can request signatures on any message it chooses, under any
of the secret signing keys that has been generated. The oracle computes such a signature and
returns it to the adversary.

– encryption requests: here the adversary submits a pair of messages (m0, m1), specifies an en-
cryption key that has been generated and obtains from the oracle the encryption of mb under
that key.

– decryption requests: the adversary can require to see the decryption of any ciphertext of his
choosing, provided that the ciphertext has not been obtained from the encryption oracle.

RR n° 5341

6 Véronique Cortier and Bogdan Warinschi

The goal of the adversary is to produce a valid signature on some message which it did not query to
the oracle (i.e. break the signature scheme), or determine what is the selection bit b with probability
significantly better than 1/2 (i.e. break the encryption).

If for all p.p.t.adversaries either of the above events happen only with negligible probability4

(in the security parameter), then we say that DS and AE are jointly secure. Although this is a new
measure of security intended for analyzing security of encryption and that of signing when used
simultaneously, it is easy to prove that it is implied by standard requirements on the individual
primitives. More precisely, it is easy to show that if the digital signature scheme DS is existentially
unforgeable under chosen-message attack [10] and ifAE is secure in the sense of indistinguishability
under chosen-ciphertext attacks (IND-CCA) then DS and AE are jointly secure. We emphasize that
both these security notions are standard in the computational setting.

3 Protocol Syntax

We consider protocols specified in a language similar to the one of [18] allowing parties to ex-
change messages built from identities and randomly generated nonces using public key encryption
and digital signatures. We consider an algebraic signature with the following sorts. A sort ID for
agent identities, sorts SKey, VKey, EKey, DKey containing keys for signing, verifying, encryption
and decryption respectively. The algebraic signature also contains sorts Nonce, Label, Ciphertext,
Signature, and Pair for respectively nonces, labels, ciphertexts, signatures, and pair. The sort Label is
used in encryption and signatures to distinguish between different encryption/signature of the same
plaintext. The sort Term is a supersort containing all other sorts. There are nine operations: the four
operations ek, dk, sk, vk are defined on the sort ID and return the encryption key, decryption key,
signing key and verification key associated to the input identity. The two operations ag and adv are
defined on natural number and return labels for agents and the adversary. We distinguish between
labels for agents and for the adversary since they do not use the same randomness. The other opera-
tions that we consider are pairing, public key encryption and signing with the following ranges and
domains.

– 〈_ , _〉 : Term× Term→ Pair

– {_}_
_ : EKey× Term× Label→ Ciphertext

– [_]__ : SKey × Term× Label→ Signature

Protocols are specified using the algebra of terms constructed over the above signature from a set
X of sorted variables. Specifically, X = X.n ∪ X.a ∪ X.c ∪ X.s ∪ X.l, where X.n, X.a, X.c, X.s, X.l
are sets of variables of sort nonce, agent, ciphertext, signature, and labels respectively. Furthermore,
X.a and X.n are as follows. If k ∈ N is some fixed constant representing the number of protocol
participants, w.l.o.g. we fix the set of agent variables to be X.a = {A1, A2, . . . , Ak}, and partition
the set of nonce variables, by the party that generates them. Formally: X.n = ∪A∈X.aXn(A) and
Xn(A) = {Xj

A | j ∈ N}.

ROLES AND PROTOCOLS. The messages that are sent by participants are specified using terms in
TΣ(X), the free algebra generated by X over the signature Σ. The individual behavior of each pro-

4 a function is said to be negligible if it grows slower than the inverse of any polynomial.

INRIA

Computationally Sound, Automated Proofs for Security Protocols 7

tocol participant is defined by a role describing a sequence of message receptions/transmissions, and
a k-party protocol is given by k such roles.

Definition 1 (Roles and protocols). We define the set Roles of roles for protocol participants by
Roles = (({init} ∪ TΣ(X)) × (TΣ(X) ∪ {stop}))∗.
An k-party protocol is a mapping Π : [k]→ Roles, where [k] denotes the set {1, 2, . . . , k}.

We assume that a protocol specification is such that Π(j) = ((lj1, r
j
1), (l

j
2, r

j
2), . . .), the j’th role in

the definition of the protocol being executed by player Aj . Notice that each sequence

((l1, r1), (l2, r2), . . .) ∈ Roles

specifies the messages to be sent/received by the party executing the role: at step i, the party expects
to receive a message conformed to li and returns message ri. We wish to emphasize however that
terms lji , r

j
i are not actual messages but specify how the message that is received and the message

that is output should look like.

Example 1. The Needham-Schroeder-Lowe protocol [12] is specified as follows: there are two roles
Π(1) and Π(2) corresponding to the sender’s role and the receiver’s role.

A→ B : {Na, A}ek(B)

B → A : {Na, Nb, B}ek(A)

A→ B : {Nb}ek(B)

Π(1) = (init, {X1
A1

, A1}
ag(1)
ek(A2))({X

1
A1

, X1
A2

, A2}Lek(A1)
, {X1

A2
}

ag(1)
ek(A2)

),

Π(2) = ({X1
A1

, A1}
L1

ek(A2)
, {X1

A1
, X1

A2
, A2}

ag(1)
ek(A1)

)({X1
A2
}L2

ek(A2), stop).

EXECUTABLE PROTOCOLS. Clearly, not all protocols written using the syntax above are meaningful.
We only consider the class of executable protocols defined by using two important ingredients. First
is the knowledge that a principal has. If A is a variable, or constant of sort agent, we define its
knowledge by kn(A) = {dk(A), sk(A)} ∪ Xn(A) i.e. an agent knows its secret decryption and
signing key as well as the nonces it generates during the execution. Second, we specify what is the
set of messages that an agent can compute during the protocol execution by using the deduction
relation `a defined in Figure 1. Intuitively, a protocol is executable if it can be implemented. This
requires in particular that any sent message (corresponding to some rj

k) is always deducible from the
previously received messages (corresponding to lj1, . . . , l

j
k). It also requires the agents are effectively

able to perform the equality tests implicitly defined by the repetitions of variables in the lj1, . . . , l
j
k.

A precise definition may found in Appendix B.

4 Execution Models

We consider two types of executions for protocols. In the symbolic setting the honest parties and the
adversary exchange elements of a certain term algebra; the adversary can compute its messages only
following the standard Dolev-Yao restrictions. In the concrete execution model, the messages that
are exchanged are bit-strings and the honest parties and the adversary are p.p.t. Turing machines.

RR n° 5341

8 Véronique Cortier and Bogdan Warinschi

m ∈ S
S `a m

b ∈ X.a
S `a b, ek(b), vk(b)

Initial knowledge

S `a m1 S `a m2

S `a 〈m1 , m2〉

S ` 〈m1 , m2〉
i ∈ {1, 2}

S `a mi

Pairing and unpairing

S `a ek(b) S `a m
i ∈ N

S `a {m}
ag(i)
ek(b)

S `a {m}
l
ek(b) S `a dk(b)

S `a m
Encryption and decryption

S `a sk(b) S `a m
i ∈ N

S `a [m]
ag(i)
sk(b)

Signature

Fig. 1. Deduction rules for agents.

