N

N

Design, Evaluation and Comparison of Four Large Block
FEC Codecs, LDPC, LDGM, LDGM Staircase and
LDGM Triangle, plus a Reed-Solomon Small Block FEC
Codec

Vincent Roca, Christoph Neumann

» To cite this version:

Vincent Roca, Christoph Neumann. Design, Evaluation and Comparison of Four Large Block FEC
Codecs, LDPC, LDGM, LDGM Staircase and LDGM Triangle, plus a Reed-Solomon Small Block
FEC Codec. [Research Report] RR-5225, INRIA. 2004, pp.24. inria-00070770

HAL 1d: inria-00070770
https://inria.hal.science/inria-00070770
Submitted on 19 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/inria-00070770
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--5225--FR+ENG

ISSN 0249-6399

%I 1NRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Design, Evaluation and Comparison of Four Large
Block FEC Codecs, LDPC, LDGM, LDGM Staircase
and LDGM Triangle, plus a Reed-Solomon Small
Block FEC Codec

Vincent ROCA — Christoph NEUMANN
INRIA Rhéne-Alpes, Planéte Research Team, France
{firstname.name}@inrialpes.fr

http://www.inrialpes.fr/planete/

N° 5225
June 9, 2004

THEME 1

apport
derecherche







A IV HAN\_X /1
V" RHONE-ALPES

Design, Evaluation and Comparison of Four Large Block FEC
Codecs, LDPC, LDGM, LDGM Staircase and LDGM Triangle,
plus a Reed-Solomon Small Block FEC Codec*

Vincent ROCA , Christoph NEUMANN
INRIA Rhéne-Alpes, Planéte Research Team, France
{firstname.name}@inrialpes.fr
http://www.inrialpes.fr/planete/

Théme 1 — Réseaux et systémes
Projet Planete

Rapport de recherche n’ 5225 — June 9, 2004 — 24 pages

Abstract: This paper introduces with a great level of details the design and the performance evalu-
ation of four large block FEC codes: regular LDPC (Low Density Parity Check), LDGM (Low Density
Generator Matrix), LDGM Staircase and LDGM Triangle, that are all capable of operating on source
blocks that are composed of several tens of thousand of packets. If all four belong to the category of
codes on graphs, they differ by their encoding algorithm. We evaluate and compare the performances of
all four codes, as well as a Reed-Solomon codec which serves as a reference and gives an idea of the level
of performance achievable with small block codes. The comparison focuses on three major aspects: the
global decoding inefficiency (caused either by the FEC code or by the need to split the object into several
blocks), the encoding and decoding speeds, and the memory requirements at the encoder and decoder.
From these performance results, we identify the situations where they best operate.

Unlike many other works in the coding theory area, this paper deliberately skips theoretical aspects
to focus on practical results. Besides this work does not consider techniques that are known to be
patented (e.g. the use of irregular graphs), no matter how efficient they may be. This deliberate choice
stems from our desire to design patent-free, open source FEC codecs. Our conclusion is that the LDGM
Staircase/Triangle codes have excellent performances and open new opportunities in the area of bulk
data distribution or storage.

Key-words: FEC, large block FEC codes, LDPC, LDGM, Reed Solomon

* This work is supported by a research contract with STMicroelectronics.

Unité de recherche INRIA Rhéne-Alpes

655, avenue de I’Europe, 38330 Montbonnot-St-Martin (France)
Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52



Conception, Evaluation et Comparaison de quatre codecs FEC de
type grands blocs, LDPC, LDGM, LDGM Staircase et LDGM
Triangle, ainsi que d’un Codec Reed-Solomon de type petits
blocs'

Résumé : Ce papier introduit avec force détails la conception et ’évaluation de quatre codes FEC de
type grand blocs: LDPC (Low Density Parity Check), LDGM (Low Density Generator Matrix), LDGM
Escalier et LDGM Triangle, tous quatre capables d’opérer sur des blocs de données composés de plusieurs
dizaines de milliers de paquets. Si ces quatre codes font partie de la catégorie des codes en graphes, ils
différent par leur algorithme d’encodage. Nous évaluons et comparons leurs performances, de méme
que celles d’un codec Reed-Solomon qui sert de référence et donne une idée du niveau de performances
accessible avec des codes de type petits blocs. La comparaison porte sur trois aspects principaux: le ratio
global d’inefficacité de décodage (da soit au code FEC, soit & la nécessité de segmenter ’objet en plusieurs
blocs), les vitesses d’encodage et de décodage, et les besoins mémoire coté encodeur et décodeur. De ces
résultats nous identifions les situations ot les codes sont les plus efficaces.

Contrairement 4 de nombreux autres travaux dans le domaine de la théorie du codage, ce papier
évite délibérément les aspects théoriques pour se focaliser sur les résultats pratiques. En outres nous ne
considérons pas ici les techniques connues pour étre brevetées (ainsi le fait de travailler sur des graphes
irréguliers), quelle que soit leur efficacité supposée ou connue. Ce choix délibéré est issu de notre désir de
proposer des codecs FEC “open source” libres de tout droit. Nos conclusions sont que les codes LDGM
Escalier et Triangle ont tous deux d’excellentes performances et ouvrent de nombreuses opportunités dans
le domaine de la transmission ou du stockage de gros contenus.

Mots-clés : FEC, codes FEC de type grands blocs, LDPC, LDGM, Reed Solomon

T Ce travail est supporté par un contrat de recherche avec la société STMicroelectronics.



1 Introduction

1.1 Use of FEC in Reliable Multicast

Providing reliable multicast in a best-effort network where packet losses are frequent, such as the Internet,
requires a reliable multicast protocol, whose specific function is to compensate for these losses. Two
approaches are used to provide reliability to multicast transport protocols: (1) Automatic Repeat Request
(ARQ), where lost packets are retransmitted, and (2) Forward Error Correction (FEC), which transmits
redundant data (called parity data) along with the original data. Thanks to this redundancy, up to a
certain number of missing packets can be recovered at the receiver. More precisely, with a (n; k) FEC
code, k source packets are encoded into n packets, and the additional n — k packets are called parity
packets. A receiver can then build the &k source packets provided it receives any k packets out of n (or
a little bit more than k& with LDPC/LDGM codes). The great advantage of using FEC is that the same
parity packet can be used to recover different lost packets at different receivers. Therefore, feedback from
receivers can be implemented at a coarser granularity, which in particular limits the risk of feedback
implosion at the source. An extreme case is the Asynchronous Layered Coding (ALC) massively scalable
reliable multicast protocol [11, 12] which achieves reliability thanks to an intensive use of FEC. There is
absolutely no feedback information from the receivers in that case.

The first motivation for this work is our MultiCast Library (MCLv3) [25] which implements the ALC
protocol family and provides an integrated solution for the reliable and highly scalable multicast delivery
of bulk data. Previous work from Digital Fountain [2] or the RMT IETF working group [15], and our own
experience gained with MCLv3 [28, 27|, have highlighted the importance of FEC and the two limitations
of the Reed-Solomon FEC code (or RSE) commonly used: (1) the small block size and (2) the high
encoding/decoding times. The two parameters (k;n) play an important role in the global efficiency
accessible:

¢ a large n is favorable because it reduces the probability of packet duplication at a receiver. Indeed,
since the same set of packets (data or parity) may be transmitted in a different random order in
each ALC layer [28]!, the probability that a receiver receives the same packet on two different layers
decreases if n increases. The extreme case is achieved with the so-called rate-less codes that can
produce an infinite number of parity packets (i.e. n — +00). If these codes are of not considered
in our performance evaluation, we consider them in our discussion (section 4.3).

e alarge k increases the correction capacity of the FEC code. Since a parity packet can only recover
an erasure in the block it belongs to, its erasure capability is therefore inversely proportional to the
number of blocks a file must be segmented into. Ideally a file may be encoded in a single block, in
which case each parity packet would be useful.

Unfortunately RSE is intrinsically limited by the Galois Field size it uses. A typical example is GF(8)
where n < 256. With one kilobyte packets, a FEC codec producing as many parity packets as data
packets (n = 2k) operates on blocks of size 128 kilobytes at most, and all files exceeding this threshold
must be segmented into several blocks. Using GF(16) solves this problem since here n < 65536. But
a major drawback then is a huge encoding/decoding time. Therefore the k and n parameters must be
limited to small values if high transmission rates are desired.

Yet RSE achieves an ideal encoding because the portion of the transmission sufficient to recover
the original message is the length of the original message itself (said differently, k packets are always
sufficient for decoding to complete). A FEC code with this property is called MDS, or Minimum Distance
Separation.

1.2 Use of FEC in Environments with Intermittent Connectivity

Several environments are characterized by an intermittent connectivity. [3] provides an example which
nicely fits in this category: the Land Mobile Satellite (LMS) channel. The goal of the application is

I'Note that other possibilities exist to bypass the limitations of RSE codes [1] or with new expandable codes (also known
as rate-less codes) [18, 10] that will be discussed later on.

