N
N

N

HAL

open science

Improving the Efficiency of a Multicast File Transfer
Tool based on ALC
Vincent Roca, Benoit Mordelet

» To cite this version:

Vincent Roca, Benoit Mordelet. Improving the Efficiency of a Multicast File Transfer Tool based on
ALC. [Research Report] RR-4411, INRIA. 2002. inria-00072177

HAL 1d: inria-00072177
https://inria.hal.science/inria-00072177
Submitted on 23 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00072177
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4411--FR+ENG

ISSN 0249-6399

%I 1NRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Improving the Efficiency of a Multicast File Transfer
Tool based on ALC

Vincent Roca
INRIA Rhéne-Alpes, Planéte project, France
vincent.roca@inrialpes.fr, http://www.inrialpes.fr/planete/

Benoit Mordelet

Activia Networks, Sophia-Antipolis, France
benoit.mordelet@activia.net, http://www.activia.net/

N° 4411
March 2002

THEME 1

apport
derecherche

VAV 1 IN IN I A

RHONE-ALPES

Improving the Efficiency of a Multicast File Transfer Tool based on
ALC

Vincent Roca
INRIA Rhoéne-Alpes, Planéte project, France
vincent.roca@inrialpes.fr, http://www.inrialpes.fr/planete/

Benoit Mordelet
Activia Networks, Sophia-Antipolis, France
benoit.mordelet@activia.net, http://www.activia.net/

Théme 1 — Réseaux et systemes
Projet Planéte

Rapport de recherche n® 4411 — March 2002 — 17 pages

Abstract: This work describes several techniques that we used to design a multicast file transfer tool
on top of ALC, the Asynchronous Layered Coding protocol proposed by the RMT IETF working group.
More specifically we analyze several object and symbol ordering schemes that improve transmission
efficiency and we see how the Application Level Framing (ALF) paradigm can help to reduce memory
requirements and enable processing to be hidden behind communications. Because of its popularity
and availability we use a Reed-Solomon FEC code, yet most of our results can be applied to other
FEC codes. A strength of this work resides in the fact that all the techniques introduced have actually
been implemented and their benefits quantified.

Key-words: multicast file transfer, multi-layer multicast transmissions, Asynchronous Layered Cod-
ing (ALC), Layered Coding Transport (LCT)

Unité de recherche INRIA Rhone-Alpes

655, avenue de I’Europe, 38330 Montbonnot-St-Martin (France)
Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Ameélioration de 'efficacité d’un outil de transfert de fichier
multipoint basé sur ALC

Résumé : Ce travail décrit des techniques utilisées lors de la conception d’un outil de transfert de
fichier multipoint basé sur le protocole ALC, ou Asynchronous Layered Coding, proposé par le groupe
RMT de I'ETF. Plus précisement nous étudions plusieurs solutions d’ordonnancement d’objets et
de symboles qui visent & améliorer 1’efficacité de transmission, et nous montrons comment le para-
digme ALF, ou Application Level Framing, peut aider & réduire les besoins de stockage en mémoire
et permettre de cacher les traitements derriére les communications. En raison de sa popularité et de
la disponibilité d’implémentations open-source nous utilisons un code FEC de type Reed-Solomon,
cependant la plupart de nos résultats s’appliquent & d’autres codes FEC. La force de ce travail ré-
side dans le fait que toutes les techniques proposées ont été implémentées et leurs bénéfices quantifiés
expérimentalement.

Mots-clés : transfert de fichier multipoint, transmissions multipoint multi-couches, Asynchronous
Layered Coding (ALC), Layered Coding Transport (LCT)

Improving the Ljfictency of a Multicast Fite Lransfer 1ool basea on ALC b)

1 Introduction

1.1 Motivations for Multi-Rate and
Multi-Layer Group Communica-
tions

Using several multicast groups is a scalable and ef-
ficient way of sending information to a set of highly
heterogeneous receivers, either in terms of process-
ing power or networking capabilities. In this ap-
proach the source uses a layered data coding and
transmits each layer in a separate multicast group.
Receivers join as many groups as possible. If a
receiver experiences losses, then he leaves one or
more groups in order to reduce its reception rate
[16][23]. The high scalability property derives from
the fact that there is no feedback information flow-
ing back to the source.

This approach has long been used for the trans-
mission of multi-resolution video where each layer
of refinement is mapped onto a different multi-
cast group. Here receivers may receive a different
amount of data depending on the number of layers
they listen.

This approach can also be used for multicast file
transfers. As the same amount of data is expected
by each receiver, high-end and low-end receivers
differ in the time they need to get data. How the
source organizes data in the various layers is dis-
cussed later in this paper. This kind of applica-
tion has no real-time or ordering constraint (e.g.
receiving the second file before the first one has
no consequences) but it assumes reliable transmis-
sions.

1.2 Quick Introduction to ALC

ALC (Asynchronous Layered Coding) [10], a “mas-
sively scalable reliable multicast protocol” pro-
posed by the RMT IETF working group provides
a general framework for the reliable transmission
of files. It uses the LCT (Layered Coding Trans-
port) building block [12], a Layered Congestion
Control (LCC) building block [15] and a FEC (For-
ward Error Correction) code building block [13].
ALC can be used for instance to distribute popular
files (e.g. a video-clip or the latest Linux distribu-
tion). ALC builds upon many previous works in
the area of multi-layer data organization schemes
[18][22], congestion control for multi-layer trans-

RR n°® 4411

mission schemes [2][16][23| and Forward Error Cor-
rection (FEC) [14][17].

Throughout this paper the official ALC termi-
nology is used: a data message submitted by the
application to ALC is called an object. No assump-
tion is made on the nature and size of these ob-
jects. Fach object is segmented into one or more
blocks, of limited size, usually because of FEC
codec constraints. Each block is further segmented
into data symbols, the unit of transmission (we as-
sume there is no IP fragmentation below ALC).
Finally the FEC codec adds a certain number of
redundant FEC symbols.

Several transmission modes are possible [12]. In
this work we only consider transmissions in:

e push mode: all the receivers must be ready
before the transmission starts (synchronous
start)

e on-demand mode: data is sent continuously
in a loop. Thus receivers can arrive at any
time (asynchronous start), download the file
and leave the session.

Because of reliability constraints using FEC is
mandatory. [14] identifies three classes of FEC
codes: small block, large block and expandable
codes. Choosing one of them has many conse-
quences:

e on efficiency: a small block code requires to
split the object into multiple blocks which re-
duces reception efficiency [5]

e on the number of redundant FEC symbols
that can be generated for each original symbol

e On the coding and decoding speed

This work relies on a small block Reed-Solomon
code. If not the most efficient, this class of FEC
code is currently the most popular because of the
availability of high quality open-source implemen-
tations like [17].

1.3 Goal of the Work and Organization
of the Paper

Our goal is to improve the overall performances of
a multicast file transfer tool built on top of ALC,
working either in a push or on-demand mode. A
strength of this work resides in the fact that all

V. Roca and B. Mordelet

the features we introduce have actually been im-
plemented and their benefits quantified.