4.1 Formal Execution Model

In the formal execution model, messages are terms of the free algebra T f defined by:

T f ::= N | a | ek(a) | dk(a) | sk(a) | vk(a) | n(a, j, s) a ∈ ID, j, s ∈ N

〈T f , T f 〉 | {T f}
ag(i)
ek(a) | {T

f}
adv(i)
ek(a) | [T

f]
ag(i)
sk(a) | [T

f]
adv(i)
sk(a) a ∈ ID, i ∈ N

The formal execution model is a state transition system. A global state of the system is given by
(SId, f, H) where H is a set of terms of T f representing the messages sent on the network and f
maintains the local states of all sessions ids SId. Session ids are tuples of the form

(n, j, (a1, a2, . . . , ak)) ∈ (N× N× IDk),

where n ∈ N identifies the session, a1, a2, . . . , ak are the identities of the parties that are involved
in the protocol and j is the index of the role that is executed in this session. Mathematically, f is a
function f : SId → ([X → T f]× N× N), where f(sid) = (σ, i, p) is the local state of session sid.
The function σ is a partial instantiation of the variables of the role Π(i) and p ∈ N is the control
point of the program. Three transitions are allowed.

– (SId, f, H)
corrupt(a1,...,al)
−−−−−−−−−−−→ (SId, f,∪1≤j≤lkn(aj) ∪ H). The adversary corrupts parties by

outputting a set of identities. He receives in return the secret keys corresponding to the identities.
It happens only once at the beginning of the execution.

– The adversary can initiate new sessions: (SId, f, H)
new(i,a1,...,ak)
−−−−−−−−−−→ (SId′, f ′, H ′) where H ′,

f ′ and SId′ are defined as follows. Let s = |SId|+1, be the session identifier of the new session,
where |SId| denotes the cardinality of SId. H ′ is defined by H ′ = H ∪{(s, i, (a1, . . . , ak))} and
SId′ = SId ∪ {(s, i, (a1, . . . , ak))}. The function f ′ is defined as follows.
• f ′(sid) = f(sid) for every sid ∈ SId.
• f ′(s, i, (a1, . . . , ak)) = (σ, i, 1) where σ is a partial function σ : X→ T f and:

{

σ(Aj) = aj 1 ≤ j ≤ k

σ(Xj
Ai

) = n(ai, j, s) j ∈ N

INRIA

Computationally Sound, Automated Proofs for Security Protocols 9

We recall that the principal executing the role Π(i) is represented by Ai thus, in that role, every
variable of the form Xj

Ai
represents a nonce generated by Ai.

– The adversary can send messages: (SId, f, H)
send(sid,m)
−−−−−−−→ (SId, f ′, H ′) where sid ∈ SId,

m ∈ T f , and H ′ and f ′ are defined as follows. We define f ′(sid′) = f(sid′) for every
sid′ ∈ SId_{sid}. We denote Π(j) = ((lj1, r

j
1), . . . , (l

j
kj

, rj
kj

)). f(sid) = (σ, j, p) for some
σ, j, p. There are two cases.
• Either there exists a substitution θ such that m = ljpσθ. Then f ′(sid) = (σ ∪ θ, i, p + 1) and

H ′ = H ∪ {rj
pσθ}.

• Or we define f ′(sid) = f(sid) and H ′ = H (the state remains unchanged).

If we denote by SID = N× N× IDk the set of all sessions ids, the set of symbolic execution traces
is SymbTr=SID×(SID→([X→T f]×N×N))×2T f

.
We now rule out the execution traces which are invalid, in the sense that the adversary manages

to perform some computation which he should not have been able to do, like for instance performing
decryptions with a key which he does not possess. In fact, the deductions that an adversary can make,
denoted by ` are the same as for the honest parties, given in Figure 1 (where we replace `a by `)
with three modifications. First, we allow the adversary to compute the message that is being signed.
The reason for this addition is that concrete implementation of the signature scheme may reveal the
entire message. Therefore we add the rule:

S ` [m]lsk(b)
.

S ` m
In addition, the encryption and signing rules have to be replaced by:

S `a ek(b) S `a m
i ∈ N

S `a {m}
adv(i)
ek(b)

S `a sk(b) S `a m
i ∈ N

S `a [m]
adv(i)
sk(b)

Definition 2. A symbolic execution trace (SId1, f1, H1) . . . (SIdn, fn, Hn) is valid if

– H1 = SId1 = ∅, (SId1, f1, H1) → (SId2, f2, H2) for one of the three transitions described
above and for every 1 ≤ i ≤ n, (SIdi, fi, Hi) → (SIdi+1, fi+1, Hi+1) for one of the two last
transitions described above;

– and the messages sent by the adversary can be computed by Dolev-Yao operations, i.e. if, when-

ever (SIdi, fi, Hi)
send(s,m)
−−−−−−−→ (SIdi+1, fi+1, Hi+1), we have Hi ` m.

Given a protocol Π , the set of valid symbolic execution traces is denoted by Execs(Π).

Example 2. Playing with the Needham-Schroeder-Lowe protocol described in Example 1, an adver-
sary can corrupt an agent a3, start a new session for the second role with players a1, a2 and send
the message {n(a3, 1, 1), a1}

adv(1)
ek(a2)

to the player of the second role. The corresponding valid trace
execution is:

(∅, f1, ∅)
corrupt(a3)
−−−−−−−−→ (∅, f1,kn(a3))

new(2,a1,a2)
−−−−−−−−→ ({sid1}, f2,kn(a3) ∪ {sid1})

send(sid1,{n3,a1}
adv(1)

ek(a2)
)

−−−−−−−−−−−−−−−→
(

{sid1}, f3,kn(a3) ∪ {sid1, {n3, n2, a2}
ag(1)
ek(a1)}

)

,

RR n° 5341

10 Véronique Cortier and Bogdan Warinschi

where sid1 = (1, 1, (a1, a2)), n2 = n(a2, 1, 1), n3 = n(a3, 1, 1) and f2, f3 are defined as follows:
f2(sid1) = (σ1, 2, 1), f3(sid1) = (σ2, 2, 2) where σ1(A1) = a1, σ1(A2) = a2, σ1(X

1
A2

) = n2 and
σ2 extends σ1 by σ2(X

1
A1

) = n3.

The following lemma gives a useful characterization of non-valid adversaries. The proof can be
found in Appendix C.

Lemma 1. Let S be a set of messages and m be a message. If S 6` m then:

1. either there exists a subterm [t]k of m which is not a subterm of terms in S,
2. or there exists a subterm t of m, i.e. m|p = t for some path p, such that for every path p′ ≤ p,

S 6` m|p′ , and t appears under an encryption in S, i.e. there exist a term m′ ∈ S and contexts
C and C ′ such that m′ = C[{C ′[t]}k] with S 6` k−1.

