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Abstract: In this article, we describe the latest developments of the minimally invasive
hepatic surgery simulator prototype developed at INRIA. A key problem with such a sim-
ulator is the physical modeling of soft tissues. We propose a new deformable model based
on non-linear elasticity, anisotropic behavior, and the finite element method. This model is
valid for large displacements, which means in particular that it is invariant with respect to
rotations. This property improves the realism of the deformations and solves the problems
related to the shortcomings of linear elasticity, which is only valid for small displacements.
We also address the problem of volume variations by adding to our model incompressibil-
ity constraints. Finally, we demonstrate the relevance of this approach for the real-time
simulation of laparoscopic surgical gestures on the liver.
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Elasticité non-linéaire anisotrope pour la simulation de
chirurgie en temps réel

Résumé : Dans cet article, nous décrivons les derniers développements du prototype de
simulateur de chirurgie minimalement invasive sur le foie développé a4 'INRIA. Un probléme
clé avec ce genre de simulateur est la modélisation physique des tissus mous. Nous proposons
un nouveau modéle déformable basé sur 1’élasticité non-linéaire, le comportement anisotrope,
et la méthode des éléments finis. Ce modéle reste valable pour les grands déplacements, ce
qui signifie en particulier qu’il est invariant par rotation. Cette propriété améliore le réalisme
des déformations et résout les problémes liés aux limitations de ’élasticité linéaire, qui n’est
valable que pour les petits déplacements. Nous nous intéressons aussi au probléme de la
variation de volume en ajoutant & notre modéle des contraintes d’incompressibilité. Enfin,
nous démontrons le bien-fondé de cette approche pour la simulation en temps réel de gestes
chirurgicaux en laparoscopie sur le foie.

Mots-clés : Simulation de chirurgie, élasticité non-linéaire, grands déplacements, méthode
des éléments finis, temps réel, anisotropie, contraintes d’incompressibilité.
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4 G. Picinbono et al.

1 Introduction

A major and recent evolution in abdominal surgery has been the development of laparo-
scopic surgery. In this type of surgery, abdominal operations such as hepatic resection are
performed through small incisions. A video camera and special surgical tools are introduced
into the abdomen, allowing the surgeon to perform a procedure less invasive. A drawback
of this technique lies essentially in the need for more complex gestures and in the loss of
direct visual and tactile information. Therefore the surgeon needs to learn and adapt himself
to this new type of surgery and in particular to a new type of hand-eye coordination. In
this context, surgical simulation systems could be of great help in the training process of
surgeons.

Among the several key problems in the development of a surgical simulator [1, 15], the
geometrical and physical representation of human organs remain the most important. The
deformable model must be at the same time very realistic (both visually and physically)
and very efficient to allow real-time deformations. Several methods have been proposed:
spring-mass models [10, 14], free form deformations [2], linear elasticity with finite volume
method [11] or various finite element methods [7, 12, 17, 4, 20, 19].

In this article we propose a new real-time deformable model based on non-linear elasticity
and a finite element method. We first introduce the linear elasticity theory and its imple-
mentation through the finite element method, and we then highlight its shortcomings when
the "small displacement" hypothesis does not hold. Then we focus on our implementation
of St Venant-Kirchhoff elasticity and incompressibility constraints.

2 Shortcomings of the linear elasticity model

Linear elasticity is often used for the modeling of deformable materials, mainly because the
equations remain quite simple and the computation time can be optimized.

The physical behavior of soft tissue may be considered as linear elastic if its displacement
and deformation remain small [13, 16] (typically less than 10% of the mesh size). We repre-
sent the deformation of a volumetric model from its rest shape Mipit;a1 with a displacement
vector U(x,y, z) for (z,y,2) € Minitia and we write Maeformed = Minitial + U(z, ¥, 2)-
From this displacement vector, we define the linearized Green-St Venant strain tensor (3 x 3
symmetric matrix) F; and its principal invariants {; and l»:

1
E=; (VU + VU L =trE lo =tr B> (1)

The linear elastic energy Wiineqr, for homogeneous isotropic materials, is defined by the
following formula (see [6]):

Weinear = = (trE)? +p trE;* (2)

N> N >

(div UY? + | VU2 = Slirot U2,
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Non-linear anisotropic elasticity 5

where A and p are the Lamé coefficients characterizing the material stiffness.
Equation 2, known as Hooke’s law, shows that the elastic energy of a deformable object
is a quadratic function of the displacement vector.

