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Abstract: In this paper we compute the uplink capacity of power-control CDMA mobile
networks with an idealized power control, that contain best-effort type applications, i.e. ap-
plications whose transmission rate can be controlled. An arriving best-effort call is assumed
to have a fixed amount of traffic to send, so the transmission rate assigned to it determines
the duration of the call. We allow for multi-services (so that mobile stations have different
quality of service requirements). Unlike some previous published work where soft blocking was
considered (and the system was thus allowed to operate beyond capacity), we assume that a
call admission mechanism is implemented in order to prevent a new call to arrive when the
system is already saturated. This guarantees the quality of service of ongoing calls.
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Capacité de réseaux cellulaires CDMA multi-services avec des
applications de type "best effort"

Résumé : Dans cet article nous calculons la capacité du lien montant de systémes CDMA
avec controdle de puissance idéalisé qui contiennent des applications de type "best-effort", c’est
& dire des applications dont le taux de transmission peut étre contrélé. Un appel de type "best
effort" qui arrive est supposé avoir une quantité fixe de trafic & transmettre, ce qui fait que
le débit de transmission qui lui est alloué détermine la durée de cet appel. Nous permettons
une variété de services (et donc des terminaux mobiles peuvent avoir des qualités requises de
services différentes). Contrairement & certains travaux publiés ou le systéme peut fonctionner
méme quand la capacité est dépassée, nous supposons qu’un contrdle d’accés est exercé afin
d’empécher un nouvel appel d’arriver quand le systéme est saturé. Cela garantie la qualité de
service des appels en cours.

Mots-clés : Reéseaux cellulaires, UMTS, capacité, allocation de débit
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4 E. Altman

1 Introduction

The traditional way to define capacity has been to ask "how many calls can a system handle".
Various definitions have been used. The Erlang capacity which has been used in telephony
networks is a probabilistic definition, it specifies the arrival rate of calls that the system can
allow so that the probability of blocking of an arrival is lower than some threshold. Another
version of this definition has been introduced in [13] for the wireless context where the capacity
is taken to be the rate of calls that the system can allow so that the probability that the quality
of service is not attained is sufficiently small; here calls are not blocked when exceeding the
limit of the system to provide the required quality of service. In the above definitions, the
transmission rate used by a call is a fixed constant which may be class dependent.

Third generation wireless networks allow for multimedia applications and new services
are proposed, in particular file transfers, Internet browsing and electronic mail. These non-
interactive applications are less sensitive to the assigned throughput. We could consider them
as part of a best-effort service in which the transmission rate can be assigned by the base-
station (possibly according to the congestion state of the system). For a given rate of arrival of
best-effort sessions, or calls, the capacity of the system will depend on the assigned throughput.
However, we assume that the total volume V; of traffic created by an application s does not
depend on the assigned traffic. The duration that this session will be present and will occupy
network resources is Vs /R(s) where R(s) is its assigned transmission rate. We assume that the
power control is such that the energy per bit of the best-effort application s does not depend
on its transmission rate.

Adding this new flexibility of transmission rate assignment, the capacity of best-effort ap-
plications can now be defined as the number of sessions that the network can handle assuming
the "best possible" assignment of transmission rates. We shall also consider the case of a
system with both best-effort calls as well as Real-Time (RT) applications whose throughput
is fixed and is not controlled.

We do not take into considerations the effects of imperfect power control that have already
been considered in many previous papers, see e.g. [2, 13]: we assume that power control is
instantaneous and we ignore saturation phenomena that impose in practice a maximum on
the transmitted power of a mobile. Our results can thus serve as optimistic bounds on actual
capacity. We restrict to a single cell for which we obtain an explicit expression for the capacity
of best-effort traffic. We further study combination of best-effort with real-time (non best-
effort) call classes. We finally discuss briefly the extensions to the multi-cell case.

The paper is structured as follows. We begin by presenting at section 2 known concepts of
capacity as well as a new concept adapted for best-effort classes. We also show in this section
that the capacity of a homogeneous system increases when throughputs are slowed down. We
then compute the best-effort capacity at Section 3 which is related to Erlang capacity with
very low input transmission rates. We proceed in Section 4 to study a system containing both
real-time as well as best-effort call classes. We discuss the multi-cell case in Section 5. We
conclude with a section that presents some perspectives and conclusions.

2 Definition of capacities

We begin by introducing capacity notions for a fixed transmission rate assignment.

INRIA



Capacity of CDMA Cellular Networks 5

2.1 The case of a fixed number of mobiles

Consider uplink power control of a multi-service CDMA system. Consider an arbitrary sector
within some arbitrary cell.