4.2 Concrete Execution Model

In a concrete execution, the messages that are exchanged are bit-strings and depend on a security
parameter η (which is used, for example to determine the length of random nonces). We denote by
Cη the set of valid messages. We denote the subsets containing possible values for agent identities,
nonces, encryption keys, verification keys, ciphertexts, signatures and pairs by Cη .a, Cη.n, Cη.e,
Cη.v, Cη.c, Cη.s, Cη.p respectively. The implementation is such that each bit-string in Cη has a unique
type which can be efficiently recovered by using the function type : Cη → {a, n, e, v, c, s, p}.
The operations are implemented as follows: we assume a PKI-like setting in which the public keys
of parties (those for encryption and signature verification) are accessible to all parties. We model
this situation by making available to all parties the (efficiently invertible and) publicly computable
functions vk : Cη.a→ Cη.v and ek : Cη.a→ Cη.e which given an agent identity return its signature
verification key and encryption key respectively. In the concrete implementation, encryption and
signing are implemented with encryption schemeAE = (Ke, Enc, Dec) and digital signature scheme
DS = (Ks, Sig, Vf), which we fix throughout this section. Pairing is implemented by some standard
(efficiently invertible) encoding function 〈· , ·〉 : Cη × Cη → Cη.p.

The global state of the execution is a pair (f, SId): SId is the set of session ids and f maintains
the local state of each session. Session ids are tuples (n, i, (a1, a2, . . . , al)), where n ∈ N is a unique
session identifier, i is the index of the role executed in this session and a1, a2, . . . ak ∈ Cη are the
names of the agents involved in running this session. The state function f : SId→ [X→ Cη]×N×N,
given a session id sid returns f(sid) = (σ, i, p) where σ assigns values to the variables of the program
executed in this session (see the discussion regarding the execution of individual roles), i is the index
of the role executed in this session and p is the program counter that keeps track of the next step to
be executed in this session.

Let us now discuss how the execution proceeds in this setting.

– At the beginning of the execution, the adversary corrupts a set of parties via a request
corrupt(a1, a2, . . .), where a1, a2, . . . ∈ Cη.a are agent identities. As a result, the key gen-
eration algorithms for encryption and signing are executed, the public keys are published and
the secrets keys are given to the adversary.

INRIA

Computationally Sound, Automated Proofs for Security Protocols 11

– The adversary initiates new sessions by issuing requests new(i, a1, . . . , ak), with i ∈ [k] and
a1, . . . , ak ∈ Cη.a. In this case, cryptographic keys are generated for those agents which do not
have such keys, the (public) encryption and verification keys are published and a new session is
initiated: if (SId, f) is the state of the execution prior to the request the resulting state is (SId′, f ′)
with SId′ = SId ∪ {sid}, sid = (|SId|+ 1, i, (a1, . . . , ak)) and f ′ defined as follows:
• f ′(s) = s for s ∈ SId (i.e. the local states of previous sessions stay unchanged)
• f ′(sid) = (σ, i, 1) with σ : X→ Cη is defined as follows:

{

σ(Aj) = aj 1 ≤ j ≤ k

σ(Xj
Ai

) = n(ai, j, s)
$
← Cη.n j ∈ N

The local state of the new session is initialized by mapping agent variables to the names of the
agents selected by the adversary, and selecting random values for the nonces generated by the
party executing the role.
In addition, for each term {t}l

ek(Aj)
and each term [t]l

sk(Ai)
that are sent (i.e. occurring within

some rj
i of Π(i)) we choose random coins re

sid(t, Aj , l) and rs
sid(t, Ai, l) respectively. These

coins will later be used in randomizing the encryption and signing functions in the concrete
implementation.

– The third kind of queries are message transmission queries send(sid, m), with sid ∈ SId and
m ∈ Cη which are processed in two steps:
First, the incoming message is parsed as an instantiation of the term lpi , where we let (σ, i, p)
be the local state f(sid) of session sid prior to the request. The parsing is done recursively, on
the structure of lpi , and the final result is a mapping σ′ assigning values in Cη to the variables
occurring in lpi . To facilitate the parsing procedure, we assume that 1) from any valid ciphertext
it is easy to recover the key used for encryption (which is public) and 2) from any valid signature,
it is easy to recover the message that was signed and the verification key that needs to be used
for verifying. Both these requirements can be easily achieved by tagging the signatures and the
ciphertext with the appropriate information.
For instance, if lpi is {t}l

ek(Ai)
, the incoming message m is parsed as follows: if the message is

not a ciphertext then the parsing procedure ends; otherwise, the public key pk used for producing
m is recovered from m, the identity a to which the key corresponds is computed as ek−1(pk)
and the assignment [Ai 7→ a] is added to σ′. Next, the decryption key corresponding to pk is
computed as sk(a)5 and the message m is decrypted with this key. Let m′ be the result of the
decryption procedure. Then, the parsing procedure is recursively called with inputs t and m′.
For the case of signatures, the parsing procedure also verifies the validity of the signature (recall
that both the message and the verification key can be recovered from the signature).
In the second step, the local state of sid is updated and a protocol message is computed and
returned to the adversary. If the parsing procedure fails at any point (the types of the term and
of the bit-string do not match, or a ciphertext is invalid etc) then the local state of sid remains
unchanged. This is also the case if there exists some variable X ∈ X for which σ and σ ′ assign
different values. Otherwise, the local store is updated to σ = σ ∪ σ′ and the answer is computed

5 Notice that this can be done only if and only if a = ai

RR n° 5341

12 Véronique Cortier and Bogdan Warinschi

by replacing each variable X in rp
i with σ(X) and replacing the encryptions and signatures with

their computational counterparts, i.e. with the randomized functions Enc and Sig.

The execution model that we described above uses randomization: the adversary is probabilis-
tic, and the honest parties use randomization for generating nonces, encryptions and signatures.
It can be shown that if the adversary A runs in polynomial-time, then the honest parties use a
number of coins that is a polynomial in the security parameter. In the following, for a fixed ad-
versary A we denote by {0, 1}pA(η), resp. by {0, 1}gA(η), the spaces from where the adversary,
resp. the honest parties, draw the coins used in the execution. Notice that each pair of random coins
(RA, RΠ) ∈ {0, 1}pA(η) × {0, 1}gA(η) determines a unique sequence of global states (f1, SId1),
(f2, SId2), . . ., called the concrete trace determined by random coins (RΠ , RA) and which we de-
note by ExecΠ(RΠ),A(RA)(η). If the set of all possible session ids is SId = N× [k]× (Cη.a)k then,
we denote by ConcTr the set of all possible concrete traces: ∪η(SId × [SId→ [X→ Cη])∗.

5 Security Properties and Soundness Theorems

We are interested in two types of security properties. Integrity properties and secrecy properties.
The former are quite general: for example, they encompass various forms of authentication (both for
messages and entities). Our focus will be secrecy properties: we give formalizations for this kind of
properties in both the formal and in the computational model, focusing on nonces. We then prove
our second main result, a soundness theorem for secrecy of nonces.