The rest of the paper is organized as follows:
the following section introduces related work; sec-
tion 3 discusses the various meanings of efficiency;
we introduce our proposals in section 4; we discuss
experimental results in section 6; we introduce an
additional optimization in section 7; and finally we
conclude.

2 Related Work

ALC raises the problem of data organization on
the various layers. The problem of finding effi-
cient cumulative layered organizations has been
addressed in [1] [7] [19] [22]. A common denomi-
nator of these schemes is that they rely on a de-
terministic algorithm to decide on which layer and
at what time to send each data packet. Because
of this determinism, efficiency is high (e.g. in [1]
the whole file can be received without any packet
duplication). Yet several problems like channel
desynchronization (e.g. due to different routes
on the various multicast groups) or start delay
in practice significantly reduce this efficiency [7].
In addition [22] adds some requirements and the
number of FEC packets produced cannot be freely
chosen. Finally using a congestion control proto-
col will lead each receiver to dynamically add and
remove layers and receivers will miss many packets
on higher layers.

Another class of cumulative layered organiza-
tions consists in sending data and FEC packets
in a fully random order on the various layers [5]
[12]. In addition to its simplicity, the idea is to
have the same efficiency no matter how layers are
added or dropped and no matter how losses occur
(periodically, randomly, or in bursts). Such an ap-
proach is also required in case of non-cumulative
layering [4]. Our work follows this random organi-
zation principle.

Finally [8] discusses the implementation of a
multicast file transfer tool. This tool is based on a
Reed-Solomon FEC codec (as us) but uses a single
fixed rate layer and provides no congestion control.
Because of the single fixed rate nature of the tool,
some receivers frequently miss packets due to a re-
ception rate higher than the possible disk access
rate. Several strategies are analyzed to overcome
this problem. Note that if this application is also

called Fcast, it has no direct relationship with our
own FCAST tool (section 6.1).

3 The Various Meanings of Effi-
ciency

Efficiency has various meanings when applied to a
file transfer tool based on ALC. We list them and
give an indication of how we propose to address
them:

e Efficient transmissions: The number of dupli-
cated symbols (e.g. the same symbol received
on various layers, or symbols received after
the decoding of their block) must be kept as
low as possible.

= Section 4 introduces several object and
symbol organization schemes to improve
transmission efficiency.

o Efficient behavior in front of losses: Trans-
missions must be robust in front of all forms
of packet losses.

= The random nature of our symbol orga-
nization and the presence of a large number
of FEC symbols warrant a good behavior in
front of losses.

o Efficient CPU wusage: It concerns either the
source or the receiver and can be a limiting
factor on lightweight hosts.

= Section 6.4.1 defines several profiles to ac-
commodate CPU bounded receivers, or on the
opposite to enable powerful workstations to
hide computations behind communications.

o Efficient memory usage at a receiver: This
is the amount of physical memory required
to receive the objects. With large objects
it can quickly become a limiting factor on
lightweight hosts.

= Section 4 introduces several schemes (ALF
approach and “m/p_ rand” organization) to
reduce this requirement.

o FEfficient disk usage at a receiver: Because of

the random nature of transmissions, a receiver
may quickly be limited by the non-sequential

INRIA

Improving the Ljfictency of a Multicast Fite Lransfer 1ool basea on ALC 9]

disk access speed (e.g. if he tries to store sym-
bols at their final location). [8] describes sev-
eral strategies to optimize disk I/Os at a re-
ceiver.

= Section 4 introduces several schemes (ALF
approach and “m/p rand” organization) that
postpone the moment when, by lack of physi-
cal memory, a receiver needs to store symbols
on disk. Otherwise a receiver always stores
symbols in sequence on disk once its physical
reception cache turns full.

o FEfficient disk usage at the source: With huge
files whose size exceeds the physical mem-
ory size of the source, storing data symbols
on disk is unavoidable. Besides, because of
the processing cost of generating FEC sym-
bols, these latter cannot be produced just-in-
time. Instead FEC symbols are pre-calculated
which still increases the storage requirements.
The problem is that the random nature of
transmissions quickly limits the transmission
rate with the non-sequential disk I/O speed.

= This aspect is out of the scope of the
present document and will be addressed in fu-
ture work.

4 Owur Proposals

This section introduces our proposals. To the best
of our knowledge, these problems have never been
addressed before.

4.1 ALF Applied to Multicast File
Transfer

The Application Level Framing (ALF) paradigm
[6] says (1) that the control and transmission units
must be the same for optimal efficiency and (2)
that the application is the best location to define
this unit. Applied to our case, the application can
choose to cut a large file into multiple independent
fragments. Fach fragment contains all the infor-
mation required to enable its processing at the re-
ceiver, no matter the order in which it is received.
An example is given in figure 8. Note that with
a small block FEC code a large object is anyway
split into several blocks. In that case a fragment
can be composed of b blocks, where b > 1 is a small
integer. This approach has several benefits:

RR n°® 4411

e a reduced memory consumption at the re-
ceiver: A receiver no longer needs to keep a
copy of the whole file in memory until the last
missing symbol arrives. Instead, memory can
be freed as soon as a fragment is completed.

e it postpones the moment when, by lack of
physical memory, disk storage of incoming
symbols is required. This possibility may dra-
matically increase the effective reception rate.
Indeed, in the absence of elaborated schemes
like [8], symbols are stored sequentially on
disk. But the high randomization of the sym-
bol transmission order leads to inefficient ran-
dom disk I/Os when recovering each object
from the scattered symbols.

e processing can be hidden behind communica-
tions: Each fragment can be processed by the
application as soon as it is received, instead of
waiting the end of reception of the whole file.
This is more comfortable for a user as the file
is almost immediately available on receiving
the last missing symbol.

Yet the ALF approach assumes that the network
1s indeed the limiting factor which may not be true
in all situations (section 6.4.3). Another constraint
is the necessity to add information (meta-data) to
each fragment (section 6.1). The associated over-
head is anyway very limited, around 0.2% with 64
kilobyte file fragments.

4.2 How to Deal with Multiple Ob-
jects?

The following issue is how to manage multiple ob-
jects? These objects can be either the fragments
of a given file (section 4.1) or each of them be a
separate file (e.g. with a recursive directory trans-
mission).

