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Abstract: For over a decade, the Nash bargaining solution (NBS) concept from cooperative game
theory has been used in networks as a concept that allows one to share resources fairly. Due to its
many appealing properties, it has recently been used for assigning bandwidth in a general topology
network between applications that have linear utilities. In this paper, we use this concept for the
bandwidth allocation between applications with general concave utilities. We study the impact of
concavity on the allocation and present computational methods for obtaining fair allocations in a
general topology, based on a dual Lagrangian approach and on Semi-Definite Programming.
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La notion d’équité dans ’allocation de bande passante

Résumé : Le concept de Nash Bargaining Solution (NBS), né de la théorie des jeux coopératifs,
est utilisé depuis plus de dix ans dans les réseaux pour permettre le partage équitable des ressources.
Gréace a ses propriétés intéressantes, il a récemment été utilisé dans des problémes d’allocation de
bande passante dans des réseaux aux topologies quelconques ol se cotoient des applications aux
fonctions d’utilité linéaires. Dans cet article, nous utilisons le NBS dans le cadre de l’allocation
de bande passante entre des applications aux fonctions d’utilités concaves quelconques, étudions
I'impact de la concavité sur 1’allocation et présentons des méthodes calculatoires pour obtenir des
allocations équitables dans une topologie générale, basées sur une approche de dual Lagrangien et
de programmation semi-définie.

Mots-clés : équité, allocation de bande passante, Nash Bargaining
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1 Introduction

Fair bandwidth assignment has been one of the important challenging areas of research and devel-
opment in networks supporting elastic traffic. Indeed, Max-min fairness has been adopted by the
ATM forum for the Available Bit Rate (ABR) service of ATM [1]. Although the max-min fairness
has some optimality properties (Pareto optimality), it has been argued that it favors too much
long connections and does not make efficient use of available bandwidth. In contrast, the concept
of proportional fairness (of the throughput assignment) has been proposed by Kelly [11, 7], which
gives rise to a more efficient solution in terms of network resources by providing more resources to
shorter connections. An assignment is proportionally fair if any change in the distribution of the
assigned rates would result in the sum of the proportional changes to be non-positive.

Although the object that is shared fairly seems to be a very specific one: the throughput, it
is shown in [11, 7] that in fact, the starting point for obtaining (weighted) proportional fairness
of the throughput can be a general (concave) utility function per connection; it is then shown
that a global minimization of (weighted) sum of these utilities leads to a weighted proportional fair
assignment of the throughput. As opposed to this approach, we wish to use a fairness concept which
is defined directly in terms of the utilities of users rather than in terms of the throughputs they are
assigned. Yet, as in weighted proportional fairness, it would be desirable to obtain this concept as
the solution of a utility maximization problem, since it makes it possible to use recent algorithms
for utility maximization in networks, along with decentralized implementations [10, 9, 12].

NBS is a natural framework that allows us to define and design fair assignment of bandwidth
between applications with different concave utilities and has already been used in networking prob-
lems [14, 8]. It is characterized by a set of axioms that are appealing in defining fairness. As already
recognized in [7] and later in [8], proportional fairness agrees with NBS in case that the object that
is shared fairly is the throughput (and the minimum required rate is zero). We use NBS to study
the fairness of an assignment where connection i has a concave utility over an interval [MR;, PR;].
It thus has a minimum rate requirement MR; and does not need more than PR;. Utility functions
with similar features have been identified in [17] for representing some real time applications such
as voice and video, and in the case that MR; = 0, for elastic traffic.

We study in this paper the way the concavity of the utilities affect the bandwidth assignment
according to NBS, as well as according to a generalized version of the proportional fairness (in
which the utilities that correspond to different assignments, instead of the throughputs, are fairly
allocated). Both notions are introduced in Sec. 2 and their properties are studied in Sec. 3. We
then propose in Sec. 4 a quadratic approximation for the utility of each connection, which allows us
to parameterize the degree of concavity of the utility function using a single parameter. We use this
approximation to further analyze the impact of concavity of utilities on the resulting assignment.
We then present in Sec. 5 a Lagrangian approach which allows us to implement a decentralized
protocol for the bandwidth allocation. We finally present in Sec. 6 a novel alternative approach
using Semi Definite Programming (SDP).

2 General problem

2.1 Utility function

The fairness problem which we consider is how to allocate bandwidth to connections beyond their
minimum required bandwidth (MR). (We assume that if the minimum required bandwidth is not
available then the connection is not accepted by the network.) The fairness issue is of interest only
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in the case when the utility of an application strictly increases when allocated more bandwidth than
its MR. Connections with on/off utility functions (which characterize some applications with hard
real-time requirements, [17]) are thus ignored in allocating extra bandwidth once they receive their
MR.

Two kinds of applications are considered in [17] for which the fair allocation is relevant:

Elastic applications: Examples of such applications are file transfer or email. The typical utility
function is concave increasing without a required minimum rate, see Fig. 1.

U

Bandwith | - Bandwith

| | MR
Elastic Applications Rate / Delay adaptive Applications

Figure 1: Utility function of elastic (left) and of rate-adaptive or delay-adaptive (right) applications

“Delay adaptive” or “rate adaptive” applications: These are typically real time applications such as
voice or video over IP. The utility functions that we use for these applications (Fig. 1) are slightly
different than those in [17]. In [17], the utility is always strictly positive for non null bandwidth
and tends to zero when the bandwidth does. We consider in contrast that the utility equals zero
below a certain value, as in [8]. Indeed, in many voice applications, one can select the transmission
rate by choosing an appropriate compression mechanism and existing compression software have an
upper bound on the compression, which implies a lower bound on the transmission rate for which a
communication can be initiated. If there is no sufficient bandwidth, the connection is not initiated.
This kind of behavior generates utility functions that are zero for bandwidth below M R and which
are not differentiable at the point (MR, 0).