We consider a set K = {1,...,k} of best-effort service classes. Example of best-effort
applications are file transfers, voice mails, fax.

Let M(s) be the number of ongoing calls of class s which are active, and let M =
(M(1),...,M(k)) be the vector of number of active mobiles.

We assume that when a fixed vector M is given, the following standard equation [6] is used
to determine the power P(s) that should be received at the base station from mobile s € K

P(s)
N + Ioum + Iother - P(S)

=A(s), s=1,...k (1)

where NN is background noise, I, is the total power received from mobiles within the con-
sidered sector, and e is the total power received from mobiles within other sectors and
other cells. A(s) is the target ratio of the received power from mobile of class s to the total
interference energy received at the base station, and is given by

R(s).

Here, E(s) is the energy corresponding to a transmitted bit of type s, N, is the thermal noise
density, W is the spread-spectrum bandwidth and R(s) is the transmission rate (in bits/s) of
class s service.

We have
Iown = ZM(])P(]) (2)

Note that the required quality of service reflected through A(s) is not only a function of
the application but also depends on the transport layer. For example, to achieve a reliable file
transfer, typically TCP/IP protocol is used at the transport layer which can support packet
losses (due to errors or to congestion) of a few percent by resorting to retransmission of lost
packets. The same application may thus be transmitted using different levels of power per
bit (which would correspond to different classes in our modeling) depending on the transport
protocols used.

To model inter-cell interference we make the standard simplifying assumption [6] that

Iother =1 X Iown (3)

for some given constant ¢ which is obtained from measurements.
We shall find it more useful to rewrite (1) as

P(s) A(s
=A h A = 7 =\
N + Io'w'n + Iothe'r (8)’ where (8) 1 + A(S) 1 — A(S)’

s =1,...,k. Solving the set of k equations (4) yields

_ NA(s)
1= (148 X5, M(HAG)

P(s)

RR n°® 4392



6 E. Altman

(The solution is in particular simple to obtain, since by multiplying the left side of (4) by
M (s) and summing over s we get a single equation with the single unknown Z§:1 M(5)P(j).
This then provides immediately the values of all the P(s).)

The pole capacity of the system can be defined as the polyhedron M* of vectors M that
make the denominator of (5) vanish. It is thus given by

k
M*={M:1=(1+i)) M({AG)}
j=1

We say that M; < My (in the Pareto sense) if M;(j) < Ms(j) for all j =1, ..., k, with strict
inequality for at least one j. It is easily seen that the solution P(s) of (5) is finite if and only
if M < m for some m € M*.

We may slightly change the above definition so as to take into account that M(j) are in
practice integer numbers (M belongs to NF).

Definition 1. Let M be the finite subset of N* for which 1 > (1+1) Zle M(5)A(7), and let

k
n=max(1+i) Y m(j)AQ)- (6)

j=1
We define the Integer Capacity Mp of the system as the boundary of M for which any addi-
tional call would result in an infinite power assignment in (5), or equivalently the set of M’s

for which
n= 1+ MGAG).

j=1
Remark 1. We note that the power corresponding to one service is finite in (5) if and only
if it is finite for all services. Thus if a call admission control is not used to avoid exceeding
the Integer Capacity of the system then the result is harmful not only for the call accepted
beyond capacity but also for all other ongoing calls.

We conclude with another useful definition.

Definition 2. The blocking set M% of class j € K 1is defined as the subset of M for which
another call from class j cannot be accepted, i.e. m € MY if and only if m € M and m+e; ¢
M, where e; is the unit vector in direction j.

2.2 Random number of mobiles: a single cell

We consider the case of a single isolated cell consisting of a single sector (i.e. i = 0).

We now make standard statistical assumptions on the calls [13]. Calls of class s arrive
according to a Poisson process with intensity As, and their duration is exponentially distributed
with parameter us. Denote A = A;. Let p(s) := Ag/us be the load of class s calls. At this
point we assume that all calls are always active.

Remark 2. If this were not the case and a call of class s were active with probability ps, our
model could still be useful if we focus on the process of arrival of active periods of calls, and
assume that it can be modeled as an M/M/S/S system. Note that in that case, the blocking
events will correspond to blocking of an active period rather than of the whole session. An
example of a best-effort application with activity and inactivity periods is the HTTP1.1 [7].

INRIA



Capacity of CDMA Cellular Networks 7

We note that the vector of number of calls is an irreducible ergodic finite Markov chain
whose state space is given by M. Let m,(M) denote the steady state probability of this
Markov chain.