4.2.1 Sending Objects in Sequential Order

A first scheme, called “m/seq”’ (for Multiple ob-
jects, SEQuential object order), consists in send-
ing objects in a sequential manner, i.e. all the
symbols of object i — 1 are sent before those of ob-
ject i, even if within each object symbols are sent
in a random order. This solution is obviously in-
efficient. Figure 1 shows that as time goes, lower
layers become more and more late compared to

V. Roca and B. Mordelet

transm. layer

layer_3

(4 symbolsitick) obj_1 | obj_2 | obj_3

Sequential transmission of 3 objects
(naive version)

layer_2
(2 symbols/tick)

object_1

object_2 ‘ object 3 ‘

layer_1
(1 symbol/tick)
layer_ O
(1 symbol/tick) [~ !
t0 tit2 t3 t4 5

[object 1 [object 2 [object 3 |

| object 3

object 1 [object 2 | time
| | I

6 t7

Figure 1: Multiple objects - sequential object order
(m/seq).

transm. layer
3[3[2]1]3[1
layer_3 2|2[3[2]1]2 iss i
(4 symbolsltick) i Random transmission of 3 objects
3[1]3[1]2]2
layer 2| [3[1]3[2]3[3[1]3[2]3[2]1]
(2symbolstiick) | [1]2]2[1]1]2]2]1]3]3[1]2]
layer 1| [2]3[1]2]1]1[3][2]1]2][2]3][3[1]2][1]2]1]3[1]3[2]3]3]
(1 symbol/tick)
layer 0 [173[3[1]2[1]3[2]2[3[1]2]3[3[2[3]1]2]2]1]3[2]1]1]
(1 symbol/tick) et A
ot 13 4 time

Figure 2: Multiple objects - random symbol order
(m/rand) (figures identify the object to which each
symbol belongs).

higher layers. A host receiving all four layers will
get symbols of object 3 only from layer 3 and can-
not finish before time t4. This is confirmed by the
experimental results of section 6.3.

4.2.2 Sending Symbols in Fully or Par-
tially Random Order

A second scheme, called “m/rand” (for Multiple
objects, RANDom symbol order), consists in mix-
ing all the symbols of all the objects and sending
them in a different random order in each layer (fig-
ure 2). Here a host receiving all layers still benefits
from all of them at any time and reception finishes
before time t4.

A wariant of this second solution, called
“m/p_rand” (for Multiple objects, Partially RAN-
Dom symbol order), consists in using a partially
random permutation of symbols. In that case, the
probability that a symbol s is not permuted is:

A very simple algorithm to calculate pseudo-
random permutations is given in Annex A.

4.2.3 The KEEP/PUSH Functions of the
API

The last two schemes raise an issue: the schedul-
ing function of ALC must be informed of all the
objects the application wants to transmit before
being able to start. Therefore two functions are
required in an API (Application Programming In-
terface) built on top of ALC (e.g. section 6.1): be-
fore submitting the first object, the application is-
sues a KEEP_DATA which informs ALC that several
objects are expected; once all the objects are sub-
mitted, the application issues a final PUSH_DATA
which triggers the scheduling of all the symbols of
all the objects.

4.3 What Symbols to Send in Each
Layer?

The previous section explained how to transmit
multiple objects; this section discusses a comple-
mentary issue, namely what symbols to send in
each layer.

Let k be the number of data symbols per block.
Let n be the total number of symbols per block
(data plus FEC). Using a Reed-Solomon FEC
codec like over a Galois Field GF(2%) (default)
limits the n parameter to 256 and k£ to a small
value for computational reasons [17]. We choose
k = 32 as suggested in [8]. There can be at most
n —k = 256 — 32 = 224 FEC symbols for each
data block. In practice, because of the need to
pre-calculate and store them, we limit the maxi-
mum number of FEC symbols to 3 * £k = 96. Fi-
nally, a symbol is by default 512 bytes long to
avoid IP fragmentation (path MTU discovery is
difficult with multicast). Therefore a large object
is segmented into 32 x 512 = 16 kbyte blocks. We
identify two strategies to assign symbols to layers.

4.3.1 Symbol Organization 1

For each block of an object, the same data symbols

P'rnot_perm(m/p_rand) > Prnot_perm(m/rand) {Ok — 1} and FEC symbols {kn — 1} are sent

with:

1
total nb of symbols

Prnot_perm<m/rand) =

in each layer (figure 3 (a)). Then, for each layer,
the final symbol transmission order is controlled
by one of the three scheduling schemes previously
defined: “m/seq”, “m/p_rand”, “m/rand”.

INRIA

Improving the Ljfictency of a Multicast Fite Lransfer 1ool basea on ALC e

transm. layer /P

layer_3 \ permutation of data/FEC symbols{0..127}
\
layer_2 \ permutation of data/FEC symbols{0..127}

layer_1 \ permutation of data/FEC symbols{0..127}
\

layer_O | permutation of data/FEC symbols{0..127}
[

(a) Organization 1: n symbols per layer

transm. layer /P

layer_5 | permutation of FEC symbols{32..63} \ 2nd layer
cycle
layer_4 | permutation of data symbols{0..31} \
layer_3 | permutation of FEC symbols{96..127} \
\
layer_2 \ permutation of FEC symbols { 64..95} \ 1st layer
\ cycle
layer_1 | permutation of FEC symbols{32..63} \
layer 0 | permutation of data symbols{0..31} \ time

(b) Organization 2: k symbols per layer

Figure 3: The two symbol organizations, single
block, k=32, n=128.

4.3.2 Symbol Organization 2

With organization 2 the n/k ratio is necessarily an
integer. With n/k = 4, data symbols {0..k—1} are
affected to layer 0, FEC symbols {k..2k — 1} are
affected to layer 1, FEC symbols {2k..3k — 1} to
layer 2 and FEC symbols {3k..n—1} to layer 3. We
say in that case that there are “three FEC layers”
and each group of four layers forms a “layer cy-
cle”. More generally layer ¢ contains the symbols
affected to layer imodulo4 (figure 3 (b)). Here
also for each layer the final transmission ordering
is controlled by the scheduling scheme previously
defined.

The obvious asset of this organization is that no
matter how layers are subscribed, no matter the
loss pattern, a receiver experiences no packet du-
plication among each layer cycle!. This scheme
implicitly assumes that a low-end receiver can re-
ceive at least the first two layers as no FEC packet

'Other sources of duplication are still possible, for in-
stance when receiving additional packets of an already com-
pleted block.

RR n°® 4411

is sent on the base layer. An alternative is to merge
layers 0 and 1.

5 Mathematical Models

This section introduces two models giving an ap-
proximation of the average end of reception time
of a block for the two symbol organizations defined
in section 4.3. These models are too much simpli-
fied to realistically reflect the reality. Yet they are
sufficient to fairly compare the two symbol orga-
nizations.

5.1 Notations and Hypothesis

We use the following notations:
e n;: total number of layers a receiver uses.

e [: index of the layer considered: | € {0..n; —

1.

e {: time expressed in ticks. Transmissions on
the various layers occur at each time tick. The
number of ticks/s is an internal parameter
that controls the transmission granularity.

e r;: transmission rate in symbols/tick for
layer ¢
e R: cumulative transmission rate in sym-

bols/tick over all the layers: R = Z?;Bl T
e k: number of data symbols per block.

e n: total number of symbols per block (data
plus FEC).

e b: number of blocks in the object: b =

object size
|Vk>|<symbol_én'ze—I > 1

We assume that:

e there is no loss: the models only give an opti-
mistic bound that is nonetheless sufficient for
comparisons.

e a receiver gets data from n; layers immedi-
ately (i.e. there is no congestion control): this
is the asymptotic behavior with large objects
where the layer addition time is low in front
of the total reception time. This assumption
is of course wrong with small files.

