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Analyse de lanéthode de rééquilibrage dansaystéme de transpartbain eribre service.
Cyril Duron', Michel Pareritet Jean-Mari@roth’

Résumeé

Ce papies’intéresse a un type dgsteme de transpatains lequeles véhicules sont mis a la
disposition desabonnés dandes stationsLes abonnépeuvent prendre possessidiine
voiture al'aide d’'unecarte a pucdls utilisent le véhiculepuis le rendent en le déposaans
'une quelconque des stations. A certains moments firifaée certaines stations manquent
de véhicules, alorgued’autres ersont submergées. Le rééquilibragmsiste a redistribuer
les véhiculesdansles stations afirderevenira une situation daaquelleles stations nesont

ni en rupture, nien exces de véhiculeafin de garantirun taux de service ausélevéque
possible comptéenu dunombrede véhiculeslisponiblesdansle systeme. L'objectif dee
rapportest d’analyser le processusrédéquilibrage et dproposer unéeuristiqueefficace.
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Analysis of the balancing process in a pool of self-service cars
Cyril Durort, Michel Parertand Jean-Mari@rotH

Abstract

In the kind of transportation system studied in this paper, cars are placed at the disposal ¢
subscribers (customers) in stations. Customers have access to the cars using non-contact sir
cards. They can use a car for a while and return it in the same or another station. At som
times of the day, either an overflow or a shortage of cars may happen at one or more station
The balancing process consists of redistributing the cars among the stations in order to avoi
overflow and shortage, that is to guaranty a service ratio that is as high as possible, taking int
account the number of cars available in the system. The goal of this paper is to make
systematic analysis of the balancing process and to propose an efficient balancing heuristi
algorithm.

Key words: Urban transportation, transportation system management, balancing method.
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1. Introduction

A new transportation means, which is complementary to the existing public transportation
system, is currently under development in some European cities. It consists of a pool of car:
(some time electric cars) distributed over a set of stations. The number of stations is usuall
limited (less than ten stations are currently implemented in a system). A subscriber (customer
can pick up one car in a station, use it for a while, and return it to another (or the same]
station. Indeed, either an overflow or a shortage of cars may happen at one or more stations
some times of the day. The balancing process, whose study is the object of this paper, consis
of redistributing the cars among the stations in order to maximize their availability to the
customers, that is to maximize the service ratio. This ratio is the number of customers whc
find a car available when they arrive in a station divided by the number of customers who
visit a station to pick up a car, per time unit.

Several studies have already been conducted around the balancing &xivigy.and Parent
(1996 a, b) proposedmatooning technique to redistribute the cars among the stations. Parent
et al. (1996) describddraxitéle, a new public transportation system that was tested in France.
The physical aspects of the batteries of electric vehicles charging and discharging attracted tr
attention ofCanzler (1996). Chauvetafez andProth (1999) have studied the management

of the electric car batteries. The goal of this paper was to define the optimal level of the
charge, that is the minimal charge that makes a car available to customers.

Surprisingly, few studies have been devoted to the balancing methods. In our opinion,
Chauvet,Hafez andProth (1997) have proposed the most complete one at that time. It is
based on the concept of favorable and unfavorable states. The favorable state is th
distribution of the electric cars in the stations that guarantees that the system can reach a give
(large) horizon h with the highest probability, assuming that no balancing action is

conducted. An unfavorable state is the distribution of the electric cars in the stations that
guarantees that at least one of the stations will run out of cars or will be overload before ¢
given (small) horizon fwith a probability greater than or equal to a given value, assuming

that no balancing action is conducted. The proposed management consists in triggering
balancing action as soon as the system reaches an unfavorable state. Balancing the systt
consists in switching from the unfavorable state reached by the system to the favorable state
ChauvetHaouba andProth (1999) introduced an Unceasing Balancing Method (UBM). It

requires one truck visiting continuously the stations in a given order. At each station, the
truck either leaves cars when needed (assuming that the truck contains some cars), or tak
cars from the station if cars are in excess (assuming that some capacity is available in th
truck) or does nothing. Thus, when the truck arrives in a station, an evaluation of the state o
the system is performed in order to make a decision. It should be noticed that the order thi
stations are visited is given. The choice of this order is an open problem.