Extending the definition of Erlang capacity to our multi-service case we have:

Definition 3. Define the Erlang capacity EC(¢) as the set of vectors p = (p(1), ..., p(k)) such
that the corresponding blocking probability Pg(p) is smaller than a given e.

The Erlang capacity is thus a set instead of a single constant.
Theorem 1. The steady state probabilities of the Markov chain are given by

M(s m(s)

p( GHp , M € M, where G, = ZHp (7)

meEM s=1

The probability Py,(p) that an arriving call of class s is blocked and the average global blocking
probability Pp(p) are given by

Php) = Y mlm). Polp) =0 2P

meMyG s=1

Proof. The Markov chain has the same structure as that used in multiclass loss systems
[5, 9] without power control, in which there is a set K of classes of calls with the same
distribution of arrivals and durations of calls as in our case, in which there is a total given
bandwidth of 5 units, and in which class i € K requires an amount A(7) of bandwidth. We
thus interpret the target ratios A(i) as bandwidth requirement in the equivalent loss model and
obtain the steady state probabilities. Since the arrival processes are Poisson, the distribution
upon arrival equals to the steady state distribution (the so called PASTA property, see e.g.
[14]), which provides the formulas for the blocking probabilities. 1

2.3 The homogeneous case

In order to illustrate the impact of transmission rates on capacity, we introduce the special
case in which all classes have a common value of A = A(s), s =1,...,k. The arrival process
of calls of class s is Poisson with parameter A\; as before, yet the call duration distribution
of a class s call may have a general distribution G, with mean p;!. The system evolution is
equivalent to that of a single class with arrival rate of A = Z?:l Aj and where the distribution
of the duration of an arrival, G, is according to G with probability A;. Thus the expected

duration of the arrival is p~! = Zf 1 ’\TJ uj_l We can thus define the load of the system as

p= % =Yk ;=1 p(j)- The integer capacity of the system is given by
Mp=max{m € N:mA <1} =[A1] -1
where [z] is the smallest integer greater than or equal to x. Due to the general distribution

of the duration of calls, the process of number of calls in the system, taking values in M =
{1,..., Mp} is no more a Markov chain. Still we have the following:

RR n°® 4392



8 E. Altman

Theorem 2. The steady state probabilities of the Markov chain are given by

pM /M!
> mem PM/mY

The probability that an arriving call of class s is blocked does not depend on s and is given by
Pp(p) = mp(Mp).

Proof. Similar to the proof of Theorem 1. The process of number of calls has the same
structure as that used in loss systems [5, 9] without power control, in which there is a total
given bandwidth of Mp and in which each call requires an amount of one unit bandwidth.
In this equivalent system, the steady state distribution is known to be insensitive to the call
duration distribution (it only depends on its expectation), see [11]. Since the arrival processes
are Poisson, the distribution upon arrival equals to the steady state distribution (the so called
PASTA property, see e.g. [14]), which provides the formulas for the blocking probabilities. g

(M) = M e M.

Remark 3. One can even further relax the statistical assumptions under which Theorem 2
holds, by allowing the call durations to be general stationary ergodic. This means that the
duration of successive calls need not be independent. The Theorem then follows from the
insensitivity result of [3]. Dependence between durations of successive calls may be useful
especially when a call represents in fact an active period rather than a whole connection.
For example, a single HTML application may contain several successive file transfers whose
durations may be correlated.

We shall assume below that A~! (or equivalently A~') is an integer. We show the impact of
the assigned throughput. Assume that all classes are best-effort. Keeping the same value E(s)
of energy per bit for all classes, we slow the transmission rate of all classes by dividing them
by a constant a > 1. In other words, we replace R(s) by R*(s) = R(s)/a. As a consequence
A as well as the call durations are divided by a. Hence with the slower transmission rates
we get a new load p, = pa and a new integer capacity of Mp, = [a/A] — 1. Note that for
integer values of A~! and a we have

Mpq=[a/A]—1= [(a+A)/A] —1=0a/A =aMp. (8)
The steady state probabilities for the new system are
M
ap M!
i) = 0

S (apym /m!

Next we show the influence of a on the blocking probability and the Erlang capacity.

M=0,..,Mpg,.

Theorem 3. As a increases, the blocking probability decreases.