V. Roca and B. Mordelet

e n/k is an integer to enable a fair comparison
of the two symbol organizations.

e we only consider the case of a single object
whose symbols are transmitted in a fully ran-
dom order, using either symbol organization 1
or 2.

Because there is no symbol loss, there is no sym-
bol duplication on each layer either (i.e. reception
is finished quickly enough so that the source does
not have time to enter a new transmission cycle
on any of its layer). The only possibility of du-
plication is the reception of the same symbol on
different layers.

5.2 Symbol Organization 1

To calculate the number of new unduplicated sym-
bols brought by each layer we use the same ap-
proach as in [3]. In [3]| symbols arrive from multi-
ple mirror sites whereas in our case they come from
multiple independent layers. A difference is the
necessity in our case to distinguish several blocks
(we do not restrict ourselves to large block FEC
codecs).

Let z;(t) be the average number of unduplicated
symbols received on layers {0..i} at time ¢. Then

from the average t*r% symbols of a block received
zi(t)

n

on layer i+1 up to time ¢, only a (1—
are unduplicated. Therefore:

) fraction

txro

1

Zo(t)
Zl(t) ~ Zo(t) + t*gl (1 - =

(1)

t*T‘nl,1 anfz(t)

Zn-1(t) = 2y —2(t) + —5—(1 = =577)

Note that this is only an optimistic estimation
as it assumes that the number of symbols received
on each layer actually equals its expected value (in
fact there cannot be fractions of symbols).

For the reception to finish, at least k£ symbols
must be received for each block. The average end
of reception time for any block, t¢ng 7z, 1S the so-
lution of an equation of degree n;: _an—l(t) = k.
This is not the end of reception time of the whole
object (in particular this reception is subject to the
so-called “coupon collector’s problem”, i.e. waiting
for the last block to fill [5]), but it is sufficient to
fairly compare both organizations.

5.3 Symbol Organization 2

We use two additional notations here:

e ny.: number of layers in a cycle. Each cycle
consists in a single data layer and 7 —1 FEC
layers: n;. = ¢

e ¢: number of layer cycles. We assume that
there is an integral number of cycles: n; =
C*Nyc

As long as n; < ny, there cannot be any symbol
duplication between the layers. With more than
one layer cycle, some symbols sent on layer | =
l1 * nye + lo > ny. may have already been sent on
layers lg + i % nge, Vi € {0..l; — 1} (figure 3 (b)).
The same method as above gives:

first layer cycle :
Zo(t) ~ t*%

t*rnlc,l

znlc_l (t) =

second layer cycle :
t*T"lc

2, (£) 2 20 (t) + “e (1 — 200

t*’l”gnlc_l (1

n, —1(t
22umye—1() = zn—1(t) + —5 2 zckl()y

layer cycle c — 1 :

z(c—l)*nlc(t) = Z(e—2)*ny, (t) + 0
T (¢ 1)xn Z(c—2)xn;,. (L
(bl) le (1 _ X 2)k le)

zc*nzc—l(t> = z(c—l)*nlc—l(t) + ®
kT cxn, — Z(e—1)xn;,.—1(t
blc 1 (1 _ (c—1) le—1)

(2)

For the reception to finish, at least k sym-
bols must be received for each block. The
average end of reception time for any block,
tend rz, 1S the solution of an equation of degree

C: Z?goil Z(c—l)*nlc-‘ri(t) = k.

5.4 Partial Conclusions

We solved these equations numerically. The
tend_ro values of each organization for a given
number of layers and FEC symbols are pre-

sented in figure 4 and the corresponding ratio:
tend TI(OTQQ)
tend:rz(org 1)

tion 2 always enables a 6.8 to 14.7% faster object

in figure 5. It shows that organiza-

INRIA

Improving the Ljfictency of a Multicast Fite Lransfer 1ool basea on ALC

reception than organization 1. This is all the more
true as the number of layer cycles is low (there will
be fewer or even no duplication at all for organiza-
tion 2) and the number of FEC symbols generated
low (the probability of symbol duplication for or-
ganization 1 is higher).

Receiving the object faster also means receiv-
ing less duplicated symbols. Figure 6 shows

the duplication ratio experienced by a receiver:
. number of duplicated symbols received
dup_ratzo - total number of symbolsreceived for

a given number of layers and FEC symbols. The
optimal value is of course 0. From that point
of view, organization 2 enables significant savings
compared to organization 1. For instance with a
single layer cycle, there is no duplication for or-
ganization 2, whereas this duplication ratio is be-
tween 14.6 and 8.6% for organization 1. With two
or three layer cycles organization 2 remains effi-
cient with more than 6% savings compared to or-
ganization 1.

End of Reception Time for the Two Symbol Organizations
120000 T T

T
org_1, n/k layers —+—
org_2, n/k layers in 1 cycle ---x---
org_1, 2*n/k layers ---*--- |

org_2, 2*n/k layers in 2 cycles &
org_1, 3*n/k layers ---m--

100000

§ org_2, 3*n/k layers in 3 cycles ---&-
S 80000
X
[=]
o
= 60000 |
=
|
2 40000 |
4
20000 | L E
b s
0 Ty i
2 25 3 3.5 4
n/k ratio

Figure 4: “End of Reception” time for the two sym-
bol organizations (100 MB file, k=32).

6 Experimental Results

All the proposals introduced so far have been im-
plemented. This section gives an account of several
experiments we carried out and the various trans-
mission profiles we defined based on these results.

6.1 The MCL Library and the FCAST
Application

We implemented the ALC, LCT and RLC proto-
cols within a library, MCL (MultiCast Library)

RR n°® 4411

J
End of Reception Time Ratio for the Two Symbol Organizations
0.94 T T T
[e K T T
QI 0092F e i
o I
% 0.91 %~
[
2 09
4
< o089t
&
2 0.88 -
S
x
I 087
2
o 0.86 1 cycle (org_2) and n/k layers (org_1) —+——
= 2 cycles (org_2) and 2*n/k layers (org_1) ---x---
3 cycles (orgj) and 3*n/k layers (org_1) ---*---
0.85 : N
2 2.5 3 3.5 4
n/k ratio
- .6 3 IAY
Figure 5: “End of Reception ratio” for the two

symbol organizations (100 MB file, k=32).

Duplication Ratios for the Two Symbol Organizations

20 T T T
org_1, n/k layers —+—
org_2, n/k layers in 1 cycle ---x---
org_1, 2*n/k layers --->---
org_2, 2*n/k layers in 2 cycles &
15 | - org_1, 3*n/k layers —-m-—- -
—_ org_2, 3*n/k layers in 3 cycles ---o--
& N
° .
8 R ——— S
c 10 F- S =
S S
g
=
=1
o 5+ \\8 N N
0
L L L
2 25 3 3.5 4

n/k ratio

Figure 6: “duplication ratio” for the two symbol
organizations (100 MB file, k=32).