In herPh. D. thesisHafez (1999) proposed an approach that considers the management of
both the charge of the batteries and the distribution of the electric cars. To disconnect the
balancing problem and the recharge problem, she assume that the balancing process is perft



when studying the recharge problem. In other words, she assume that there are always
number of cars greater or equal to the demand in each station, which does not means that :
these cars are available and thus that it is possible to comply with the demands.

The problem is presented in section 2. In section 3, we present theoretical results that giv
some necessary conditions to reach an optimal balancing process. Section 4 is devoted to
heuristic balancing algorithm based on the results presented in the previous section. In sectio
5, we introduce a reactive algorithm, that is an algorithm in which the number of cars to load
or unload in the stations, as well as the next station to visit, are computed according to the
state of the system. Section 6 is the conclusion.

2. Problem formulation
We consider a system composed witBtations denoted b$={sl,sz, sh} The distance

d(s,s) between statiorssands is known and given in terms of the number of elementary
periods required to readd starting froms. An elementary period is typically 8 minutes.
Thus, a distance is an integer value in the remaining of the paper.

For each statiors, we know a set of pair%v},p}}_ . where V| is a number of cars
J=4e. n

(positive or negative) an@} is the related probability: this define the random varishlén
the remaining of this paper, we assume that these parameters do not depend\érisithe.
difference between the number of cars that arrive in statiand the number of cars that

no. .
leave the station during one elementary period. We denotg by v} p} the mean number
j=1

of cars that are added in stat®itm>0) or that are removed from statigrfm<0) during one

n
elementary period. In this paper, we assume fhat = 0, which means that the system is
i=1

globally balanced on each elementary period. Thus, the system is assumed to be steady. T
hypothesis does not restrict the conclusions of the paper but makes them easily
understandable.

We consider a horizoH and the numbeg;(17) of cars required in each station{1, 2, ..., n}

to meet customers’ requirements during this period with a probability greater than or equal to
a given probabilityp. The horizorH is a parameter of the problem and represents a number
of elementary periods. The greakérthe greater the numbegsi=1, 2...n, of cars required

in the stations wherem<O0 to meet customers’ requirements durihglementary periods

with a probability greater than or equalrfoWe usually chooskl large enough to allow the
truck to visit each station at least twidéne value of) belongs typically to interval [0.7, 1].

The setQ(n )={q.(n), &(n), ..., g(n)} is the set of optimal thresholds associated with the
stations. It is the set of numbers of cars that should be in the stations to have a well-balance
system. Note that iH and/orn increases, then the thresholglg;) increase and we have to
increase the number of cars in the system to preserve the same service level. This point wi
be made clear below.

A truck is in charge of the balancing process, which is the transportation of cars from stations
where the number of cars exceed the threshold towards stations where the number of car



less than the threshold. The capacity of the truck is known and denated ibythe maximal
number of cars that can be transported by the truck. Since the cars used in such a self-servi
transportation system are mini- electric carsan usually take a value up to 15.

A customer can pick up an electric car at a station, use it and return it to another (or the same
station. When a customer does not find a car as he/her arrives in a station, we say that tt
station runs out of cars or that we have a shortage in this station. Indeed, the problem is t
find a balancing process that reduces, and even suppress, car shortages.

3. Theoretical results

The constraints that apply to this problem are the following:

1. A pair of constraints concerns the truck. The first constraint is the capaditihe truck
in charge of the balancing process. The smalléine greater the number of truck moves
to transport the same number of cars, which could be impossible in a period less than o
equal toH. The second constraint that apply to the truck is its speed. The greater the
speed, the faster the balancing process.