5.1 Relating Symbolic and Concrete Traces

Concrete traces can be regarded as instantiations of formal traces via appropriate renamings of the
variables. More precisely, let

ts = (SIds
1, f1, H1), . . . , (SIds

n, fn, Hn) and

tc = (SIdc
1, g1), . . . , (SIdc

n, gn)

be a symbolic and a concrete execution trace. Trace tc is a concrete instantiation of ts (or alter-
natively ts is a symbolic representation of tc) and we write ts � tc if there exists an injective
function c : T f → Cη such that for every i ∈ [n] it holds that SIds

i = SIdc
i and for every sid ∈ SIds

i if
fi(sid) = (σsid, isid, psid) and gi(sid) = (τ sid, jsid, qsid) then τ sid = c◦σsid, isid = jsid and psid = qsid.

For P ⊆ SymbTr we denote by c(P) the set {tc | ∃ts ∈ Pts � tc} of all concrete instantiations
of symbolic traces in P.

Technically, the following lemma is at the core of our results. It states that with overwhelming
probability, the concrete executions traces of a protocol are instantiations of valid symbolic execution
traces.

Lemma 2. Let Π be an executable protocol. If in the concrete implementation the schemes AE and
DS are jointly secure then for any p.p.t. algorithmA

Pr
[

∃ts ∈ Execs(Π) | ts � Execc
Π(RΠ),A(RA)(η)

]

≥ 1− νA(η)

INRIA

Computationally Sound, Automated Proofs for Security Protocols 13

where the probability is over the choice (RΠ , RA)
$
← {0, 1}pA(η) × {0, 1}gA(η) and νA(·) is some

negligible function.

Proof (Overview). Due to space constraints the details of the proof can be found in Appendix D, and
here we only sketch its main aspects.

The proof works in two steps. First, we explain how each concrete execution trace of a protocol
Execc

Π(RΠ),A(RA) determines a unique symbolic trace ts. We construct ts by tracing the queries
made be the concrete adversaryA and translating them into symbolic queries. Specifically, we map
each bit-string m occurring in the execution to a symbolic term c(m) as follows. Agent identities,
cryptographic keys and random nonces (which are quantities that are uniquely determined by RΠ)
are canonically mapped to symbolic representations: for example the bit-string representing the de-
cryption key of party ai is mapped to sk(ai). The rest of the messages are interpreted as they occur:
each message m sent by the adversary is parsed (notice that all keys that are needed are already
known) and its symbolic interpretation is obtained by replacing all occurring basic values (keys,
nonces, identities) with their symbolic interpretation, and then replacing the concrete operations
with their symbolic counterparts.

In the second step of the proof, we show that with overwhelming probability over the choice
of (RΠ , RA), the trace ts obtained as explained above is a valid execution trace. We prove this
statement by contradiction: given an adversaryA we construct three adversaries B1,B2 and B3 such
that if with non-negligible probability the symbolic trace associated to the execution of A is not a
valid Dolev-Yao trace, then at least one of the three adversaries breaks the joint security of DS and
AE .

The idea behind the construction of these adversaries is to execute adversaryA as a subroutine,
and use access to the oracle ODS,AE (to which each of the three adversaries has access) to simulate
the execution of the protocol on behalf of the honest parties. Then, we show that, using the invalid
query made by A, adversary Bi (with i = 1, 2, 3) can break either the encryption, or the signing
scheme, each of the three adversaries exploiting one of the following three possibilities. Adversary
B1 is based on the assumption that the invalid query of adversary A contains a signature [t]sk(ai)

under the secret key of an honest party ai which was never sent prior in the execution. (Notice that
this corresponds to the first case in Lemma 1 that characterizes invalid symbolic adversaries.) This
essentially means that the corresponding concrete term is a signature forgery, and adversary B1 sim-
ply outputs it. Adversaries B2 and B3 correspond to the second case in Lemma 1. Roughly, in this
case the adversaryA outputs the encryption of some term t such that neither t nor the encryption can
be computed by the adversary from the previous messages using only Dolev-Yao operations. In this
case we show how to use the adversary A to determine some secret which he should not have been
able to compute. This secret is a random nonce generated by some honest party in the case of adver-
sary B2 and a signature also generated by an honest party, in the case of adversaryB3. Moreover, the
adversariesB1,B2 and B3 that we construct are such that their sample space completely partition the
sample space of adversaryA and therefore, if with non-negligible probability the adversaryA has an
invalid symbolic execution trace, then with non-negligible probability at least one of the adversaries
B1,B2,B3 breaks the joint security of DS and AE which contradicts the hypothesis of the theorem.

RR n° 5341

14 Véronique Cortier and Bogdan Warinschi

5.2 Trace Properties

For both the symbolic and the execution model, trace properties are predicates on the global execu-
tion traces, but the definition of satisfaction is specific to the models. We now give these definitions
and state our first main theorem which is a soundness theorem for proofs of trace properties.

SYMBOLIC TRACE PROPERTIES. A symbolic trace property is a predicate on (or alternatively a
subset of) the set SymbTr. We say that protocol Π satisfies the symbolic trace property Ps ⊆ SymbTr

and we write Π |=s Ps, if all valid execution traces satisfy Ps, i.e. Execs(Π) ⊆ Ps.
One example of such trace properties is mutual entity authentication. Informally, a trace of a pro-

tocol is a “good” mutual entity authentication trace, if for any two identities a and b, if a has finished
a session of the protocol with intended partner b, then b has finished a session with intended partner
a. Using this characterization, we say that a protocol is a secure mutual authentication protocol if all
its traces are good.

COMPUTATIONAL TRACE PROPERTIES. A computational trace property is a predicate on ConcTr.
We say that protocol Π satisfies the concrete security property Pc ⊆ ConcTr, and we write Π |=c Pc

if its execution traces satisfy Pc with overwhelming probability over the coins used in the execution,
i.e. for every p.p.t. adversary A, the probability Pr

[

ExecΠ(RΠ),A(RA)(η) 6∈ Pc
]

is negligible as a

function of η, where the probability is taken over the choice (RΠ , RA)
$
← {0, 1}pA(η)×{0, 1}qA(η).

For mutual authentication, good traces are those satisfying the predicate we sketched for the
symbolic model, but the definition of security for protocols is specific to the computational setting:
it asks from protocol to have good traces with overwhelming probability. It thus allows for “bad”
runs, but only with non-negligible probability.

One of our contributions is the following soundness theorem for trace properties.

Theorem 1. Let Π be an executable protocol and Ps ⊆ SymbTr be an arbitrary symbolic trace
property and Pc ⊆ ConcTr be a computational security property such that c(Ps) ⊆ Pc. Then
Π |=s Ps implies Π |=c Pc.