RR n° 5225



to distribute multimedia contents to the car passengers from a satellite connection. In this system, the
mobile (car) experiences both fast fading and white Gaussian noise, which is addressed by the DVB-S error
correction schemes, and slow fading (e.g. when entering a tunnel), which is addressed by a packet level
FEC encoding. This two level FEC encoding is fully complementary, each level of protection addressing
different problems. As mentioned in [3], the LDGM codes that we discuss in our paper are well suited to
this kind of environment.

1.3 Use of FEC in Distributed Storage

Another area where FEC proves to be of great help is distributed storage systems, where the object
is replicated across a set of servers. Here clients download the object by accessing multiple servers
in parallel. Such replicated systems improve both fault-tolerance and performance over non replicated
storage systems. Using an FEC erasure code to dilute the information over the storage servers allows a
greater and flexible choice to the clients, and can enhance the overall downloading throughput.

Basically, for each of the B blocks, FEC encoding produces n = fec__ratio*k packets, where the FEC
expansion ratio is an integer > 1. The system can now replicate any of the Bxfec _ratio “encoding blocks”
on the servers, and downloading any B different “encoding blocks” out of B x fec ratio possibilities is
sufficient to reconstruct the original file.

Several such systems, relying on various kinds of FEC codes have been proposed, like [7, 8, 19, 23] to
cite only a few.

1.4 LDPC codes for Packet Erasure Channels: a Bit of History

LDPC codes were first introduced by Gallager in 1960 [4, 5]. However LDPC has been almost completely
forgotten for the next 30’s years and has only been rediscovered in 1995 by MacKay and Neal [17]. LDPC
has then been largely improved by Luby, Shokrollahi and al. This work lead to the design of such codes
as Tornado[2], LT[10], and Raptor [29]. Yet all three codes are protected by patents (see [15] for a non
exhaustive list of patents). Because of these limitations, we do not consider them in the present work
but focus on LDPC and several derivatives.

LDPC can operate both over Binary Symmetric Channels (BSC) and Binary Erasure Channels (BEC).
With a BSC channel a bit arrives at the destination either perfectly or erroneously. It typically happens
over noisy channels. On the opposite, in a BEC channel a bit either arrives perfectly or is lost by the
channel. A typical example of erasure channel, which does not operate on bit streams but on packet
streams, is the Internet. In that case the CRC available in most physical layers guaranties that a
packet arriving at its destination and given to the upper layer is error-free, otherwise it would have been
destroyed. The main cause of packet losses, in that case, is router congestion.

LDPC, like many other FEC codes, can operate on both types of channels. Yet LDPC is largely
simplified when we only consider the case of packet (or bit) erasure channels (resp. PEC or BEC), since
in that case decoding can exploit the additional information that does not exist over symmetric channels:
a packet (or bit) received is error-free. In the remaining of this paper we only consider the PEC case.

Note that the term “symbol” is often used in coding theory. Symbols refer to bits when operating
over a binary channel (BEC or BSC), and packets when operating over a packet erasure channel (PEC).
Since we only consider the PEC case in this work, we will use the term packet rather than symbol, but
most of our results are also valid over a BEC.

1.5 Goal of this Work and Choices Made, in Particular Concerning Patented
Techniques

In this paper we describe the implementation details and the performances of several large block FEC
codes derived from LDPC. These codes have two main advantages: (1) they use XOR operations for high
speed encoding/decoding, and (2) they operate on large source blocks (k > 1).

In the present work we deliberately do not consider techniques which are known to be patented, no
matter how efficient they may be. This is the case of the use of irregular graphs [13] in LDPC derived

INRIA



FEC codes, which is covered in particular by [14]. This choice stems from our desire to design patent-free,
open source FEC codecs. Besides we want to show that the performance level of these patent free codes
are already good enough for them to be used in several environments (and we remain rather confident
on the possibility to further improve them).

Unlike many other works in the coding theory area, this paper deliberately skips theoretical aspects
to focus on practical results. This standpoint is only rarely considered and [3, 23], our preliminary work
[26], and to some extent [2], are the only similar works we are aware of.

In this work we will focus on:

e the global decoding inefficiency, caused either by the LDPC/LDGM FEC code or by the need to
split the object into several blocks with RSE;

e the encoding and decoding speeds, which also determines the CPU load required by these codes, and
hence their ability to be used either on high performance links or, at the contrary, on lightweight
hosts;

e and the memory requirements at both the encoder and decoder.

From these performance results, we identify the situations where each code operates the best, if any, and
discuss some of their fundamental requirements and limits.

A direct effect of patents on FEC codes is that, to the best of our knowledge, no public implementation
of any Digital Fountain’s codes exist, that could have been used for our performance evaluations. We
therefore only consider the raw figures provided in [2, 23] without any possibility to explore some of the
performance metrics or operational conditions that we believe are important but lack in these works.

The remainder of the paper is organized as follows: We first introduce the four large block codes
considered in section 2. We compare their performances and that of a traditional Reed-Solomon codec
in section 3. We discuss our results and that of related works in section 4. Finally we conclude.

2 The LDGM, LDGM Staircase, LDGM Triangle and LDPC
FEC Codes

In this section we introduce successively four codes on graphs: LDGM, two variants, LDGM Staircase
and LDGM Triangle, and finally LDPC, the general case.

2.1 LDGM Code

The Low Density Generator Matrix (LDGM) code [26] is a linear (n;k) block code. It creates linear
equations between the k source packets: s;, ¢ € {0..k — 1} and the n — k parity packets: p;, i € {k..n—1}.
More precisely each parity packet is equal to the sum of a subset of the source packets, as defined in
the linear equations. The relationships specified by these equations can be represented using one of two
equivalent representations: a bipartite graph and a parity check matriz (figure 1).

2.1.1 Bipartite Graph

The bipartite graph defines relationships between left nodes, called message nodes, and right nodes,
called check nodes. The k source packets constitute the first k£ message nodes, while the parity packets
constitute the remaining n — k message nodes. The check nodes represent relationships between the
various packets (but are not themselves packets) and form a set of linear equations. For each edge in
this graph between a source message node and a check node, the corresponding source node is sum’ed
(XOR’ed) in the associated constraint. In the LDGM approach, all the parity message nodes are linked
to ezactly one check node (it is not the case with other codes). Since we only consider regular codes, the
degree of each source message node, also called left degree, is the same, and the degree of check nodes is
on average equal to:

k x left _deg

Tight_degLDGM =1+ —

RR n° 5225



(n) Message Nodes (n - k) Check Nodes
s1 Q.

cl: s 2+s4+s5+s5s6+p 7=0

s_2
k s_3 c2: s 1+s2+s3+s6+p 8=0
souree s 4 €3: 5 1+53+54+55+p 9=0
nodes ¢ g P AT ersAats otp Y= S, e S| PPy
s_6
--------------- - 010111100\ %
n-k p_7 =
ity b8 O [H.ld;]1= 111001010 &
nodes po @ 101110001/ %
(a) Bipartite graph (b) Dual Parity Check Matrix

Figure 1: Example of regular bipartite graph and the associated parity check matrix for LDGM.

When using a high FEC expansion ratio (i.e. a large n — k denominator in the above equation),
there may be check nodes (i.e. equations) connecting less than two source packets. In such a case, we
automatically add one or two extra edges in the bipartite graph with randomly selected source packets.
Therefore the average right degree is at least 2 in the above equation (right _degrpan = max(2;...)).

We do not try to remove degree four cycles in the parity check creation process. The main motivations
for this choice are (1) we do not want to compromise encoding and decoding performances (this is a CPU
intensive task), and (2) we observed little influence over the overall performances, which is confirmed by

These two rules also apply to the other LDGM or LDPC codes introduced in the coming sections.

2.1.2 Parity Check Matrix

A dual representation consists in building a parity check matrix, H. With LDGM, this matrix is the
concatenation of matrix H; and an identity matrix I,,_p. There is a 1 in the {i;j} entry of matrix H
each time there is an edge between message node j and check node i in the associated bipartite graph.

Thanks to the XOR properties, and thanks to the I,,_; identity matrix, encoding (i.e. parity packet
creation) is straightforward: each parity packet is equal to the sum of all source packets in the associated
equation. For instance, packet p; is equal to the sum: so @ s4 P s5 D Sg-

The fact that this matrix can be used for encoding, or in other words the fact this matrix is a
“Generator Matrix”, accounts for the “GM” acronym in the LDGM name. Besides, the H matrix is
sparse®. This is due to the fixed number of 1s per column (at most 10 in all simulations presented in this
paper), no matter the matrix size, or said differently, no matter the block size (k) and number of parity
packets created (n — k). This “low density” property accounts for the “LD” acronym in the LDGM name.
Because of these two properties, encoding is extremely fast with LDGM and its derivatives.

2.1.3 Decoding with the Iterative Decoding Algorithm

Decoding follows a trivial algorithm. Given a set of linear equations, if one of them has only one remaining
unknown variable, then the value of this variable is that of the constant term. We then replace this
variable by its value in all remaining equations and reiterate, recursively. The value of several variables
can therefore be found if lucky.

