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Abstract: The purpose of this paper is to investigate some performance measures of the
discrete time G/G /oo queue under a general arrival process. We assume more precisely that
at each time unit a batch with a random size may arrive, where the sequence of batch sizes
need not be i.i.d. All we request is that it would be stationary ergodic and that the service
duration has a phase type distribution. Our goal is to obtain explicit expressions for the first
two moments of number of customers in steady state. We obtain this by computing the first
two moments of some generic stochastic recursive equations that our system satisfies. We
then show that these class of recursive equations allow to solve not only the G/PH /oo queue
but also a network of such queues. We finally investigate the process of residual activity
time in a G/G /oo queue under general stationary ergodic assumptions, obtain the unique
stationary solution and establish coupling convergence to it from any initial state.
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Equations stochastiques récursives et des files d’attente a
serveur infini

Résumé : L’objectif de cet article est d’étudier des mesures de performances de la file
d’attente G/G /oo en temps discret sous des processus d’arrivées généraux. Nous supposons
plus précisément qu’a chaque unité de temps une rafale de taille aléatoire arrive. Le processus
des tailles des rafales est supposé stationnaire ergodique et la distribution des temps de
services est de type de Cox. Notre but est d’obtenir explicitement les deux premiers moments
du nombre de clients dans la file dans 1’état stationnaire. Nous ’obtenons en calculant les
deux premiers moments de certaines équations récursives stochastiques satisfaites par notre
systéme. Puis nous montrons que cette classe d’équations récursives permet d’analyser
non seulement une seule file mais aussi un réseau entier. Nous étudions enfin le processus
de temps d’activité résiduel de la file G/G /oo sous des hypothéses de temps d’arrivées et
de services stationnaires et ergodiques. Nous obtenons le régime stationnaire unique et
montrons le couplage & ce régime & partir de tout état initial.

Mots-clés : Equations Stochastiques Récursives, Processus de Branchement avec Migra-
tion, Files d’Attente & Infinité de Serveurs
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On stochastic recursive equations and infinite server
queues

Eitan Altman
INRIA, BP93, 06902 Sophia Antipolis, France

he purpose of this paper is to investigate some performance measures of the discrete time
G/G/oo queue under a general arrival process. We assume more precisely that at each time
unit a batch with a random size may arrive, where the sequence of batch sizes need not be
i.i.d. All we request is that it would be stationary ergodic and that the service duration
has a phase type distribution. Our goal is to obtain explicit expressions for the first two
moments of number of customers in steady state. We obtain this by computing the first two
moments of some generic stochastic recursive equations that our system satisfies. We then
show that these class of recursive equations allow to solve not only the G/PH /oo queue
but also a network of such queues. We finally investigate the process of residual activity
time in a G/G /oo queue under general stationary ergodic assumptions, obtain the unique
stationary solution and establish coupling convergence to it from any initial state.

1 Introduction

Most explicit expressions for performance measures in queueing networks are known under
independence assumptions on the driving processes (service and interarrival times). An
interesting challenge is to obtain explicit expressions for the case in which the independence
is relaxed and only stationarity and ergodicity of some components of the driving sequences
are assumed. One line of research that allows to handle stationary ergodic sequences is based
on identifying measures that are insensitive to correlations. For example, the probability of
finding a G/G/1 queue empty is just the ratio between the expected service time and the
expected interarrival time (which follows directly from Little’s Law). The expected cycle
duration in a polling system (under fairly general condition) too, depends on the interarrival,
service and vacation times only through their expectations under general stationary ergodic
assumptions (see e.g. [5]). An example of performance measures that depend on the whole
distribution of service times but is insensitive to correlations is the growth rate of number
of customers or of sojourn time in a (discriminatory) processor sharing queue in overload
[4, 13].