Proof. Let A be an arbitrary p.p.t. adversary for Π . We have

Pr
ˆ

ExecΠ(RΠ),A(RA)(η) ∈ P
c

˜

≥

Pr
ˆ

ExecΠ(RΠ),A(RA)(η) ∈ P
c ∧ ∃t ∈ Exec

s(Π), t � ExecΠ(RΠ),A(RA)(η)
˜

.

Since Π |=s Ps and c(Ps) ⊆ Pc it follows that:

Pr
ˆ

ExecΠ(RΠ),A(RA)(η) ∈ P
c

˜

≥ Pr
ˆ

∃t ∈ Exec
s(Π) | t � ExecΠ(RΠ),A(RA)(η)

˜

.

By Lemma 2, we deduce Pr
[

ExecΠ(RΠ),A(RA)(η) 6∈ Pc
]

≤ νA(η), i.e. Π |=c Πc.

5.3 Secrecy Properties

In the symbolic model, secrecy is naturally expressed as a trace property: a message is secret if
it cannot be derived by the adversary. In the computational model however, typical definitions are
much stronger and they usually say that an attacker cannot obtain not only the secret, but also any

INRIA

Computationally Sound, Automated Proofs for Security Protocols 15

partial information about the secret. In this section we give symbolic and computational definitions
for the secrecy of nonces used in a protocol and prove a soundness theorem: if a nonce is deemed
secret using symbolic techniques, then the nonce is secret with respect to the stronger, computational
definition.

SECRECY IN THE SYMBOLIC MODEL. Let Π be an arbitrary k-party protocol. We say that Π guar-
antees the secrecy of the nonce X j

Ai
∈ Xn(Ai) if in all possible executions, each instantiation

of this variable remains unknown to the adversary. Formally, this means that for every valid trace
(sid1, f1, H1), . . . , (sidn, fn, Hn) of the protocol, for every session id sidp = (s, i, (a1, . . . , ak))
where a1, . . . , ak are non corrupted agents (i.e. none of them appear in the corrupt query that may
occur at the beginning), we have Hn 6` n(ai, j, s). If this is the case, we write Π |=s SecNonces(i, j).

SECRECY IN THE COMPUTATIONAL MODEL. We define the secrecy of the nonce X j
Ai

in protocol Π

using an experiment Expsec_b
ExecΠ,A

(i, j)(η) that we describe below. The experiment is parametrized
by a bit b and involves an adversary A. The input to the experiment is a security parameter η. It
starts by generating two random nonces n0 and n1 in Cη.n. Then the adversary A starts interacting
with the protocol Π as in the experiment ExecΠ,A(η): it generates new sessions, sends messages
and receives messages to and from these sessions (as prescribed by the protocol). At some point in
the execution the adversary initiates a session s in which the role of Ai is executed, and declares this
session under attack. Then, in this session the variable X j

Ai
is instantiated with nb (i.e. one of the

two nonces chosen in the beginning of the experiment, the selection being made according to the bit
b). The rest of the execution is exactly as in ExecΠ,A. In the end, the adversary is given n0 and n1

and outputs a guess d. The goal of the adversary is to guess b, i.e. to determine which of the two
nonces was used in the execution. We set the outcome of the experiment to 1 if b = d and we set it
to 0 otherwise, and define the advantage of the adversary by:

Advsec
ExecΠ,A

(i, j)(η) = Pr
[

Expsec_1
ExecΠ,A

(i, j)(η) = 1
]

− Pr
[

Expsec_0
ExecΠ,A

(i, j)(η) = 1
]

We say that nonce Xj
Ai

is computationally secret in Π , and we write Π |=c SecNonce(i, j) if for
every p.p.t. adversaryA its advantage is negligible.

Our second main result, captured by the following theorem, states that if a nonce is secret in the
symbolic model then it is also secret in the computational model.

Theorem 2. Let Π be an executable protocol. If the schemes DS and AE are jointly secure, then:
Π |=f SecNonce(i, j) implies Π |=c SecNonce(i, j).

Proof. It turns out that the proof of this theorem is essentially contained in that of Lemma 2: assum-
ing the existence of a computational adversary A that contradicts the secrecy of some nonce that is
symbolically secret, we show that a variant of the adversary B2 breaks the joint security of DS and
AE .

6 Automated Proof using Casrul

In this section we describe the automated tool Casrul [8] and discuss the implications of our results
for the proofs done with Casrul.

RR n° 5341

16 Véronique Cortier and Bogdan Warinschi

Casrul is a system for automated verification of cryptographic protocols, developed by the Cassis
group at Loria (France). It can be obtained from:
http://www.loria.fr/equipes/cassis/softwares/casrul/

It translates a protocol given in common abstract syntax into a rewrite system. The rewrite system
is processed using a first order theorem prover for equational logic for the automated detection of
flaws. We note that Casrul does not allow the use of signature yet. Nevertheless, both its syntax
and semantics coincide with ours for public key protocols, i.e. protocols that only use pairing and
asymmetric encryption, but without using labels. We believe that both labels and signatures could be
easily added in Casrul.

AUTOMATED PROOF FOR COMPUTATIONAL SECURITY USING CASRUL. Casrul can be used to
prove three particular types of properties: entity authentication, authentication on data and data se-
crecy. Here, we discuss the implications of these proofs with respect to the computational model.

Since the syntax of Casrul does not use labels for encryption, we have to ensure that security
proofs for protocols in the model that does not use labels are sound w.r.t. to the models with labels.
In the following we argue that this is true for a large class of trace properties, that include many
formulations of authentication and secrecy. Namely, we consider the class of trace properties that
are independent of the labels, i.e. are such that whenever a trace t with labels does not satisfy the
property, the trace t̄, obtained from t by removing the labels, does not satisfies the property either.
Indeed, let us consider a trace property P that is label independent and a protocol such that the
protocol without labels satisfies P . Let us show that the protocol with labels also satisfies P . By
contradiction, assume there exists a valid trace t with labels such that t /∈ P . Since P is label
independent, we have t̄ /∈ P . We have to prove that t̄ is still a valid trace. First, the agents still accept
the same messages since they only do equality tests and removing labels can only produce more
equalities. Second, if a message with labels was deducible by the intruder, than the corresponding
message without labels is also deducible, which allows to conclude that t̄ is valid.

We note that authentication between participants and data authentication are label independent.
Thus, thanks to Theorem 1, Casrul proofs of the security with respect to these properties have a clear
computational interpretation. For example, the Casrul proof that the Needham-Schroeder-Lowe [12]
protocol is a secure mutual authentication protocol (file NSPK_LOWE3.hlpsl) implies the same
property, but in the computational model.

Similarly, the secrecy of nonces is also a label independent property. Thus, Casrul proofs of
nonce secrecy imply, via Theorem 2, the strong, computational secrecy notion that we gave in Sec-
tion 5.3. For example, Casrul enables to prove the computational secrecy of nonces used in the
corrected Needham-Schroeder-Lowe protocol [12] (file NSPK_LOWE2.hlpsl) and in the SPLICE
protocol [19] (file SPLICE2.hlpsl).