In our case, the set of constraints (check nodes) form a set of k linear equations of n variables (source
and parity packets). As such this system cannot be solved and we need to receive packets from the
network. Each incoming packet contains the value of the associated variable, so we replace this variable
in all linear equations in which it appears. We then apply the above algorithm and see if decoding can
progress by one or more steps. As we approach the end of decoding, incoming packets tend to trigger the

2Note that this sparse property is not visible in figure 1(b) which has a limited size for practical reasons.

INRIA



decoding of several packets, until all of the k source packets have been recovered (but not necessarily all
of the n — k parity packets).

2.2 LDGM Staircase Code

LDGM Staircase is a trivial variant of LDGM which is suggested in [16]>. LDGM Staircase only differs
from LDGM by the fact that the I,,_;, matrix has been replaced by a “staircase matrix” of the same size
(figure 2 (a)).

This small variation does not affect encoding, which remains a simple and highly efficient process.
The only constraint is that encoding must follow the natural parity packet order. For instance encoding
starts with packet p7, and then packet ps (which can be computed since p; is known), etc. Yet, as will be
shown later, this simple variation largely improves the decoding efficiency. Intuitively, parity packets are
now protected and an erased parity packet, for instance packet p7, can be recovered thanks to packet pg
since they are both linked by a common constraint (node ¢3). On the opposite, with LDGM, an erased
parity packet cannot be recovered, unless all the associated source nodes in the associated constraint are
known, but in that case this is useless! Decoding follows the same algorithm as LDGM.

Given the right degree, the left degree of check nodes is on average equal to:

_ k x left_de
’I“Zght_degLDGM_Staircase =2 #

2.3 LDGM Triangle Code

LDGM Triangle is a variant of LDGM Staircase. The empty Triangle located beneath the Staircase
diagonal in the LDGM Staircase case is now filled, following an appropriate rule given below:

/* For row i, assuming that matrix H1 is already filled. */
add a 1 in row i and column k+i, and if i>0 in column k+i-1; // to create the staircase
tmp_idx = i-2;
for (n = i-2; n > 0; n--) { // add at most i-2 "1"s
tmp_idx = rand() % tmp_idx;
if (tmp_idx > 0)
add a 1 in row i and column (k + tmp_idx); // to create the triangle
else
break;

This rule leads parity nodes with a low index number to have a higher degree than parity nodes
with a higher index number, as shown in figure 2. This variation increases performances compared to
LDGM Staircase for small FEC expansion ratios as will be shown in section 3.4. Intuitively, we add a
“progressive” dependency between check nodes, so that only some check nodes protect a larger number
of nodes?.

Here also encoding must follow the natural parity packet order (this is the reason why only the lower
triangle is filled). Otherwise it remains highly efficient, even if a bit slower than with LDGM Staircase
since there are more "1"s per row. Decoding follows the same algorithm as LDGM.

2.4 LDPC Code

LDPC differ from the three previous codes by the fact the H; matrix encompasses all message nodes,
source and parity packets (so H and H; are the same). A parity packet now takes part in several
constraints randomly selected.

3The author of [16] refers this code as LDPC Staircase, we prefer the LDGM Staircase name because of its closeness to
LDGM and the fact that the parity check matrix H is also a generator matrix

41t is interesting to note that experiments (not included in this paper) have shown that filling the triangle in a completely
random manner, without progression in the density, lead to lower performances than LDGM Staircase.

RR n° 5225



(a) LDGM Staircase (b) LDGM Triangle

Figure 2: Example of parity check matrix (H) for LDGM Staircase and Triangle (k=400, n=600).

This is an asset from a decoding point of view since an erased parity packet may be recovered by several
different ways (as with LDGM Staircase/Triangle). But it has a cost since there is no trivial encoding
scheme and the parity check matrix cannot be used directly for producing parity packets. Encoding
requires that the set of n — k linear equations be solved, where the n — k parity packets take the role of
variables. Several schemes exist to that purpose [16] that all produce a generator matrix, G, solution of
the system, but even with optimized schemes, it remains a time consuming task. Encoding now consists
in multiplying this G matrix with the vector composed of source packets. Since G has no reason to be
sparse (unlike H), this multiplication is yet another time consuming task. Non surprisingly, encoding is
rather slow with LDPC compared to LDGM codes.

Decoding follows the same algorithm as LDGM (section 2.1.3) and operates on the H matrix.

Because of our choice of not using patented irregular graphs, we only consider in this work regular (3,
right _deg LDPC) LDPC codes, where the left nodes of the bipartite graph are of degree 3 and right
nodes of degree:

right _deg LDPC = %

3 Performance Evaluation of the Four LDPC/LDGM FEC Codecs
plus an RSE codec

3.1 Codec Design

We have designed an open source C++ LDGM/LDGM Staircase/LDGM Triangle/LDPC codec [21].
This codec relies on R. Neal’s software [20], which, given the k,n,left degree and a seed, creates a
regular parity check matrix H. This matrix is then used by the coder and decoder parts of our codec,
either directly (LDGM/LDGM Staircase/LDGM Triangle), or through the G generator matrix (LDPC
at a sender). Our codec is implemented as a library that has to be included by another software,
either an application (see the demo applications included in the distribution [21]), or a reliable multicast
implementation (see our MCLv3 library implementing the FLUTE/ALC family of protocols [25]).

So far our codec assumes that all source and parity packets are stored in physical memory (RAM),
which creates a practical limitation for huge objects (section 3.6). Future work will address this aspect and
will use the dedicated virtual memory framework included in MCLv3 [25]. There is anyway a limitation
because the random nature of the H/G matrices requires at any time a fast access to any source packet
(and for LDPC and LDGM-Triangle codes also to any parity packet) during the encoding and decoding
processes, which is only possible if most of the packets are kept in memory.

The matrix storage scheme is critical for achieving good performances. We used for that the sparse/den-
se library included in R. Neal’s software. The H parity check matrix is stored in a sparse array: to each

INRIA



"1" of the matrix is associated an entry which contains its row and column indexes, plus a pointer to the
following "1" on the left, on the right, upward® and downward. This sparse structure has two advantages:

e it enables major memory savings compared to a dense structure, (e.g. a k = 20000; n = 30000 code
leads to a H matrix of size 10000 x 30000 which requires at least 37.5 MBytes of storage with a
dense representation);

e it also enables a very fast encoding (since it is sufficient to follow the “right” pointers of a given
line) and decoding (since it is sufficient to follow the “down” pointer of a given column, i.e. packet,
to find all the equations where it takes part).

With LDPC, the sparse structure is not appropriate for storing the G generator matrix (which has
no reason to be sparse), and in that case a dense structure is used. This has a cost which is in parts
responsible of the limitations observed during tests.

3.2 Parameters and Performance Metrics Considered
The following parameters are considered during tests:

o FEC expansion ratio, fec_ratio, and code rate: the fec ratio is the n/k ratio. The higher the
ratio, the more parity packets are created. This FEC expansion ratio is also called “stretch factor”
in [2]. This ratio is the inverse of the “code rate”, defined as k/n and which is widely used in the
coding community. FEC codes capable of producing an infinite number of parity packets have a
rate equal to zero and are therefore called “rate-less”. In the present work we will use the fec_ratio
terminology.

e object size: in this work packets are always 1024 bytes long. We therefore express the object size
in packets rather than in bytes. With LDPC/LDGM codes, the object being encoded as a single
block, the object size in packets is equivalent to the k parameter of the FEC code. With RSE, the
object is split into several blocks, each of size k packets.

We measured the following performance metrics:
o global decoding inefficiency ratio, inef ratio: decoding inefficiency can be caused by:

— the fact the FEC code is non MDS (e.g. LDPC/LDGM codes), so more than k packets must
be received for the decoding a block of size k to complete (this is also known as the “overhead
factor” in [23]), or

— the need to split big objects into smaller blocks (e.g. RSE).

In both cases inef ratio x number of source packets packets, with inef ratio > 1, must be
received in order to decode (all) the block(s). Said differently:

number of pkts required for decoding

inef _ratio =
/- number of source pkts

This inef _ratio, experimentally evaluated, is one of the key performance metrics we consider.

o decoding inefficiency ratio confidence intervals: considering the average inef ratio only is not suf-
ficient since large values are sometimes observed. We therefore measure various confidence intervals
for values larger than the average, and the same for values smaller than the average.

e encoding/decoding times and bandwidths: measuring the FEC codec initialization time and the total
encoding (resp. decoding) time enables to measure the maximum sustainable bandwidth. More
precisely, two encoding bandwidths can be considered: a global encoding bandwidth measured as:

n * pkt size (in bits)

global _encoding bw = -
— - time
5Except with LDGM/LDGM Staircase codes where the upward pointer is removed.

RR n° 5225



and a partial encoding bandwidth which only takes into account the number of parity packets
produced:
(n — k) = pkt size (in bits)

time

partial _encoding bw =

The first measure indicates whether the codec can support a given transmission rate when using
a systematic FEC code (the default, both source and parity packets are sent), whereas the second
one refers to what is actually produced by the FEC codec.