FCAST application MCL API
~<——— ntl _[open|ctl|send(to)|recv(fron|select|close]
tx & rx threads| [scheduling | [datastorage | | FEC |
[cong. control | | segm./reass. | MCL Library
<— > Socket AP user level
] kernel Tevel
Socket layer
UDP
multicast IP

Figure 7: The MCL library and the FCAST appli-

cation.

[20], built on top of UDP/multicast IPv4 (fig-
ure 7). We also implemented several applications
on top of MCL, in particular FCAST, a recursive
multicast file transfer tool inspired from [11]. We
integrated all the schemes of section 4 in FCAST.
For instance when splitting a large file, several
meta-data are appended to each fragment to make

10

V. Roca and B. Mordelet

trailer trailer_length [checksum]

Cont ent -
Cont ent -
Cont ent -
Cont ent -
Cont ent -

[...1

file slice

Base "/tnp/"

Location: "big_file.ps"
Lengt h: 5623021
Fragnment: 12/86

O fset: 786432

Figure 8: The FCAST encapsulation format of a
file fragment (12th slice of file /tmp/big file.ps).
If the file is sent as a single object, the “content-
fragment/offset” meta-data are removed.

them autonomous (figure 8). FCAST also includes
an application-level checksum to check the frag-
ment integrity. The whole trailer size is typically
around 140 to 170 bytes long, which is reasonable
(e.g. with the default 64 kilobyte fragment size it
represents a 0.2% overhead).

6.2 Tests Methodology

Table 1 summarizes the tests performed, showing
the various combinations between the transmission
scenario and symbol organization. We evaluate
several performance metrics:

e the end of reception time of each object,

e the redundancy experienced by a receiver:

. numberof duplicated symbols received
dup_ratzo - total number of symbols received
(we consider here the two kinds of packet
duplications: inter-layer duplicates and ex-
tra packets received after the completion of

a block)

e the maximum amount of memory required by
a receiver,

e and the CPU load at the source and at a re-
ceiver.

All the hosts are attached to the same LAN to
focus on our proposal performances without being
disturbed by those of the multicast routing infras-
tructure. We assume that n/k = 4, i.e. 3 times
more FEC symbols than data symbols. With sym-
bol organization 2 we say in that case that there
are 3 FEC layers.

6.3 Comparison of the Various Trans-
mission Schemes

This section compares the various transmission
schemes of section 4 during the transmission of

a single 1042142 byte (approximately 1 MB) file.
The eight possibilities are summarized in figure 9.
In these tests, the sending rate is voluntarily low.
We also use in a first step a simplified version of
FCAST which includes a single meta data, the
fragment offset in the object.

1042142 byte| tx asasingle object | 1 object > organization 1
file = | splitinto
64 blocks organization 2
tx as multiple objects o
organization 1

~=. organization 2

/ sequential tx

wﬁdly random tx

random tx

64 objects of
1 block each

o organization 1

> organization 2

- organization 1

" organization 2

Figure 9: Experiments performed (~1 MB file).

6.3.1 Loss-Free Transmissions

We first assume that no loss occurs in order
to have a fair comparison in an optimal situa-
tion. We repeat each test 40 times and plot the
minimum /average/maximum transmission dura-
tion, duplication ratio and maximum buffer space
(figures 10 to 12).

File Transfer Duration
24 T T T

T T T T
n/k=4, total of 6 layers —+—

1 y\
22 / | E
| \

/ |
18 | | \, i
: \
i \

! \
16 / \ o

min/aver/max duration (s)

14

10
single/l single/2 m/seq/l m/seq/2 m/pra/l mlpra/l2 m/ran/1 m/ran/2

Figure 10: Transfer duration with various trans-
mission schemes (no loss, ~1 MB file).

6.3.2 Lossy Transmissions

We now introduce random bursty losses according
to a Guilbert loss model [9]:

e loss probability when previous symbol is re-
ceived = por = 0.01,

INRIA

Improving the Ljfictency of a Multicast Fite Lransfer 1ool basea on ALC

0.9

Table 1: Test matrix showing the various combinations.

scenario description

transmit as a single object

split in mult. obj., sequential order

split in mult. objects, partially ran-

dom order, imm. delivery upon rx

split in mult. objects, random order

name org 1 | org 2
single yes yes
m/seq yes yes

m/p_rand yes yes

m/rand yes yes

with immediate delivery upon rx

Duplication Ratio

08 |

0.6 /

05

04 || %
03

min/aver/max duplication ratio

T T T T
AN n/k=4, total of 6 layers —+—

% T

the average number of consecutive losses:

consecutive losses = = 4 symbols

1 — Prad

and the average number of consecutive received
symbols:

1
consecutive_non_lost = — = 100 symbols
Dok

Because of the presence of a congestion con-

.2
single/l single/2 m/seq/1 m/seq/2 m/p

Il
ra/l m/p

ra/2 m/ran/1 m/ran/2

Figure 11: Duplication ratio with various trans-
mission schemes (no loss, ~1 MB file).

Maximum Buffer Space at the Receiver
1.2e+06

‘ ‘ nlk‘=4, total éf 6 Iayeré —+— '

*
1e+06 |

trol scheme, high loss ratios are not expected
to be frequent under normal conditions. We
perform the same experiments as previously, re-
peating each test 40 times, and plot the mini-

mum/average/maximum values (figures 13 to 15).
Results are summarized in table 2.

File Transfer Duration

H/k=4, totaf of 6 Iayer‘s »—o—«‘

800000 | % %%7

600000 |- } / %

400000 | \

min/aver/max buffer space (bytes)

200000 \

0 Il Il Il
single/1 single/2 m/seq/1 m/seq/2 m/pra/l m/pra/2 m/ran/1 m/ran/2

Figure 12: Maximum buffer space at the receiver
with various transmission schemes (no loss, ~1 MB

file).

loss probability when previous symbol is lost
= Pbad = 0.75.

The stationary probability for a symbol to be lost
is:

Pok

probaj,sgs = ———————
1 — Prad + Pok

= 0.0385

RR n°® 4411

N N w

o a [=]

o o o
T T T

i

13

o
T

min/aver/max duration (s)

.
o
o
T T
%t
/
/
/
r/’
k=
!
/

50

Il Il Il Il Il
single/l single/2 m/seq/1 m/seq/2 m/pra/l

1
m/pra/2 m/ran/1 m/ran/2

Figure 13: Transfer duration with various trans-

mission schemes (bursty random 1%/75% losses,
~1 MB file).

The relatively high loss rate prevented the re-
ceiver to subscribe to more than three layers in all
cases. In case of the “m/seq/2” scheme, the re-
ceiver never managed to complete all objects (be-

tween 48 to 61 objects out of 64 have been com-
pleted).