Note that Casrul works only with a finite number of sessions, thus proofs in the computational
model are obtained only for that fixed number of sessions. Nevertheless, since our proofs consider
adversaries that create an unbounded of sessions, we could also obtain proofs of computational se-
curity properties by using tools dedicated to an unbounded number of sessions like Hermes [7] or
Securify [9]. This would require to first prove that protocols secure in the symbolic models of Secu-
rify or Hermes are also secure in our symbolic model. We believe this to be true since their symbolic
models are very similar to ours. We did not use these tools for our proofs since they only provide

INRIA

Computationally Sound, Automated Proofs for Security Protocols 17

automatic proofs of secrecy. Automated proofs of other security properties like authentication are
still under development.

References

1. M. Abadi. Taming the adversary. In Proc. of Crypto’00, 2000.
2. M. Abadi and A. Gordon. A calculus for cryptographic protocols: The spi calculus. In Proc. of the 4th

Conf. on Computer and Communications Security, pages 36–47. ACM Press, 1997.
3. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational soundness of formal

encryption). Journal of Cryptology, 15(2):103–127, 2002.
4. M. Backes. Personal communication.
5. M. Backes, B. Pfitzmann, and M. Waidner. A universally composable cryptographic library. Cryptology

ePrint Archive, Report 2003/015, 2003. http://eprint.iacr.org/.
6. M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user setting: Security proofs and

improvements. In Proc. of Eurocrypt’00, volume 1807 of LNCS, pages 259–274, 2000.
7. L. Bozga, Y. Lakhnech, and M. Perin. An automatic tool for the verification of secrecy in security protocols.

In 15th Int. Conference on Computer Aided Verification (CAV 2003), volume 2725 of LNCS, pages 219–
222. Springer, July 2003.

8. Y. Chevalier and L. Vigneron. A tool for lazy verification of security protocols. In Proc. of the 16th Conf.
on Automated Software Engineering (ASE-2001). IEEE CS Press, 2001.

9. V. Cortier. A guide for Securify. RNTL EVA project, Report n. 13, December 2003.
10. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive chosen-message

attacks. SIAM Journal of Computing, 17(2):281–308, April 1988.
11. P. Laud. Symmetric encryption in automatic analyses for confidentiality against active adversaries. In Proc.

of 2004 IEEE Symposium on Security and Privacy, pages 71–85, 2004.
12. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In Tools and

Algorithms for the Construction and Analysis of Systems (TACAS’96), volume 1055 of LNCS, pages 147–
166. Springer-Verlag, March 1996.

13. G. Lowe. Casper: A compiler for the analysis of security protocols. In Proc. of 10th Computer Security
Foundations Workshop (CSFW’97). IEEE Computer Society Press, 1997.

14. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active adversaries. In
Theory of Cryptography Conference (TCC 2004), pages 133–151, Cambridge, MA, USA, February 2004.
Springer-Verlag.

15. J. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague. A probabilistic polynomial-time calculus for
analysis of cryptographic protocols. Electronic Notes in Theoretical Computer Science, 45, 2001.

16. L. Paulson. Mechanized proofs for a recursive authentication protocol. In Proc. of the 10th Computer
Security Foundations Workshop (CSFW’97), pages 84–95. IEEE Computer Society Press, 1997.

17. C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge and chosen ciphertext
attack. In CRYPTO’91, pages 433–444, 1992.

18. M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions is NP-complete. In
Proc. of the 14th Computer Security Foundations Workshop (CSFW’01), pages 174–190. IEEE Computer
Society Press, 2001.

19. S. Yamaguchi, K. Okayama, and H. Miyahara. The design and implementation of an authentication system
for the wide area distributed environment. IEICE Transactions on Information and Systems, November
1991.

RR n° 5341

18 Véronique Cortier and Bogdan Warinschi

A Joint security of digital signatures and public-key encryption in a
multi-user setting

SYNTAX OF DIGITAL SIGNATURES AND PUBLIC-KEY ENCRYPTION. The three algorithms
(Ks, Sig, Vf) that comprise digital signature scheme DS are as follows. The randomized algorithm
Ks on input some security parameter η returns a pair of signing and verification keys (sk, vk). The
signing algorithm takes as input a message m ∈ {0, 1}∗ and a signing key sk and returns a signature
σ. The validity of σ can be verified by running the verification algorithm on input (vk, m, σ), and it

is required that for any m and sk, if σ
$
← Sig(sk, m) then Vf(vk, m, σ) = 1.

The algorithms (Ke, Enc, Dec) of a public-key encryption scheme are as follows. The key gener-
ation algorithm takes as input a security parameter η and returns a pair of encryption and decryption
keys (ek, dk). The encryption algorithm is also randomized. It takes as input an encryption key ek

and some plaintext m ∈ {0, 1}∗ and returns c ∈ {0, 1}∗, an encryption of m. The message m can
be recovered from the ciphertext c by running the decryption algorithm with inputs the decryption
key dk and c.

We define the joint security of digital signature schemeDS and encryption schemeAE by using
an experiment involving an adversaryA and an oracleOAE,DS(η, b). The oracle is parametrized by
a security parameter η and a selection bit b. The oracle maintains a counter k corresponding to the
total number of users in the system, and four vectors of keys pke, ske, sks,pks which on position
i contain the keys for encryption, decryption, signing and verifying corresponding to player i.

At any point in time, the adversary can add a player to the system via the query newuser. The
result of the command is that the oracle creates appropriate keys for a new user by running the key
generation algorithms for the encryption scheme AE and digital signature scheme DS . The public
key for encryption and verification are returned to the adversary. When the adversary issues the query
sign(i, M) it obtains in return a signature on message M under the signing key of user i. For defining
the security of encryption we adopt the left-right oracle style for the multi-user setting [6]. The
adversary is allowed to submit pairs of equal-length messages M0, M1, together with the identity
i of a player. The oracle returns an encryption of message Mb (determined by the selection bit b
that parameterizes the oracle). Finally, the adversary can see decryption of ciphertext C of his own
choosing under the decryption key of player i by submitting query decrypt(i, C). We require that
an adversary never queries to user i a ciphertext C obtained as an encryption query to user i. The
precise definition of how the oracle functions is in Figure 2.

Remark 1. We remark that our oracle does not capture all possible behaviors of honest parties. The
oracle that we define can be used for security analysis of all protocols for which the messages sent
by the honest parties can be simulated using adversary queries. Protocols that can not be analyzed
include those which use encryptions of signing keys, or signatures on the secret decryption keys.

Joint security for encryption scheme AE and digital signature scheme DS is defined via the ex-
periment in Figure 3. Here an adversaryA interacts with the oracleOAE,DS(η, b) for some selection
bit chosen at random. The goal of the adversary is to forge a signature on a message (the first kind
of forgery), or to guess the selection bit b.