No such distinction exists at the receiver, and the bandwidth is always measured as:

number of pkts required for decoding x pkt size (in bits)

time

Since this value depends on the global decoding inefficiency ratio which varies slightly at each test,
we only consider average values.

e mazimum memory requirements: we measure the maximum memory requirements, both during
encoding and decoding, caused by the need to store source packets (and often parity packets),
but also all the codec’s internal buffers or tables, and in particular the parity check matrix with
LDGM/LDPC codes.

3.3 Experimental Setup
3.3.1 Testing Application

The following tests use both our LDPC/LDGM codec and a widely used RSE codec [24]. We designed a
basic application on top of these two codecs, derived from the perf_tool of our FEC codec distribution
[21]. Given an object and a fec_ratio, the application first performs FEC encoding: to k source packets
of a block, the codec produces n — k = (fec_ratio— 1) x k parity packets. Both source and parity packets
are 1024 byte long. Once encoding has been performed, the source and parity packets (of all blocks
with RSE) are transmitted in a fully random order. The receiving application waits until it has received
enough packets to decode the block (or all blocks with RSE). He then stops reception and reports the
number of packets received and the global inef ratio measured.
Several remarks can be made regarding this methodology:

e There is no explicit loss simulation model (e.g. random or per burst) because random transmis-
sions are not affected by the loss model. Performance results could be slightly different if other
transmission models were used, for instance by sending all k& packets in sequence except a few of
them (assumed erased) and then parity packets. But this methodology has a major drawback: it
introduces additional parameters like the loss model and the loss ratio(s). On the contrary our
approach avoids these problems, is more universal, and is in line with the way these codes can be
used for instance in ALC sessions [6, 28].

e The same application and environment is used for testing all codes, including RSE.

e No transmissions on the network are performed, and the same application performs both encoding
and decoding. This feature enables us to better control the way packets are “sent”, simplifies tests,
reduces the overall test durations and enables accurate encoding/decoding time measurements.

3.3.2 Determining Each Block Size with RSE

Because of the intrinsic limitations of a RSE codec working on GF(8) %, a large object has to be fragmented
into several blocks compatible with the codec limitations: k£ < n < max_n = 256. Determining the block
structure of an object requires two things. The first key parameter is the maximum source block size
possible, max k. Two strategies exist for that:

6Using GF(16) enables to use larger blocks, since n < 65536, but this is at the price of higher encoding/decoding times,
whereas these times are already a major limitation with GF(8) (section 3.5).

INRIA



e for a given FEC expansion ratio, we compute: max_k = max_n/fec_ratio = 256 /fec_ratio.
Doing so leads to an optimal use of the RSE codec, since we are sure to always operate with blocks
of maximum size.

e or we set max_k to a fixed value and produce the required n — max_k parity packets, as long as
n < mazx_n (e.g. we can have a FEC ratio of at most 5 if maxz_k = 51). This scheme does not
enable an optimal use of the RSE codec, since larger blocks could often be possible, but a fixed,
smaller max__k is sometimes chosen because of performance issues (see table 1).

The second key feature is the blocking algorithm. We chose the one specified in the FLUTE standard
[22] which is known to be optimal since this scheme avoids situations where the final block is much smaller
than all previous maximum size blocks, a situation largely sub-optimal (an extreme case is a last block
of size one packet only). Here all blocks are of the same size, A _large < max_k, or one packet less than
A _large.

Taking care of these two aspects is of high importance for reliably comparing the performances of the
RSE and LDPC/LDGM codes, and we consider both ways of determining maxz_k in our tests.

3.3.3 Tests Carried Out
We conducted two kinds of tests:

e Fized FEC expansion ratio and different object sizes: the fec ratio is set to 1.5, while the object
size varies from 100 packets (100 KBytes) up to 50000 packets (~50 MBytes) 7.

o Fized object size and different FEC expansion ratios: the object size is set to 20000 packets
(=20 MBytes), while the fec ratio varies from 1.25 up to 5.0 (or, equivalently, the code rate
varies from 0.8 down to 0.2).

During these experiments we measure the minimum number of packets required for decoding, and the
encoding/decoding times. Experiments are repeated 1000 times with LDGM, LDGM Staircase, LDGM
Triangle and RSE. We limit the number of LDPC experiments to 100 only due to performance issues (see
section 3.5). The average value, and the 99% confidence interval for the values lower or higher than this
average, are reported. We also discuss the absolute minimum/maximum values and higher confidence
intervals (99.9% and 99.99%) in section 3.4.3.

Note that our transmission scheme leads to a mazimum decoding inefficiency equal to n/k = fec_ratio
since the number of packets required for decoding is at most equal to the number of packets transmitted,
n = fec_ratio * k.

3.4 Decoding Inefficiency Experiments
3.4.1 Fixed FEC ratio and different object sizes

We first compare the results using a fixed FEC ratio. Results are given in figure 3. We see that LDGM
Triangle obtains the best results, with an inefficiency ratio that quickly stabilizes around 1.055. The 99%
confidence interval is quite small, [1.051;1.059], with an object of size 50,000 packets.

Like LDGM Triangle, the inefficiency ratios of LDGM Staircase and LDPC decrease and quickly
stabilize when the object size increases. At the same time the confidence interval gets smaller. LDGM
Staircase is a bit less efficient than its triangle variant, with an inefficiency ratio around 1.068 and a 99%
confidence interval of [1.064;1.071] with an object of size 50,000 packets. LDPC’s inefficiency ratio is a
bit higher, around 1.076, with a 99% confidence interval of [1.073;1.079].

LDGM behaves differently than the other three codes: its inefficiency ratio is much worse and increases
slowly with the object size (a result already observed in our previous work [26]), the confidence intervals
are larger, and the overall performances depend on the left degree parameter. 7 is the optimal degree
in this case [26], and the LDGM inefficiency ratio is around 1.155 with an object of size 50,000 packets.

"Note that unlike [23] we do not consider small objects, since small block FEC codes like RSE are in that case preferable
to large block codes.

RR n° 5225



But changing the FEC expansion ratio also changes this optimal left degree. No such dependency exists
with the other large block FEC codes where a left degree of 3 always yields the best results, which is in
line with the results mentioned in the literature for LDPC.

Finally figure 3 (e) and (f) shows that RSE performances depend on the object size: the larger the
object, the lower the efficiency, which is not a surprise (section 1.1). This has to be compared with
the constant decoding inefficiency observed with LDGM Staircase/ Triangle codecs®. With an object of
size 50,000 packets, RSE has a decoding inefficiency around 1.122 with fixed n, and 1.220 with fixed k,
which is far behind LDGM Triangle. Besides the confidence intervals are much higher with RSE. On the
opposite, with very small objects, RSE remains the best choice, essentially because it’s an MDS code.

3.4.2 Fixed object size and different FEC ratios

The behavior of the four large block FEC codes is much more differentiated if we vary the FEC expansion
ratio. This is visible in figure 4. First we notice that the LDPC curve stops at a FEC ratio of 3.0. This is
due to a pure practical reason and shows a major limitation of the LDPC codec used: LDPC has a very
high memory consumption, and above a FEC ratio of 3.0 the required memory exceeds the 2GB RAM
of our machine. Moreover we see that even for FEC ratios smaller than 3.0, LDPC performances are not
quite interesting, even if the confidence interval is small.

LDGM with a left degree equal to 10 has also poor performances, with an inefficiency ratio of 3.045
when the FEC expansion ratio is 5.0.

The LDGM Staircase and Triangle codes yield the most interesting results. LDGM Triangle is the
code that performs the best for FEC ratios smaller than 2.5. At 2.5, LDGM Triangle has an average
inefficiency ratio of 1.115 and a confidence interval going from 1.103 to 1.127. LDGM Staircase has an
inefficiency ratio of 1.148 and a 99% confidence interval of [1.138;1.159] for the same FEC ratio.

For FEC ratios greater than 2.5, the performance of LDGM Triangle decreases suddenly. On the
opposite LDGM Staircase performs well for FEC ratios larger than 2.5. LDGM Staircase reaches a local
minimum at a FEC ratio of 2.75 (inefficiency ratio of 1.138) and behaves very well up to a FEC ratio of
5.0 (inefficiency ratio of 1.325, compared to 1.849 with LDGM Triangle), with a small confidence interval,
[1.314;1.338].

Finally this kind of tests is more favorable to RSE than the previous ones with a fixed FEC expansion
ratio, essentially because RSE is an MDS code (indeed, if there is a single block, producing more parity
packets does not lead to performance degradation with an MDS code).

Yet, with the fixed n strategy (figure 4 (e)), the block size decreases if the FEC ratio increases (let’s
recall that max_k = 256/fec_ratio), there are more and more blocks and the global inefficiency ratio
also increases. The inefficiency ratio is 1.241 with a FEC ratio of 2.5, and 1.512 with a FEC ratio of 5.0,
which is worse than LDGM Staircase in both cases, and higher than LDGM Triangle in the first case.
With a fixed k (figure 4 (f)) we observe that the global inefficiency ratio is worse with small FEC ratios,
but about the same than with the fixed n strategy for higher FEC ratios (this is normal since the maxz_k
value is about the same if fec ratio = 5.0). We also see that the confidence interval is rather large
with RSE and increases with the FEC ratio, whereas no such behavior exists with other codes (except
LDGM).

