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Abstract: In this paper, we test some high order numerical schemes on simple oceanic models. We first
compare fourth-order and sixth-order compact schemes with the classical second-order centered scheme
on the system of equations describing the inertia-gravity waves, and then we focus on the performances of
the fourth-order compact scheme on oceanic typical processes, such as Munk boundary layer and shallow-
water physics. Numerical analysis of the schemes, and many computational results are presented.
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Schéma aux différences finies compactes pour un modéle eau peu
profonde de l’océan.

Résumé : Dans ce travail, on étudie des schémas numériques d’ordre élevé sur des modéles simples
d’océan. Aprés avoir comparé les schémas compacts d’ordre quatre et six avec le schéma classique centré
d’ordre deux sur le systéme d’équations décrivant les ondes de gravité, on s’intéresse plus particuliérement
aux performances du schéma compact d’ordre quatre sur des processus océaniques typiques tels que la
couche limite de Munk et la physique induite par I’hypothése d’eau peu profonde. Des études numériques
de ces schémas ainsi que de nombreux résultats de calcul sont présentés.

Mots-clés : Modéles océaniques, eau peu profonde, schémas numeériques, schémas compacts, analyse
numérique de schémas, couche limite, ondes de gravité.
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1 Introduction.

During these past 15 years, numerical models of the oceanic circulation have been very much improved in
term of physics, realism of the application and computational techniques. Nevertheless, the basic numerics
of these models are almost unchanged since the beginning of ocean modelling, i.e. 40 years. Most ocean
general circulation models still use only simple second-order centered finite difference schemes. However,
numerous modern schemes exist with interesting properties. For example, the implicit schemes based on
Hermitian formulas, which is an old idea [Collatz] are used successfully in aerohydrodynamic problems
[Tolstykh-72] [Tolstykh-73], [Tolstykh-73b]. Andrei I. Tolstykh developed and analysed very efficient
high accuracy implicit schemes (see [Tolstykh-94] and references inside). In the field of fluid dynamics,
these implicit schemes or so-called compact difference schemes became popular more recently mostly
through the work of Lele [Lele]. In [Tolstykh M.A.], Mikhael A. Tolstykh adapts the schemes proposed
by his father to the moisture transport equation in the atmosphere. In the domain of oceanography,
Chu and Fan [Chu-Fan] applied a family of these schemes, called combined compact difference schemes
to the simple stationary Stommel models. Blayo [Blayo| investigates the potential interest of such higher
order schemes within the specific context of numerical ocean models. Deriving generic expressions of
discrete dispersion relationships for inertia-gravity and Rossby waves, he found that the fourth-order
family improves significantly the quality of the approximation of the dispersion properties.

In this paper, we test some of these high order numerical schemes on simple oceanic models. The
aim of this work is to continue the studies of the performances of these schemes on oceanic typical
processes, such as inertia-gravity waves, Munk boundary layer and shallow-water physics. The paper
used the notations introduced in [Blayo| and is organized as follows. In part 2, we study the inertia-
gravity wave’s equation. We present the model, the discretised equations and numerical results for three
space discretisations in this simple case of wave propagation. In the third part, we consider the Munk
model of boundary layer. By means of the numerical analysis, we can prove that the main term of the
error is due to the derivative of the function at the boundary and to the order of the scheme. Numerical
experiments are also presented. In the fourth part, we study a shallow-water model. First of all, we prove
the GKS-stability of the equation of continuity with compact schemes on the cell-centered mesh. Then
we present numerical results of the shallow-water model for the centered second order schemes and for
the fourth order compact schemes. The last part is devoted to the conclusion.

2 Inertia-gravity waves.

Our aim here is to test the accuracy of the compact schemes. To this end, we use a test-case with an
exact wave solution. Initial data and boundary values are taken equal to the exact values of the wave, in
such a way that the errors are only due to the truncation terms. For details on the following equations
and notations, see [Blayo| and references inside.

2.1 The model.

Inertia-gravity waves on an f-plane are described by the linearized shallow-water equations (e.g. [Gill]):

Ou Oh
E—fov‘ﬁ‘g% = 0,
Ov Oh
5+fou+gafy = 0
Oh Ou Ov

o tH(G -+

o T (5, ay) =0

where f; is the Coriolis parameter (assumed constant) and g is the gravity acceleration, H is the mean
depth. The unknowns are u,v the horizontal componants of the velocity, and h the depth.
We choose as an initial data a plane wave in u, v and h, given respectively by

u(t =0,z,y) = Aycos(kz + ly) + Bysin(ke + ly),

v(t =0,z,y) = Aycos(ke + ly) + Bysin(ke + ly),
h(t = 0,z,y) = Apcos(kz + ly) + Brsin(kz + ly).
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Following [Blayo]|, we introduce the constants

w? = gH(k2-|-l2)—}-fg,
a = ngz + fga
IB = ngZ + fgv
v = gHEl
B, € R
B, € R
B, = H(kB, +1B,)
Y B
Au = _—Bu + —Bv
fow fow
—a ~
A, = —B,+—B,
fow fow
—HI HEk
A = ——B,+-"B,
" fo fo

The exact solutions of this problem are
u(t,z,y) = Aycos(kz + ly — wt) + Bysin(kz + ly — wt),
v(t,z,y) = Aycos(kz + ly — wt) + Bysin(ke + ly — wt),
h(t,z,y) = Apcos(kz + ly — wt) + Bpsin(kz + ly — wt),

2.2 Discretised equations.

In this section, we discretize in space the equations on a Arakawa C grid, in the square domain [0,1]x[0,1]:

Ou

o hSoe) +gSE(R) = o,
O+ foSo(u) +g8y(k) = O,
o H (S + Shw)] = 0.

where
So(u) denotes the interpolation scheme giving the value of u in a v-point, and symmetrically for Sy(v),
S%(h) denotes the approximation of 8,h in a u-point.

We define by the same way S*(u), S, (h), S;‘ (v). Note that operators S*(h) and S*(u) are identical,
as for S;’(h) and S;‘('u).
With this discretisation, we obtain the following dispersion relationship ([Blayo]):
2
() =Tk, = X [0k, 1) + T, (R, )?]

where S (ei(k“'ly)) = T(k,I) eilkatly) A2 — 5%1'_

Since the operators So(u),S¥(h) etc are very well preesented and studied in (|Blayo]), we are very
brief on this subject.
2.3 Numerical experiments.
We consider now different discretisations for the operators So and S /5:

¢ the usual second order center scheme (E2S),

So  fiv1/2 = %(fi + fit1),

S1/2 fi’+1/2 = fi+1d_ fi’
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¢ the fourth-order compact scheme (C4S),

So %fi—l/z + fir12 + %fﬂ-s/z = % (fi + fit1),

12 fi i
S1/2 22fz 12T fz+1/2 + 22 fz+3/2 = +1

e the sixth-order compact scheme (C68S).

So fyficrje+ firrje + tyfivssz = 3 (fi+ firr) + 5 (fims + Fiva)

1
51/2 %f£_1/2 + f1!+1/2 + % fi+3/2 = gjfl+1 fl 17 fl+2 fl 1

Different time schemes are also tested:
e second-order Runge-Kutta scheme,
e fourth-order Runge-Kutta scheme.

The explicit Euler scheme was also tested, but the time discretisation errors are predominant for long
time integration so we do not present these results.

We recall that in this part, the problem is a simple wave-propagation one, the initial data is taken to be
exact, and the boundary values are taken to be the values of the exact solutions of the equations.