2.1 Finite element method

Finite element method is a classical way to solve continuum mechanics equations. It is a
mathematical framework to discretize a continuous variational problem [22]. We chose to
use P; finite elements where the elementary volume is a tetrahedron with a node defined
at each vertex. At each point M(z,y, z) inside tetrahedron T;, the displacement vector
is expressed as a function of the displacements U, of vertices P;. For P; finite elements,
interpolation functions Ay are linear ({Ag;k =0, ...,3} are the barycentric coordinates of
M in the tetrahedron):

u
5
3
=0
(=1) )
a; = GV(Tz) (P i+1 X Pj+2 + Pj_;,_g X Pj+3 + Pj+3 X Pj+1),
B
where x stands for the cross product between two R
vectors, and V('T;) is the volume of the tetrahedron. Figure 1: Py finite
element

Using this equation for the displacement vector U leads to the finite element formulation
of linear elastic energy in the tetrahedron T; [12]:

3

WLinear(Ti) = Z U;[B;‘[]‘:]Uk
J,k=0
T; A H
Bjk:l = 5(0@®ak)—|—5[(ak®aj)+(aj.ak)ld3], (3)

where [Bﬁ] is the tetrahedron contribution to the stiffness tensor of the edge (P;,Py) (or
of the vertex P; if j = k), {a;,k =0,..,3} are the shape vectors of the tetrahedron and ®
stands for the tensor product of two vectors, which gives a (3x3) matrix: u® v = u v’. Ids
is the (3x3) identity matrix.

Finally, to obtain the force F;i applied by the tetrahedron T; on the vertex P,, we
derive the elastic energy with respect to the vertex displacement Up:

3
Fyi =2 [BYi]U;. (4)
=0

RR n° 4028



6 G. Picinbono et al.

We have been using this linear elasticity formulation for several years through two de-
formable models, the pre-computed model [7] and the tensor-mass model [12, 8]. Fur-
thermore, it can be extended to anisotropic linear elasticity [17, 18], which allows to model
fiber-reinforced materials, very common within biological tissues (tendons, muscles, ...), or
other anatomical structures like blood vessels.

2.2 The problem of rotational invariance

The main limitation of the linear model is that it is not invariant with respect to rotations.
When the object undergoes a rotation, the elastic energy increases, leading to a variation of
the volume (see figure 2). In the case of a global rotation of the object, we could solve the
problem with a specific change of the reference frame.

(a)

Figure 3: Successive deformations of a linear elastic cylinder. (a) and (b): side view. (c)
and (d): top view

INRIA



Non-linear anisotropic elasticity 7

But this solution proves itself to be ineffective when only one part of the object undergoes
a rotation (which is the case in general). This case is presented by the cylinder of figure 3:
the bottom face is fixed and a force is applied to the central top vertex. Arrows show the
trajectory of some vertices, which are constrained by the linear model to move along straight
lines. This results in the distortion of the mesh. Furthermore, this abnormal deformation
is not the same in all directions since the object only deforms itself in the rotation plane
(figure 3(c) and 3(d)).

This unrealistic behaviour of the linear elastic model for large displacements led us to
consider different models of elasticity.

3 St Venant-Kirchhoff elasticity

A model of elasticity is considered as a large displacement model if it derives from a strain
tensor which is a quadratic function of the deformation gradient. Most common tensors
are the left and right Cauchy-Green strain tensors (respectively B = V@V¢! and
C = V¢'V¢, ¢ being the deformation function).

The St Venant-Kirchhoff model is a generalization of the linear model for large displace-
ments, and is a particular case of hyperelastic materials. The basic energy equation is the
same (equation 2), but now E stands for the complete Green-St Venant strain tensor:

1 1
E= 5(c —I)= 3 (VU +VU'+VU'VU). (5)
Elastic energy, which was a quadratic function of VU in the linear case, is now a polynomial
of order four with respect to VU:

A
w = ) (trE)? + ptrE? (6)

A 1 2
= 2 @)+ Livup| 4 vop -2 oo
+ u(VU:VU'VU) + %HVUtVUHZ‘
A , A
W = Wiinear + 5 (div U)“VUHZ + g ||VU||4

+ 41 (VU : VU'VU) + % IVU'VU|2,

where Wiineqr is given by equation 2, and A : B = tr(A*B) = Zi,j ai; bij is the dot
product of two matrices.