2.2 Fair allocations

Several concepts of fairness are known in the literature: the max-min fairness [3], (as well as the
more general concept of weighed max-min fairness) which has been adopted by the ATM-forum [1]
for ABR traffic, the proportional fairness |7] the harmonic mean fairness [13], the general fairness
criterion that bridges all the above concepts [15] and the Nash Bargaining Solution (NBS).

Nash Bargaining Solution (NBS) Our starting point is the NBP (Nash Bargaining Point) concept [8]
for fair allocation, frequently used in cooperative game theory. Let there be n users (or connections).
The notion deals directly with fair allocation of achievable utilities of players (and does not require
to relate them to the original objects, throughputs in our case, that generate these utilities). Let
U C TR"™ be a closed convex set corresponding to the achievable vectors of utilities of the form
(fiy -y fn)- Let Y be a minimum required performance of user i.! Let ¢ = {(U,«%)|U ¢ IR"}: it
denotes the class of sets of performance measures that satisfy the minimum performance bound u°
(it contains achievable performances obtained for different utility functions f; in fact, in order to
define NBP one has to introduce its performance w.r.t. other utilities, as is seen from property 3
and 5 in the definition below).

'In our context, u? = f;(MR;) where f; is concave increasing. If X is the set of all achievable vectors of bandwidths,
then U = {f(z)|z € X}.
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Definition 2.1. A mapping S : G — IR" is said to be an NBP (Nash bargaining point) if
1. S(U,u°) € U%:= {u € Ulu > u°}, i.e. it guarantees the minimum required performances.
2. It is Pareto optimal 2.

3. It is linearly invariant, i.e. the bargaining point is unchanged if the performance objectives are
affinely scaled. More precisely, if ¢ : IR™ — IR" is a linear map such that its ith component
is given by ¢i(u) = ayu; + by, then S(H(U), ¢(u”)) = ¢(S(U, u?)).

4. S is symmetric i.e. does not depend on the specific labels, i.e. users with the same minimum
performance measures and the same utilities will have the same performances.

5. S is not affected by enlarging the domain if a solution to the problem with the larger domain
can be found on the restricted one. More precisely, if V C U, (V,u’) € G, and S(U,u°) € V
then S(U,u%) = S(V,u°).

The definition of NBP is thus given through axioms that game theorists find natural to require in
seeking for fair assignment. Having defined this concept through the achievable utilities, we define
the NBS (Nash Bargaining Solution) in terms of the corresponding strategies (i.e. the allocation
of bandwidth that results in the NBP), and then present its characterization through a utility
optimization approach.

Definition 2.2. The point u* := S(U,u) is called the Nash Bargaining Point and f~(u*) is called
the set of Nash Bargaining Solutions.

Define Xy := {z € X|f(x) > u°}.

Theorem 2.1. [8, Thm. 2.1, Thm 2.2]. Let the utility functions f; be concave, upper-bounded, de-
fined on X which is a convex and compact subset of L. Let J be the set of users able to achieve a per-
formance strictly superior to their initial performance, i.e. J = {j € {1,...,n}|3z € Xy, s.t. f;(z) >
ug} Assume that {f;};cs are injective. Then there ezists a unique NBP as well as a unique NBS
x that verifies fi(x) > u;j(x),j € J, and is the unique solution of the problem Pj:

(Py)  max [[(fi(z) —u)), =€ Xo. (1)

j€J
Equivalently, it is the unique solution of:

(P}) malen(fj(:c) —ud), =€ Xo.
JjeJ

Before examining some qualitative implications of the definition, we introduce the very related
notion of generalized proportional fairness.
Generalized proportional fairness (GPF). An assignment x € X is said to be (generalized) pro-
portionally fair with respect to a utility f, if for any other assignment x* € X, the aggregate of
proportional changes in the utilities is zero or negative

— fi(z}) = fi(z:)
ZZ% —rm <0. (2)

2An allocation f is said to be Pareto optimal if it is impossible to strictly increase the allocation of a connection
without strictly decreasing another one. The Pareto axiom assures that no bandwidth is "wasted".
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Thus, an allocation is GPF if any change in the distribution of the rates would result in the sum
of the proportional changes of the utilities to be non-positive. This concept has been defined and
applied without considering any utility, i.e. by restricting directly the rates as the object that is
assigned fairly [11, 7] (see also [4, 13, 15]). This amounts in taking in (2) fi(z;) = z;. Yet, there is
no conceptual difference in defining it as we do, i.e. with respect to utilities. In particular, by simply
replacing x; by fi(x;), we have the following property (established for the special case f;(z;) = ;)
of the solution z¢FF:

n

T maximizes Z In f;(z;) over X (3)
i=1
n
or z%F maximizes H fi(x;) over X. (4)
i=1

The Internet is an example where proportional fairness is used. Indeed, congestion control mech-
anisms based on linear increase and multiplicative decrease (such as TCP) achieve proportional
fairness upper appropriate conditions [7]. The (weighted version of the) proportional fairness is also
advocated for future developments of TCP [6].