In the following, we indicate for all cases

e the CPU time,

hez —h
e the relative error in LZon h: err; = W, where || * ||3= [ ()?dedy,
exr
hez — h t sol. — . sol.
o the relative error in L™ on h: erro, = I he= nu oo _ A%y |exact sol. — num. sol.|
|| hea ||oo maXg,y ‘exact sol.|

and plot the solutions with the different schemes.
In all cases, we took

e k=107,1=27, B, =B, =1

e H = fy =g = 2.5 (corresponding to dimensional values of yo = 5000km, fo = 10 *,g = 10,H =
4000, = 2.10 '1.), and the time step 7 = 10 ® (when different, the exact value is given)

We obtained w = 80.1342 and fi — 32.0537.
0
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31x31 Runge Kutta 2 | Runge-Kutta 4
Time CPU | 2.94 6.60
e2 €erry 3.25 3.42
erT o, 4.96 5.25
Time CPU | 6.30 13.24
c4 €rr, 0.28 0.41
€IToo 0.54 0.56
Time CPU | 6.30 13.42
c6 errs 6.99E-02 0.11
eIToo 0.13 0.12
61x61 Runge Kutta 2 | Runge-Kutta 4
Time CPU | 12.28 27.37
e2 errs 0.97 0.97
IS 6 0.83 0.79
Time CPU | 25.89 54.73
c4 erry 9.62E-02 3.65E-02
eITs 8.57 E-02 6.62 E-02
Time CPU | 26.59 54.62
c6 errsy 1.30 1.03E-02
€ITso 1.84 1.68E-02
91x91 Runge Kutta 2 7 = 5.10~% | Runge-Kutta 4
Time CPU | 60.66 (4000 it) 76.18
e2 €rrs 0.45 0.47
erIT oo 1.09 1.12
Time CPU | 127.95 (4000 it) 145.05
c4 errsy 2.70E-02 6.35E-03
€rToo 5.31 E-02 1.13E-02
Time CPU | 131.13(4000 it) 146.26
c6 €rrs 3.24E-02 1.37E-03
€ITs 6.41E-02 2.61E-03
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For 2 waves: u = u; + us, (resp. v, h), with

ui(t,z,y) = Ay expi(kiz + Ly — wit) uz(t,z,y) = Az expi(kzz + Loy — wot)
and (k; = 10m,1; = 2m) (ky = 2m,l; = 10m)
31x31 Runge Kutta 2 | Runge-Kutta 4
Time CPU | 3.32 7.27
e2 err, 3.35 3.51
€IT o 5.03 5.17
Time CPU | 6.53 13.82
c4 €rrs 0.31 0.442
€IToo 0.39 0.67
Time CPU | 6.63 13.92
c6 erry 8.42E-02 0.135
€ITo 0.101 0.173
61x61 Runge Kutta 2 | Runge-Kutta 4
Time CPU | 12.88 28.73
e2 err, 0.94 0.93
€IT o 1.67 1.67
Time CPU | 26.28 56.35
c4 erry 9.55E-02 3.66E-02
eITs, 0.12 4.46E-02
Time CPU | 27.43 55.58
c6 erT, 0.58 1.05E-02
€IT o 0.78 1.60 E-02
91x91 Runge Kutta 2 7 = 5.10~* | Runge-Kutta 4
Time CPU | (4000 it) 78.44
e2 errs unstable 0.45
erIT oo 0.82
Time CPU | (4000 it) 147.56
c4 errs unstable 6.23E-03
€T 9.62E-03
Time CPU | (4000 it) 149.55
c6 €err, unstable 1.33E-03
€ITo 1.63E-03
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Figure 1A. Precision/resolution for each method, with
4th order Runge-Kutta scheme in time
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20.00 40.00 60.00 80.00 100.00 120.00 140.00

c6

Cost

Figure 2. Precision/Cost for each method, with 4th order Runge-

Kutta scheme in time

Integral evolution
|

110 square e2
1.00 squarec4
0.90 square c6
0.80

0.70

0.60 Lt A o SV EYAN

0.50 e

0.40

0.30 int e2
0-20 N intca
0.10 —

0.00 v;kiﬁfy\“)./\? é\') /v‘ (\)[\‘v V{\ < "Ar{//»\’ neee
o010 VA

0.00 2.00 4.00 6.00 soo Timedee x 10°
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Integral evolution

Integral x 103

square e2

squar e c4
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Figure 4. Evolution of .\,D u(t, z,y)dedy and

.\.: u(t, z,y)?dedy for each schemes with 4th order
Runge-Kutta scheme in time and resolution hy = hy = 1/90.

Experiment

pressure

Contours from =25 to 25 interval 5

Figure 5. Initial data for h in all experiments.

Experiment pressure

Cantours rom ~150 to 150 Tntervl 30

Figure 6A. Solution at T=2, with euler scheme in space,
and 4th order Runge-Kutta scheme in time, hx=1/30

Experiment  pressure

Contours fram ~35 to 35 interval 5

Figure 6B. Solution at T=2, with C4 scheme in space,
and 4th order Runge-Kutta scheme in time, hx=1/30
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Experiment pressure Experiment pressure

Contours rom ~B0 to B0 interval 20 Contours from =15 to 25 nterval 5

Figure 7A. Solution at T=2, with euler scheme in space, Figure 7B. Solution at T=2, with C4 scheme in space,
and 4th order Runge-Kutta scheme in time, hx=1/60 and 4th order Runge-Kutta scheme in time, hx=1/60
Experiment pressure Experiment  pressure

Cantours rom ~50 ta 50 nterval 10 Contours fram =25 to 25 interval 5

Figure 8A. Solution at T=2, with euler scheme in space, Figure 8B. Solution at T=2, with C4 scheme in space,
and 4th order Runge-Kutta scheme in time, hx=1/90 and 4th order Runge-Kutta scheme in time, hx=1/90

Experiment pressure

I\

18

Contours from ~35 1o 35 intervl 5 Contours from =15 to 25 nterval 5

Figure 9A. Solution at T=2, with C6 scheme in space, Figure 9B. Solution at T=2, with C6 scheme in space,
and 4th order Runge-Kutta scheme in time, hx=1/30 and 4th order Runge-Kutta scheme in time, hx=1/60
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Figure 10. Solution at T=2, with C6 scheme in space,and 4th
order Runge-Kutta scheme in time, hx=1/90

2.4 Conclusion of this part.

These numerical results demonstrate the efficiency of compact schemes for this simple wave propagation
problem. C4 schemes lead indeed to similar results than E2 schemes for a typically three-times coarser
resolution. Even if the C6 schemes are not more expensive than C4 schemes and gives better results in
the present case, they are in fact more instable and difficult to tune in practical applications. So we will
only focus in the following on the 4th order compact schemes.

3 Munk Model of boundary layer.

In this section, we test scheme on the Munk model of boundary layer. We present in the first subsection
a simple analysis. First of all, we show that for unresolved boundary layer, a high order scheme is less
suitable than a low order one. Moreover, due to boundary condition, the order of the scheme is different
inside the domain, and on the boundary. Due to non-local nature of compact schemes, the error on the
boundary propagates inside the domain.

3.1 The Munk Model.

The Munk model is a model of the western boundary layer, obtained by the local equilibrium between
the 3 effect and the lateral dissipation. The equation is

d*v(z) 1
7at 76—31)(23):0 z>0 .
2(0) =0 (no slip boundary condition) (1)

2(+00) =0 (finite width of the boundary layer)

1/3
where the parameter § = d is a characteristic length, v the viscosity and 8 the gradient of the

Coriolis parameter. The solution of this equation is given by the following expression:

V3a

— Ce™ % sin —— 2
v(z) e sin — (2)
which is plotted on figure 11 for typical oceanic values of the parameters: v = 100m?s™!, f = 2. x

107 1m~157! and then § = 17 km. The constant C can be expressed in terms of the maximum value of

the velocity
V.. =V (2‘5_”) —C @ e T/3V3

3v3 2
so s
2 w/3vV3 - 3
v(z) = e Viex € 28 sin v3e (3)
V3 24

The width of the boundary layer is of order 274/+/3.
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Figure 11. Aspect of the velocity in the Munk boundary layer for
typical oceanic values of the parameter (§ = 17 km, abscissas in km,
ordinates in m/s)

3.2 Numerical results.

We consider the domain [0, L], with L = 4/374 (i.e. 3 periods of the exact solution). We define a regular
mesh on [0, L], with space step d = L/n: @; = i¢d (i = 0,...,n). The unknowns will be v;, v} et v§3)7
which are the approximations of v, v’ and v(®) at the nodes of the mesh. The equations to be discretised

are:

o(e) -
'(e) - ) (@
d’v(z) B iv(a:) _

o

de? 42

with the boundary conditions:

3.2.1 Standard center schemes

The equations (4) can be discretised as follows

vl — 20l vl
o = i o L (i=1...n-1)
0! — Uit i1 2_de (i=1...n—1) (5)
1
1(8) 5 v; = 0 (l =0 ")

These equations result in the system:

2d°
—(1+4 5—3)1)1 — 20y + vy = —2dv],
3
—vVi—2 + 21},‘71 - 5—31},; - 2’Ui+1 + Vit2 = 0 1= 2, cee 1 — 2 (6)
2d°
—Vp_3 + 20p_2 + (1 - J_S)Dn—l =0

(3)

The unknowns v] et v;”’ are computed later with the equation (5). We can also compute v”.
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3.2.2 Compact 4th order schemes

The equations (4) are discretised now as follows

1 1 6
EINORNNG! (3)