12

V. Roca and B. Mordelet

Table 2: Summary of the average results normalized by the “single/org 2" case (bursty random

1%/75% losses, ~1 MB file, 6 layers, n/k = 4).

dup ratio | space (bytes) | duration
single/org 1 1.59 1.00 1.35
single/org 2 1.00 1.00 1.00
mult/seq/org 1 3.35 0.09 6.00
mult /seq/org_ 2 failed failed failed
mult/p_rand/org_1 2.18 0.60 1.79
mult/p_rand/org_2 1.49 0.53 1.26
mult/rand/org_ 1 1.69 0.70 1.44
mult/rand/org_ 2 1.01 0.74 1.01

Duplication Ratio

0.9 T T T T T T
'3 n/k=4, total of 6 layers +——+—

08 |- i

0.7 | E

06 % E
0.5

0.4 —J[\ N

o3t) %

02 | E
Il Il Il

01 Il Il Il Il Il
single/l single/2 m/seq/1 m/seq/2 m/pra/1 m/pra/2 miran/l m/ran/2

min/aver/max duplication ratio

Figure 14: Duplication ratio with various trans-
mission schemes (bursty random 1%/75% losses,
~1 MB file).

Maximum Buffer Space at the Receiver
1.1e+06 T T T

n/k‘=4, total c‘)f 6 Iayeré — '

R — *
1le+06 |- \ 4

g 900000 - R

>

& 800000 | g

& 700000 |- i

g %

5 600000 [N b

3 500000 | R

£ 400000 i

g \

& 300000 - | E

< \\ e

‘€ 200000 | Vo R
100000 % i

Il Il Il Il Il

0 Il Il Il
single/1 single/2 m/seq/1 m/seq/2 m/pra/l m/pra/2 m/ran/1 m/ran/2

Figure 15: Maximum buffer space at the receiver
with various transmission schemes (bursty random

1%/75% losses, ~1 MB file).

6.3.3 Partial Conclusions

In all cases, the organization 1 versions have a
higher duplication rate than the corresponding or-

ganization 2 versions which confirms the theoret-
ical results of section 5. Therefore we will only
consider organization 2 in the rest of this paper.
The “single/org_2/3_ FEC_layers” and
“m/rand/org_2/83 FEC layers” have very simi-
lar performances. For instance, the latter has a
0.7% (no loss) to 1% (with losses) higher average
reception duration. The difference is more im-
portant when considering memory requirements.
Indeed, the “m/rand/org 2/3_ FEC_layers” ap-
proach enables between 14.9% (no loss) and 25.8%
(with losses) memory savings at the receiver.

In situations where receivers are highly
memory-limited, using “m/p_rand/org_ 2/-
3 _FEC layers” scheme is surely the best

solution. It requires between 42.9% (no loss) to
47.4% (with losses) less memory than with the
“single/org 2/3 FEC _layers” approach. It is in
fact an intermediate solution between the “m/seq”
(neither efficient nor robust in front of losses) and
the “m/rand” extremes.

Finally, sending objects in sequence is defini-
tively a bad strategy.

6.4 Application to FCAST
6.4.1 Definition of the FCAST Profiles

Previous results lead us to define three profiles:

e opt_speed to hide processing behind commu-
nications while optimizing reception speed. It
is equivalent to “m/rand/org 2”.

e opt_space to reduce the maximum memory
requirements, hide processing behind commu-
nications, and spread the CPU load at the re-
ceiver. The price to pay is a slightly more

INRIA

Improving the Ljfictency of a Multicast Fite Lransfer 1ool basea on ALC

important reception time. It is equivalent to
“m/p_rand/org_2”

e opt_cpu in situations where processing is the
limiting factor. Without this profile, symbol
losses may occur and would reduce the re-
ception speed (section 6.4.3). It is equivalent
to “single/org_2"” with delayed FEC decod-
ing (i.e. once all the required symbols of all
blocks have been received) and delayed object
delivery to the receiving application.

These profiles concern both the source (e.g. when
defining the object/symbol ordering) and the re-
ceiver (e.g. to postpone FEC decoding). Therefore
this option must be agreed using an out-of-band
mechanism before the transmission starts, other-
wise the desired feature may not be achieved (but
without compromising the transfer). A solution if
receivers have different desires is for the source to
create three sessions, one per FCAST profile, and
to let each receiver choose the most appropriate
one.

6.4.2 Effectiveness of the Profiles With
Powerful Hosts

In order to assess the effectiveness of the pro-
files with the full featured FCAST tool, we trans-
mit a large (30MB) file between two power-
ful hosts (PIII-1GHz/Linux PCs). We repeat
each experiment 10 times and plot the mini-
mum /average/maximum values in figure 16. We
can see that the results are fully compliant with
the theory. In particular the opt_speed profile
reduces reception duration by spreading process-
ing (i.e. FEC decoding, data copy and applica-
tion level checksum) during the whole reception
time. The corresponding reception rate (includ-
ing coding, transmission and decoding times) is
4.6Mbps. Memory requirements are also reduced
significantly (—27%).

6.4.3 The Case of CPU Bounded Hosts

We now compare the opt_speed and opt_cpu pro-
files on a CPU bounded host. We send a 10 MB
file, using 6 layers and 3 FEC layers. Exper-
iments show that a Sun/Ultral0 running a full
featured FCAST tool, that uses a Reed-Solomon
FEC codec with & = 64 (to increase the pro-
cessing load), and where the transmission rate is

RR n°® 4411

File Transfer Duration
68
66
64
62
60
58
56
54
52

50 Il Il Il
opt_speed opt_space opt_cpu

n/k=4, tpta\qf 6 layers ——

min/aver/max duration (s)

*

(a) Transfer duration

Maximum Buffer Space at the Receiver

3.2e+07 T
3e+07
2.8e+07
2.6e+07
2.4e+07
2.2e+07
2e+07
1.8e+07
1.6e+07 S/
1.4e+07 L X :
opt_speed opt_space opt_cpu

n/k=4, total o% 6 layers »—oﬁ‘

min/aver/max buffer space (bytes)

(b) Maximum buffer space

Figure 16: Comparison of the FCAST profiles
(30MB file).

~1.5 Mbps, can indeed be limited by its process-
ing power. This is visible in figure 17 where the
high loss period [60s; 180s] matches the high CPU
load period (FEC decoding, data copy to the ap-
plication buffer, FCAST checksum verification and
final copy to disk)?.

When such a phenomenon occurs it is wiser to
postpone FEC decoding and object delivery to the
application. This is visible in figure 18 where the
CPU activity remains low except after the comple-
tion of all the object blocks, at time 231s. Thanks
to the opt_cpu profile, the total reception time as
seen by the user has been reduced, from 357.5 to
272.5 seconds (-23%).

In practice a user may know that its host is not
powerful enough for a high speed session and may
decide beforehand to join an FCAST session op-
timized for CPU. Otherwise the user may decide
changing mode midway through a transfer.

*Note that the tool used to calculate CPU usage largely
underestimates it; e.g. decoding effectively uses 100% of
the CPU.