Comparing with Thm. 2.1, we conclude that GPF coincides with the NBS of [8] when the MR;’s
equal zero, and to the original proportional fairness when further restricting to the identity utilities.

We finally note that due to (4) it follows that GPF is invariant under a scale change, i.e. if
we multiply the utility f; of a connection ¢ by a positive constant ¢;, the GPF assignment will not
change. Yet in general, it will not remain the same under translation by a constant as in NBS.
General fairness criterion. We present another general fairness criterion [15] but apply it to fair
allocation of utilities rather than of the rate. Given a positive constant o # 1, consider the problem

mgxlia;fz‘(xi)la, a>0,a#1 (5)
subject to the problem’s constraints. This defines a unique allocation which is called the a-
bandwidth allocation. This allocation corresponds to the globally optimal allocation as o — 0,
to the (generalized) proportional fairness when a — 1, to the generalized harmonic mean fairness
when o — 2, and to the generalized maz-min allocation when oo — oo [15]. We shall not deal with
this concept until Sec. 6.

2.3 Statement of the general problem

We focus in the paper on the computation of the NBS and briefly compare it to the GPF allocation.
Using Thm. 2.1, the NBS is the unique solution x = 1, x3, ..., ,, (with n the number of connections)
of

n
a. I i—iMRZ' heeXZ-::
i T i) — 1049 whe -
with L the number of links, A the routing matrix (the element A; ; being equal to 1 if connection j
goes through link i, 0 otherwise), and C the capacity vector (C; is the capacity of link 7). (Ax); <
(C); are the standard capacity constraints. We assume that the network has sufficient bandwidth

to satisfy all the users’ minimum requirements i.e. V € 1..L we have Zfil a MR; < C.
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3 Properties of the NBS and of GPF

As already mentioned, previous references that studied proportional fairness considered the actual
bandwidth as the object to be allocated fairly, rather than its utility. The reference [8] who already
considered the NBS approach which is defined for general concave utilities, also restricted to linear
utilities. Our first goal is thus to study utilities that are more general than those already studied
in the following aspects:
(1) allow general concave utilities,
(2) allow fi;(MR;) to be different from zero.

We note that due to the 3rd axiom in the definition of NBP (Def. 2.1), the second point above
will not affect the NBP (and the NBS) but will affect the GPF allocation.

3.1 An example with linear utilities

Consider two connections with the same PR; and MR, (we thus omit the index ¢) that compete
over a single link with capacity cap satisfying 2PR > cap > 2MR. The utility of connection 7 is
filx) = aj(x — Z;), a; > 0, Z; < MR. Without loss of generality, we assume that a = a; does not
depend on i, since both the NBS as well as GPF are scale invariant. The NBS is clearly =} = cap/2,

1 =1,2. Define
cap =~ Z;— Z; .,
v, =L 25
5 T JF#i

A simple calculation shows that the GPF solution is :rz-GP F =V, ify, e [MR;, PR;], and if not, then
for some i, Y; < MR;. In that case, the GPF solution is :viGPF =Y; and a:]GPF = cap — MR;, for
J# i

This example shows that if we translate the utility of connection ¢ by a positive constant (which
implies that Z; decreases) then its generalized fair share decreases whereas its NBS share does not
change.

3.2 The impact of concavity

We now study the impact of concavity on the NBS. Consider two differentiable functions f and g
defined on the same interval [MR, PR] where both are strictly positive on (MR, PR]. We say that f
is more concave than g if for every x € (MR, PR|, the relative derivative of f is smaller than or equal
to that of g, i.e. f(z)/f(x) < ¢'(x)/g(z) (if f or g were not differentiable at x, one could require
instead that the same relation holds for the supergradients: if f (z) is the largest supergradient of
f at z and §(z) is the smallest supergradient of ¢ at x, then we require f(z)/f(z) < §(z)/g(x)).

Motivated by (4), we say that an assignment x is more fair in the sense of GPF than an
assignment y if [, fi(xi) > [];_, fi(y;). One can define similarly an ordering for the NBS fairness,
but then one has to replace f; by fi — fi( MR;).

In the next example we consider the case in which f;(MR;) = 0 (so NBS coincides with GPF).
Consider 2 connections with utilities f and g as above competing for the bandwidth of a single link.
If we had ignored the utilities of the connections, we would have assigned them an equal bandwidth
(according to the original proportional allocation), which we denote by « = cap/2. We show that
by transferring bandwidth from the connection with the more concave utility (say f) to the other
one, we improve the fairness (assuming this does not violate the MR and PR constraints) in the
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sense of GPF or the NBS. Indeed, we have

gl +e)f(z—e

= s@@) (1|18 - £ o0)

where o(e) is a function that tends to zero when divided by € as e converges to zero. We conclude
that there is some ¢g s.t. for all € < €, g(x + €)f(z — €) > g(z)f(z). Hence we strictly improve the
fairness by transferring an amount of ¢y to the connection with less concave utility.

By further increasing the amount we transfer, we shall eventually reach a local maximum (since
our function is continuous over a compact interval). This will be a global maximum since (4) is
a problem of maximization of a concave function over a convex set. We conclude that the fair
assignment has the property that more bandwidth is assigned to the less concave function.
Example: Let f(z) = 321{0 < =z < 1} + (2 + z)1{z > 1}, and let g(z) = 2z for z > 0. Then
f'(z)/f(z) = 27! for x € [0,1), and (2 + z)~! for = > 1, whereas ¢'(x)/g(z) = 27! everywhere.
(At z =1, f is not differentiable but its supergradients at that point is the set [1/3,1]). Thus f is
more concave than g. We assume that PR > cap.