To conclude, RSE is not the best choice which remains LDGM Staircase for high FEC ratio values,
and LDGM Triangle for small FEC ratio values.

3.4.3 Variations in the Results

A result not highlighted on figures 3 and 4, is that the absolute maximum values (worst global inefficiency
ratio) can largely exceed the average, even if this is extremely rare (less than 1%, since we generated
these graphs with a confidence interval of 99%). These peaks appear with all three LDGM codecs, but
their number and importance decreases with the block size. We did not notice this behavior with LDPC
though, but this can be due to the fact we only did 100 tests, not 1000. No such behavior happen for

8 At least as long as the maximum block size of such codes is not achieved, which essentially depends on the available
memory size. Above this threshold, several blocks must be used, each of them being independently encoded.

INRIA



Y A e S T S
g 15 R —— S
= eft_degree=3 ---x--- 2 i
> 145 lef_degrep=7 @ ] S L
%) 9
5] ]
'S 14 7 S 112 ]
E=S b=
7} 13}
£ 135 i £
w e 11 1
1= e
8 13 Bl 8
g . < S 108 1
= : : T >
x : : x
< : ' a
£ s : 1 E 106 1
f |
: : 3
g 8 ® N g 1.04 b
=3 : : |5
I} : , S
5} B s}
° °
EY S 102 E
> q =3
£ £
£ 1 I I I I I I I I I £ 1 I I I I I I ! ! !

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
k (in packets)

(a) Inefficiency ratio of LDGM

114 B
112 B

11 B

e IR R T T —

1.04 o

1.02 o

min 99% conf./aver/max 99% conf. inefficiency ratio

1 I I I I I I I I I
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

k (in packets)

(c) Inefficiency ratio of LDGM Triangle

1.18

1.16 - B

112 - B

11 B

1.08 B

1.06 B

1.02 B

min 99% conf./aver/max 99% conf. inefficiency ratio

1 L L L L L L L L L
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
k (in packets)

(e) Inefficiency ratio of RSE with fixed n(=256).

min 99% conf./aver/max 99% conf. inefficiency ratio

min 99% conf./aver/max 99% conf. inefficiency ratio

114

112

11

1.08

1.06

1.04

1.02

13

125

12

115

11

1.05

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

k (in packets)

(b) Inefficiency ratio of LDGM Staircase

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

k (in packets)

(d) Inefficiency ratio of LDPC

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

k (in packets)

(f) Inefficiency ratio of RSE with fixed k(=51).

Figure 3: Global inefficiency ratio of LDPC/LDGM/RSE codes as a function of the object size, with

FEC ratio = 1.5.

RR n° 5225



o 5 T T T T o 135
ko block_size=20000 leftdeg=3 ---x--- 2
= block_size=20000 leftdeg=7 =] =
3 45} E g 13l d
5 5 ’
S 4 8 {
£ - . b=
2 2 125p ]
t as5f l 4 H I
° ] S 12f R
2 i 8
5 ap SRS S :
% ' & % L i
3 } ; : 1.15 %
£ 25} ; # P : E £ ¥
g i i | s g F
& . ® & & 11t I e
S 2 : i - =
S ¥ % s S %
§ 15| % i & ¥ * i § 105 i
£ P S - =
£ 1 g Il Il Il Il Il Il Il £ 1 Il Il Il Il Il Il Il
1 1.5 2 2.5 3 3.5 4 45 5 1 15 2 2.5 3 35 4 45 5
fec_ratio fec_ratio
(a) Inefficiency ratio of LDGM (b) Inefficiency ratio of LDGM Staircase
o 19 o 13 .
8 g
> 18 E > }
5 $ 125} E
g it Folooe
2 £ ¥
= 16 g = 12t E
c =
8 ¥ 8
S 15 i <
2 2 115f ¥ E
g 141 ¥ 1 3
£ £ 7
g 13p g g uf ’ E
g Ed = S
S 12 7 h &
(=}
S g 105f i
o) L ¥ i o £
2 11 = 3
£ o £
£ 1 . . . . . . . 5 1 . . . . . . .
1 1.5 2 2.5 3 3.5 4 45 5 1 1.5 2 2.5 3 3.5 4 45 5
fec_ratio fec_ratio
(c) Inefficiency ratio of LDGM Triangle (d) Inefficiency ratio of LDPC
o 18 o 18
8 8
g 17F E g 17h 4
[=4 c
8 ks
2 2
£ 16 g £ 16 E
£ £
T 15t g T 15t s
o o
g &
2 14 g S 14 E
3 3
£ 13} E £ 13} .
3 O)
g 3
2 12 % g 2 12 { E
o =}
1=} (=}
£ { £ }
S 11 { 1 2 11 B
£ £
£ 1 . . . . . . . € 1 . . . . . . .
1 15 2 2.5 3 3.5 4 45 5 1 15 2 25 3 35 4 45 5
fec_ratio fec_ratio
(e) Inefficiency ratio of RSE with fixed n(=256). (f) Inefficiency ratio of RSE with fixed k(=51).

Figure 4: Global inefficiency ratio of LDPC/LDGM/RSE codes as a function of the FEC ratio, with
object size = 20000 packets.

INRIA



1.25 T

°
[ LDGM Triangle &
z
5
2 12} B b
3'1:) H
£ ¥
5 115 }
o - [ ]
o
5 ;i
% ¥ #
£ 11f ; . ]
8 ¥
8 &
: ;
S 105 ¥ g
5 #
(2}
<
£ 1 ‘ ! !
1 15 2 25 3

fec_ratio

Figure 5: Global inefficiency ratio of LDGM Staircase and LDGM Triangle codes as a function of the
FEC ratio (closeup).

the absolute minimum values (best inefficiency ratio), unfortunately. In order to quantify this behavior
more precisely, we carried out other experiments with the LDGM Staircase and Triangle codes, with a
fixed object size of 20,000 packets and a FEC expansion ratio of 1.5, repeating the tests 100,000 times.
Results are shown in figure 6.

145 1.08

absolute max and 99.99% confidence interval ——— min  +
mean * mean *
14 - T 1.075 F median [m] i
135 | : 99% confidence interval -«
1.07 E
13 E
g 2
® ®
> 1251 i S 1065 [ i
3 3
< =
2 o
S L i
g 12 £ 106 [ 1
2 3} +
£ £
115 B HIH
1.055 - I E
11 F E FE
L3 1.05 - E
1.05 L3 E
N
1 . L 1.045 . :
Staircase Triangle Staircase Triangle
(a) average/max values and 99.99%/99.9% confidence (b) average/median/min values and 99.9%/99% confi-
intervals dence intervals (close-up of previous figure)

Figure 6: Variations of inefficiency ratios with LDGM Staircase/Triangle, with object size = 20000 packets
and FEC ratio = 1.5.

We can see that even with a confidence interval of 99.9% we are quite close to the mean. Yet, by
increasing the confidence to 99.99%, the upper confidence interval bound starts to become important
(1.187 for LDGM Triangle). The absolute maximum is 1.405 for LDGM Triangle and 1.348 for LDGM
Staircase. In spite of small differences, LDGM Staircase and LDGM Triangle show the same global
behavior.

We cannot give an explanation for these peaks yet. This will be considered in future works.

3.5 Encoding/Decoding Time Experiments

We now evaluate the encoding/decoding times and the associated bandwidths of all codes.

RR n° 5225



3.5.1 Encoding/Decoding Times with a Fixed Object Size and Fixed FEC Ratio

As already pointed out, the encoding times for LDPC are very high. For instance the encoding of a
20,000 packet object with a FEC ratio of 1.5 requires 281 seconds on a Pentium IV 3.06 GHz machine
(figure 7). Note that our implementation is absolutely not optimized for LDPC encoding, and major
improvements will probably be observed by using one of the optimizations suggested in the literature.
But in all cases, the performances will remain behind that of the various LDGM codes, since these latter
enable an immediate encoding, which will never be possible with LDPC.

The decoding time is also very high (175 seconds) because our LDPC codec requires that the G
generator matrix be produced at the receiver too for some internal technical reason®. This limitation
could be removed in the future, and decoding would then be similar to that observed with all LDGM
codes, since the same algorithm is used in all cases. Producing graph 3 (d) took more than a week on a
Pentium IV 3.06 GHz with 2GB RAM, whereas tests were repeated only 100 times (compared to 1000
times with LDGM codes). The resulting encoding bandwidth (Table 1) is low, less than 1Mbps.

In comparison all LDGM codes are very fast (e.g. producing graphs 3 (a), (b) and (c) took only one
night). There are differences shown in figure 7, essentially caused by the density of the H parity check
matrix, which determines the number of XOR sums required to produce each parity packet. For instance,
with LDGM Staircase, a parity packet is the sum of only right degreerpam  staircase — 1 = 1+ (3 %
k)/(n—k) packets with LDGM Staircase, whereas it is the sum of right _degreerpaar—1 = (7xk)/(n—k)
packets with LDGM. In all cases, the resulting encoding speeds are suitable for transmissions over high
speed networks.