*This work was supported by the EURO-NGI network of excellence
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4 E. Altman

In this paper we study a queueing problem under a stationary ergodic arrival process, in
which the correlations indeed influence the performance but in which despite the dependence
between arrival times, explicit expressions are obtained for the two first moments of the
stationary number of customers. More precisely, we study the discrete time G/G /oo queue in
which at each time unit a random a batch with a random size may arrive, where the sequence
of batch sizes is stationary ergodic and service durations have a phase type distribution.
We first compute the two moments of some generic stochastic recursive equations that our
system satisfies. These are simplified versions of stochastic recursions introduced in [2] which
already enabled us to study polling systems [2, 12] and queues with vacations [2] in which
vacation times are correlated, and are related to branching process with migration [1]. We
then show that these class of recursive equations allow to solve not only the G/PH /oo queue
but also a network of such queues. We finally investigate the process of residual activity
time in a G/G/oo queue under general stationary ergodic assumptions, obtain the unique
stationary solution and establish coupling convergence to it from any initial state.

The infinite server queue which is the topic of our paper has had various applications in
Teletraffic and in networking modeling. The output process of an M/GI/oo queue has been
used to model long range dependent traffic, c.f. in video applicationskruntz. In [17] the
connectivity of ad-hoc networks on a line has been considered. The distribution of distance
covered by a connected set of mobiles has been shown to correspond to a busy period in
the GI/GI/oo queue and its distribution was computed for various channel conditions.
Furthermore the distribution of the number of connected mobiles has been computed using
its correspondence to the number of customers served in a busy period of a GI/GI/x
queue. Finally, the infinite server queue has also been used in the context of communication
networks and distributed computer systems, see e.g. [14].

The structure of the paper is as follows. We introduce in Section 2 generic stochastic
recursive equation corresponding to a branching type process in non Markov random envi-
ronment with migration. The first and second moments of the corresponding state variables
are introduced in Section 3. This allows us to derive in Section 4 explicit performance mea-
sures for the G/PH /oo discrete time queue. Further stability results for the G/G /oo queue
are presented in Section 5 followed by a concluding section.

2 The model

Consider a column vector Y, whose entries are Y}, i = 1, ..., N where Y, take values on the
nonnegative integers. Consider the following stochastic recursive equation:

Yn-l—l = An(Yn> + Bn (1)
where the i the element of the column vector A, (Y,,) is given by
N Y]

[An (V)i = >3 € (n)

j=1k=1

INRIA



Infinite server queues 5

where £%)(n), k =1,2,3,...,n = 1,2,3, ... are i.i.d. random matrices of size N x N. Each
of its element is a nonnegative integer. Denote E[{f]k )(n)] = Aj;. The N-dimensional vector
B, is a stationary ergodic stochastic whose entries B! ,i = 1,..., N are nonnegative integers.

A, (y) has a divisibility property: if for some k, y = y° +y' +...y* where y™ are integers,
then A, (y) can be represented as

where {A'(,:)}i:(),]_,g’m’k are ii.d. with the same distribution as A,(-). Note also that
An(0) = 0. The divisibility property allows us to use the framework of |2] to character-
ize the distribution of Y,, and its limiting behavior.

We shall understand below Hf:n A;(z) = x whenever k < n, and Hf:n Ai(x) = ApgAg_1...Ap
whenever k > n.

We note that although (1) is not linear in Y,,, it is linear in expectation; if we let y be a
column vector then

E[A.(y)] = Ay. (2)

Moreover, we have for j > 1 by Wald’s equation

<H Aj) (y)] = Ny (3)

We recall the following property of our system:

E

Theorem 1 (i) Y, can be written in the form

~—

n—1 n—1 n—1
Yo = Z H AP (Basjoa) + (H A§0)> (Yo), n>0 (4
7=0

i=n—j =0
(i) there is a unique stationary solution Y," of (1), distributed like

n—1

Vi=ady | I A" ) (Bajr), nez (5)
j=0

1=n—j

The sum on the right side of (5) converges absolutely P-almost surely. Furthermore, for
all initial conditions Yy, |Yn — Y| — 0, P-almost surely on the same probability space. In
particular, the distribution of Y, converges to that of Y§ as n — oo.