INRIA

Computationally Sound, Automated Proofs for Security Protocols 19

OracleOAE,DS(b, η)

Set k← 0;
Initialize vectors pke, ske,pks, sks;
On query newuser do:

k← k + 1;
(pke[k], ske[k])← Ke(1

η)

(pks[k], sks[k])← Ks(1
η)

Return pke[k], pks[k]

On query encrypt(i, M0, M1) do:
If k < i return ⊥

Otherwise return Enc(pke[i], Mb)

On query decrypt(i, C) do:
Return Dec(ske[i], C)

On query sign(i, M) do:
If k < i return ⊥

Otherwise return Sig(sks[i], M)

Fig. 2. An oracle for joint encryption and signing; a valid adversary is not allowed to issue a query decrypt(i, C)
if C was the result of an encryption query encrypt(i, M0, M1)

Experiment Expes-sec
A,AE,DS(η)

b
$
← {0, 1}

Run AOAE,DS(η,b)

If A outputs (1, (i, m, σ)) and
(i, m) was never queried
Vf(pks[i], m, σ) = 1

Then Return 1
If A outputs (2, d) and d = b then Return 1
Otherwise Return 0

Fig. 3. Experiment for defining security of encryption and signing in a multi-user setting

We say that using the asymmetric encryption scheme AE together with the digital signature
scheme DS in a multi-user setting is secure if for all p.p.t. adversariesA

Pr
[

Expsec
A,AE,DS(η) = 1

]

≤
1

2
+ ν(η)

RR n° 5341

20 Véronique Cortier and Bogdan Warinschi

B Formal Definition of Executable Protocols

Definition 3. A protocol Π : [n]→ Roles with Π(j) = ((lj1, r
j
1), . . . , (l

j
kj

, rj
kj

) is executable if:

1. The protocol has the executable decryption property, i.e. for all Aj ∈ X.a the only encryption
keys that are contained in terms ljk (for k ∈ [kj]) are ek(Aj);

2. For all j ∈ [n], all k ∈ [kj] and all A ∈ X.a we require that whenever ljk contains a signature
[t]l

sk(A) for some term t ∈ TΣ(X), the term t can be computed from lj1, l
j
2, . . . , l

j
k,kn(Aj) by

Dolev-Yao operations, i.e. lj1, l
j
2, . . . , l

j
k,kn(Aj) `a t;

3. The messages that are sent are computable: for all k ∈ [kj] we require that rj
k can be computed

from lj1, l
j
2, . . . , l

j
k,kn(Aj) by Dolev-Yao operations, i.e.

lj1, l
j
2, . . . , l

j
k,kn(Aj) `a rj

k;

4. For all j ∈ [n], all k ∈ [kj], the variables of rj
k are contained in the union of the variables of ljk,

X.a and Xn(Aj). In addition, the terms lj1, . . . , l
j
k do not contain label variables and for any

subterm {m}l
ek(B) of rj

1, . . . , r
j
k,

– either l is a label variable and for any {m′}l
ek(B′) subterm of rj

1, . . . , r
j
k, we have m = m′

and B′ = B,
– or l is of the form ag(n) (n ∈ N) and B = Aj and similarly for signatures.

The Needham-Schroeder-Lowe protocol, described in Example 1, is executable.

C Proof of Lemma 1

Proof. Consider a maximal p path in m such that none of the terms along the path are deducible: for
every p′ ≤ p, S 6` m|p′ .

– Either m|p is a leaf of m, thus is a nonce (otherwise m|p would be deducible). Since m|p is not
deducible, m|p has to be a nonce appearing in S thus is a subterm of terms of S.

– Or m|p = [t]k for some k and t. Then, either [t]k is not a subterm of terms in S and we have
case 1, or [t]k is a subterm of terms of S.

We are left to the case where m|p is a subterm of terms of S and S 6` m|p. Let p′ be the minimal
path such that p′ < p and m|p′ is a subterm m′ of terms of S. Let t = m|p′ . Since t is not deducible,
t has to appear under some encryption in m′: m′ = C[{C ′[t]}k] with S 6` k−1. By minimality of p′,
{C ′[t]}k does not appear as subterm along the path from m to t, thus we are in case 2.

D Proof of Lemma 2

Proof. We do the proof in two steps. First we fix random coins for the protocol and for adversary and
show that the resulting concrete execution trace tc is the instantiation of some symbolic execution
trace ts, i.e. ts � tc. We construct ts by attaching to each query made by A a symbolic query; the

INRIA

Computationally Sound, Automated Proofs for Security Protocols 21

abstract trace ts is the result of these queries. In the second step, we prove that with overwhelming
probability over the choice of the random coins, ts is a valid symbolic execution trace, i.e. ts ∈
Execs(Π).

STEP I. Fix RΠ , RA random coins for the honest parties and for the adversary. We start the execution
of A which we carry out normally by answering its queries. Notice that by fixing RΠ , all crypto-
graphic keys and nonces generated by the honest parties are fixed, and also, all random coins used
for encrypting and signing are also fixed. During the execution we maintain a function c : Cη → T f

mapping each bit-string that occurs to an abstract term. This mapping is initialized by first canoni-
cally mapping each agent name in Cη to a symbolic name. By abusing notation, we set c(ai) = ai.
Also, the concrete cryptographic keys to the corresponding symbolic keys: if ski, vki are the sign-
ing and verification keys of agent ai then we set c(ski) = sk(ai), c(vki) = vk(ai). Similarly for
encryption keys.

The execution of A proceeds as described in the concrete execution model: since all keys are
known, it is clear how to parse and answer the queries of the adversary. We now explain how c is
updated after the queries made by A. Session initialization queries are straightforward: on a request
new(i, a1, a2, . . . , an), the function c maps the nonces used in the concrete execution (recall that
these nonces are uniquely determined by RΠ) to the corresponding nonce symbols used to execute
the same query, but in the symbolic model.

In the case of message transmission queries (of the form) send(s, m), the function c is updated
as follows. We first construct the parse tree of m: notice that we decrypt all ciphertexts (since the
keys of all honest parties are known), and similarly, we can construct the parse tree of signatures
since we from signatures we can recover the message, the key used for verification (thus implicitly,
the key used for signing).

Notice that the leaves of the parse tree of m are either random nonces, party identities or crypto-
graphic keys. The function c is already defined on agent identities, cryptographic keys and on some
of the nonces. The rest of the nonces that appear must be adversary created nonces, and we simply
map them to fresh nonce symbols (from the adversary’s knowledge set). Mapping the rest of the
subexpressions of m is a straightforward bottom-up procedure.

We denote by ts = c(ExecΠ(RΠ),A(RA)(η)) the symbolic trace determined by the sequence of
queries of A in which we replace the queries transmission queries send(s, m) with their symbolic
counterpart send(s, c(m)). The inverse of the function c maps the trace ts to the trace
ExecΠ(RΠ),A(RA)(η) and we write c−1(ts) = ExecΠ(RΠ),A(RA)(η).