Define h(z) = 6z(cap — x) and k(z) = 2(x + 2)(cap — z). The NBS or GPF are obtained as the

argument of ((cap) = max f(x)g(cap — x) which equals

max (mrg[%ﬁ] h(x), max k(m)) .

If cap > 2 then max,cp,1)h(x) = h(1) = 6(cap — 1), otherwize it is obtained at = cap/2 and
equals 3cap? /2.

If cap < 4 then max,~1 k(z) = k(1) = 6(cap — 1), otherwize it is obtained at 1 + cap/2 and equals
2(1 + cap/2)?.

K Cap
0 2 4

Figure 2: NBS for two connections sharing a link.

The NBS is depicted in Fig 2. We distinguish 3 regions.

(i) cap < 2, where ((cap) = 3cap?/2 and the NBS is x} = cap/2.
(ii) 2 < cap < 4, where ((cap) = 6(cap — 1) and =7 = 1.
(iii) cap > 4, where ((cap) = 2(1 + cap/2)? and x% = cap/2 — 1.

The other connection receives in all cases x5 = cap — x7. We see in this example that indeed
the least concave function receives at least as much as the other one, and the difference increases
with cap. It’s impressive to note that there is a region in which an increase in the capacity benefits
only for one connection. The example illustrates the power of the NBS (or GPF) approach: the
original proportional fairness, or even weighted proportional fairness, would assign a proportion of

RR n® 4269



the capacity to each connection that does not vary as we increase the capacity, since it is insensitive
to the utilities. In contrast, utility sensitive fairness concepts allocate the bandwidth in a dynamic
way: the proportion assigned to each connection is a function of the capacity.

4 Quadratic utility functions

4.1 Definition of the utility function

fPR--

Figure 3: Quadratic utility function.

The utility function of both “elastic traffic” and “delay adaptive” applications have a minimum
value MR; below which it equals zero (in the former case, MR; = 0). As the NBS solution is shift
invariant, we can assume without loss of generality that f;(MR;) = 0. Beyond MR; the function
is concave and increasing with the bandwidth. We can approximate such a utility function with a
parabola with several parameters that may depend on the applications (see Fig. 3):

PR;: max throughput needed by the application
T;: tangent of the utility function at the point (MR;,0)
fPR;: utility value at point PR;

Note that the utility function is defined only until the point PR;, so we may ignore the whole
right part of the parabola (and in particular, the part in which the function decreases).

As the utility function is a parabola, its general equation has the form: f;(z;) = ¢; — a;(x; — b;)%.
Obviously, f; can equally be defined by a;, b;, ¢; or the through the equations f;(MR;) = 0,
fi(PR;) = fPR; and f!(MR;) = T;. We should note that, since PR; is in the increasing part of the
function,

1
5Ti(PR; — MR;) < fPR; < T,(PR, — MR,).
We thus define the concavity of the utility, 3; through

fPR;, =T; - ;- (PR; — MR;)
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We have: 1/2 < 3; < 1 and the smaller 3; is, the more concave is the utility. The limit 3; = 1 is
the linear case (studied in [8]). And therefore:

o LB PRi—(26; —1)MR;
T 1PRZ'—MRZ" T — 2(1—ﬁz)

, _ LPR: = MR;

T4 1-8

We next present several examples where we use our parabolic utility functions.

4.2 The linear network example

We consider the problem in Fig. 4 in which the squares represent the links and the lines represent
the routes. We have N = L+1 connections sharing L links. Connection 0 uses all the links, whereas
each of the other L connections only goes through a single link (connection i uses link 7).

i -
i I

Figure 4: A linear network.

To obtain the NBS, we need to maximize

H fi(wi). (M)

1€{0,...,L}

But, as NBS is Pareto optimal, we have the following constraints for ¢ = 1,...,L: z¢ + x; = C; as
well as MR; < z; < PR;. This implies b; — \/ai < x; < by

We make two significant assumptions. First, that each link has the same capacity cap. Therefore,
it is straightforward to notice that each connection ¢ with 1 < i < L will get the same bandwidth
at the equilibrium point. Secondly, we suppose that each of these connections has the same utility
function: Vi € {2, ... ,L},ai =ay,b; = b1,c; = c1.

Therefore the term to maximize in equation (7) becomes: fo(x)(f1(cap — x))¥ if we denote by
x the throughput of the connection .

Solution of the linear problem. By differentiating (7) we then obtain:

ao(z — bo)(c1 — ai1(cap — x — by)?) =
Lay(cap — = — by)(co — ag(x — bg)?) (8)

which is a polynomial of the third degree. This can be explicitly solved.
Possible limits. We are interested in the possible limits x;, of the bandwidth assigned to con-
nection g as L grows to infinity.

Lemma 4.1. Assume MRy + PRy > cap. As L grows to infinity, the only possible limit xy;, of the
bandwidth assigned to connection xg is

.iL'l”)n == b() — \/C()/CL() = MR(), (9)
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Proof: Equation (8) shows that since x is bounded, the left part of the equation is bounded
too. Therefore, the limit xy;,, if any, is such that:

al(cap — Tlim — bl)(CO — ao(xlim — bo)z) =0 (10)

Since MRy + PR; > cap and PRy < by, we obtain cap — by < MRy so that the solution is infeasible.
The second solution, :cgfr)n = by + v/co/ayp is infeasible as well since we have

Co PR()—MRO
b — =PFR PRy —————
O+Va0 ot/ “2-(1- /)

so that this solution is larger than PRy. The last possible solution is (9), which establishes the
proof.