14

V. Roca and B. Mordelet

70 T T T

T T T T
Reception rate (0{1 * symbols/s) —+—
Lost symbols X
60 B

50 q

30

20

10

§1X§X§1X 95%95 é Xx ¥

200 250 300 350
time (seconds)

i xfinEx
100 150

400

(a) Reception rate/losses at the receiver

30

CPU load (%)

200
time (seconds)

0 50 100 150 250 300 350 400

(b) CPU load at the receiver

Figure 17: Impacts of FCAST with the opt _speed
profile on a CPU bounded receiver.

CPU load (%)

0 50 100 300

150
time (seconds)

200 250

Figure 18: Impacts of FCAST with the opt cpu
profile on a CPU bounded receiver.

7 The Transmission Anticipation
Optimization for PUSH Ses-
sions

This section introduces an additional optimiza-
tion that provides refinements on the various ob-
ject and symbol organization schemes already dis-
cussed.

7.1 Principles

So far a source had to calculate all the FEC sym-
bols — a CPU intensive process — and an appro-
priate object and symbol organization before be-
ing able to start transmissions. An optimization
consists in starting the transmission of data sym-
bols immediately, in sequence, only once, and on
a predefined fixed number of layers, ny;, without
waiting the end of the FEC calculation and sym-
bol organization processes (figure 19). This is an
optimistic approach where the source bets that
receivers will be able to take advantage of this
transmission to recover many — if not all — objects
rapidly, before entering the standard transmission
step that follows.

standard symbol transmission
transm. layer “
. 3[3[2]1]3[1]2[3][2]1]3[1]3]1
layer_3 % [2]2]3]2]1]2]2]2]3[2]1]2]1]2
(4 symbolsitick) amicipatedsymbol‘x 1]3[1]1]3|2[1]3[1]2|3[2[1]3
transrriSion(3Iayers)"§.1,3 12218) 1 [8) 1 211218
*
layer_2 [1]1]a]2] 2] 2[3] 3[3%1[2]1]2]2]1] 3[2]3] 1]2]
(2 symbolsitick) [1]2]a2][2]2[3[3] 3 '3[3]2]3[1]2] 3[1]2]3[1]
A.
lyer 1| [1]1[1[2[2[2]3[3]3}2[2]3]3[1]2]1[2]1]3[1]3]
(1 symbol/tick) K
layer 0 [171]1]2]2]2[3[3[3r3[1]2]3]3[2]3][1]2]2]1]3[2]
(1 symbol/tick) PR
- ;
FEC calculation - time
symbol org. calculation

Figure 19: Symbol organization with the antici-
pated transmission optimization.

This optimization has many benefits:

e it enables transmissions to start earlier,
thereby reducing the total reception time

e it favors the reception of in sequence data
symbols, instead of receiving data and FEC
symbols in a random order according to the
FCAST profile

e as the probability of quickly receiving and
processing the various objects in sequence is

INRIA

Improving the Ljfictency of a Multicast Fite Lransfer 1ool basea on ALC

higher, the CPU load is more evenly spread
and the memory requirements lower

This optimization does not compromise the
FCAST robustness in front of the various loss
models (periodic, random or in burst). Even
if losses can affect the anticipated transmissions,
these losses will anyway be recovered afterwards as
anticipated transmission are followed by the stan-
dard symbol organization.

Of course this optimization cannot be applied to
transmissions in on-demand mode as clients will
arrive at any time while our optimization only ap-
plies at the very start of a session.
loss-free

7.2 Experimental Results,

transmissions

We carried out several experiments in which a
large (30MB) file is transmitted between two pow-
erful hosts using the opt_speed profile of FCAST
and ny; = 5. Each experiment is repeated 10 times
and we report the minimum/average/maximum
transmission duration and buffering requirements
in fig 20.

These figures show the high efficiency of this op-
timization on hosts capable of receiving at least ngy;
layers. With 6 layers it results in a 88,5% buffer-
ing space improvement and 33,6% reception time
improvement.

The efficiency is maximal for hosts receiving ex-
actly ny; layers as it is equivalent to the sequential
transmission of all objects. In that case:

e the reception time is close to the optimum:
file size/cumulative tz rate over ng layers
and represents a 48.4% improvement

e the buffering space is close to the object size —
instead of being close to the file size —. The av-
erage maximum buffering space is 757 kbytes,
a 96.7% improvement compared to the 21.8
MB required without this optimization

On hosts receiving fewer than n,; layers, the ef-
ficiency is lower as these hosts will miss some of
the data symbols in all objects transmitted in ad-
vance. But it still enables a reduction of the recep-
tion time as these hosts anyway need fewer FEC
symbols (and thus FEC decoding) and start recep-
tion earlier. A drawback is the need for (slightly)
more buffering space as all the objects are received
in parallel.

RR n°® 4411

File Transfer Duration (n/k = 4, n_al = 5, transm. on 6 layers)

%’T:\

240 - — : — T
without anticipated transmissions ---x---
220 - with anticipated transmissions & 9

200

< 180 | 4
g 160 .
3 140 LN R
E 1201 . g
[| e el i
& 100 &
= -
S gl]
E = S

60 Tz]

40 g s

20 L ‘ ‘ ‘

3 4 5 6

number of layers received

(a) Transfer duration

Maximum Buffer Space at the Receiver (n/k = 4, n_al = 5, 6 layers)

2.5e+07 T T T .
8
& .
& B B i %
2 2e+07 % ,
>
e 3
[}
5]
] .
& 1.5e+07 " J
5 .
=
3
Qo
] 1e+07 . i
E .
g
E .
£ 5e+06 - k o
£
without anticipated tx ———x-—- I
with anticipated tx & e -
0 . - L
3 4 5 6

number of layers received

(b) Maximum buffer space

Figure 20: Benefits of the anticipated transmission
optimization (30 MB file, FCAST in push mode,
opt_speed profile, no loss).

7.3 Experimental Results, lossy trans-
missions

In a second step we introduced random 1%/75%
bursty losses and compared the performances with
and without the anticipated transmission opti-
mization.

Table 3 shows that the reception time is almost
identical (0.33% penalty) with a slight (-9.2%) re-
duction of the maximum buffering size. It confirms
that this optimization does not affect the global ro-
bustness in front of losses.

16

V. Roca and B. Mordelet

Table 3: Impacts of the anticipated transmission optimization on robustness (30 MB file, FCAST in
push mode, opt_speed profile, bursty random 1%/75% losses).

min/aver/max space (Mbytes)

min/aver/maz duration (s)

without anticipated tx
with anticipated tx

22.22 / 22.58 / 23.00
19.64 / 20.50 / 22.05

333.83 / 387.88 / 438.35
334.52 / 389.18 / 445.52

8 Conclusions

This paper describes several schemes that we used
to design an efficient multicast file transfer tool,
FCAST, on top of ALC. We show how the Appli-
cation Level Framing (ALF) paradigm can be used
in this context to reduce the memory requirements
at a receiver and to hide computation behind com-
munications.

We also discuss the problem of object and sym-
bol scheduling on the various layers, assuming
there is no real-time constraint. We show that
the transmission of several objects (e.g. resulting
from an ALF version of FCAST) can be made sev-
eral orders of magnitude more efficient when using
an appropriate scheduling that randomly mixes all
the symbols of all the objects.