STEP II. We now prove that with overwhelming probability over the choice of random coins, the
trace ts constructed above is a valid trace. Assuming the opposite, we show that the encryption
schemeAE and digital signature schemesDS are not jointly secure, contradicting the hypothesis of
the theorem.

For the sake of contradiction, assume there exists some adversary A such that the trace ts =
c(ExecΠ(RΠ),A(RA)(η)) is not valid with non-negligible probability. Therefore there exists some
query send(s, m) made by A such that the query send(s, c(m)) is not valid in the symbolic ex-
ecution. We distinguish two different cases, depending on the type of forgery that A outputs, as
described in Lemma 1.

RR n° 5341

22 Véronique Cortier and Bogdan Warinschi

Case I. First, we assume that the invalid query of A is send(s, m) such that the symbolic term
associated to m, i.e. c(m), contains some signature [t]sk which did not occur at all in the prior
communication. In this case, we construct an adversary B1 against AE and DS as follows: it runs
adversary A as a subroutine maintaining the global state of the execution by itself and playing the
role of the honest parties during the execution described by ExecΠ,A(η). The queries that A makes
are answered using the oracleOAE,DS(b, η) to which B has access. Adversary B can create keys for
the users by issuing newuser queries to the oracle, and w.l.o.g. we assume that the keys of user
ai are created in response to the i’th newuser query of B1. The adversary B1 parses the queries
made by A using decryption queries to OAE,DS(b, η) (when these queries contain ciphertexts that
need decrypted) and computes appropriate responses which can be easily done since B1 maintains
the local state of all parties and can query the oracle OAE,DS(b, η) in the case it needs to produce
signatures. The view that A has of the execution is precisely as in ExecΠ,A(η) so at some point it
will issue a request send(s, m) such that m contains a signature σ on some message M which did
not appear at all prior to this point. If the key used for verifying σ is that of user ai (recall that we
assume that the verification key can be obtained from σ) adversary B1 outputs (1, (i, M, σ)) and
stops. Since σ is a valid signature on M with respect to the public key of ai, the adversary B1 wins
in the experiment Expes-sec

B,AE,DS,(η).

Case II. Here we assume that the first invalid query output by A is send(s, m) such that c(m)
is as follows: there exists some subterm term t of c(m) a message m′ sent by the honest parties,
two contexts C and C ′ such that: m′ = C[{C ′[t]}ek(ai)] and the term {C ′[t]}ek(ai) is not a subterm
that appears on the path from m to t in the parse tree of m. Let us note that since {C ′[t]}ek(ai) can
not be computed by the adversary, it must be the case that term t itself contains information which
is secret to the adversary (or otherwise he could have built this term by himself). Since we only
consider protocols in which the secret keys of the parties are never sent over the network, this secret
information is either a nonce produced by a user, or a signature of a honest user. For each of these
two cases, respectively, we construct adversaries B2 and B3 against the joint security ofAE andDS ,
more precisely, we show how to determine the bit b that parameterizes the oracleODS,AE(b, η). We
start by explaining the construction of B2 (for the case when the secret contained in m is a nonce)
and explain how to extend this approach to the case of signatures. Just as for the first case, when we
call a concrete message m a term, we are actually referring to the term c(m) associated to m by the
construction described in Step I of this proof.

For simplicity of exposition, assume for the moment that we know which of the secret nonces
is the “faulty” nonce, i.e. we know in which of the sessions the nonce is created and to which of
the variable it corresponds. For concreteness assume it is n(sid, i, j), i.e. it is created during session
sid and it corresponds to variable X j

Ai
. Moreover, assume we also know which of the messages

transmitted by the honest parties the term {C ′[t]}ek is located, and the precise position within this
term where t occurs. Finally, assume that we can determine which query of the adversary contains
the message m, and on which position t occurs in m.

AdversaryB2 runs adversaryA as a subroutine and uses his access to the oracleOAE,DS(b, η) to
handle the queries made byA. For most of the execution, this is done as we explained for the case of
adversary B1: queries are parsed by using the decryption capabilities of the oracle, and the answers
are computed using the knowledge of all the local states (which are maintained by B2 itself).

INRIA

Computationally Sound, Automated Proofs for Security Protocols 23

We now describe the crucial aspects of this simulation which is how B2 handles the requests
of A that involve nonce n(sid, i, j). When A requests the initiation of session sid, all variables are
initialized as usual with the exception of X j

Ai
. For this variable, adversary B2 selects two random

values say n0 and n1. We will now explain how B carries out the simulation of the environment
of A as if the value of Xj

Ai
in session sid is nb. Notice that this is despite B not knowing the bit

b (which, recall, parameterizes the oracle ODS,AE(b, η).) If B needs to return to A messages that
contain the nonce nb, generally, it does so using the encryption oracle. For example, say that at some
point during the execution, B needs to return to A as answer the value of {X j

Ai
, [Xj

Ai
]sk(Ai)}ek(At)

in which Xj
Ai

has value nb.
In this case, adversary B2 makes signing requests to the oracle OAE,DS(b, η) and obtains signa-

tures σ0 and σ1 on n0 and n1 respectively, under the signing key of party ai (here we assume for
simplicity that Ai is instantiated with agent identity ai). Then it submits the pair ((n0, σ0), (n1, σ1))
to the encryption oracle, and requires an encryption under the public key of at. The oracle returns
precisely the encryption c of (nb, σb) under ek(at), since the selection is determined by the parame-
ter bit b. This is the ciphertext returned to A. This is precisely how the adversary B2 also computes
the bit-string representation of C[{C ′[t]}ek(ai)]. Notice that B2 never needs to decrypt ciphertexts
that are obtained as answers to encryption queries to the oracle, since it already knows the underlying
plaintext (modulo the value for the nonce n(sid, i, j)) and this suffices for processing these queries.

At some point, the adversaryA will make its invalid query send(s, m), and from m the adver-
saryA can determine the value of the term t by parsing the message m: notice that on the path from
m to t there are no encryptions which were created during the execution of the protocol so the value
of t, and thus the value of the bit b can be determined with non-negligible probability.

The above argument is valid, provided that B2 knows the nonce n(sid, i, j) and it also knows
as well when and where during the execution various terms (which we specified in the beginning)
occur. Neither one of these quantities is a priori known to B2, but the adversary can simply guess
them: since the adversaryA runs in probabilistic polynomial-time the total number of messages that
are sent/received as well as the number of sessions is polynomial in the security parameter. This
implies that the probability that all guesses are correct is non-negligible, thus so is the probability
that B2 guesses the value of the bit b correctly.

The adversary B3 operates similarly: the role of the nonce n(sid, i, j) is played by the unknown
signature. During the simulation two possible different values σ0 and σ1 are generated for this sig-
nature, and the simulation value used in the simulation is σb, where b is the selection bit of the oracle
ODS,AE(b, η). When A makes its invalid query, which contains σb, adversary B3 recovers σb and
therefore b, i.e. AE andDS are not jointly secure.

RR n° 5341

Unité de recherche INRIA Lorraine
LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-6399