Proof: Let X be the state (global number of calls) of the initial system and Y the state of the
new one. Define Z = max(0,Y — Mp, + Mp). Thus Z takes values in {0,1,..., Mp}. For a
random variable V' defined on M we define ry(0) = 0, and ry(m) = P(V =m —1)/P(V =
m),m =1,.... Mp. We have for m > 0

a— Al - A7t —1)/A
rx(m) =", rz(m)= mt Mo = Mp _ mt [o/A] > mt (1)
p ap ap ap

INRIA



Capacity of CDMA Cellular Networks 9

Thus
(a—1)(m — A~
ap
It then follows (see [10] and references therein) that Z <, X or equivalently E[f(Z)] <
E[f(X)] for any nondecreasing function f. In particular, by taking f to be the indicator
f(z) = 1{x = Mp} we conclude that P(X = Mp) > P(Z = M) = P(Y = Mp,) from
which we conclude that the blocking at the original system indeed has greater probability than
in the system a. I
Note: if we consider the homogeneous case as an equivalent system with a single class (as
in the first paragraph of the section), then the fact that the blocking probability decreases
with a implies that the Erlang capacity of the one-dimensional system increases (we use the
fact that for fixed a, the blocking probability increases with the input rate, see [10, 8|).

rx —rz(m) < <0.

2.4 Best-effort Capacity

We now define the capacity in systems with best-effort applications. To motivate our defi-
nition, we go back to the homogeneous model of Subsection 2.3. We showed there that the
blocking probability decreases as the transmission rate decreases. We now show through a
simple calculation that if p < Mp then the blocking probability tends to zero as a tends to
infinity. This will then motivate us to introduce a definition of capacity which, in contrast to
the Erlang capacity, does not depend on a given parameter e. It will be more related to the
Shannon capacity concept.

Theorem 4. Consider the homogeneous system introduced in Subsection 2.3, and let p < Mp.
Then the blocking probability tends to zero as a tends to infinity.

Proof. Choose any € > 0, and choose m > max(1/e, Mp). Denote no(e) = m/(Mp — p).
We have for any integer a > nyg.

pu " [Mpal _ (ap)MPe[(Mpa)!

S A T S m(an)i !
_ (MB,a(MB,a —1)(Mpa—2)---(Mpa—m)
(ap)™
MpoaMpa—1)(Mp,—2 MpBosMp,—1 Mpa -1
B.a(MB, 3)( B, )+ B,(B2, )+ B,+1>
(ap) (ap) ap
(MB(MB—%)(MB—%)'“(MB—%)
pm
Mp(Mp — 1Y (Mp —2)  Mp(Mp -1 -1
B(Mp pg)( B a)_|_ B(p2B a)_l_/\/;B_H)

Py =

1
< —<e
m

_l.

The last equality follows from (8). The inequality before the last follows since for any 0 < j <
m and a > ng(e) we have Mp — j/a > p. This establishes the proof. 1

Remark 4. Note that the above proof shows that for any given ¢, if we slow down the
transmission rates by a factor larger than ng(e) then the blocking probability is smaller than
the given €. An alternative simpler proof that does not give a bound on rate of convergence

RR n°® 4392



10 E. Altman

is as follows. Let Y (a) be a Poisson random variable with parameter ap. Then

)= Msa) P(Y(a)/a - MB)
P(Y(a) < Mpa) P(Y(a)/a < Mp)

~
)~<
S

(9)

(where we use (8)). Let Y, s = 1,...,a be i.i.d. Poisson random variables with parameter p.
Then Y (a) has the same distribution as ) ;_; Y5. Due to the strong law of Large numbers,
Y (a)/a converges P-almost surely to its expectation, p, as a — oo. Since p < Mp, this
implies that the enumerator of (9) converges to zero and the denominator to 1 as a — oo,
which establishes the proof.

In order to define the best-effort capacity, we need some more definitions. Consider a
system where all k classes are best-effort classes, where the amount of data that a call of class
s has to transmit has an exponentially distributed size with parameter ((s) (its expected size is
1/¢(s)) and the arrival rates of calls of the classes are given by the vector A = (A(1), ..., A(k)).
Let the assigned transmission rate of class s calls be R(s), and denote R = (R(1), ..., R(k)).
Then the transmission time of class s is an exponentially distributed random variable with
parameter u(s) = R(s)((s) (the expected call duration is thus (((s)R(s))™!). Define the
utilization density v(s) = A(s)/¢(s), and define the vector v = (v(1), ..., v(k)). Define

6(s) = Jpy, 5 that A(s) = R(s)5(s) and A(s) = %

and let 6 = (6(1), ..., 8(k)).

Definition 4. Consider the system described above with a given 6. Define the BE (best-effort)
capacity as the supremum of the set of vectors v = (v(1),...,v(k)) for which for any € > 0,
there exists a vector R = (R(1), ..., R(k)) of transmission rates such that P§(v,R) < € for all
s=1,...,k!