10 Vi-1 tu 100+ T 52 (vigs — 20; + v ) (i=1...n—-1) (7)
1 1 1 1 1 3 .
Uit Tuit v = Slvi —eia)  (i=1...n-1) (8)
1
vgs)—é,—zv,' = 0 (i=0...n) (9)
with the same boundaries conditions. We can rewrite the system in the following form, with ¢ = 4371 and
=2
5d
11 1 1.1 1.1
vl—I—ZCvl—I—Evz—cvz = cu
1 1 1 1
V] —CUs + Uy = *Zvo
1
T —c'v_; +v; +2c'v; + o Vit —cviy; = 0 i=2,...,n-1 (10)
cv,',l—l—ivg_l—l— ’Ui—C'Ui+1+Z’U£+1 = 0 t=2,...,n—1
1
10 Vp_2 — c'v;,_2 + vp_1 + 2c'v;_1 = 0
1
CUn—2 + 2 Uy g+ vy = 0

(3)

i

The unknowns v

(8).

are computed later with the relationship (7). We compute v” by a scheme similar to

3.2.3 Numerical results.

The two methods previously presented were used to solve the equation (4), with different mesh size d.
We compute in each case the error in norm L, on v, v' and v” with the exact solution. Note that value
of the exact solution on L are vegqct(L) = 0 and v.,,. (L) = v{exp (—27r\/§) which is approximately
V! pact(L) ~ vy x 1071 ~ 4.7 x 10716, The results are presented in the following array and on the figure

12.

E2 C4

h (km) ”Uapp T Uex ||v:pp - v:x Hv”app — v ”vapp T Uex ||U:pp - v:x ||v”app — v
x10% %107 %101 x10% %107 x 10!
74.003 275 66.4 99.8 397 277.3 35.34
52.859 93 313.6 116.3 199 48.8 78.15
37.001 361 320.5 64.2 69.8 60.2 21.24
24.667 269 188.4 78.5 26.2 17.2 8.49
18.501 159 111.6 48.5 8.68 5.63 3.08
12.334 71.9 51.4 21.1 1.77 1.16 0.68
9.250 40.7 29.3 11.8 0.58 0.38 0.41
7.400 25.5 18.4 7.5 0.25 0.16 0.60
6.167 17.9 12.9 5.3 0.14 0.08 0.91
4.625 10.0 7.2 3.1 0.08 0.03 1.73
3.700 6.5 4.7 2.4 0.07 0.02 2.80
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Figure 12. Errors on v, v' and v” function of the mesh size

3.3 Numerical Analysis of the schemes.

We recall the system on a finite domain [0, L] with boundary conditions, namely
8%v 1
ozt 8%

with the boundary conditions:

Let us introduce { = 5, u(t) = v(z), A = % We obtain:

8%u
W —u = 0
with the boundary conditions:

w(0) =0 u(A)=0 u'(0)="U,..es; u'(A)=0.

Let n be the same integer as previously. We introduce h = % = We consider the discretised
equations presented previously. Whatever the numerical schemes (E2 or C4), they can be rewritten in
the form:

)=
g

u® = By + F
v = Bu
u® =

Let us denote by @ the exact solution of the scheme. It verifies, at order p or g in h:

a® = Bya' + F, + cohPulPt®) (11)
@' = Bi+c;h%(7tY (12)
a® = a (13)

where F; is a vector with the i-th derivative of # at the boundaries. Remark that ¢; and ¢, can be
matrices as for compact schemes, for example.

3.3.1 Error analysis.

We denote by e (resp. €') the difference between the exact solution and the approximative one, (resp.
between their derivatives ). We have e = @ — u, and ¢’ = @' — u’. For e and e’ we obtain the system:

u® —a® = Bye' + c,hPalPtd)

¢ = Be+chigletl)
(v(3)_ﬁ(3)) — e



Compact finite difference schemes. 15

so:
e = Bye' +chPulPtd
¢ = Be+chigleth)
and
e = By(Be+chaltY)) 4 c hPuPt?)
then
e = ByBe+ cihiByulttl) 4 ¢, hPaP+3)

Let us remark that Bg(ﬁ(q))' = glat3) — Fopq — cshPu(Pt9+3) according to the Taylor expansion or to the
first equation of (11). We consequently obtain:

e = ByBe+cih®a ™ — cihiF 4 + cohPaPt?)

and since @® = 4, it follows

(Id—ByB)e = c1h%'? — c;h?Fyq + cohPul?) (14)

Result 1.
Due to the adimensionalisation, for a mesh size d, we obtain that h = %. For unresolved boundary layer,
h > 1 and then, since the error is a power of h, an accurate scheme of high order in h will give a worse

solution that a low order one.
Result 2.

Remark that Fyy; is a vector in % taking into account the derivative of the function at the boundary.
If it is not equal to zero, this term is of order ¢ — 2, which is less than the other terms.

3.3.2 Estimation of @' and of @(?) and of the norms of D,, A, and 4,/ .

Let us apply the previous result to E2 and C4 schemes.

We introduce the following (n-1)*(n-1) tridiagonal matrices :

0 1 0 0 - 0 -2 1 0 0 - 0
-1 0 1 0 - 0 1 -2 1 0 - 0
0 -1 0 1 - 0 0 1 -2 1 - 0
D= : D, = : :
0 -1 0 1 0 0 1 -2 1 0
0 0 -1 0 1 0 0 1 -2 1
0 0 0 -1 0 0 0 0 1 -2
1 1/4 0 0 --- 0 1 1/10 0 0 - 0
1/4 1 1/4 0 - 0 1/10 1 1/10 0 0
0 1/4 1 1/4 --- 0 0 1/10 1 1/10 --- 0
A= ¢ bbb e Ao = : : : : 2 :
0 .- 1/4 1 1/4 0 0 ... 1/10 1 1/10 0
0 .- 0 1/4 1 1/4 o .- 0 1/10 1 1/10
o .- 0 0 1/4 1 0 - 0 0o 1/10 1

We know the exact solution of the Munk problem for A = +00. We suppose that A is sufficiently large
and that this exact solution for unbounded domain can be considered as the solution for the bounded
one. In fact, it verifies the problem with u'(L) = ¢, € non equal to zero but very small.

We recall that the solution is
V3
2

ﬁ(:c) = Ce Zsin (
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with C = 23V Upnasz- Let us compute @' et a”

v
) Ce 2 . \[z \[z
i = 5 (szn( > \/_cos< ) >),
., —Ce 3 . [ V3 V3
a = 5 <szn( >—I—\/_cos< ) )),

We compute the L? norm of these solutions and the L norm on [0, A] with A a multiple of the period

of the solution.

| o= =/t —e b,
3C
|2 o= S/ —e b
I aM (= C_\/:;"
2
H a(? ||°o: C_‘/?_’
2

We recall that the eigenvalues of D, are \¥ = —4sin? (2—") We then obtain
| D2 [|< 4.

Let A, denote the tridiagonal matrix with value 1 on the diagonal and 1 on the lower and upper
sub-diagonals. We are interested by the case a > 4. Since ady — (o +2)Id = Dz, the eigenvectors of D,
are also eigenvectors of A, corresponding to the eigenvalues

2 k
M=14 Zcos (—”>,
a n

and this, for k € 1,-..,n — 1. It follows that the eigenvalues of A, can be bounded by

2 2
1-— 7§A SSAmaz‘S]—‘}'*
a a
Then for « = 4 and a = 10: 5
lAli<s, 47 )<2
6 _ 5
lAwlsg, 4 <.