In [17, 18], we have generalized linear elasticity to materials having a different behavior
in one given direction. These materials, called "transversally isotropic" materials, can also
be modeled with St Venant-Kirchhoff elasticity by adding to the isotropic elastic energy of
equation 6, an anisotropic contribution which penalizes the material stretch in the direction

RR n° 4028



8 G. Picinbono et al.

given by unit vector ag:

AL —
2

A 2
Wirans iso = W + ( + NL - ﬂ) (aOt E aU) )

where Al and u” are the Lamé constants along the direction of anisotropy ay.

3.1 Finite element modeling

With the notations introduced in section 2.1, we express the St Venant-Kirchhoff elastic
model with finite element theory as:

W (T;) E:Iﬁ[Bﬁ]lh—kz:(U'CﬁJ(U@[ﬁ) (8)
7.k,

+ Z gklm Uj'Uk) (UlUm) )

3,k,l,m

T, ~T;
where the terms B, C;;, and DL

Nat1 n 1 .
ikim called "stiffness parameters", are given by:

. B;I,; is a (3x3) symmetric matrix (which corresponds to the linear component of the
energy):

A
B =3 (o ® o) +

B
2 2

[(ar ® a;) + (aj.ax ) Ids]

Moa
+ 5 T =) (a0 @ao)(ey; @ exr)(ag @ ao),

T ; .
o Cj;; is a vector:

Cio = S (e.cu) + g [ (tj.0u) + i (@j.0u)]

2
AL =)\
+Hl—5—+ wh — ) (ag ® ag)(a; ® ax)(ag ® ag)au,

e and DTi

ikim 1S @ scalar:

A
Diim = g (aj.on) (o) +

LD N -
+( pe = p

3 + 1 ) (ag.aj)(ag-a)(ag.0)(ap.auy,).

(aj.0, ) (ag.0)

=

INRIA



Non-linear anisotropic elasticity 9

e The last term of each stiffness parameter represents the anisotropic behavior of the
material.

The force applied at each vertex P, inside a tetrahedron is obtained by derivation of the
elastic energy W (T;) with respect to the displacement U),:

FP(T;) = 22[33}] U; + 3 2(U, 0 U)CE, + (U;.UL) T, )
J Jik
FPErT') ngTz’)
+ 4) DL U UL U,
7.k,
F3(T:)

The first term of the elastic force (F7(T;)) corresponds to the linear elastic case presented
in section 2.1. The next part of the article deals with the generalization of the tensor-mass
model to large displacements.

3.2 Non-linear Tensor-Mass Model

The main idea of the tensor-mass model is to split, for each tetrahedron, the force applied
to a vertex in two parts: a force created by the vertex displacement and forces produced by
the displacements of its neighbours:

FI(T,) = 2[Bpi]U, + 2 [B]U;, (10)

J#p

This way we can define for each tetrahedron a set of local stiffness tensors for vertices
({BX ;P = 0,...,3}) and for edges ({Bg}”;p,j =0,..,3;p # j}). By doing this for every
tetrahedron, we can accumulate on vertices and edges of the mesh the corresponding con-
tributions to the global stiffness tensors:

BPP = Z B;};}i BPI — Z BI’CI;i .

T;EN(V,) T;eN(E,;)

These stiffness tensors are computed when creating the mesh and are stored for each
vertex and edge of the mesh.

The same principle can be applied to the quadratic term (F5(T;) of equation 9) and the
cubic term (F%(T;)) (see appendix B). The former brings stiffness vectors for vertices,
edges, and triangles, and the latter brings stiffness scalars for vertices, edges, triangles,
and tetrahedra. Table 1 summarizes the stiffness parameters stored on each geometrical
primitive of the mesh.

Given a tetrahedral mesh of a solid —in our case an anatomical structure— we build a
data structure incorporating the notion of vertices, edges, triangles, and tetrahedra, with

RR n° 4028



10 G. Picinbono et al.

Stiff: t
! I(;?:srili:‘;zf ers Tensors Vectors Scalars
Vertex V,, Brp ceep ‘Drrrp
. cppi  (CIpp ‘Dippp  DIIIP  PIpIip
Edge E,; By ciip  Cpii priip  piirp
Ccikp Dikpp  ‘pirkp  Dpikp
Triangle F ;i chir Diike  pikip  Dkijp
cpik Dkkip  pkikp  pikkp
Djklp Djlkp ijlp
Tetrahedron T, Dklip  plikp  plkip

Table 1: Storage of the stiffness parameters on the mesh

all the necessary neighbours. For each vertex, we store its current position Pp, its rest
position Pg, and its stiffness parameters. For each edge and each triangle, we store stiffness
parameters. Finally for each tetrahedron, we store the Lamé coefficients A and g (and
A pl) and ag if the model is anisotropic), the four shape vectors ay, and the stiffness
parameters.