Numerical Example: Consider a homogeneous system as described in Section 2.3, that
handles best-effort sources and offers them a high-speed connection, i.e. a large transmission
rate of R = 160K B/sec (i.e. 1.28 Mbps). Let A = 0.199 so that the system is dimensioned
such that its integer capacity is 5, i.e. no more than 5 calls can be simultaneously handled.
Assume that the average amount of information (e.g. the average file size) of a connection
is 10KB (the average size of files transfered on the Internet is known to be between 8-12
KB, see [12] and references therein). The average duration needed for handling a session is

-1 _ __10KB __ _ B
u - m = 62.4msec, and n= 16.03.

Assume that we wish that the blocking probability be inferior to 1%. Using Theorem 2
we see that the Erlang capacity of the system is p = 1.361, which means that for having at
most 1% of losses the rate of arrival of sessions should be limited to A = pu = 21.8 calls per
second.

Table 1 shows the gain by slowing the transmission rates by a factor of a. For each a it
gives the Erlang Capacity EC(1%) as well as the rate A of arriving calls that the system can
handle without exceeding 1% of blocking. In particular, we see that we double the capacity

!The supremum is taken in the Pareto sense, i.e. a vector n belongs to a supremum set satisfying a property,
if there is no other vector larger (in the Pareto sense) than n which satisfies that property, and if for any ¢ > 0
there exists a vector v satisfying the property such that v(s) > n(s) — € for all s =1, ..., k.

INRIA



Capacity of CDMA Cellular Networks 11

Slowing factor a 1 2 3 4 5 6 20
A 0.199 0.110 0.0764 0.0583 0.0473 0.0398 0.0122
A 0.248 0.124 0.0827 0.0620 0.0497 0.0414 0.0124
Mp.a 5 9 13 17 21 25 81
Erlang Cap. EC(1%) 1.361 1.891 2.202 2413 2.568 2.688 3.315
Arrival rate A 21.8 303 3529 38.67 41.15 43.08 53.13
Average call duration in msec | 62.4 124.8 187.2  249.6 312 374 1248
Gain in % 0 43.7 674 83.4 95 104 144

Table 1: Gain in Erlang capacity by slowing transmission rates by a factor of a

by slowing the transmission rates by a factor of around five. This could indicate that among
connections that have the same volume of information to transmit, connections that are five
time slower use half of the effective amount of resources than the others. Hence if we were to
assign prices per volume of information transmitted as well as of the speed transmitted, the
slower connections could be priced the half per transmitted volume than the original ones.
The Best-effort capacity for this problem is p = 5.

3 Computing the BE capacity

Our main result is the following.

Theorem 5. The BE Capacity of the system (with Poisson arrivals with rate vector A\ and
with sizes of calls exponentially distributed with (vector) parameter () is given by the set of v
satisfying

Zz/(s)é(s) =1 (10)

s=1

The proof is based on two parts.

Lemma 1. If v satisfies Zle v(s)6(s) > 1 then the blocking probabilities Pj(R) for classes
s =1,...,k satisfy for any R

D Ppo(s)v(s) > > 8(s)v(s) — 1> 0.

Proof. Assume that for some v, Zle v(s)6(s) > 1. Choose an arbitrary R. Define the
following random processes, taken to be right continuous with left limits:
M;(s):= the number of s-type calls at time ¢,
Ay(s):= the number of arrivals of s-type calls till time ¢,
Dy(s):= the number of s-type calls that ended till time ¢,
By (s):= the number of s-type calls that have been blocked by time ¢.
Then we have
Mt(S) = M()(S) + At(s) - Dt(S) - Bt(S). (11)

Let u(s) = R(s)((s). Note that at time ¢, the departure rate of class s has a stochastic
intensity of M;(s)u(s). The loss rate of class s calls at time ¢ is given by A(s)Pp(t) where

RR n°® 4392



12 E. Altman

P4, (t) is the probability that an arriving call of type s is blocked at time ¢, i.e. that M, € M3%.
Differentiating (11) and taking expectations we thus obtain

dE[M;(s)]
dt

The process M; being a finite irreducible Markov chain, converges to a steady state distribu-
tion, for which the expected time derivative vanishes above. Multiplying (12) by é(s)/((s),
taking the sum over the k classes and omitting ¢ from the notation (to indicate that we are
at steady state), we obtain

= A(s) — u(s)E[M;(s)] — A(s) Pp(t). (12)

k k

k
S PEs(s)u(s) = ((5(3)1/(3) - A(S)E[M(s)]) >3 8(s)u(s) - 1
s=1 s=1 s=1

which establishes the proof. (We used the fact that 6(s)u(s)/¢(s) = A(s) > A(s) and that
> s A(s)M(s) cannot exceed 1.) i