Decoding is a bit longer (cf. figure 8) since more manipulations are required (like searching all
constraint equations where a given packet takes part and updating the value of the partial sum). However
the resulting speeds are also sufficient for high speed network transmissions as show in table 1.

Figure 7 and 8 show that the decoding and especially encoding times for the two RSE variants are
significantly slower: LDGM Staircase is about 29.81 times faster during encoding and 13.72 times faster
during decoding than RSE/fixed n = 256, and respectively 7.44 and 2.96 times faster than RSE/fixed
k = 51 (table 1). This may become a major issue when working with constrained devices (e.g. PDA),
where battery and CPU power is limited.

25 1800 60
1600 - m B il
i 50 L i
2F o B 1400 i
2 e 1200 - 17 40 B
£ E 1000 - £
g 2 800 12 or i
B o 13 g
5 T 600 [ 4% 20 E
05~ B 400 I 7
H 10 - H
200 B
0 ! ’_‘ [ L ’_‘ 0 I H 0 H\ ’_‘ [ ——
LDGM Staircase Triangle LDPC RSE n=256 RSE k=51
@ Sun UltraSPARC-I1i 480MHz 256 MB RAM Pentium 4 Mobile 1.8GHz 256MB RAM
[T Pentium 111 1GHz 512MB RAM [J Pentium 4 Xeon 3.06GHz 2GB RAM

Figure 7: Average initialization plus encoding times for all codes, with object size = 20000 packets and
FEC ratio = 1.5.

9Matrix columns are permuted by the encoder in order to produce the G matrix, and this permutation must be reproduced
at the decoder, which is only possible if G is produced.

INRIA



35 900 45 —
800 |- [] 1wk i
3l _ 4
m 700 — 35 4
25 7
’g g 600 = q g 30 - 7
£ 72 s00 18 =+ i
: % ol 18 Al ]
50l § §
° ) < 300 - 1 ° 151 7
200 - — 10 4
05 7
] [ L N | ’
0 ! » ’—‘ - 0 0 | ’_‘ o
LDGM Staircase Triangle LDPC RSE n=256 RSE k=51

@ Sun UltraSPARC-I1i 480MHz 256 MB RAM Pentium 4 Mobile 1.8GHz 256MB RAM
[T Pentium 111 1GHz 512MB RAM [J Pentium 4 Xeon 3.06GHz 2GB RAM

Figure 8: Average initialization plus decoding times for all codes, with object size = 20000 packets and
FEC ratio = 1.5.

Code Encoding, produced FEC | Encoding, produced data + FEC Decoding
LDGM (left deg. 7) 264.024 Mbps 792.080 Mbps 432.320 Mbps
LDGM Staircase 640.000 Mbps 1,920.000 Mbps 716.773 Mbps
LDGM Triangle 331.952 Mbps 995.848 Mbps 432.826 Mbps
LDPC 0.288 Mbps 0.856 Mbps 0.982 Mbps
RSE (n=256) 21.471 Mbps 64.412 Mbps 52.255 Mbps
RSE (k=51) 86.00 Mbps 257.99 Mbps 241.97 Mbps

Table 1: Average encoding/decoding speeds on a Pentium 4 Xeon 3.06GHz 2GB RAM, with object size
= 20000 packets and FEC ratio = 1.5.

3.5.2 Encoding/Decoding Times with Higher FEC Ratios

We now analyze the decoding and encoding times as a function of the FEC expansion ratio, for a fixed
object size of 20,000 packets (figure 9).

The encoding times (figure 9 (a) and (¢)) yield no surprising results. LDGM Staircase remains the
fastest codec even with high FEC ratios. The curves remain linear with LDGM Staircase and LDGM
Triangle, and the encoding speeds remain acceptable.

Compared to LDGM Staircase, RSE remains quite slow. It is worth noting that RSE/fixed k has a
linear encoding time curve as the object size increases, unlike common belief. Some results like [2] that
show a quadratic encoding time increase, assume that the whole object is encoded as a single block, which
requires operating on GF(16) for instance, which is known to yield prohibitive performances, and in no
case correspond to the way an RSE codec is used in most applications.

Finally, the LDPC performances (figure 9 (c)) turn out to be catastrophic with higher FEC ratios.

At the decoder (figure 9 (b), (d)), the results are as expected for LDGM Staircase, Triangle and LDPC.
LDGM Staircase and Triangle show comparable performances: they are very fast, with a slight advantage
for LDGM staircase, and decoding time increases linearly. LDPC show about the same behavior at the
decoder than at the encoder because of the limitation already mentioned in our implementation.

The surprise comes from RSE with a fixed n: decoding time remains reasonable, and even decreases
after a maximum at a FEC ratio of 2.0. RSE even becomes faster than LDGM triangle for FEC ratios
above = 4.5. The explanation comes from the fact that the block size k£ of the RSE code is calculated
from the maximum value of n divided by the FEC ratio. This means that n decreases with increasing
FEC ratio. The number of block increases in the same time, but the time gained having small blocks is
more important than the time lost having a higher number of blocks. We also see that with a fixed k

RR n° 5225



LDGM sta\rcasé " ‘LDGM s{a\rcase J——
LDGM triangle ---x--- LDGM triangle ---x---
7F RSE with fixed n=256 =} 35 | = RSE with fixed n=256 =] b
= 5]
6 3r o B
o B o
gi 5+ gi 25+ O | -
[} [}
£ £
A T s 2 4
£ £
=] =3
8 3 8 15} g
c (5]
[} o °
2 r 1r B
—
s 05 | I 1
- *’774777777*7,,
0 e e—— L L 0 L L L L L L L
1 15 2 25 3 35 4 4.5 1 15 2 25 3 35 4 4.5 5
fec_ratio fec_ratio

(a) LDGM Staircase/Triangle and RSE encoding times

6000

(b) LDGM Staircase/Triangle and RSE decoding times

4000

i "LoPc —— f‘ "LoPc ———
/
/ 3500 / E
5000 - / /
/ /
/ 3000 |- / e
T 4000 / e /
8 / 8 2500 F / g
o © /
2 / g /
= 3000 / = 2000 | / e
j=2] [=2}
£ £ /
5 / g /
g / g 1500 - / E
$ 2000 - y 2 /
/ 1000 / i
1000
500 - E
O *{///\ Il Il Il Il Il Il 0 ‘P//\ Il Il Il Il Il Il
1 1.5 2 25 3 3.5 4 45 1 1.5 2 2.5 3 35 4 45 5
fec_ratio fec_ratio

(c) LDPC encoding times (d) LDPC decoding times

Figure 9: Average encoding/decoding times as a function of the FEC expansion ratio on a Pentium 4
Xeon 3.06GHz 2GB RAM, with a fixed object size = 20000 packets.

decoding times increases less rapidly than with LDGM triangle. At a FEC ratio of =~ 3.3 they have the
same decoding time.

3.6 Memory Requirements

We now analyze the mazimum memory requirements for the different codecs, both from the encoder and
decoder applications points of view. We further distinguish:

e the memory storage of the H matrix (for all LDPC/LDGM codes), plus G in case of LDPC. Note
that no such equivalent exists for RSE;

e all the remaining memory requirements, essentially for the source and parity packets (except in
optimized versions, see below), the n — k constraint nodes for a decoder (with LDPC/LDGM
codes), and also the various buffers or tables required by the codec.

We also consider optimized versions, from a memory requirement point of view, of the encoding or
decoding applications:

INRIA



80 T 120 T

all LDGM/LDPC codes - - all LDGM/LDPC codes ------
optimized LDGM staircase —+— optimized LDGM staircase —+—
70 RSE B Rt RSE =]

60 [ L 2 |

50 | A

30 - T A e

Memory consumption (MB)
B
o
T
\\
k
\ 8
L
Memory consumption (MB)
(2]
o
T
[ 3
!

20 | e R o

10 + o |

[ "" Il Il Il Il Il Il Il Il Il 0 Il Il Il Il Il Il Il
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 1 15 2 25 3 35 4 4.5 5
block size fec ratio

(a) All codes, with a fixed FEC ratio = 1.5. (b) All codes, with a fixed object size = 20000 packets.

Figure 10: Memory consumption (without H/G matrices) during encoding,.

60

90
LDGM staircase —+— | LDGM staircase —+—
LDGM triangle ---x--- 80 L LDGM triangle ---x--- i
LDPC ------
50 ke RSE 2|
. _. 70 1
) )
= =
= 40 E = 60
S 8
g g so0f
g 3F T ]
<] S 40
o o
g g
e 20 E e 3of
(7] [}
= =
20
10 B
10 B
| ! ! ! ! ! ! ! ! 0 ! ! ! ! ! ! !
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 1 15 2 25 3 35 4 4.5 5
block size fec ratio
(a) All codes, with a fixed FEC ratio = 1.5. (b) All codes, with a fixed object size = 20000 packets.