Proof. (4) is obtained by iterating (1). Theorem 2 and Lemma 1 in [2] imply (ii). g

RR n° 5211



6 E. Altman

3 First and second moments
(2

i ) the first and second moment of the ith element of Y.

Denote by y; and ¥,

Denote

cov(Y)i; = E[(Yy): (Y*) ] yiy;. Let b; and b®) denote the two first moments of B .

Denote cov(£) 'k = E(@] § ) Aj;Ak; and define the following N x N matrices:
B(k) is the matrix whose ijth entry equals E[BjB}], where k is an integer.

B is the matrix whose i jth entry equals b;b;,

cov(B) is the matnx whose ijth entry equals E[BB]].

Define B := B —

Theorem 2 (i) The first moment of Y,* is given by
E[Yyl=(I-A)",
(i) Define Q to be the matriz whose (ij)th entry is

N
3" ye(con(9)}).
k=1

Then the matriz cov(Y') is the unique solution of the set of linear equations:

cov(Y') = cov(B) + z (AT [ATB(’I")] T) + Acov(Y)AT + Q.

Proof. (i) Taking the first moment at stationary regime of (1) we obtain (6).
(ii) To obtain the covariance, we first compute

E[(Ao(Y0))i(A0(Y0));] = E(E[(Ao(Y0)):(Ao(Y0));¥0])

YS vy
= ZYOAMZY Ajm) +E ZE 225“@3) v
m#k r=1s=1
= ZZAzkAJmE[Y Y + E ZE ZO Zﬁ ene v
k=1 m#k r=1 s=1,s#r

N Yy'
+E (Z E [Z el

]

= 35 AwARBYEY + Z[ @) ylAAE + ZykE[ﬁif)ﬁig)]

k=1 m#k k=1

N
- Z ZAkAJmE[Y’“Y’” +Z7chov (©)5
k=1

=1m

=z

INRIA



Infinite server queues 7

I
1M
&=
/N
&=
——

i=—j

(where the last equality follows from (3)),

N

E[(A0(Y0)):B5] = E[((40(¥e)):B;|Yo, Bo| = >~ A E[(¥o)..B]
k=1

We thus obtain

E[Y5'Y{] = E[B{B{] + El(40(Y0)): B} + E[(4o(Y0)); 5]

N N
+ Z Z EYFYy AikAjm + Qi

k=1m=1
= BB+ Y (VB0 + [WE0)] ), + 35 BV AA + @
r=1 J k=1m=1
so that
cov(Y);; = cov(B);; + Z (ATB’( )+ [AT ] ) -+ Z Z cov(Y)emAikAjm + Qi
r=1 ©J k=1m=1

We conclude that cov(Y') is a solution of (7). Next we show uniqueness. Let Z; and Z2 be
two solutions of (7) and define Z = Z; — Z,. Then Z satisfies Z = AT ZA. Tterating that we
obtain that

Z = lim A"Z(AT)" =

n—oo

where the last equality follows since |A|| < 1. This implies the uniqueness. I

RR n° 5211



8 E. Altman

4 The G/PH/x queue

We now consider a discrete time G/PH/oco queue. We shall first apply the general theory
of previous sections in order to compute the steady state moments of some performance
measures. We shall then strengthen the stability results (corresponding to Theorem 1)
while relaxing further the statistical assumptions.

Let B, = (B, ..., BY)T be a column vector for each integer n, where B! is the number
of arrivals at the nth time slot that start their service at phase ¢. B, is assumed to be a
stationary ergodic sequence.

Service times are considered to be i.i.d. and independent of the arrival process. We
represent the service time as the discrete time analogous of a phase type distribution: there
are N possible service phases. The initial phase k is chosen at random according to some
probability p(k). If at the beginning of slot n a customer is in a service phase i then it
will move at the end of the slot to a service phase j with probability P;;. With probability
1— E;\;l P;; it ends service and leaves the system at the end of the time slot. P is a sub-
stochastic matrix (it has nonnegative elements and it’s largest eigenvalue is strictly smaller
than 1), which means that services ends in finite time w.p.1. and that (I — P) is invertible.