The above Lemma gives a lower bound on the blocking probability when %, v(s)8(s) >
1. For the homogeneous case this gives, in particular,

S (s)v(s) 1
351 (s)v(s)

Next, we make the following observation on the way A(s) scales with a. We have for a > 1,
A X -1 -1
A(S)zAa(s):Lf):(hLﬂ ) 21(1+~1 ) _ Al (13)

a a—+ A(s) A(s) a A(s) a

Lemma 2. Consider the system with fixed vectors 6 and v, and with an arbitrary given rate
vector R with positive components. Assume that S °_, v(s)6(s) < 1. Then the limit as a — oo
of the blocking probability when R is divided by a is zero.

Pp >

Proof. Let Y; be independent Poisson random variables with parameters p(s), s = 1, ..., k,
and let Z = Z?Zl A(j)Y;. Then the steady state probabilities (7) can be rewritten as

H?:l P(Y; = M)
M) ==z <

M e M,

where 7 is given in (6). Then the blocking probability satisfies
P(Z>1-A(s) P(Z>1-A()

Pi(p) < = . 14
500) S =Pz <) 1-P(Z>1) (14)
Next we use Chebycheff bound for Z; for any positive real numbers a and 8 we have:
Elexp(82)]
P(Z>a) < ————=. 15
( ) exp(fa) (15)

We recall that the PGF of the Poisson random variable Y, is given by E[£Y*] = exp(p(s)(£—1)).
It then follows that

k

Elexp(82)] = [ B [exp (8A()Y3)] = oo (p(s)(exp[BA(s)] - 1)).
s=1

s=1

INRIA



Capacity of CDMA Cellular Networks 13

Choose an arbitrarily small € > 0 and let 3 > 0 be such that exp[BA(s)] — 1 < BA(s)(1 + ¢).
Then we obtain for (15):

P(Z > a) <exp (B[(1+¢) ijmsm(s) ~a]).
Thus
exp (B[(1+€) Sh_, p(5)A(s) = 1+ A(s)] )

1—exp (B[(1+ ) D5, p(9)As) — 1])

We now divide all transmission rates by a > 1.
Then the new bound derived from (16) for the blocking probabilities is obtained by defining
= Z§:1 A(§)Yj(a) where Y;(a) have Poisson distributions with parameters ap(s). We
obtain

(16)

Pg(p) <

exp (B[a{(1+) Xk ap(s)Aals) — 1} + Aa<s>])
1= exp (Ba[(1+ ) D5y ap(s)Aals) — 1]

exp (B[a{(1+ ) T8 p(5)A(s) — 1} + A(s)]

L—exp (fa|(1+ ) L5, p(s)A(s) ~ 1))

where the last inequality follows from (13). Condition (10) implies that (14-¢) Zle p(s)A(s)—
1 < 0 for all € sufficiently small, which implies that Py, , tends to zero as a — oo. I

Pg.(p) <

S——

(17)

Remark 5. Note that the above proof provides also a bound on the rate of convergence of
the BE to 0 as a — oco. A more direct proof that does not provide a rate of convergence can
be proposed by extending the approach in Remark 4.

4 Combined real-time and best-effort applications

We consider ¢ BE classes enumerated by 1, ..., £ and a set of real-time classes: /41, ..., k. This
means that we are only able to slow down the throughputs of best-effort traffic in order to
improve the capacity of the system.?

For each parameter a one can use (7) for computing blocking probabilities and use it then
to compute the capacity. However, pursuing our approach from previous sections we proceed
to compute the limiting behavior of the system as the throughput assigned to best-effort classes
is slowed down. We shall show that slowing the throughputs of best-effort traffic improves
their performance.

Unlike the case of best-effort traffic only, we cannot expect the global blocking probabilities
to vanish as transmission rates of best-effort traffic are slowed down for any values of §(s) and

In practice also video and voice applications may be transmitted with a lower throughput using various
compression mechanisms. We do not treat this possibility here, we already assume that if different possible
throughputs are available for the real-time traffic then the ones used correspond to the required quality of these
applications (of course larger compression rates result in lower quality). Note that slowing the throughput of
real-time applications by a factor of a does not result in a longer call duration (unless the call has such a bad
quality that speakers have to repeat entire phrases. This is not an interesting case from a system design point
of view).

RR n°® 4392



14 E. Altman

((s), as long as there is positive probability of arrivals of real-time traffic. Yet we shall show
that for a given set of parameters of best-effort calls, their blocking probabilities can be made
arbitrarily small by slowing sufficiently their transmission rate.