It is interesting to note that the limit xy;,, does not depend on any parameter of the ith (1>1)
connections, or any parameter related to the concavity of the utility function of the connection 0.
We show in Fig. 5 how the system converges to the solution as L grows.

Influence of the concavity on the equilibrium value
MR=10, PR=90, cap=100, fPR=200

50 T T T T T T T T T

T=3 ——
T=4 -
T=5 --------
linear case - 7]
o
c
i)
= ]
[}
c
c
o
© —
S
5
(=8
ey
[=2) -
>
S
£
e
10 20 30 40 50 60 70 80 90 100

Number of links

Figure 5: NBS for the linear network.

Remark 4.1. The condition MRy + PRy > cap in Lemma 4.1 (and in the next propositions) is not
restrictive. If it does not hold then we can replace (for any L) MRy by MRy := cap — PRy without
affecting the NBS, and then apply Lemma 4.1 for MRy. Indeed, let z* be NBS for the original
problem. Then x* > MRy due to the Pareto optimality of the NBS (2nd element in Definition 2.1).
Then it is the NBS for the new problem due to the 5th element in Definition 2.1.

Asymptotic Analysis. We further refine the analysis of the limit as L becomes large, show that
it exists and obtain the rate at which = converges to xim.
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Proposition 4.1. Suppose that MRy + PRy > cap, then x verifies:
x=MRy+ Z+o(1/L)
with:
7 =

cap — MRy — MR, [1 _ PRy — MRl}

2L denom

denom = 2(1 — B1)(cap — MRy) —
PRy + MRl(Qﬂl - 1)

where o(1/L) is a function that, when divided by L, tends to zero as L grows to infinity.

(11)

Proof: ~We shall examine eq. (8) when we substitute + = x(L), which is the solution for a

fixed L. As L — oo, the left hand side tends to a constant:

Llim ao(x —bo)(c1 — ai(cap — x — 51)2) =

—v/aoco (61 —ai(cap — by —bo + \/co/ag)Q) .

We now examine the right hand side of (8). It can be written as
Lai(cap — x — by)(co — ao(x — bg)?)
= Lf(z)va(r — MRy)
where f(x) is given by
ai(cap — z — b1)(v/eo — v/ao(x — bo))v/ao

and when substituting z = z(L),

lim f(x) = 2a;i(cap — b1 — by + v/ co/ap)\/aoco-

L—oo

Combining (12)-(15), we conclude that
lim L((L) — MRo) =

\/agco (01 —ay(cap — by — by + \/co/ao)2>
2a1(cap — by — by + /co/ag)\/apco

which yields (11) by substituting the appropriate expressions.
We can notice that:

e the convergence of z isin 1/L,

e the result does not depend on Ty nor 77 (scale invariant),

(12)

e in the asymptote, none of the parameters of the 0** connection but MRy appears, so that the

results are independent of the shape of the utility function of x,

e the larger 1 is, the smaller x gets. This agrees with the conclusions of Subsection 3.2.

In (11), we can easily check the asymptotes for special cases:
cap — MRy — MR,
L

e When f; — 1 we obtain: Z = (linear case).

e When 31 — 1/2 we get: Z =
cap — MRy — MR, 1 PR; — MR,

2L " cap— MRy — PRy |
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4.3 Grid network

This network is the natural generalization of the linear network. It consists of K x L capacity links
with K horizontal routes and L vertical routes as shown in Fig. 6.

X X X X
1 2 3 L

X
L+1 M 1 1 .
] ] ] O

X
L+2 M M M 1
] ] ] O

X
L+3 1 M M 1
] ] ] mE

X
L+K 17 1 1 |
] ] ] mE

Figure 6: A grid network.

We suppose that all the horizontal connections have the same utility function f, and each vertical
connection has the utility f,.We can then conclude easily that all the horizontal connections will
get the same throughput x and each vertical connection will get the same throughput =, = cap — x.

As in the previous example, we suppose also that, for each i € {1,...L},j € {1,... K}, MR, +
PRy, ; > C;pyjand PR, + MRy, ; > C; 4.

We then wish to maximize:

[T fit@i) = (fa@)™ * (folcap — 2))". (16)

i€[0:L]

Proposition 4.2. In the grid network, x verifies: x = MRy + Z + o(K /L) with:

Z =K.

2L

cap — MRy, — MR, 1_ PR, — MR,
denom

with  denom = 2(1 — (3,)(cap — MRy,) —
PR, + MR, (283, — 1).

A particular case occurs when L = K and when fr, = f,: we obtain x = cap/2.

Proof: This is similar to maximizing: (fy,(z)) * (f,(cap — x))2/%. And then, this problem is
equivalent to previous case by substituting L/K instead of L. The second assumption is obvious.
5 Lagrangian method

The Lagrangian method was proposed by [8] to obtain NBS for the special case of linear utility
function. It has the advantage of having distributed implementations. We generalize below this
approach to the quadratic utility, for which the linear case can be recovered by taking § — 1.
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5.1 Lagrangian multipliers

We now use the Kuhn Tucker conditions for (6) to obtain alternative characterization of the NBS
in terms of the corresponding Lagrange multipliers.