Figure 11: Memory consumption (without H/G matrices) during decoding.

e an optimized encoding application produces a parity packet on the fly, uses it immediately (e.g. by
sending it), and then frees the associated packet buffer. This is possible with RSE and LDGM /LDGM
Staircase codes, but not with LDGM Triangle where dependencies exist with previously created par-
ity packets.

e in an optimized RSE decoding application, each time a block has been decoded and consumed by
the application, the buffers containing the associated packets are deallocated. This optimization
assumes that the application can manage each block independently of others, for instance by storing
their content on a disk in case of a file transfer [28§].

Figures 10 (a) and (b) show the memory requirements at the encoder, not considering the H/G
matrices. We see that all non optimized applications (and codecs) have the same requirements, essentially
dominated by the amount of data required to store the source and parity packets. The two RSE variants,
with fixed n and with fixed k, also have the same memory requirements and are therefore represented
with only one curve.

RR n° 5225



The situation is quite different when considering decoding (figures 11 (a) and (b)). Here RSE (both
with fixed n and fixed k) offers significant memory savings, especially with large FEC ratios, even with
non optimized applications. The reason is the following: increasing the FEC ratio with RSE does not
lead the decoder to store more packets, since a maximum of k = A _large (or A_large — 1) packets are
required for each block. On the opposite, with LDGM codes, there are exactly n — k check nodes in H
and therefore n — k partial sums, each of the packet size. These partial sums are required by the decoding
process, since they represent the “constant term” of each equation. There is a difference though between
the LDGM Staircase and LDGM Triangle codes because the buffers containing these partial sums are not
allocated statically (in which case there would not be any difference), but on demand, when an equation
is needed (i.e. when a received or decoded packet is implicated in the equation). More equations are used
with LDGM Triangle than LDGM Staircase because of the high density of the triangle in matrix H, and
therefore more buffers for partial sums are allocated.

14 T T — T 30 T T T
LDGM staircase —+— LDGM staircase —+—
12 4 x| )
g wr 1 £
= S 20t g
S S
g 8r il g
? 2 15}f i
c f=
8 of ] g
2 — >
_— o L -
E Ll - | g 1w
= o g o
/*/// | L N i
2| — - 5 _—
_— —
—— —
T
0 i Il Il Il Il Il Il Il Il Il O Il Il Il Il Il Il Il
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 1 15 2 25 3 35 4 45 5
block size fec ratio
(a) LDGM Staircase/Triangle codes, with a fixed FEC (b) LDGM Staircase/Triangle codes, with a fixed object
ratio = 1.5. size = 20000 packets.
1200 ; : 1400 ‘ ‘
LDPC —+— LDPC —+—
1000 - 1200 1= 1
g 2 1000 | g
- <
s S
s E 00 g
2 600 | 2
[=4 c
3 8 600 [ B
g g
400 |
§ é 400 p
200 |- 200 | R
.
0 — Il Il Il Il Il Il Il Il 0 Il Il Il Il Il Il Il
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 1 15 2 25 3 35 4 45 5
block size fec ratio
(c) LDPC with a fixed FEC ratio = 1.5. (d) LDPC with a fixed object size = 20000 packets

Figure 12: Memory consumption for the H matrix (plus G for LDPC).

The memory consumption for the H (plus G with LDPC) matrices is shown in figures 12 (a) to (d).
We see that LDPC needs a prohibitive amount of memory for matrix G: 171.12 MB with a block size
of 20,000 packets and a FEC expansion ratio of 1.5. This must be compared to the 2.5 MB required
for LDGM Staircase and 4.6 MB for LDGM Triangle for the same parameters. The requirements are

INRIA



higher when the FEC expansion ratio increases, expecially with LDGM Triangle which requires 28.5 MB
with a FEC ratio of 5.0, whereas an LDGM Staircase “only” requires 9.9 MB in that case. Therefore the
memory requirements for storing the H matrix, which largely reflect the density of the matrix, is not a
major issue with LDGM codes for small to medium FEC expansion ratios, and remains low in front of
the memory needed to store packets during encoding.

4 Discussion and Related Works
4.1 Which Code to Use, and When?

The previous performance results clearly define the main field of applications of each code, which, except
for LDPC and LDGM, are rather complementary:

o Regular LDPC showed prohibitive memory requirements and encoding speed, even if the situation
is much better at the decoder!®. High FEC ratios (> 3.0) could not be supported even on very
powerful machines. The measured inefficiency ratio is comparable (but worse) to those obtained
with LDGM Staircase/Triangle. We therefore do not recommend the use LDPC which offers no
advantage at all.

e LDGM is rather limited. It is a fast code but the inefficiency ratios obtained are not satisfying,
especially with higher FEC ratios. We therefore do not recommend its use.

o LDGM Staircase is the best code for FEC expansion ratios > 2.5 where it outperforms all others
codes. In all cases it offers a high encoding/decoding speed (it’s the fastest code we tested), along
with a low and stable (an important feature) global inefficiency inefficiency ratio.

o LDGM Triangle is the best code for FEC expansion ratios < 2.5. In this case it outperforms LDGM
Staircase in terms of inefficiency ratio (here also fairly stable) while keeping a good (but lower)
encoding/decoding speed. But performances quickly decrease with a FEC ratio > 2.5, in which
case the Staircase variant is preferable.

e RSE remains an excellent choice for small objects, or when the maximum memory requirements
at the decoding side must be kept low, especially with large FEC expansion ratios. But its major
limitations are (1) its high encoding (and often decoding) time (and CPU load) compared to LDGM
Staircase/Triangle codes, an issue with lightweight hosts, and (2) a global inefficiency ratio much
lower than those achieved with LDGM Staircase/Triangle codes.

With all four large block FEC codes, decoding is always fast, but less than encoding, because of more
complex operations involved that require to cross the H matrix and store intermediate sum values in
check nodes. The performance level is nevertheless compatible with high transmission rates, in the order
of several hundreds of Mbps.

4.2 Comparison With Other Fixed-Rate Codes

We now give some elements of comparison with several fixed rate codes. [23] gives recent performance
evaluations of various codes derived from LDPC: Tornado-like codes, LDPC codes and IRA codes. In each
case the authors only consider patented irreqular graphs. Because many different degree distributions are
possible, the authors systematically test all distributions mentioned in the literature (80 such distributions
are considered), and only report the best results. A comparison with our results highlights that:

¢ using irregular distributions is for sure effective, on condition the right distribution is used. For in-
stance, with a 20, 000 object and an FEC expansion ratio of 1.5, the authors achieve an approximate
1.02 decoding inefficiency with all codes, whereas our best code only achieves 1.055.

10We ignore the limitation mentioned in section 3.5 since this can probably be solved —even if we did not try— in an
optimized implementation.

RR n° 5225



o the results obtained with irregular distributions still improve when the object size increases, falling
below 1.01 with IRA codes and objects of size 100,000 packets, while in our case an equilibrium is
achieved around 1.055.

In [2], using the Tornado Z codec, the authors mention a decoding inefficiency on the average of 1.054
with a FEC expansion ratio of 2, which is better (but not so far) than our 1.087 value. Yet this is achieved
with a more complex code, that uses several cascaded bipartite graphs and a final Cauchy codec that
protects the last level. Our LDGM codes are in comparison rather simple.

Since no public implementation of either the codes used in [23] or Tornado Z is available, only a limited
comparison is possible. Therefore we can not compare such critical aspects as the encoding/decoding
speeds, the maximum memory requirements, and the operational complexity (e.g. from [23] it is not sure
that the same degree distribution always achieves the best results when varying the object size and FEC
expansion ratio, which could create practical problems). If our results are lower than those achieved with
the above patented codes, (1) they are not ridiculous though, and (2) the overall codec complexity is
significantly lower.

4.3 Comparison with Rate-Less Codes

Fixed rate large block codes are known to have limitations, in particular when compared to rate-less
codes[18]. This is essentially caused by the necessity to create and store on both ends (coder and decoder)
the same parity check matrix. More specifically:

e n is predefined: The source must define beforehand the maximum number of parity packets that
can be generated. There is no way to increase this number afterwards, except by generating a new
parity check matrix H, and starting all over again. But the global efficiency in that case remains
limited since H and H, are totally unrelated. On the opposite a rate-less code avoids this problem
and produces dynamically new parity packets as the need arises.

This is in our opinion the main limitation of the LDGM Staircase/Triangle codes for some applica-
tions, but not all of them (e.g. this is probably not an issue for some distributed storage schemes
where the number of replica is decided beforehand).

o Parity check matriz storage requirements: the LDGM Staircase/Triangle codes require that both
ends store the same H matrix of size (n — k) X n. On the opposite rate-less codes make no use of
a parity check matrix. For instance, with the Online code, the packet index itself (a large 128 bit
number) is a seed that defines the set of source packets it is the sum.