3.3.3 Standard second order centered scheme.

We rewrite the discretised equations (5) in a matricial form:

1
u® = ﬁDzu'—l—F
1
u = EDU
u® = u
with
Rzt
0
0
F = .
0
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The exact solution @ verifies, with the second order in h

1 h?
a® = §D2E’+F—Eﬁ(5)
2
i = Ltpa-ae
2h 6
a® = a

We apply the result of the previous section with:

p=q = 2
1
Bz == hTDz
1
B = —D
2h
PR = F
Fq+1 = F3 = FO = 0 since Ug = 0
1
a = —=
! 6
B 1
T
and obtain, denoting the error by e,:
1 h? h?
Id— —-D,D = ——a® - —a®
( 2hs 2 ) “z 6 12"
le.
1 R (s
Id— ﬁDzD €y = —Zu (15)

Taking the norm, we have

h? -1 _
ez [l2< % | (Id— 55D2D) || x || a® |,

3.3.4 Compact scheme of 4th order.

We recall the discretised equations (7)-(9) in matricial form:

6
u® = WAI‘OIDW’ + AL Gy
3
u = EA‘l 'Du
u® = u
with .
5r2 %o
0
0
G = )
0
0
Let @ be the exact solution, as before. It verifies, with the 4th order in h:
6 3h?
23 —  p.a 2% 70
Alou = 5h2 Dzu + G + 55,”
3 h*
A@ = —Da+ —a®
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We apply the result (14) of the first section with:

6,1
Bz == WA]'O _D2
3
B = —A;'D
4™
F = AjG
Foi = F=AGs
1 _
C1 = aA‘ll
3 41
2 T 5
in
(Id — BzB) e = Clhqﬁ(q) — clthq—l—l + Czhpﬁ(p)

Denoting the error by e4, we obtain:
9 h* h*
(Id e A;OIDZA;1D> es = —A—1 a) — AT 'R+ —A St
and, due to the fact that @(¥ = @’
9 -1 Rty a' h* 1p4a0
Id — 10h3A10 D,A; ' D)es = A — —A 'Ry —|— A h'a (16)

with F5 = A]}Gs = A7y G2 and

(2)

5h7 Yo 1
0 0
0 6 (2 0 6 (2
0 0
0 0

SO:
9 -1 -1 h* -1 174 6h* ( )
<Id WAIO .D2A4 D) €4 = —A ’ + H.AIO h - ﬁ A A T1

If we bound the norm of A;; and A, ' by the previously obtained estimate, we have

— _ —1 4 _
leallo < Il (Td— s Ard D247 D) || (BBl + LLke )

So the error is of order h? if u(()z) % 0.

3.3.5 Comments.

e This result is independent of the fact that the scheme is compact: it is only due to the order of the
scheme. Nevertheless, if the scheme is not compact, the error lies near the boundary of the domain
and only there. For compact scheme, the product by the matrices A, ' and A;,) propagates this
error onto the whole domain.

D.D )_1 | and || (Id — s Arc 1D2A4_1D)71 || are bounded

¢ The norm of the matrices || (Id 2h3 ToR®
independently of h: this is the classical stability result for the schemes under consideration.
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3.4 Conclusion of this part.

This section proves that for unresolved boundary layer, a low-order scheme will be better than a high
order one. For a resolved boundary layer, the error is penalized by a term depending on the derivative
of the solution at the boundary. Numerically, this term does not weight heavily and high-order scheme
gives better solution than low-order one.

4 Shallow-water model.

The shallow-water model is a simple model for fluid motion. The variables are the horizontal velocity
u,v and the sea level height h. The equations take into account the Coriolis term, the dissipation and
the wind forcing. They represent the equations of motion and the mass conservation. We first present
the equations, and in a second part study the GKS-stability of the mass conservation equation on an
C-grid when discretised by compact schemes. We then present different numerical results obtained with
compact schemes and usual centered schemes. We complete this part by a conclusion.

4.1 Equations.

The equations can be written in different equivalent ways:

Ou oB r(2)
E—(f#—f)v%—a = poh—ru—l—uAu (17)
v dB sl
a+(f+€)u+a—y = m—h—TU+VAU (18)
oh  O(hu) O(hv)
i 7 =90 19
ot Oz * Oy (19)
with
f = fo+pBy (20)
8z Oy
1
B = gh+ 3 ('u,2 + 'vz) (22)
which can be rewritten as:
Ou Ou Ou 0O(g'h) ()
affv#—u%—}—v@—l— o2 = pohfru%—VAu (23)
v v v 9(g'h) (¥
E—I—fu—l—ua—&—va—y—l— o9 = po—h—rv—l—vAv (24)
6h  O8(hu) = O(hv)
bl LA — 25
ot + Oz + Oy (25)
or
du du OB, (@)
E—fv—l—v@—k o = ooh —ru + vAu (26)
v ov OB, )
8t+fu+u a3+ o9 ooh rv + vAv (27)
Oh ~ O(hu) O(hv)
ot Oz 8y =0 (28)
with
f = fotBy (29)
1
B, = g¢gh+ 3 (uz) (30)
1
B, = g¢gh+ 3 (vz) (31)

The three formulations are theoretically equivalent. Numerically, they are equivalent when using the
center second order scheme (it is easy to prove), but not with compact schemes. For the second order
space scheme, we use the first formulation, and for the compact fourth order scheme, the last one.
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4.2 GKS-Stability of the conservative divergence operator with compact
scheme on cell-centered mesh.

4.2.1 Presentation of the numerical scheme.

We study the following equation:

% + div(hu) =0

We work on the Arakawa C-grid, and we want to find a compact scheme which preserves the mass
conservation law. For simplicity, we consider the one-dimensional problem only.

6h 8 (hu)
ot Oz

—0in (0,1). (32)
Due to the impermeability boundary conditions, we have u(0) = u(1) = 0.

Let us denote the points in the following way:
the u-points (and every value taken in these points) will be denoted by the index ¢, ie. u(0) =
Ug, .-y Ujy ..., uy =u(l) =0,
the h-points (and every value taken in these points) will be denoted by the index ¢ + 1/2. The grid step
will be denoted by Az. The method proposed in [Bleck-Boudra] is used to integrate the equation:

oh 9 (Emu)

hid 7 -0 33

ot + Oz (33)
where B* denotes the interpolation of h at the u-points. In the following, for simplicity, we denote by h
the unknown (Ewu) We use a compact scheme of 4-th order to discretize the space derivative operator.

We denote by prime the space derivatives. For the inner points, the equation is

24
i—1/2 + 22h1.+1/2 + hz+3/2 = E(hﬁl - hi) (34)

On the boundary, we need a scheme which ensures first on the left hand side a tridiagonal matrix and
also the mass conservation, i.e. I(h') fo h'(z)de = h(1) — h(0). Let us consider two schemes for the
boundary: the first order of accuracy one

23h'1/2 + h:,,/2 = A—}(h1 ho). (35)

hix N—sj2 T 23hN—1/2 = A_(hN 1 — hn).
where h(1) — h(0) = I(h') = I,(h') + O(h'?) with

i=N-—-1
= Az E h1,+1/27
and the third order of accuracy one
iy —hy s = az(—hz+2hy — ho). (36)
—hiy_ 3/2+hIN—1/2 = Z_( hy-2 +2hy_1 — hN).

where k(1) — h(0) = I(h') = Ii(k') + O(h') with

Ii(h) = Az ( Z Riyijs + (2hN 12 = 3hiy_g )5 + Rin_g)2 + 2y 5 — 3hy )y + hs/z)) .

i=0

Since the system is solved in fact not for h but for hu, we have, due to the impermeability, homogeneous
Dirichlet Boundary Conditions.
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4.2.2 GKS-stability.

Let us now study the stability of the operator, using the method proposed by Gustafsson, Kreiss and
Sundstréom in [GKS] denoted by GKS-Stability, following the method of line studied in [Strikwerda]
[Carpenter-Gottlieb-Abarbanel].

The equations.
The equation is (32), the numerical scheme is (33) . To study the stability of the scheme, we consider
that u is a constant.
Since u can be positive or negative, we will study the stability of the two equations:

8 (Ez)
oh .
%—8(5) = 0in (0,1) (38)
ot oz 05

with Dirichlet homogeneous boundary conditions.
We denote by Sy the interpolation operator, i.e. h = Sph. So, the problem can be reduced to the
usual GKS-stability for two equations:

oh  9(Seh) .
E O = 0in (0, 1)
8h  8(Soh) .
a — am = 0in (0, 1)

with Dirichlet homogeneous boundary conditions.

GKS-stability.
We recall the main theorems concerning this subject [Carpenter-Gottlieb-Abarbanel]. Consider the Initial
Boundary Value Problem (IBVP)

& = MVie>o0
V(t,0) = 0; (39)
V(07z) = Wy

we have:

Theorem 4.1 GKS Theory (fully discrete [GKS] or semidiscrete [Strikwerda]) asserts that to show sta-
bility for the finite domain problem, it is sufficient to show that the inner scheme is Cauchy stable on
(—o0,+00) and that each of the two quarter-plane problems is stable with the use of normal mode analysis.
Thus, the stability of the finite-domain problem is broken into the summation of three simpler problems.

Theorem 4.2 For each quarter-plane problem that arises in the above theorem, a necessary and sufficient
condition for stability of the IBVP is that no eigensolution exists. This theorem is true for either the
fully-discrete case [GKS] or the semi-discrete case [Strikwerda].

Theorem 4.3 Under mild restrictions [Kreiss-Wu], if a semidiscrete approzimation is stable in a gen-
eralized sense and a Runge-Kutta (R-K) method that is locally stable is used to time-march the semidis-
cretisation, the totally discrete approzimation is stable in the same sense, as long as the stability region
of the R-K method encompasses the norm of the semidiscretrization.