During the simulation, we compute forces for each vertex, edge, triangle, and tetrahedron,
and we use a Newtonian differential equation to update the vertex positions:

d’P; dP;

miwz%ﬂ‘i']?i (11)

This equation is related to the differential equations of continuum mechanics [3]:
MU + CU + F(U) =R. (12)

Following finite element theory, the mass M and damping C matrices are sparse matrices
which are related to the stored physical properties of each tetrahedron. In our case, we
consider that M and C are diagonal matrices, i.e., that mass and damping effects are
concentrated at vertices. This simplification called mass-lumping decouples the motion of

INRIA



Non-linear anisotropic elasticity 11

all nodes and therefore allows us to write equation 12 as the set of independent differential
equations for each vertex.

Furthermore, we choose an explicit integration scheme where the elastic force is estimated
at time ¢ in order to compute the vertex position at time ¢ + 1:

m; Vi t+1 _ 2m; m; Vi t—1
(At2 B 2At) P =it 3 phi- (At2 * 2At) P

One of the basic tasks in surgery simulation consists in cutting soft tissue. With our
deformable model, this task can be achieved efficiently. We simulate the action of an electric
scalpel on soft tissue by successively removing tetrahedra at places where the instrument is
in contact with the anatomical model.

When removing a tetrahedron, 280 floating numbers update operations are performed
to suppress the tetrahedron contributions to the stiffness parameters of the surrounding
vertices, edges, and triangles (see appendix A). By locally updating stiffness parameters, the
tissue has exactly the same properties as if we had removed the corresponding tetrahedron
at its rest position. Because of the volumetric continuity of finite element modeling, the
tissue deformation remains realistic during the cutting.

4 Incompressibility constraint

Living tissue, which is essentially made of water, is nearly incompressible. This prop-
erty is difficult to model and leads in most cases to instability problems. This is the
case with the St Venant-Kirchhoff model: the material remains incompressible when the
Lamé constant A\ tends towards infinity. Taking a large value for A would force us to
decrease the time step and therefore to increase the computation time. Another reason
to add an external incompressibility constraint to our model is related to the model it-
self: the main advantage of the St Venant-Kirchhoff model is to use the strain tensor
E which is invariant with respect to rotations. But it is also invariant with respect to
symmetries, which could lead to the reversal of some tetrahedra under strong constraints.

p
N I:i ncomp

We choose to penalize volume variation by
applying to each vertex of the tetrahedron a force
directed along the normal of the opposite face N,
(see figure on the right), the norm of the force being
the square of the relative volume variation:

V-1\"<
F'Ii)ncomp = ( V'O ) NP'

These forces act as a pressure increase inside
the tetrahedron. This method is closely related to
Lagrange multipliers, which are often used to solve Figure 4: Penalization of
problem of energy minimization under constraints. the volume variation

RR n° 4028



12 G. Picinbono et al.

5 Results

In the first experiment, we wish to highlight the contributions of our new deformable model
in the case of partial rotations. Figure 5 shows the same experience as the one presented
for linear elasticity (section 2.2, figure 3). On the left we can see that the cylinder vertices
can now follow trajectories different from straight lines (figure 5(a)), leading to much more
realistic deformations than in the linear (wire-frame) case (figures 5(b) and 5(c)).

Figure 5: (a) Successive deformations of the non-linear model. Side (b) and top (c) view of
the comparison between linear (wire-frame) and non-linear model (solid rendering)

The second example presents the differences between isotropic and anisotropic materials.
The three cylinders of figure 6 have their top and bottom faces fixed, and are submitted to the
same forces. While the isotropic model on the left undergoes a "snake-like" deformation, the
last two, which are anisotropic along their height, stiffen in order to minimize their stretch
in the anisotropic direction. The rightmost model, being twice as stiff as the middle one in
the anisotropic direction, starts to squeeze in the plane of isotropy because it can not stretch
anymore.

In the third example (figure 7), we apply a force to the right lobe of the liver (the liver is
fixed in a region near the center of its back side, and Lamé constants are: A = 4.10%kg/cm?
and pu = 10*kg/em?). Using the linear model, the right part of the liver undergoes a large
(and unrealistic) volume increase, whereas with non-linear elasticity, the right lobe is able
to partially rotate, while undergoing a much more realistic deformation.