Theorem 6. If Z§:1 v(j)6(3) > 1 then at steady state, all RT calls are blocked, and the
system is thus equivalent to one with no RT traffic.
(1) Assume that Z§:1 v(7)6(j) < 1. Define

l k
M ={(m(l +1),...m(k) : Y_v(i6(G) + Y AG)m(j) <1},
7=1 Jj=0+1
~ ~ Y/ k
Mg = {(m(l +1),....m(k)) € M: > v(i)5G) + Y Alj)m(j) > 1 - A(s)}.
Jj=1 J=t+1

(2) Assume that for all s =(+1,....k and for all m € /\;ISB we have

l k
> v(iEG) + D AG)m() > 1 - Afs). (18)

j=1 Jj={+1

Then the limiting steady-state and blocking probability of a real-time class are given by Theorem
1 where M s replaced by M, M3 by ./\/lB and where we restrict summations to classes
L+ 1,....k. The limiting blocking probabilities of all BE classes are zero as a — 0.

Proof. Let Y; be independent Poisson random variables with parameters ap(s) for s = 1, and
with parameter p(s),s = ¢+ 1,...k. Denote

k
Z(a) =Y Au(s)Ys+ D A(s)Y,

s=1 s=0+1

Then the blocking probability Pp , of a RT class s when transmission rates of BE calls are
slowed down by an integer a > 1 is given by
P(1—-A(s) < Z(a

(s) <Z(a) <1)
P(Z(a) < 1) ' (19)

S —
PB,a_

Define Y7 to be independent Poisson variables with parameter p(s), 7 = 1,...,a. Then Y
has the same distribution as > 7 ; Y/, s = 1,...,{. Now, the strong law of large numbers
implies that Y .»_, Y] /a converges in distribution to the constant p(s), s = 1,...,£. Since
limg o0 ala(s)/A(s) = 1, Z(a) converges weakly to Z as a — oo, where

l k
Z:=> 8(s)v(s)+ Y A(s)Y.
s=1

s={+1

Define the sets 417 = [1 — A(s),1), A2 = [0, ) (19) implies that P(Z = 1) = P(Z =

1—A(s)) = 0. Moreover, obviously P(Z = 0) = 0. It then follows by Portmanteau’s Theorem
[1, p. 11],
lim P(Z(a) € Al) = P(Z € Al), lim P(Z(a) S AQ) = P(Z S AQ)

INRIA
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Then the enumerator of (19) converges to P(Z € A;) and the denominator of (19) converges
to P(Z € Ay). Thus

ppe PO 80)rG) = AG) S Y AG)Ys < 1= 35, 6G)v()
e POy AG)Y; < 1- 50, 60)017)

P(Y € M)

PY M)

The last expression coincides with blocking probabilities of equivalent loss systems from [5, 9]
with the & — ¢ classes that correspond to RT traffic. Thus this expression can be identified
with the probabilities stated in the theorem.

We see that if Zle v(s)6(s) > 1 then all real-traffic is blocked at steady-state. The system
is thus equivalent to one with no RT traffic, and we can use Lemma 1 to show that BE traffic
will suffer a positive loss rate.

Assume now that 33°_, v(s)6(s) < 1. There is some € > 0 such that

k ¢
ali_)rgO P(A3) =0 where A= {(mg+1, ey M) Z A(s)m(s) >1+4+¢€— ZV(S)(S(S)} .
s=l+1 s=1

Hence by taking large a, the probability of A3 can be made arbitrarily small. Moreover, due
to the strong law of large numbers, also

P(Z}M@MM@>2}@W$+%

s=1

can be made arbitrarily small. Hence the blocking probability of BE converges indeed to 0 as
a — oo since for BE traffic to be blocked at the system a we need to have

l k
D AuMo+ Y A(IM, 21— Au(s), s=1,...¢
s=1 s=L+1
and since lim,_, o aA,(s)/A(s) = 1. 1

5 The multi-cell case

We briefly discuss here a method for approximating the capacity for the multi-cell case using
a mean field approximation.

5.1 Blocking probability for the multi-cell case

Our approach is inspired by the approximation used for computing the pole capacity [6] for
the multi-cell case, which we already mentioned at (5). We assume a symmetric system of
cells. In our stochastic framework of Poisson arrivals of calls and exponential call duration,
it is not reasonable to expect that (3) holds at each moment. Instead, we assume that it
holds in expectation: E[l,ther] = @ X E[lown). The mean field approximation amounts on
further assuming that the instantaneous interference from other cells is replaced by its average:
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16 E. Altman

Lother = @ X E[I,un]. We then get instead of (5) the relation for the (random) power of type s
call:

NA(s)
1= Y05 M(G)AG) - Q

where Q = iZ?Zl E[M(j)]A(j) (the randomness comes since here, M is a random variable).