Let us now define the eigensolution of the IBVP [Carpenter-Gottlieb-Abarbanel] [Kreiss] [Strikwerda].

Definition 4.1 An eigensolution for the IBVP defined by equation (39) is a nontrivial function V(z,s)
which satisfies:

1. sV =MV,z >0;
2. V(0,5) = 0;

8. Re(s) > 0;

L.

. for Re(s) >0,V (,s) is bounded as # — oo,

v

. for Re(s) =0,V(=,s) =lim, o+ V(z,s+¢€), where V(z,s+€) satisfied (1) and (4) (with s replaced
by s =€).
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Main result.
Let us consider the method-of-lines theory for our equations. Let us introduce some notations:
H, ), is the N-vector defined by Hj ) = (hy/2,hs/2,. .,hN,g/z,hN,l/z)T,
H, is the (N+1)-vector defined by Hy = (ho,h1,...,hn_1,hn)T, we recall that hg = hy = 0.
A, is the matrix corresponding to the numerical scheme for the space derivative. Since we use compact
scheme, A, = P7'Q, where P is the tridiagonal matrix defined on the left hand side of the relationships
(34) and (35) or (36), and @ is the matrix defined the by right-hand-side of these relationships.

Let us consider first the problem (37). The discrete form of this equation will be:

dH1/2
dt

+AmSOH1/2 = 03 (40)

Since we use compact schemes of 6-th order for the interpolation, we will suppose that the interpolation
operator \Sg is exact, i.e. SoH;,, = Hj.

Theorem 4.4 The IBVP defined by the equation (40) with homogeneous Dirichlet boundary condition,
with (85) or (36) as boundary schemes and with So the ezact interpolation operator, is stable.

Using the theorems 4.1 and 4.2, it is sufficient to prove that there is no eigensolution for the previous
equation. Let us look for eigensolution. We suppose that we have a solution to:

sHy/p = —AzSoH, )y = —A-H, (41)
Considering a inner line, we have
—8Az(h;_1/2 +22hi11/2 + hiys)2) = 24(hiy1 — hi).
The solution is of the form: h; = coy*'. Introducing this, we have, with § = sAxz,
LSy 4 20yl 248y = og(y2iH2 20,
We simplify by y?~! to obtain:
—S(1+22y" +y') = 24(y° — y),

ie.
Sy* + 24y® + 225y* — 24y + S = 0. (42)
This equation admits four solutions, and all the solutions for h are obtained by linear combinations
of these four solutions. It is obvious that if y is a solution, then =L is also a solution. So we have two
cases. First, at least one of the four solutions has absolute value equal to 1. In this case, the equation
can be rewritten for this solution y in the following form, with y = exp(z6):

S(y* +1) + 24(y* — y) + 225y* = 0.

- exp(i20) (S (exp(i26) + exp(—i26) + 22) + 24(exp(i6) — exp(—i6))) = 0
" 5(2cos(20) + 22) = —24(2isin(6))
and finally

. —24sin(0)
=f——

003(29) + 11
then S has a real part equal to 0.

We have then to consider a little perturbation inside the unit circle, that is we have to consider the
second case.

Second case: since y and 771 are solutions, exactly two solutions, say y; and y,, have absolute values

less than 1 and the four solutions can be denoted by y;, ¥z, ys = ;—117 Ya = ;—21 We know also from (42)
that
Y1y2 + Y1y + Y1Ya + Y2¥s + Y2ys + ysys = 22
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ie. . \
yi +
Y1y2 + BT gy,
Y1y2 Y1y2
Moreover, also from (42), we have
—24
i ty2+ys +ys = 5
ie.
Y1ty  —24
Y1 t+y2 — =—-
Y192 S

Let us introduce z = y; + y» and & = y; y2, these two equations give us

1 22— 22 z —24
z+ —— =24and z — — = —,
z z @ S
so 04
22232—22z+1and527z. (43)
z(e —1)
Since an eigensolution is bounded when i — 0o, every eigensolutions are of the form v* = a;yi 4+ a,ys.
Due to the Dirichlet boundary conditions, v = 0 and a; = —as. Norming the eigensolution, we assume

that a; = 1. Then we consider v(¥) = yt — yi, with y; and y, solutions of (42).
Let us consider now the first line of the problem (41) with first-order boundary scheme (35). We
obtain:
—5(23v(V) 4 43)) = 244(2)

i.e.
—23S(y1 —y2) — S(yi —v3) = 24(y7 — v3)
then
—23S(y1 —y2) — S(y1 — v2)(¥i + yay2 +93) = 24(y1 — v2)(y1 + ¥2).

Since y; = y, implies that v = 0 which is not an eigensolution, we can simplify by (y1 — y2). It results
~235 — S(yi +yr1y2 +y3) — 24(1 +y2) =0

and then
—235 — S ((y1 +v2)° —y1y2) — 24(y1 +y2) = 0.

Introducing z = y; + y2 and & = y;y,, we obtain
—235 — S(2* — ) — 24z = 0.

and get
S(2? — & +23) = —24z. (44)

Introducing (43) in (44), it follows

—24z(2® — 222 +1—a +23) = —24(2* — 22z + 1)(z — 1),

then
z(—z +23) = —(2? — 222 + 1)
and
z+1=0.
So # = —1. But since we have supposed that y; and y» have an absolute value less than one, it is

impossible that the product is equal to —1. So we have no eigensolution, and the scheme is stable.
Consider now the first line of the problem (41) with third-order boundary scheme (36). We obtain

o @ 4 S(u®) —p(1) 2y — g

i.e.
(yi —92) + S —v3) —2(yF —v3) —S(y1 —y2) =0
then
(y1 —y2) (11 +92) (¥ +43) + S + y1y2 +93) — 2(y1 +32) — S) = 0.
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Since y; = y, implies that v = 0 which is not an eigensolution, we can simplify by (y1 — y2). It results

(y1+v2) +93) + S +y1y2+y3) —2(y1 +y2) — S =0

and then
(y1 +y2) (1 +92)* — 2192 — 2) + S ((y1 + y2)* —y1y2 — 1) = 0.

In term of z = y; + y» and * = y;y2, we obtain
2(2* 22 —2)+ S(z* —2—1)=0. (45)
Introducing (43) in (45), it follows
(2 — 222 + 1)(z — 1)(2? — 222 + 1 — 22 — 2) — 24z(a® — 222 + 1 —2z — 1) = 0,

then
(2% — 222 + 1)(z — 1)(2® — 24z — 1) — 24z* (= — 23) = 0

and
2% — 47z* + 5502° + 2222 + 2 +1 = 0.

We compute the roots numerically. Three are real, the others two are complexe conjugated. We

obtain approximatively
z; = —0.1308, zy = 22.375 z3 = 24.665 zs = 0.0454 — 70.1086, T5 = Tyq.

Getting 2% from (43), we obtain y; and y; by the equation y? — zy + @ = 0. In all cases, at least one of
y1 or y» has an absolute value greater than 1. So, there is no eigenvalues and the scheme is stable.
Notice that if we take the equation (38), the only change is s —+ —s and the result is the same.
The schemes are stable for the two problems (37) and (38), with both boundary schemes of first or
third order.

4.3 Numerical results.
4.3.1 Discretized Equations.

The discretised first formulation of the shallow-water equations is the following:

ou —y y OB (=)
-7 z - = S A 46
o~ SO+ o R Ut A (46)
o — = OB ()
= Y+ o = - A 47
o TUTO TG = v (47)
— Y
ah+8(h u) +8(h ) ) )
ot Oz Oy -
with
f = fo+By (49)
ov Ou
& = 5. By (50)
1
B = ¢h+ 2 ((@*)* + (v¥)?) (51)

The discretised last formulation of the shallow-water equations is:

Ou ou’ OB 7@
= (f-2) v S A A 52
o Ug) PV (52)

dv v OB e
_ - u*y i e — — A 53
8t+(f+6:c)u + oy s rv + vAv (53)

Y
on 0(Fu) o(R")

+ + = 0 (54)



Compact finite difference schemes. 25

with
f = fotBy (55)
B. = ght, (@) (56)
B, = g'h+%((§y)2) (57)

We recall that the two formulations are equivalent for the second-order center interpolations and
discrete measurements of gradients, but not for the fourth-order compact interpolations or measurements
of gradients.

4.3.2 Boundary conditions.

The solid boundaries are placed such that north-south sections of coastline fall on v-points, and east-west
sections fall on v-points. The solid wall boundary conditions of no normal flow is therefore naturally
imposed.