Proposition 5.1. Under the hypothesis that Vi € {1..L}, > a;; MR; < Cj, the NBS is characterized
by:
Jpu; > 0,1 € {1..L} such that Vi € {1..N}, we have

L -1
T; = min (PRz', MR; + (Z /Llalﬂ')
=1
1 PR; — MR;
2 1-5

2
1-5;
4 (PR,‘—]MR-;)
1— (14—~ )
L
(lel Mlal,z')

Proof: Under the assumption ) a; MR; < Cj, the set A of possible solutions of (6) is non-
empty, convex and compact. The constraints in (6) are linear in x; and f(z) is C!, therefore the
first order Kuhn-Tucker conditions are necessary and sufficient for optimality. The Lagrangian
associated with (6) is

i=1
N L
— > Gilwi— PR) =Y u((Ax) — Cy).
i=1 =1
For¢=1,...,n, A\; > 0 are the Lagrange multipliers associated with the constraints x; > MR; and
6; > 0 are those associated with the constraints z; < PR;. u; > 0,1 = 1...,L are the Lagrange

multipliers associated with the capacity constraints. The first order optimality conditions are thus:
Vie{1,..,N},

L
0 = (Ni—6—Y m((Az) - C)
=1
L G k@)
filzi) — fi(MR;) O

and Vi, (x; — MR;)\; = 0, (z; — PR;)6; = 0, VI, ((Az); — C}); = 0. Moreover, Y a;; MR; < Cj implies
that Vi, A; = 0 as in [8], and either x; = PR; or §; = 0, which yields the conclusion.
As  — 1 we obtain the solution of [8] corresponding to linear utility:

I -1
Z Mzaz,z‘]

=1

1 represent the implied cost associated with the network link [. It represents the marginal cost of
a rate unit allocated for any connection crossing link 1.
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5.2 Dual problem

Once we have explicitly expressed the NBS in terms of the Lagrange multipliers, we can actually
solve the NBS completely using the dual problem in which we compute the Lagrange multipliers.
Define

( . 206 —1 1
; <
PR; ifp < 5 PR, — MR
1 1PR; — MR;
9i(p) = § MRH{; 2 1-p
T \2
114 () ]
otherwise.
Then: z;(p) = g,(z - agg)- (17)

The dual problem is :

ax L d(p)

: , _ (18)
with d(p) = mingex L(x, p) = L(Ti, 1)

if we note ¥; the optimal value. The vector T = Z1, Z3---Z, is the NBS. We obtain for each y € RE:

N l€f1..L]

dp) =3 [~ (filo( 3 m)+
le[l..L]ZZl I€[1..L] al’i:Ll

( > Ml)gz‘( > Mz)]zcluz-
aj ;=1 ap ;=1 =1

As in [8], there is no duality gap.

5.3 Decentralized implementation

The dual problem gave an alternative centralized optimization problem for computing the NBS.
Still, we can use the decentralized implementation from [8] for the computation, where L local
algorithms run at the different nodes. The link updates require information on connections that
use that link, and hence global information is not required. The algorithm of [8] for computing u
is: for each [ € [1..L] and k > 0, we take:

i€[1..N]
k+1 k
p D = max [ 0,1 4wy [ Y wi(u®)
ar;=1
L
. k
with: mi(,u(k)) = g; (Z ali,ug )>
=1
and v a constant step. The initial cost vector u(® = M§0)7 . M(LO) is arbitrary and can be chosen

equal to zero. Then, [8, Appendix| shows that: limg o x (u( )) = Z.
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6 An SDP solution

In this section, we propose an alternative centralized method for solving the general fairness problem
(5), as well as the GPF (3) and NBS (1). It uses a unique mathematical program called semi-definite
program, which can be solved in polynomial time in theory and is tractable in practice. The basic
idea of SDP is to transform the original maximization problem into a minimization problem of some
new variable (or more generally of a linear combination of of variables) subject to a constraint of
positive semi-definiteness (psd) ® of some general matrix P. This matrix is block diagonal, and
is thus psd if and only if each block is psd. In our fairness computation, the blocks will always
be of size smaller than or equal to two. The psd of the general matrix will (i) imply the capacity
constraints as well as those corresponding to the min and max throughputs, (ii) allow us to replace
the objective function by a single variable. It thus contains information on the structure of the
objective function of the original maximization problem.

SDP involves defining new intermediate variables which are necessary for expressing the required
constraints. We sketch in the next subsection some ideas in the construction of the block matrices
that are related to different o’s (defining the general fairness criterion). We then present a detailed
construction of the SDP and in particular, the matrix P and the objective function that will be
defined through a scalar product between a vector L and the variables of the SDP. For more
details on SDP, see [5]. The program that generates the SDP from the network data is available
at http://www-sop.inria.fr/mistral /personnel/Corinne.Touati/. One can then use public domain
programs to solve SDP%.

6.1 Properties of positive semi-definite matrices

Proposition 6.1. Let w, y and z be three positive real numbers. Then

( I; ; ) > 0 if and only if wy > 2°. (19)

In particular, if one sets z = 1, then the relation y > 1/w allows us to obtain constraints of the
form y > >°" | w; !. This explains how the minimization of  »_, w; !, that appears in the general
fairness problem with o = 2 is obtained® through the minimization of a single variable y subject to
the psd matrix constraint in (19).

Thanks to an idea of Nemirovski[16], we can also integrate the following series of functions in
our model.

Proposition 6.2. Let w and y be two real positive number. It is possible, using SDP constraints,
to bound w and y by the relation y < w*/?" withp € IN and k € {0,...,2P —1}.