Adding the incompressibility constraint on the same examples decreases the volume
variation even more (see table 2), and also stabilizes the behaviour of the deformable models
in strongly constrained areas.

INRIA



Non-linear anisotropic elasticity
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A =2.10° kg/cm?
pw=10% kg/cm?

A =2.10° kg/cm?
w=10° kg/cm?
A =108 kg/cm?
pul =5.10° kg/cm?

A = 2.10° kg/cm?
p=10° kg/cm?
AL =2.10° kg/cm?
pl =10° kg/cm?

Figure 6: Deformation of tubular structures with non-linear transversally isotropic elasticity.

Volume variations (%) Linear Non-linear || Non-linear incomp.
Cylinder left | middle | right 7 | 28 | 63 || 0.3 | 1 | 2 0.2 | 0.5 | 1
Liver 9 1.5 0.7

Table 2: Volume variation results. For the cylinder: left, middle and right stand for the
different deformations of figures 3 and 5(a)

RR n° 4028



14 G. Picinbono et al.

Figure 7: Linear (wireframe), non-linear (solid) liver models, and rest shape (bottom)

The last example is the simulation of a typical laparoscopic surgical gesture on the liver.
One tool is pulling the edge of the liver sideways while a bipolar cautery device cuts it.
During the cutting, the surgeon pulls away the part of the liver he wants to remove. This
piece of liver undergoes large displacements and the deformation appears fairly realistic with
this new non-linear deformable model (figure 8).

Figure 8: Simulation of laparoscopic liver surgery

INRIA



Non-linear anisotropic elasticity 15

Obviously, the computation time of this model is larger than for the linear model because
the force equation is much more complex (equation 9). With our current implementation,
simulation frequency is five times slower than with the linear model. Nevertheless, with
this non-linear model, we can reach a frequency update of 25 Hz on meshes made of about
2000 tetrahedra (on a PC Pentium PIIT 500M Hz). This is sufficient to reach visual real-
time with quite complex objects, and even to provide a realistic haptic feedback using force
extrapolation as described in [17].

6 Optimization of non-linear deformations

We have shown in this article that non-linear elasticity allows us to simulate much more real-
istic deformations than linear elasticity as soon as the model undergoes large displacements.
However, non-linear elasticity is more computationally expensive than linear elasticity. Since
non-linear elastic forces tend to linear elastic forces as the maximum vertex displacement
decreases to zero, we propose to use non-linear elasticity only at parts of the mesh where
displacements are larger than a given threshold, the remaining part using linear elasticity.
Thus, we have modified the force computation algorithm in the following manner: for each
vertex, we first compute the linear part of the force, and we add the non-linear part only if
its displacement is larger than a threshold.

Figure 9 shows a deformation computed with this optimization (same model as in fig-
ure 7). This liver model is made of 6342 tetrahedra and 1394 vertices. The threshold is
set to 2 cm while the mesh is about 30 ¢cm long. The points drawn on the surface identify
vertices using non-linear elasticity. With this method, we reach an updating frequency of
20 Hz instead of 8 Hz with a fully non-linear model. The same deformation is presented on

Figure 9: Adaptable non-linear model deformation compared with its rest position (wire-
frame)

RR n° 4028



16 G. Picinbono et al.

figure 10 for different values of the threshold. With this method, we can choose a trade-off
between the bio-mechanical realism of the deformation and the updating frequency of the
simulation.

(a) Threshold = 4 cm. (b) Threshold = 2 cm

(c) Threshold = 1 cm (d) Threshold = 0.5 cm

Figure 10: Deformation of the adaptable non-linear model for several values of the threshold.

The diagram below shows the updating frequencies reached for each value of the threshold,
in comparison with the fully linear and the fully non-linear models. Even when the thresh-
old tends towards infinity, the adaptable model is slower than the linear model, because the
computation algorithm of the non-linear force is more complex. Indeed, the computation of
non-linear forces requires to visit all vertices, edges, triangles, and tetrahedra of the mesh,
whereas only vertices and edges need to be visited for the linear model.