Let Y,! denote the number of customers in phase i at time n. Let £®(n), k=1,2,3,...,
n=1,2,3,... be ii.d. random matrices of size N x N. Each of its element can take values
of 0 or 1, and the elements are all independent. We assume E[ﬁfjk )(n)] = P;.

With these notation the queue dynamics can be written as (1) and we can apply the
results of the previous sections to get the first two moments as well as the general distribution
at stationary regime.

Corollary 1 (i) Theorems 1 and 2 hold for the G/PH/> queue.

(i3) The first and second moments of the number of customers at the system in stationary
regime are given respectively by 17 (I — A)~'b and 1Tcov(Y)1, respectively, where 1 is a
column vector with all entries 1’s.

Remark 1 We present a simple interpretation of the first moment of the number of cus-
tomers at the system. Denote by A the expected number of arrivals per slot. Clearly A = |b|
where |b| is the sum of entries of the vector b. Define ¢ to be the expected service time of an
arbitrary customer and let p = A{. We shall first compute . The ijth element of the matrix
(I —A)~! has the interpretation of the total expected number of slots that a customer that
had arrived at service phase j spent at state i. Thus the jth entry of the vector 17 (I —A)~!
has the interpretation of the total expected number of slots that a customer that had arrived
at service phase j spent in the system. and let the vector 8 be the vector whose ithe entry
is b/|b]. Then
(=171 -A)"'5

and

p= 1T -A) Bl =17 - A) D,
which is our expression for the first moment of the number of customers at the system. This
relation is known to hold in fact for general G/G /oo queues, see e.g. [6, p. 134].

INRIA



Infinite server queues 9

4.1 Departure process

One can use the same methodology to describe the departure process. To do that, we can
augment the system with a new "phase" which we call "d" (for departure), and update the
phase transitions as follows:

ﬁ,‘j = Pi]', i,jG{l,...,N},
N

Fz’d e 1—Zﬂj,i6{1,...,N}
Jj=1

Py = 0, i€{l,.,N,d}

Quantities corresponding to the new system are denoted by adding a bar. We set F; = B}

. —d . . . . .
f_or i=1,...,N and B, = 0 for all integers n. Since P is assumed to be sub-stochastic, so is
P. Note that in our new system, only customers in phases 1,...,N correspond to those really
present in the original system, whereas customers at phase d are already out of the system.

4.2 Extension to a network

Consider now M stations, each with infinite number of servers. The service time at station
i has a set N; of N; phases. Let N = Ny + ... + Ny;. For any j = 1,..., N let s(j) denote
the station to which j corresponds, i.e. if j € N; then s(j) = 1.

If at time n a customer was at phase j in station s(j) then it either moves to another
phase at the same station or moves to another phase in another station; the next phase k
(either at the same station or at another one) is chosen with probability Pjx; with probability
1— Eivzl Pj;, the customer leaves the system. Again we assume that the choice of next phase
are independent.

Let B, = (BL,..., BM)T be a column vector for each integer n, where B! is the number
of arrivals at the nth time slot that start their service at phase 4 in station s(i). B, is
assumed to be a stationary ergodic sequence.

With this description we see that we can identify the whole network as a single server
station problem with infinite number of servers and with N phases. Thus we can apply all
previous results.

5 Residual activity time in the G/G /o0 queue

Define the residual activity time at a given instant as the total time till the system empties
from that instant onwards if new arrivals do not occur.

We shall analyze in this section the residual activity of a G/G/occ queue under weaker
statistical assumptions than those used so far. We shall obtain the existence of a stationary
regime as well as convergence to it in the coupling-convergence sense (see e.g. Borovkov

[7, 8]).