In other words, if @ € (0,1) is approximated by some 1— /2P, then one can generate constraints
of the form y < 37 | w;'~® and maximizing y is equivalent to maximizing the right member, which
solves our problem with very good precision for 0 < a < 1.

3 A matrix is psd iff its eigenvalues are non-negative. In the case of a matrix of size 2 of the form : M = ( i) 2 )

with p > 0 or ¢ > 0 then M is psd iff [M| >0, i.e. p-q > 2

“see
http://www.cs.nyu.edu/cs/faculty/overton/sdppack/sdppack.html

®a = 2 corresponds to the harmonic fairness that is characterized by the maximizer of (3~ 1/w;) !, or equivalently,
the minimizer of (3, 1/w;), where w; = fi(z;) (another block in the big matrix will take care of the latter equality).
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Proof: Let ay,...,a, be a series of 0/1 integers, such that k = >_7_; a;2°~*. We note yo = 1,

and submit y1,...,y, to the following constraints:
(y“ vi ) =0 ifa =1
Yi w
(yi_l yl)to ifa; =0
(7
Then, obviously, y? < yi—1w®, and if y1,...,yp,—1 are submitted to no other constraints, we have:
/ ~_ai
Poyk/ 2P — v
yp < wfw™ T, where p := Z SpT1i
i=1

Hence the result, by setting y, = y.
Next we present a simple solution for o > 1.

Proposition 6.3. Let w and y be two real positive numbers. It is possible, using SDP constraints,
to bound w and y by the relation y > w=P, where 8 =k/2P, p€ IN and k € {0,...,2° —1}.

This is used to solve the case a € (1,2).
Proof: Let z be an intermediate variable. Using proposition 6.2, one can set z < w?®. Also

one can write
y 1
—
(11)=0

which leads to yz > 1. Then w and y are bounded by the unique relation: yw? > 1, hence the
result.

Proposition 6.4. Let w and y be two real positive numbers. It is possible, using SDP constraints,
to bound w and y by the relation y > w8 where 3 = k/2?, pe IN and k € {0,...,2P —1}.

The proposition covers the cases a € (2;+00).
Proof: Similarly, we obtain wy” > 1.
6.2 Computing the NBS and GPF
The result for the NBS or GPF relies on the following:

Proposition 6.5. Let y, and wy,...,w, be real positive numbers. Then using SDP constraints, it
is possible to bound these numbers by the relation

n
9oga (n)]
Y < H w;.
=1

Thus maximizing y leads immediately to the solution of the problems NBS and GPF.
Proof: Let p be the smallest integer such that 27 > n. We construct a family of real positive
variables Yok 11 ;4 1)90 With 1 <k <p, andi € {0,...,2P~F _1} satisfying the following constraints:

<y2i2’°1+1,(2i+1)2k1 Yizk41,(i+1)2k ) -
— Y
Yizk41,66+1)2%F  Y(2i+1)2k-141,(2i+42)2k—1

where we denote y; ; = w; for j € {1,...,n},y;; =1for j € {n+1,...,2P}, and y = y1 9s.
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6.3 A simple example

Consider n = 3 connections over L = 4 links. The connections are defined by the matrix

_ o O
O = = o
o= O =

Element A;; equals 1 if and only if connection j uses link ¢. In our SDP program, one adds
artificial connections so that the total number of connections has the form 27 with p € IN. (The
reason for that will follow from Step 2). As n is not of this form we need to add one extra artificial
connection, so that the number of connections is now n’ = 3 +1 = 4 = 22. We suppose that this
extra connection uses its own link, and therefore does not modify the NBS of our problem.

Step 1 The first four blocks of the matrix link the variables x; with their utility. Therefore, they

are of the form:
9i—Cq . .
MAT ; = ( T 0 i I bi )

Ty — b’i;

We have MAT:; > 0 < —g"a;ic" > (x; — b;)? © g; < ¢; — a;.(z; — b;)?. Therefore, maximizing
[1, 9; will lead to maximizing [],(c; — ai(xi — b;)?).

Step 2 The n’ — 1 = 3 following matrices link the g; variables together to obtain a single variable
that SDP will maximize. These are:

( g1 912) ( g3 934) ( g12 91234)
g12 g2 \ 934 04 '\ g1234 934

The positiveness of these matrices implies that:

9192 > (912)%, 93 g1 > (g34)?
g12 - 934 > (g1234)°

so that (g1234)* < (912)? - (934)® < g1 - g2 - 93 - 4. Then, maximizing the single variable g1934 will
lead to the required maximization of [[;(c; — a;(z; — b;)?).

Step 3 We now have to incorporate the linear constraints of the problem: (Az); < cap;, z; <
PR;, x; > MR,;. For this purpose, we add matrices of size 1 (scalar values). SDP will assure us that
they are positive (or null) values. Therefore, the constraints (Ax); < Cj lead to the declaration of
L matrices that are in our example:

capy — (r1 + x3), capy — T2,
caps — (z9 + x3), capy — x1.

The constraints z; < PR; and z; > MR; become in the SDP program 8 matrices of size one that
are:

PRl — T r, — MRl
PR2 — T2 xro — MR2
PR3 — X3 xr3 — MR3
PR4 — T4 T4 — MR4

RR n® 4269



We can notice that the values PR, and MR, corresponding to the artificial connection are not
important since the connection is independent of the others. Whatever the value of PRy, the solution
of SDP will be PRy. Still, it is important that we bound x4 otherwize in the programming part it
will grow without bound which may cause an error.