Yet our experiments have shown that the amount of memory required to store the H matrix with the
LDGM Staircase code (and to a lesser extent the LDGM Triangle code) is relatively low compared
the amount of memory required to store source packets, even if it regularly increases with the
FEC ratio. This small size is made possible by the sparse property of H which enables the use
of efficient data structures (section 3.1). We therefore do not consider this point to be a practical
issue with small to medium FEC expansion ratios, that is to say the situations where LDGM
Staircase/Triangle codes perform the best.

o parity packet storage at the encoder: LDPC and LDGM Triangle codes require that the encoder
stores all the parity packets produced since they may be used for producing further parity packets.
Yet no such requirement exists with LDGM Staircase (except for the previously produced parity
packet), which is an advantage when producing parity packets on-the-fly is sufficient. This situation
is in that case similar to that of rate-less codes where parity packets are exclusively the sum of source
packets.

o n, or equivalently the FEC expansion ratio, are limited by practical considerations: the parity packet
storage requirements (and to a lesser extent the H matrix storage requirements) limit the the FEC
expansion ratio. Besides, the inefficiency ratio also increases when the FEC ratio increases. There
is therefore a incentive to use non over-estimated FEC expansion ratios.

INRIA



In spite of these limitations, LDGM Staircase/Triangle codes are good codes with many potential
applications. These codes are highly recommended when there is no need to produce high numbers of
parity packets, while working on large objects (as in distributed storage applications, section 1.3). LDPC
codes (in a broad sense, which includes LDGM codes) have also recently been adopted in the DVB-S2
standard, as a replacement of RSE, which is a sign of their potential. Otherwise, in environments where
the FEC expansion ratio needs to be high, rate-less codes are clearly preferable. Such codes will be
considered in future works.

5 Conclusions

In this paper we describe the rationals behind four large block FEC codes, derived from LDPC, and
capable of working on source blocks composed of several tens of thousands of packets. We provide
an extensive performance analysis under various situations, and compare them to a widely used Reed-
Solomon small block FEC codec.

This work is based on a real codec, distributed under an open-source GNU/LGPL license [21]. There-
fore, unlike many other works in the coding theory area, this paper deliberately skips theoretical aspects
to focus on practical results. This standpoint enables us to explore several variations of well-known codes,
which were mentioned in the literature (e.g. [16] mentions LDGM Staircase codes) but have never been
subject to any theoretical analysis, in parts because of the associated complexity.

We try to provide an exhaustive survey of the performances of these codes to fully understand their
benefits and limitations, in order to use them in the most appropriate way. We show that the Stair-
case/Triangle codes have encoding/decoding bandwidths of several hundreds of Mbps, which makes them
appropriate to communications over high speed networks, and that they are nicely complementary, de-
pending on the desired FEC expansion ratio.

Another interesting result is the fact that a regular LDPC code has no interest at all, since it provides
no erasure protection benefit compared to the LDGM Staircase/Triangle codes while having prohibitive
encoding times (even if our codec could be improved from this point of view) and memory requirements.

Our results, in terms of decoding inefficiency, are not ridiculous when compared to previously published
large block FEC performances, using patented codes, even if they remain lower. We deliberately choose
not to consider techniques which are known to be patented, no matter how efficient they may be. This
choice stems from our desire to design patent-free, open source FEC codecs. In particular we do not
consider graphs with irregular left/right degree distributions, a technique known to be highly efficient
(even if defining an appropriate degree distribution remains a complex task).

Our conclusions is that the LDGM Staircase/Triangle codes have a high potential and can be advan-
tageously used in many situations. Future works will extend the comparison with rate-less codes (e.g.
the patent-free Online code [18]) and on new MDS codes like [9] that are capable to work on block sizes
significantly higher than with traditional MDS codes.

6 Acknowledgments

The authors would like to warmly thank Julien Labouré who designed the initial LDPC/LDGM codec,
and Zainab Khallouf for preliminary contributions on the subject. The author also thank Radford Neal
and Jerome Lacan for fruitful discussions during the early stage of this work.

References
[1] Y. Birk and D. Crupicoff. A multicast transmission schedule for scalable multi-rate distribution of bulk data
using non-scalable erasure correcting codes. In IEEE INFOCOM’03, Mar. 2003.

[2] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain approach to reliable distribution of
bulk data. In ACM SIGCOMM’98, Aug. 1998.

[3] H. Ernst, L. Sartorello, and S. Scalise. Transport layer coding for the land mobile satellite channel. In 59th
IEEE Vehicular Technology Conference (VIT'C’04), Milan, Italy, May 2004.

RR n° 5225



[4]
15]
(6]
(7]

(8]
[9]

[10]
[11]

[12]
[13]
[14]
[15]
[16]
[17]

18]
[19]

[20]
[21]
[22]
[23]
[24]
[25]

[26]

27]
28]

29]

R. G. Gallager. Low density parity check codes. In PhD thests, Massachussets Institute of Technology, 1960.
R. G. Gallager. Low density parity check codes. IEEE Transactions on Information Theory, 8(1), Jan. 1962.
J. Gemmell, E. Schooler, and J. Gray. Fcast multicast file distribution. IEEE Network, 14(1), Jan. 2000.

J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weather-
spoon, W. Weimer, C. Wells, and B. Zhao. Oceanstore: An architecture for global-scale persistent storage.
In Ninth International ACM Conference on Architectural Support for Programming Languages and Operating
Systems (ASPL0OS’00), Nov. 2000.

J. L. L. Dairaine, L. Lancérica. Enhancing peer to peer parallel data access with peerfect. In Fifth Interna-
tional Workshop on Networked Group Communication (NGC’03), Munich, Germany, Sept. 2003.

J. Lacan and J. Fimes. A construction of matrices with no singular square submatrices. In 7th International
Conference on Finite Fields and Applications, May 2003.

M. Luby. Lt codes. In 48rd IEEE Symposium on Foundations in Computer Science, Nov. 2002.

M. Luby, J. Gemmell, L. Vicisano, L. Rizzo, and J. Crowcroft. Asynchronous Layered Coding (ALC) protocol
instantiation, Dec. 2002. IETF Request for Comments, RFC3450.

M. Luby, J. Gemmell, L. Vicisano, L. Rizzo, M. Handley, and J. Crowcroft. Layered Coding Transport (LCT)
building block, Dec. 2002. IETF Request for Comments, RFC3451.

M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman. Improved low-density codes using irregular
graphs. IEEE Transactions on Information Theory, 47(2), Feb. 2001.

M. Luby, A. Shokrollahi, V. Stemann, M. Mitzenmacher, and D. Spielman. Irregularly graphed encoding
technique, June 2000. U.S. Patent No. 6,081,909.

M. Luby, L. Vicisano, J. Gemmell, L. Rizzo, M. Handley, and J. Crowcroft. The use of Forward Error
Correction (FEC) in reliable multicast, Dec. 2002. IETF Request for Comments, RFC3453.

D. MacKay. Information Theory, Inference and Learning Algorithms. Cambridge University Press, ISBN:
0521642981, 2003.

D. MacKay and R. Neal. Good codes based on very sparse matrices. In 5th TAM Conference: Cryptography
and Coding, LNCS No. 1025, 1995.

P. Maymounkov. Online codes. Research Report TR2002-833, New York University, Nov. 2002.

P. Maymounkov and D. Maziéres. A construction of matrices with no singular square submatrices. In
IPTPS’03, Feb. 2003.

R. Neal. Software for Low Density Parity Check (LDPC) codes.
http://www.cs.toronto.edu/~radford /ldpc.software.html.

C. Neumann, V. Roca, J. Labouré, and Z. Khallouf. An Open-Source Implementation of a Low Density
Parity Check (LDPC) Large Block FEC Code. URL: http://www.inrialpes.fr /planete/people/roca/mcl/.

T. Paila, M. Luby, R. Lehtonen, V. Roca, and R. Walsh. FLUTE - File Delivery over Unidirectional
Transport, Dec. 2003. Work in Progress: <draft-ietf-rmt-flute-07.txt>.

J. Plank and M. Thomason. On the practical use of ldpc erasure codes for distributed storage applications.
Research Report UT-CS-03-510, University of Tennessee, Sept. 2003.

L. Rizzo. Effective erasure codes for reliable computer communication protocols. ACM Computer Commu-
nication Review, 27(2), Apr. 1997.

V. Roca and al. MCLv3: an Open Source GNU/GPL Implementation of the ALC and NORM Reliable
Multicast Protocols. URL: http://www.inrialpes.fr/planete/people/roca/mcl/.

V. Roca, Z. Khallouf, and J. Laboure. Design and evaluation of a low density generator matrix (Idgm) large
block fec codec. In Fifth International Workshop on Networked Group Communication (NGC’03), Munich,
Germany, Sept. 2003.

V. Roca and B. Mordelet. Design of a multicast file transfer tool on top of alc. In 7th IEEE Symposium on
Computers and Communications (ISCC’02), Toarmina, Italy, July 2002.

V. Roca and B. Mordelet. Improving the efficiency of a multicast file transfer tool based on alc. Research
Report 4411, INRIA, Mar. 2002.

A. Shokrollahi. Raptor codes. Research Report DR2003-06-001, Digital Fountain, 2003.

INRIA



/<

Unité de recherche INRIA Rhéne-Alpes
655, avenue de I’Europe - 38330 Montbonnot-St-Martin (France)

Unité de recherche INRIA Futurs : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Lorraine : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http://www.inria.fr

ISSN 0249-6399