RR n® 5211



10 E. Altman

The model The nth arrival event occurs at time T,,: a batch of B,, customers arrive.
Denote 7,, = T,,41 — T),; they replace the fixed slots we had before. Let o, be the largest
service time required among the B, customers that arrive at time 7,,. We shall assume
that the joint sequence (7,,0,) is stationary ergodic and that E[ry] and E[oy] are finite and
strictly positive. o, in particular, need not have a "phase type distribution" as before. Let
V. be the residual activity time just before T,,. Then V,, can be written recursively as:

Vg1 = (max(Vn,an) — Tn)+

where (z)* := max(z, 0).
Iterating this relation gives:

Vote = (max{ [maX(Vn,on) — Tn]+,0'n+1} — Tn+1)+

max (maX(Vn, On) — Tn — Tnt1,0nt1l — Tnils 0).
Further iterating directly yields:
Vn+k: = maX(Zn, Zn+1, ceeny Zn_l_kfl, 0)

where

k—1 k—1
Zn = max(Vn,an) - ZT’”'H’ Zn+j =0On+tj — ZTH_H, ] = 1, ,k —1.
=0 i=j

Stationary solution We use the Loynes’ type scheme [16] to obtain the stationary regime
and the convergence to it.

Theorem 3 V,, converges a.s. to a unique stationary regime that is given by
n—1 +
Vy= rJn<aT}L( og; — Zn . (8)
i=j
from any initial V. Moreover V) is P — a.s. finite.
Proof: Define on the same probability space as the process V,, the shifted processes

V'n[.m], where m are integers:

m -

+
viml =, VTET]l = (max(VTEm],Jn) - Tn) , n > —m.

Then as before, we can write for n > —m:

n—1 +
viml = max |o; — E Ti
—m<j<n —
1=7

INRIA



Infinite server queues 11

which monotonely increases to the sequence V.* given in (8). Clearly V" is a stationary
ergodic process. We shall show that it is P — a.s. finite. Indeed, since (7., 0y) is stationary
ergodic, the Cesaro sums converge to the expectation P — a.s. and hence there is some R.V.
Jo which is finite P — a.s. such that for all j > Jj,

-1
o ; < jE[r]/3and Y 7 > j2E[r]/3

i=—7

Hence the term in brackets in (8) is negative for all —j > Jy so that V{* is finite P — a.s.
Due to stationarity this is true for V,* for all n.

Coupling We show that for any initial value Vj there is a time Ny which is finite P — a.s.
such V,, coincides with V' for all n > Ny. Indeed, fix Vj and define

-1
Ny :=inf {l »max(Vp, Vi) < Zﬂ'} .

=0

Ny is clearly finite P — a.s. due to the ergodicity of ;. Moreover, it is clear from the
explicit expressions we have for V; and for V;;* that they coincide for n > Ny. Uniqueness of
the stationary regime follows from the fact that coupling has been established for arbitrary
initial state. m

Remark 2 Our construction establishes in fact that we have strong coupling convergence
in the sense of [7, §].

Remark 3 A stability result is already given in [6, p. 133] for a general G/G/oo queue.
Namely, it is shown that Vj is finite almost surely but the form of the stationary regime and
the convergence results are not given.

6 Concluding comments

In this paper we have studied and used stochastic recursive equations to investigate the
discrete infinite server queue with batch arrivals where the size of the batches follow a general
stationary ergodic process. We obtained explicit expressions for the first and second moments
of the state variables appearing in the stochastic recursive equations and applied them to
solve the infinite server queue problem. Other stochastic recursive equations have been
used to study the stability of the queue under even more general probabilistic assumptions
and convergence to a unique stationary regime has been established. The simple explicit
expressions obtained makes our results appealing to various applications of the infinite server
queue. For example, they can be used to represent the first and second moments of the
number of connected mobiles at an arbitrary location in the one dimensional ad-hoc network
of [17], using the equivalence between the ad-hoc network and an infinite server queue given
in [17].

RR n® 5211
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