INRIA



Non-linear anisotropic elasticity 17

Frequency (Hz)

50 - 45

40 1 nem

50 s (S0 B [_] Adaptable model
204 15 20 . E= Non-linear model
0l 8 12 B Lincar model

o i
0 05 1 2 4 00 Threghold (cm)

For the simulation example of figure 8, this optimization allows to reach updating fre-
quencies varying between 50 and 80 Hz, depending on the ratio of points using non-linear
elasticity (figure 11). The minimal frequency of 50 Hz is reached at the end of the simula-
tion, when all vertices of the resected part of the liver are using large displacement elasticity
(on the right of figure 11).

Figure 11: Surgery simulation using adaptable model

7 Validation

The liver is filled with blood (near 50% of its global weight), which implies that ex-vivo liver
tissues should not behave like in-vivo tissues. Therefore, to validate our biomechanical liver
model, we would have to compare it against in-vivo deformations of a real liver. Currently,
such an experiment raises several technical and ethical difficulties. For the same reasons,
the elastic properties of the liver (Young modulus and Poison ratio) must be measured in-
vivo, or using complex in-vitro experimental protocols. In both cases, the results obtained
by several teams (F. Carter et al. [5], V. Vuskovic [21], D. Dan [9]) have shown a strong
variability in the parameters estimation.

RR n° 4028



18 G. Picinbono et al.

In the framework of real-time surgery simulation, we essentially need to build soft tissue
models that behave realistically. Therefore, we are currently relying on the feedback from
surgeons experimenting the simulator to validate the behavior of our liver model. They
consider that this St Venant-Kirchhoff non-linear elastic modeling of soft tissues is sufficient
for most simulation purposes.

8 Conclusion

We have proposed in this article a new deformable model based on large displacement
elasticity, a finite element method, and a dynamic explicit integration scheme. It solves
the problem of rotational invariance and takes into account the anisotropic behavior and
the incompressibility properties of biological tissues. Furthermore we have optimized the
computation time of this model by computing the non-linear part of the force only for the
parts of the mesh which undergo "large displacements".

Including this model into our laparoscopic surgery simulator prototype improves its bio-
mechanical realism and thus increases its potential use for learning and training processes.

Our future work will focus on improving the computation efficiency with a new formula-
tion of large displacement elasticity. Also, we plan to include vessels networks inside hepatic
parenchyma and introduce, besides our geometric and physical models, a preliminary phys-
iological model.

A Update operations when removing a tetrahedron from
the mesh

When we remove a tetrahedron form the mesh, we need to update stiffness parameters of 4
vertices, 6 edges, and 4 faces, which means 280 floating number operations (see table 1):

4 % (1 tensor + 1 vector + 1 scalar)
+ 6% (1 tensor + 4 vectors + 5 scalars)
+ 4 % (3 vectors + 9 scalars)
= 280 real numbers

B Non-linear force equation

Equation 9 gives the force applied by tetrahedron T; on vertex P,. To build the correspond-
ing tensor-mass model, we need to split this equation (i.e. to split the sums) into different
forces, respectively computed on vertex P,, on edges (P,,P;), on triangles (P,,P;,Py),
and the tetrahedron T;. Then, we add the contributions of all adjacent tetrahedra, to obtain
the equation which gives the force applied on vertex P, as a function of the displacements

INRIA
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of its neighbors:

Vertex contribution

2[BPP] U,
FP =
+ [2 (Up ® Up) + (UP‘UP) Id3] cree
+ 4prrer U, UL U,
Edge contribution
2 [Bpj] U;
Y + 2[(U; @ U,) + (U;.U,) Id3] CP 4 2(U, @ U;) 7P
+2(U; ® U;)C»7P 4+ (U;.U,) CPY
edges(p,j)
+ 4 [Djp_?’? (2uU, Uﬁ, U;+ 0, U, U,_,_)_—i— DIiPP U, U; U;
+ (’DJP]P + Dm]p) U; U§ U, + D¥ir U; U§- Uj]
Face contribution
2 [(Ur @ U;)C7* + (U; @ Ug) CHP + (U;. Uy ) CPIF]
T2 | & a[(pri 4 D) (U, UL U, + U, Ut U,) + 20947 U, UL U,
faces(pijik) + (DHir 4 DIkiP) U, Ut U, + Dik? U, UL U,
+ (Dikkp 4 DRFP) Uy, UL U; + DFIP U, Ut Uy
Tetrahedron contribution
+ > 4 [(D7*P 4 DHIIP) U, UL Uy + (DI + DIF?) Uy, U U,
tetra(p,j,k,l) + (Dkl]p + le:]p) Uj UI;C Ul]
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