A second boundary conditions is required. We consider two alternatives:

e no-slip where the tangential flow is zero on the boundary, i.e.
v =0, (north-south boundary), u¥ = 0, (east-west boundary).
o free-slip where the tangential shear vanishes on the boundary but the tangential flow remains finite,
ie.
Ov u
— =0, (north-south boundary), — = 0, (east-west boundary).
Oz Oy
In the solutions with centered second-order schemes, boundary conditions are implemented using
"ghost points" lying a half grid point outside the model domain. Along a no-slip boundary, the velocity
at the ghost point is set equal and opposite to the interior value, whereas along a free-slip boundary,
the ghost velocity is set equal to the interior value. In the solutions with center compact fourth-order
schemes, the boundary conditions are implemented using a decentered schemes. For the equation of mass
conservation, we use a first-order accuracy scheme. The reason is that this scheme is stable even for small
coeflicient of viscosity v, since the third-order accuracy one requires larger coeflicient. By the works of
Gustafsson [Gustafssonl] [Gustafsson2], we know that the fact that the boundary scheme is only of first
order can cause the lost of accuracy even inside the domain, but in numerical experiments, the lost of
accuracy does not seem to be so large.

4.3.3 Numerical experiments.

On a basin with thickness 500 m.

The tests are made on an Arakawa C-grid. The coeflicients are the following:

L=2000 km

nx=ny=82 (with one ghost point)

hx=hy=25 km

p =500 m?s~! (viscosity)

e 0 =20x10""s"! (bottom friction)
e v = 0.02 (Filter of Asselin)

e f=17.0x10"°s"! (Coriolis)

e g’ =0.02m s ? (reduced gravity)

ho = 500 m (initial layer thickness)

Bo = 2.0 x 107 m 157! (Coriolis)
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po = 1000 kg m™3 (reference density)

7o = 0.2 N m™ 2 (wind stress coefficient)

yo = L/2

(@) (y) = 70 * cos(2* 7 * (y — yo)/L) (wind stress)
) — 9o

We first present the results with free slip condition on the boundary (14, 15, 13). We present in-
stantaneous view of the thickness for T=200 days, 400 days and 600 days. Then, we present the mean
value of the velocity u,v, and the thickness h during the period T=400 to 600 days. Finally, we show the
evolution of the mass in the basin, and of the energy. We theoretically have the mass conservation. In

fact, with the e2 scheme for the divergence, the mass is exactly conserved (error of order 107!%) but not
with c4 or ¢6 scheme for the divergence. We then present the same results with no slip condition on the
boundary (16, 17, 18).

At about 750 days, in both scheme €2 and c4, appears a little domain where h = 0. So, since in the
equation of u, we divide the external forcing by the thickness h, we have an explosion. Notice that this

phenomenon appears at about the same time for both schemes.

We then present result for an ocean basin with thickness equal to 1000 m, for free slip and then no
slip boundary conditions.

Integral
8.00

M ass conser vation

x 1076 Integral x 10°3

scheme c4
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\V
\
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Figure 13A. Mass conservation (fn h(t,z,y) — ho) /ho
4th order Runge-Kutta scheme in time and e2 and c4 Kutta scheme in time and e2 and c4 in space, free slip con-

with

in space, free slip conditions on the boundary, dt=1800s.

Figure 13B. Evolution of Energy with 4th order Runge-

ditions on the boundary, dt=1800s.
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Figure 14. Solution at T=200 (upper), 400 (center), and 600 (bottom) days, for h(t,z,y) with 4th
order Runge-Kutta scheme in time and in space e2 (left), c4 (right), free slip conditions on the boundary,

dt=1800s, 7(y) = 70 * cos(2 * w * (y — yo)/L).
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Figure 15. Mean solution between T=400 and T=600 days for u(t,z,y),v(t,,y), h(t,z,y) with 4th
order Runge-Kutta scheme in time and in space e2 (left), c4 (right), free slip conditions on the boundary,

dt=1800s.
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Figure 16. Solution at T=200 (upper), 400 (center), and 600 (bottom) days, for h(t,z,y) with 4th
order Runge-Kutta scheme in time and in space e2 (left), c4 (right), no slip conditions on the boundary,
dt=1800s,7(y) = 70 * cos(2 x w * (y — yo)/L).
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Figure 17. Mean solution between T=400 and T=600 days for u(t,z,y),v(t,,y), h(t,z,y) with 4th
order Runge-Kutta scheme in time and in space e2 (left), c4 (right), no slip conditions on the boundary,
dt=1800s.
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Figure 18A. Mass conservation N - .
Figure 18B. Evolution of Energy with 4th order Runge-

_(fn_h(t’ * g) - ho)d/ho Tmth 4th orderl.Runge—dI‘{l.ltta scheie Kutta scheme in time and e2 and c4 in space, no slip condi-
in time and e2 and c4 in space, no slip conditions on the tions on the boundary, dt=1800s.

boundary, dt=1800s.
On a basin with thickness 1000 m.

The tests are made on an Arakawa C-grid. The coeflicients are the same as before, except o and hq,
i.e. are the following:

e L=2000 km

e nx=ny==82 (with one fictive point)

e hx=hy=25km

e i =500 m%s~! (viscosity)

e 0 =1.0x10""s7! (bottom friction)

e v = 0.02 (Filter of Asselin)

e f=17.0x10"%s"1 (Coriolis)

e g’ =0.02m s 2 (reduced gravity)

e hy = 1000 m (initial layer thickness)

e B0 =2.0x10 "m s (Coriolis)

e po = 1000 kg m™* (reference density)

e 70 =0.2 N m™? (wind stress coefficient)
o yo=1L/2

o 7@ (y) =10 % cos(2 % 7 * (y — yo)/L) (wind stress)
o r(¥) =0

We consider 2 tests, one with free-slip boundary conditions, one with no slip boundary conditions.
For each test, we compute 3200 days, by 8 series of 400 days. We save the functions u,v, h each 10 days,
and the for each series of 400 days, we compute

¢ the average of these functions gy, Vay, Rav (i.€. average between Ty = 0 and Ty = 400 days, between
Tq = 400 days and Ty = 800 days, etc ), defined by

1

t:Tf
.fav T,y :7/‘ fmayatdt7
(2,y) T —Ta )ia, (2,9,1)

for f = u,v,h respectively,
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e the dispersion of these functions ug4,v4, hg with

=T}
AT — / (F(2,0,1) — Fanle,1)) % dt,

Tf - Td t—Td
for f = u,v,h respectively,

o the Mean Kinetic Energy MKE(z,y) = 1 (u2,(2,y) + v,(2,y))

2 av

e the Eddy Kinetic Energy EKE(z,y) = % (uqg + va)
o the Total Kinetic Energy TK E(2,y) = MKE(z,y) + EKE(z,y).
We compute also some other energies along the time. Each 5 days, we save

e the mass conservation error, denoted by
1 1
?(mass — ho)"(t) = — <f h(z,y,t)dedy — ho)
ho \ |9 Ja
o the Kinetic Energy, defined by
|Q|/ (z,9,t) + v*(=,y,t)) dedy
o the ponderated Kinetic Energy, defined by
PKE(t \QI/ (2,9,1) (u*(2,y,t) + v*(2,y,t)) dedy
e the Potential Energy, defined by
1 1, .,
PE(t)= — | —g'*h*(e,y,t)dedy
2] Jg 2
o the "Relative" Potential Energy, defined by
RPE() = o0 [ 50" (he,.0) — ho(,)* dedy

Notice that PE = RPE + 92—'h(2)(:e,y) = RPE + 10* with our parameters.
o the Total Energy defined by TE(t) = RPE(t) + PKE(t) i.e.

IQ\/ z,y,t) * (u’(2,y,t) + v°(2,y,t)) + g’ *xh’(=,y,t)) dzdy

In fact, (see [Gill] page 111), po *x PKE, po * RPE and pg * TE are respectively the Kinetic Energy, the
Potential Energy and the Total Energy.

The difference between solutions with e2 scheme and c4 scheme is very large. So, in the following, we
first present the solution h for both schemes at different time, and the mean solution computed between
T=800 days and T=1200 days. We then show the different curves of energy KE(t), PKE(t), RPE.
Finally, we present the pictures of usv, Vav, Pav, Ud, Vd, hay, MKE(z,y), EKE(z,y),TKE(z,y) for
Ty = 2800 and Ty = 3200.
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Figure 19. Solution at T=100 (upper), 200 (center), and 300 (bottom) days, for h(t,z,y) with 4th
order Runge-Kutta scheme in time and in space e2 (left), c4 (right), free slip conditions on the boundary,

dt=1800s, hy = 1000 m.
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Figure 20. Solution at T=400 (upper), 500 (center), and 600 (bottom) days, for h(t, z,y) with 4th order
Runge-Kutta scheme in time and in space e2 (left), c4 (right), free slip conditions on the boundary, dt=1800

s, hg = 1000 m.
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Figure 21. Solution at T=700 d (upper), 800 d(center), and Mean solution between T=800 and T=1200
(bottom) days, for h(t,z,y) with 4th order Runge-Kutta scheme in time and in space €2 (left), c4 (right),
free slip conditions on the boundary, dt=1800 s, hyp = 1000 m.
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Figure 22A. Mass conservation
(fn h(t,z,y) — ho) /ho with 4th order Runge-Kutta scheme
in time and e2 and c4 in space, free slip conditions on the
boundary.