The values we should give to the SDP algorithm are the matrix we have just described, plus
the vector of variables to minimize. As we want to maximize g1934, We give a negative value to its
corresponding coefficient and set L = (0,0,0,0,0,0,0,0,0,0,—1).

Remark 6.1. In case of n connections with | links, we stress we have at most 6n — 5 variables,
4n — 3 blocks of size 2, and 4n +1— 4 blocks of size 1. Therefore, although our problem is convez, it
can be expressed in a simple and short way as a semi-definite program. This is a clear improvement
compared to many other specific methods, since the solution can be obtained using any general SDP
software*. Furthermore, additional conditions (for instance those linked to integer programming,
or a weighted optimization on both the bandwidth assignment to connections and the link usage, or
other telecommunication-specific requests, such as regulation ones) can now be introduced without
further research on conver solving instability and other issues, such as convergence tests for the
iterative method, or simply the maintenance of a numerical software.

6.4 Practical experiments

We implemented the SDP approach using a Matlab program run on a SUN ULTRA 1 computer to
obtain the NBS fair share which coincided with GPF (as we took f;(MR;) = 0). We first tested
our program on the same linear network example for which we had explicit expressions for the NBS
(Fig. 5), and the results completely agreed.

We then considered two more complex networks which we describe below. The computation
time (including the display part) in both cases was less than a minute. In both networks, all links
are assumed to have the same capacity (although the program allows to handle different capacities
without increasing the complexity). For each network, we present two figures. The first with the set
of links and nodes and the second with the set of connections and amount of assigned bandwidth.
All connections had the same quadratic utility with the parameters MR = 10 and PR = 80, T = 3,
fPR = 200. We took cap = 100 for all links. Bandwidth parameters and assignments are given in
percent of full link capacity.

Consider the network depicted in Fig. 7. It has L = 10 links and 11 connections as defined in
matrix A below.

SO OO OO H
_H_,OOODOOo OO
O - H=HEMEHOOOOO

QOO R HMHOOOO
OO OOHHOOOO
_H OO OO OO
— O OO0 OO OO
OO OO OO OO =
OO OO OO H MO
— O HFHMEFRFRHOOOO

=== O OO0 oo

o
o
o
o

The solution given in Fig. 8 involved adding extra 36 intermediate variables, and the matrix involved
in the psd constraint was of size 104 (31 block diagonal matrices of size 2, and 42 of size 1).
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Link 1 Connection’s bandwith :

60
55

Link 2 15

Link 9 Link 10

Link 1 —

Link 2 Link 8
) inl ;
Link Link 10 2 Link 3 Values

32,47

22,41
32,47

62,86
20,12
33,33
1 b9
Link 6 Link 5 Link 6 Link 5 !

6]
A

Link 8 Link 3

Link 7 Link 4

Link 7 Link 4

OCONOUIAWNEF

Figure 7: First network: links. Figure 8: First network: solution.

We considered next the COST experimental network [2], depicted in Fig. 9. It contains 11
nodes, representing the main European capitals. We have considered the 30 connections with the
highest forecast demand (We did not include more connections whose forecast demand, based on
experiments dating from 1993, were inferior to 2.5 Gb/s). The solution, depicted in Fig. 10 involved
adding extra 65 intermediate variables, and the matrix involved in the psd constraint was of size
215 (63 matrices of size 2, and 89 matrices of size 1).

Copenhaguen

London

Prague

20
25

Vienna

Figure 9: COST network: links.

Milano

Figure 10: COST network: solution.
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Connection Bandwith Connection Bandwith Connection Bandwith
London-Paris 33.93 Zurich-Milano 71.58 Milano-Vienna-Berlin 37.00
London-Brussels 80.00 Copenhaguen-Berlin 80.00 Milano-Paris-Brussels 27.93
London-Amsterdam 76.27 Copenhaguen-Prague 80.00 Berlin-Amsterdam-Brussels 22.04
Amsterdam-Berlin 27.11 Berlin-Prague 50.00 Paris-Brussels-Amsterdam 28.42
Amsterdam-Brussels 49.54 Berlin-Vienna 63.00 Paris-Zurich-Vienna 25.48
Brussels-Paris 43.66 Milano-Vienna 63.00 London-Paris-Milano 24.74
Paris-Berlin 80.00 Berlin-Amsterdam-L uxembourg 2711 London-Paris-Zurich 21.87
Paris-Zurich 33.19 Zurich-Prague-Berlin 50.00 London-Amsterdam-Berlin 23.73
Paris-Milano 47.34 Zurich-Luxembourg-Amsterdam 35.79 Vienna-Zurich-Paris-London 19.46
Zurich-Vienna 55.06 Zurich-Luxembourg-Brussels 35.79 Milano-Zurich-Luxembourg-Amsterdam 28.42

7

Figure 11: Bandwidth allocation for COST network.

Conclusion

We have applied in this paper the NBS approach for bandwidth allocation, as well as the GPF
concept that is sensitive to the utilities of connections. concepts that are sensitive to the utilities
of connections. We have studied some of the characteristics of these concepts, and showed that
they are indeed more suitable for applications that have concave utility. We proposed a simple
parameterization of the concavity of the utility function using quadratic functions. We finally
proposed some computational approaches that allows us to handle large networks: a Lagrangian
approach and a novel approach based on SDP.
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