For each fixed value of @ (possibly different than i2§:1 E[M(j)]A(j)), we can obtain the
probability distribution of M(s),s = 1,...,k (under the assumption that calls of class s are
blocked whenever the denominator of (20) would vanish or become negative if the call were
accepted). More precisely, define M(q) as the set of M for which the assigned power according

o0 (20) (with a general parameter ¢ replacing @) is finite, and let M%(q) be the blocking set
of class s, i.e.

P(s) = (20)

k
M(g) = {(m(1), )2 D AGmG) <1-a},

<.
Il
—

Mz(g) = {(m@1),...m(k)) e M: A(y ) >1—q— A(s)}.

Mw

J=1

Using the same arguments as those used to derive Theorem 1, we conclude that the steady
state probabilities 7,(M,¢) (for the given parameter ¢) of M is given by (7), where M is
replaced by M(q); the blocking probabilities are also obtained as in Theorem 1. Denote by
E, the expectation operator that corresponds to the probability measure 7,(M, g).
Define F(q) = ZZ] 1 Eq[M(5)]A(j). We can characterize @ as the solution of the fixed
point equation:
¢ =F(o). 1)

Note that F(q) is in fact piecewize constant in ¢, and has thus discontinuities. This implies
that (21) need not have a solution. However, the set of values of ¢ for which a solution to (21)
does not exist has Lebesgue measure zero. In other words, a slight change in the value of ¢
will yield a solution.

F(q) is nonincreasing in ¢ which implies uniqueness of the solution to (21). Indeed, let
X(¢) = 32F_, A(s)M(s) in system ¢. Define 7,(0) = 0, and ro(m) = P,(X =m —1)/Py(X =
m), m € M(q). The for g1 < ¢2 we have rq1(m) = rga(m) for all m € M(q2). It then
follows from the point 1 after Theorem 3 in [10] that Eq1[X] > Eg[X] which establishes the
monotonicity.

5.2 Best-effort capacity for the multi-cell case

Using the above approach, one can now establish the following using similar steps as in Section
3:

Theorem 7. The BE Capacity of the multi-cell system (with Poisson arrivals with rate vector
A and with sizes of calls exponentially distributed with (vector) parameter () is given by the
set of v satisfying

M;r

(1T+2)) v (22)

s=1
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6 Concluding comments and perspectives

We have studied in this paper the capacity of CDMA systems that handles best-effort traffic
whose transmission rate can be determined by the network. We assumed perfect power control
which allowed us to obtain explicit expressions for the capacity of the network. It was shown
that capacity is in fact approached by slowing transmission rates of best-effort traffic. In
practice, of course, power control is not ideal, and moreover, close loop power control is
typically not implemented for packet transmissions. One reason for that is that the time it
takes to transmit a packet may be too short for a feedback control to converge, given that close
loop power control is updated around 1500 times per second. However, our findings suggest
that the system capacity can be improved by slowing transmission rates. This would make
the transmission duration of best-effort traffic longer, which might make closed-loop power
control more appropriate. Still, one could possibly restrict our approach to those best-effort
applications that are sufficiently long (fax, long file transfers, voice-mail).

The BE capacity which we defined here was established by a scaling of the system in which
transmission rates were slowed down by a factor a, and consequently, the energy per bit was
unchanged, and consequently the integer-capacity of the system grew linearly in a. Arrival
rate of calls, as well as the amount of information to be transmitted were not affected by this
scaling. We should mention that an equivalent scaling has been studied in the context of loss
systems (without power control) in which the call durations were not changed, the capacity
increased by a as well as the arrival rates, see [5, 4]. By taking the limit as a grows to infinity,
the trajectories of the system has been shown in [4] to converge to some fluid model.

Throughout our paper, best-effort calls of a given class were assumed to have pre-determined
transmission rates (and the question was how to determine them). In other networking con-
texts, one further allows the instantaneous transmission rates to vary for best-effort appli-
cations, see for example the ABR (Available Bit Rate) class in ATM networks, or the TCP
congestion control in the Internet. We could also consider this additional feature in wireless
networks offering integrated services, in order to better use the resources: at low congestion
periods we could allow for larger throughputs of best-effort classes which would reduce the
duration of such calls. Even within the duration of a call one could consider varying the
throughput (especially to avoid dropping of calls). We shall pursue these research directions
in the future.
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