Relative Potential Ener gy
Integral
400.00
380.00
360.00 N/
340.00
320.00 V|
300.00
280.00 7
260.00
240.00
220.00
200.00 7
180.00 /
160.00
140.00
120.00 7
100.00 7
80.00 /z
60.00 /
20.00
0.00

W

3
000 050 1.00 150 200 250 3.00 Dayx 10
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Figure 22B. Evolution of Kinetic Energy with 4th order
Runge-Kutta scheme in time and e2 and c4 in space, free
slip conditions on the boundary.
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Figure 23B. Evolution of Ponderated Kinetic Energy
with 4th order Runge-Kutta scheme in time and e2 and c4
in space, free slip conditions on the boundary.
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Figure 24. Mean solution between T=2800 and T=3200 days, for u (upper), v (center), and h (bottom)
with 4th order Runge-Kutta scheme in time and in space e2 (left), c4 (right), free slip conditions on the
boundary, dt=1800 s, hy = 1000 m.
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Figure 25. Dispersion between T=2800 and T=3200 days, for u (upper), v (center), and h (bottom)
with 4th order Runge-Kutta scheme in time and in space e2 (left), c4 (right), free slip conditions on the
boundary, dt=1800 s, hy = 1000 m.
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10 20 30 40 50 60 70

Contours from 0.1 to 0.7 interval 0.1
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on the boundary, dt=1800 s, hg = 1000 m.
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Figure 27. Solution at T=100 (upper), 200 (center), and 300 (bottom) days, for h(t, z,y) with 4th order
Runge-Kutta scheme in time and in space e2 (left), c4 (right), no slip conditions on the boundary, dt=1800s,

ho = 1000 m.
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Figure 28. Solution at T=400 (upper), 500 (center), and 600 (bottom) days, for h(t, z,y) with 4th order
Runge-Kutta scheme in time and in space e2 (left), c4 (right), no slip conditions on the boundary, dt=1800

s, hg = 1000 m.
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Figure 29. Solution at T=700 d (upper), 800 d(center), and Mean solution between T=800 and T=1200
(bottom) days, for h(t,z,y) with 4th order Runge-Kutta scheme in time and in space €2 (left), c4 (right),
no slip conditions on the boundary, dt=1800 s, hy = 1000 m.
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Figure 31A. Evolution of Relative Potential Energy with Figure 31B. Evolution of Ponderated Kinetic Energy
4th order Runge-Kutta scheme in time and e2 and c4 in with 4th order Runge-Kutta scheme in time and in space
space, no slip conditions on the boundary. e2 and c4, no slip conditions on the boundary.
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Figure 32. Mean solution between T=2800 and T=3200 days, for u (upper), v (center), and h (bottom)
with 4th order Runge-Kutta scheme in time and in space e2 (left), c4 (right), no slip conditions on the
boundary, dt=1800 s, hg = 1000 m.
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Figure 33. Dispersion between T=2800 and T=3200 days, for u (upper), v (center), and h (bottom)
with 4th order Runge-Kutta scheme in time and in space e2 (left), c4 (right), no slip conditions on the

boundary, dt=1800 s, hg = 1000 m.
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Figure 34. Energy between T=2800 and T=3200 days: MKEFE (upper), EKE (center), and TKFE
(bottom) with 4th order Runge-Kutta scheme in time and in space e2 (left), c4 (right), no slip conditions
on the boundary, dt=1800 s, hg = 1000 m.
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For a basin of length 2000km, the conclusions are quite difficult since the solutions are very different,
and the boundary layer is unresolved. Nevertheless, some remarks must be made.

e in the case of free slip boundary condition (19-26):

— the solution with the €2 scheme is a little asymmetric, the mean one for h (21) between T=800
and 1200 is symmetric. With the c4 scheme, the solution is very asymmetric. Notice than
latter (T=2800 to 3200), then mean solution for each scheme are a little asymmetric, more or
less similar, going on the north with e2 scheme, on the south with c4 scheme. MKE, EKE and
TKE, (26) confirm that the solution are quite similar with both schemes.

— the mass conservation is not verified with c4 scheme, but the error does not increase with time.
It oscillates around 7. 107, with an amplitude of 4. 10~%. This range of error seems to be
acceptable from a physical point of view.

— the c4 scheme is less energetic than the €2 one.
e in the case of no slip boundary condition (27-34):

— the last picture(34) shows that the energies are quite different, especially on the western
boundary. This is due to the fact that the boundary layer is not resolved;

— concerning the mass conservation and energy, the remark is the same as for free slip boundary
condition.

4.3.4 Comparison for different space steps.
In this section, we consider the following parameters:

e L=2000 km

e i =200 m%s~! (viscosity)

e 0 =05x10""s"! (bottom friction)

e v = 0.02 (Filter of Asselin)

e f=17.0x10"%s"1 (Coriolis)

e By =2.0x10 "m s (Coriolis)

e g' =0.02m s 2% (reduced gravity)

e hy = 1000 m (initial layer thickness)

e po = 1000 kg m™* (reference density)

e 70 = 0.15 N m™? (wind stress coefficient)

e yo=1L/2

o 7(®(y) =7 % cos(2%m* (y — yo)/L) (wind stress)

o 7 =0

e 1o slip boundary condition

We compute the solution with 4th order compact scheme (c4) and usual 2nd order centered scheme
(e2) for 4500 days with different space steps: 50km, 25km, 16km. We present the Mean solution u, v,
h, and the Mean Kinetic, Eddy Kinetic and Total Kinetic energy for the periods 1500-3000 days, and
3000-4500 days. We present also the curves of the evolution of the kinetic energy and total energy along
the 4500 days.
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Resolution 41 (50km) Second order.
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Figure 35A. Mean U velocity on 3000-4500 days
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Figure 36A. Mean V velocity on 3000-4500 days
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Figure 37A. Mean H height on 3000-4500 days
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Figure 36B. Mean EKE on 3000-4500 days
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Figure 37B. Mean TKE on 3000-4500 days
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Resolution 81 (25km) Second order.
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Figure 38A. Mean U velocity on 1500-3000 days
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Figure 40B. Mean TKE on 1500-3000 days
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Resolution 121 (16km) Second order.
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Figure 41A. Mean U velocity on 3000-4500 days Figure 41B. MKE
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Resolution 241 (8km) Second order.
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Figure 44A. Mean U velocity on 3000-4500 days Figure 44B. MKE
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Figure 45A. Mean V velocity on 3000-4500 days

Figure 45B. Mean EKE on 3000-4500 days

20

40 60 80 100 120 140

160 180 200 220 0 80 100 120 140 160 180

Contours from 800 to 1200 interval 50

200

220

Contours from 0 to 0.27 interval 0.03

Figure 46A. Mean H height on 3000-4500 days Figure 46B. Mean TKE on 3000-4500 days
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Resolution 41 (50km) Fourth order.
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Resolution 61 (33km) Fourth order.
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Figure 52A. Mean H height on 3000-4500 days Figure 52B. Mean TKE on 3000-4500 days
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Resolution 81 (25km) Fourth order.
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Figure 54A. Mean V velocity on 3000-4500 days
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Comparing these pictures we see, that when the second order approximation is used the solution
exhibits very low variability at low resolutions. The ratio of the MKE to the EKE is extremely low in
experiment with 50 km resolution (fig.36B). This ratio increases in the experiment with 25 km resolution
(fig.39B), but remains low. The solution in these experiments represents very energetic large stream-jet
in the middle of the basin with velocities reaching 1 m/s. In fact, the grid must resolve scales of at least
16 km to get a reasonable variability. One can see in fig.42B a well developed variability with EKE of
order 30% to 50% of MKE. In these two reference experiments with high resolution, the solution possesses
lower total energy. Pattern of all variables are very similar to each other. The Mean Kinetic Energy
(fig.41B and fig.44B) is concentrated in the jet-stream and near the Western boundary. The pattern of
the eddy kinetic energy (fig.42B and fig.45B) has a clear maximum in the jet-stream and two maxima to
the North and to the South from the jet. The difference between these two reference experiments lies in
the proportions of the mean and eddy energies. The mean energy has a tendency to decrease while the
eddy energy increases.