We also introduce a new way to assign symbols
to the various layers which improves reception effi-
ciency by reducing the probability of duplication.

All of these schemes have been implemented
and experiments carried out. A mathematical
model of the two symbol organizations is also pre-
sented. Our results lead us to define three profiles
to FCAST: one of them improves the reception
speed by hiding computation behind communica-
tions; another one reduces the maximum amount
of memory required by a receiver (we experienced
43 to 47% savings); and the third one is dedi-
cated to CPU bounded hosts (we experienced a
23% speedup in that case).

Finally we introduce an efficient optimization
for sessions in “push” mode where the source starts
sending symbols immediately, without waiting the
end of FEC calculation. The speedup and memory
savings can be respectively as high as 48.4% and
96.7% in optimal cases.

Last but not least the MCL MultiCast Library
implementing ALC and the FCAST tool are both
distributed under an Open Source / GNU GPL
license and are available on the author’s home page
[21].

Acknowledgments

The authors want to acknowledge Julien Labouré
who contributed to the design of FCAST and
MCL, Imad Aad for his help, and anonymous re-
viewers for their useful comments.

References

[1] S. Bhattacharyya and J. Kurose. Efficient multi-
cast flow control using multiple multicast groups.
In IEEE INFOCOM’98, February 1998.

[2] J. Byers, M. Frumin, G. Horn, M. Luby,
M. Mitzenmacher, A. Roetter, and W. Shaver.
Flid-dl: Congestion control for layered multicast.
In 2nd Workshop on Networked Group Communi-
cation (NGC2000), November 2000.

[3] J. Byers, M. Luby, and M. Mitzenmacher. Access-
ing multiple mirror sites in parallel: Using tornado
codes to speed up downloads. In IEEE INFO-
COM’99, March 1999.

[4] J. Byers, M. Luby, and M. Mitzenmacher. Fine-
grained layered multicast. In IEEE INFO-
COM’01, April 2001.

[5] J. Byers, M. Luby, M. Mitzenmacher, and
A. Rege. A digital fountain approach to reliable
distribution of bulk data. In ACM SIGCOMM’98,
August 1998.

[6] D. Clark and D. Tennenhouse. Architectural con-
siderations for a new generation of protocols. In
IEEE SIGCOMM’90, September 1990.

[7] M. Donahoo, M. Ammar, and E. Zegura.
Multiple-channel multicast scheduling for scalable
bulk-data transport. In IEEE INFOCOM’99,
March 1999.

[8] J. Gemmell, E. Schooler, and J. Gray. Fcast mul-
ticast file distribution. IEEFE Network, 14(1), Jan-
uary 2000.

[9] E.N. Guilbert. Capacity of a burst-noise channel.
Bell Systems technical journal, September 1960.

INRIA

Improving the Ljfictency of a Multicast Fite Lransfer 1ool basea on ALC

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

M. Luby, J. Gemmell, L. Vicisano, L. Rizzo,
and J. Crowcroft. Asynchronous Layered Cod-
ing (ALC) protocol instantiation, February 2002.
Work in Progress: <draft-ietf-rmt-pi-alc-06.txt>.

M. Luby, J. Gemmell, L. Vicisano, L. Rizzo,
J. Crowcroft, and B. Lueckenhoff. Asynchronous
Layered Coding (ALC): a massively scalable re-
liable multicast protocol, July 2000. Work in
Progress: <draft-ietf-rmt-pi-alc-01.txt>, now ob-
soleted.

M. Luby, J. Gemmell, L. Vicisano, L. Rizzo,
M. Handley, and J. Crowcroft. Layered Coding
Transport (LCT) building block, February 2002.
Work in Progress: <draft-ietf-rmt-bb-lct-04.txt>.

M. Luby, L. Vicisano, J. Gemmell, L. Rizzo,
M. Handley, and J. Crowcroft. Forward Error
Correction (FEC) building block, February 2002.
Work in Progress: <draft-ietf-rmt-bb-fec-06.txt>.

M. Luby, L. Vicisano, J. Gemmell, L. Rizzo,
M. Handley, and J. Crowcroft. The use of For-
ward Error Correction (FEC) in reliable multi-
cast, February 2002. Work in Progress: <draft-
ietf-rmt-info-fec-02.txt>.

M. Luby, L. Vicisano, and A. Haken. Reliable mul-
ticast tramsport building block: Layered Conges-
tion Control, November 2000. Work in Progress:
<draft-ietf-rmt-bb-lcc-00.txt>.

S. McCanne, V. Jacobson, and M. Vetterli.
Receiver-driven layered multicast. In ACM SIG-
COMM’96, October 1996.

L. Rizzo and L. Vicisano. Effective erasure codes
for reliable computer communication protocols.
ACM Computer Communication Review, 27(2),
April 1997.

L. Rizzo and L. Vicisano. Reliable multicast data
distribution protocol based on software fec tech-
niques. In Fourth IEEE Workshop on the Archi-
tecture and Implementation of High Performance
Communcation Systems (HPCS’97), Greece, June
1997.

V. Roca. Analysis of Several Scheduling Al-
gorithms for the Heterogeneous Multicast Dis-
tribution of Data Flows Generated on the Fly,
October 1999. unpublished work in progress,
http://www.inrialpes.fr /planete/people /roca/.

V. Roca. The MCL Multicast Li-
brary: Concepts, Architecture and
Use, March 2001. Work in Progress,

http://www.inrialpes.fr /planete/people/roca/.

V. Roca and J. Laboure. The MCL Uli-
brary: an implementation of the ALC/LCT

RR n°® 4411

[22]

[23]

A

//
//
//
//
//
//
//

protocols for scalable multicast distribution.
http://www.inrialpes.fr /planete /people/roca/mcl/.

L. Vicisano. Notes on a cumulative layered
organisation of data packets across multiple
streams with different rates. Research Note Note
RN/98/25, University College London (UCL),
May 1998.

L. Vicisano, L. Rizzo, and J. Crowcroft. Tcp-
like congestion control for layered multicast data
transfer. In IEEE INFOCOM’98, February 1998.

A Simple Algorithm for
Pseudo-Random Permuta-
tions

create a partially random permutation of
(1..n)

the probability for an element not to be
permuted is controlled by parameter 1
(i.e. permute one element out of 1).

NB: calling this function with 1==
creates a fully random permutation.

void

pseudorandom_permutation

(int *a, // in/out array
int n, // #elt in array
int 1)

int i, j, temp;
for (i = 0; i < n; i++)
ali] = 1i;
for (1 =0; i <n; 1i+=1) {

j = random() % n;
temp = alil;
alil = al[jl;
alj] = temp;

/<

Unité de recherche INRIA Rhéne-Alpes
655, avenue de I’Europe - 38330 Montbonnot-St-Martin (France)

Unité de recherche INRIA Lorraine : LORIA, Technop6le de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-les-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http://www.inria.fr

ISSN 0249-6399