When using the compact scheme, we get a developed variability even at 50 km resolution. Of course,
at this resolution we can not obtain the solution similar to high resolution reference experiments, but this
solution is evidently closer to the reference one than the solution obtained with the second order scheme
at the same or even at the double resolution.

However, a little bit higher resolution (33 km) results already at a solution, comparable with reference
experiments. As one can see in fig.50 and fig.51, the eddy kinetic energy becomes to be one half of MKE.
Similarly to the reference experiments, its pattern possesses a clear maximum in the jet-stream and two
maxima to the North and to the South from the jet.

Increasing the resolution up to 25 km we get a solution very similar to the solution of the reference
experiment fig.53 — fig.55. The difference lies int the length of the jet in the middle of the basin. In the
reference experiment the jet is longer and narrower.

Energy Evolution.

Kinetic energy in compact schemes
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Figure 56B. Kinetic Energy Evolution in compact
schemes (dashed lines) comparing to the energy of the refer-
ence experiment (solid line).

Figure 56A. Kinetic Energy Evolution in second-order
schemes.
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Total energy in compact schemes
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Figure 57B. Total Energy Evolution in compact schemes
(dashed lines) comparing to the energy of the reference ex-
periment (solid line).

Figure 57A. Total Energy Evolution in second-order
schemes.

If we consider the evolution of scalar parameters, we see that in the experiments with second-order
schemes low resolution results in an excessive energy of the solution. Thus, the energy of solutions
obtained at resolutions of 50 and 25 kilometers is at least two times more than in the high-resolution
reference experiment. On the other hand, energies of solutions for resolutions 121 and 241 seem to be
similar.

When the model is discretised with a compact scheme, the solution has a correct level of energy even
at lowest resolution. However, the energy spectrum is not well reproduced with this low resolution. There
is no low-frequency variations with periods about 700 days which are presented in the energy of the ref-
erence experiment. It is at the resolution 81 (25km) we get the energy similar to the reference experiment.

CPU Time.

To compare the cost of different schemes, we estimate the CPU time for different resolutions. The
source code of the model was compiled with the Intel Fortran Compiler and run on the Intel Pentium
4-1800 MHz processor. Below, we peresent the CPU times spent for 10 000 time steps and for the
simulation of 1 year of physical time. Due to use of an explicit leap-frog scheme, we must satisfy the
CFL stability condition. So, for the second order scheme we use 24, 48 and 72 time steps per day for
resolutions 41, 81 and 121 respectively, for the compact scheme we use 30, 60 and 90 time steps per day
for the same resolutions.

Resolution Second order scheme Compact fourth order scheme
10000 steps 1 year 10000 steps 1 year
41 10.6 sec 9.3 sec 32.6 sec. 35.7 sec
81 55.0 sec 96.4 sec. 149.5 sec 327.4 sec
121 142.0 sec 373.2 sec.

When compiled with the Compaq Fortran Compiler and run on the DEC DS20 EV6 platform with
Alpha 21264 6/500-MHz processor the CPU time for the same 10 000 time steps or 1 year is the following:

Resolution Second order scheme Compact fourth order scheme
10000 steps 1 year 10000 steps 1 year
41 6.5 sec 5.7 sec. 35.5 sec. 38.9 sec.
81 27.0 sec 47.3 sec. 146.4 sec 320.6 sec.
121 72.0 sec 189.2 sec.

The comparison of the CPU time shows that high-order compact schemes are more expensive than
classical second-order ones. This is an evident conclusion, but the difference in CPU times for compact
schemes seem to be greater than supposed on the DEC platform. In fact, one can suppose this ratio to
be approximately 3, because two operations per node are necessary for a second-order operator, while 6
operation must be made for the fourth order scheme. This ratio is equal to 3 on the Intel processor, but
become close to 5 on the DEC platform.
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This fact can be explained easily by different optimization capabilities of the Fortran compiler for
different processors. The code of €2 procedure is better optimized by the Compaq compiler thanks to easy
optimization. In the same time, the c4 code can hardly be optimized due to the presence of dependencies
in the procedure of the tridiagonal solver. Analyzing the CPU time spent in each subroutine, we see that
the tridiagonal solver on the DEC platform become the major consumer of the CPU time with about
70% of the total consumption.

It should be noted here, that implementation of the compact code on massively parallel computers
would rise additional difficulties and additional decrease of performance of compact schemes. Parallel
version of the classical second order code can be obtained by straightforward application of the domain

decomposition method. In the same time, compact schemes with their tridiagonal solver would require
some other method for parallelization.

4.3.5 Small basin.

In this section, we work on a basin of length 1000 km, where the boundary layer can be solved. We
solve the equation with different space step resolution, and compare the results in term of Mean Kinetic
Energy and Eddy Kinetic Energy. The parameters are the following.

e L=1000 km

e u =150 m*s™! (viscosity)

e 0 =05x10""s"! (bottom friction)
e v = 0.07 (Filter of Asselin)

e f=17.0x10"55s"! (Coriolis)

Bo = 2.0 x 10 m s~ (Coriolis)

e g' =0.02m s ? (reduced gravity)

e hy = 1000 m (initial layer thickness)

e po = 1000 kg m™* (reference density)

e 70 = 0.15 N m~? (wind stress coefficient)

e yo=1L/2

o 7(®)(y) =7 % cos(2*m* (y — yo)/L) (wind stress)
e ¥ =0

e 1o slip boundary condition

Energy Evolution.
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Figure 58A. Kinetic Energy Evolution Figure 58B. Total Energy Evolution
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Resolution 41 (25km) Second order.
Evolution between 3000 and 4500 days
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Resolution 81 (12,5km) Second order.
Evolution between 3000 and 4500 days
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Resolution 161 (6,25km) Second order.

Evolution between 3000 and 4500 days
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Figure 65A. Mean U velocity on 3000-4500 days
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Figure 66A. Mean V velocity on 3000-4500 days
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Figure 67A. Mean H height on 3000-4500 days
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Resolution 41 (25km) Fourth order.
Evolution between 3000 and 4500 days

ExperimentVelocity u ordre 4

35

301 A\ - /-

20 25 30 35

Contours from -0.8 to 0.7 interval 0.1
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Figure 69A. Mean V velocity on 3000-4500 days
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Figure 70A. Mean H height on 3000-4500 days
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Figure 70B. Mean TKE on 3000-4500 days
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Resolution 81 (12,5km) Fourth order.

Evolution between 3000 and 4500 days
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Figure 71A. Mean U velocity on 3000-4500 days
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Figure 73B. Mean TKE on 3000-4500 days
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Resolution 161 (6,25km) Fourth order.

Evolution between 3000 and 4500 days
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Figure 74A. Mean U velocity on 3000-4500 days
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Figure 75A. Mean V velocity on 3000-4500 days
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Figure 76 A. Mean H height on 3000-4500 days
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Figure 75B. Mean EKE on 3000-4500 days
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Figure 76B. Mean TKE on 3000-4500 days

As in the previous section, we can see that the behaviour of the model with the second order scheme
at low resolution differs a lot from the solution obtained at high resolution. In the same time, there
is almost no difference between solutions obtained at high resolution grids. Either at 12 km resolution
(fig.62,fig.63,fig.64), or at 6 km (fig.65,fig.66,fig.67), the pictures are similar to each other.

When the compact scheme is used, the solution similar to the reference experiment can be obtained

even at low resolution of 25 km (fig.68,fig.69,fig.70).
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5 Conclusion.

Compact schemes are very competitive in many problems like wave propagation, Munk model or shallow-
water equations in a domain with simple geometries. The resolution of the boundary layer is crucial in
these last two models, and this is confirmed by the numerical results. When this layer is resolved, the c4
scheme is more efficient than the usual €2 one.

But, the implementation of compact scheme on the shallow-water model shows us that it will be very
expensive in term of computer memory when the domain will be realistic. Moreover, the parallelization of
the code will be almost impossible in this case. So, even if compact scheme seems to be more efficient in
many cases than usual one, due to practical implementation and code optimization, no compact scheme
may be preferable in realistic models.

It should be noted also, that stability and conservativity properties are more difficult to ensure in
high-order schemes, especially in bounded domains. In these experiments with simple geometry, we can
see a slight deformation of the solution obtained with the compact schemes. Thus, in figures fig.47 —
fig.55 one can see numerical noise in the lower left corner, especially for the v velocity pattern.
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