2. The number of cars in the system. If this number is too small, it will be difficult, and even
impossible, to simultaneously reach the thresholds in the stations and meet customers
requirements.

3.1. Relaxing the number of cars in the system

Let us first assume that the number of cars in the system is very large andhahtisis
number is no more a constraint. We also assume that sketions are visited in the order
s,» S,» - S and that the truck covers the circuit once during each perigtesult 1 gives a

necessary condition anfor the truck to be able to perform the balancing process.

Result 1

j+s
If there exists {ij, g oo |j+s} O{iy, i, .., i} such that eitherH .y m >c or
K=
j+s

H. Y m <-c, then the capacity of the truck is not great enough to perform the balancing
k=j
process if the circuig , 5 , ..., §_is covered once during each pertdd
Proof:
j+s
1. Assume thaH. y m >c. In this case, the truck will not be able to load the number
k=]
its : _—
H. Y m_of cars that arrive in excess (on the average) during each periden visiting
k=j
the sequence of stati0|$§, S, - §,,- As a consequence, the number of cars in this set
j+s
of stations will increase, on the average, by at Igasty —c during each perioti, and
k=]

some other stations will permanently run out of cars.



jts j+s
2. IfH. 3 m <-c, the truck will not be able, even if it is full of cars, to unlcadi. 5 m,
k=] k=j

in stationss , § , .., §  during each perioth to make up the deficit of cars in these

stations. Thus, it is impossible to perform the balancing process under this coodition.

Corollary 1
A necessary condition to implement an efficient balancing process is the following:
o - O C. :
Each one of the statioissil}{1, 2, ...,n} should be visited at leastH m[tlmes during each
O C°LC

periodH. In this formulation[Ix[is the absolute value afwhile xUis the smallest integer
greater than or equal o

Proof:

Since the maximum number of cars that can be load in the truck or unload from the truck
when visiting statiors, is ¢, the maximum number of cars that can be load or unload during a

: : g C e . -

periodH will be mm[.c > Hm.c = H|m|. In other words, if it is possible to visit each
O CLC ¢

. . 0 C. _ ,

stations, iC){1, 2, ...,n}at least mm[tlmes, then the capacity of the truck is large enough
O CLC

to be able to balance the excess or shortage of cars in the stations.
Indeed, this condition is not sufficient: the path followed by the truck to visit the stations and
the number of cars loaded or unloaded at each station should fit with the requirement of the

system

We would like to dwell on the fact that the above condition is necessary, but not sufficient. It
does not guaranty that there exists an order to visit the stations such that the truck will contai
enough cars to unload, or will have enough available capacity to load, the required number o
cars when arriving in a station. It also does not guaranty that the stations can be visited in th
required order during a peridtl

3.2Relaxing the constraints on the truck

In this subsection, we assume that the constraints on the truck are relaxed. In other words, w
assume that the capacity of the truck is not bounded and that its speed is infinite. Taking intc
account these hypotheses, the following result is straightforward.

Result 2

We assume that each station is visited exactly once during each perod that the
constraints that apply to the truck are relaxed. We also assume that the number of car
simultaneously used by the customers is upper boundé&d We denote by the random

n . n . n .
variableV = S V'. This random variabl¥ takes its values onY v;, S v, ]=[Mi, Ma], and the
i=1 i=1 Q=1

corresponding probabilities are easy to derive from those of the random vaviables



In this case, and assuming that we are in steady state:
1. The mean number of customers that cannot find a car when they arrive in a station is:

Y-1
r=5 S(u-aPr(A=a).Pr(V =u), (2)
a=0u>a
whereA is the random variable representing the total number of cars in the statdfs (
2. The probabilities PA=a) are the solution of the linear system:

Pr(A=a)= S {Pr(V =ai).Pr(AS Y —a+i) + Pr(V > a~i).Pr(A= Y —a+i)} . Pr(A=i}
i=g

+__§{ Pr(V =a-i).Pr(Azi-a)+Pr(V<a-i).Pr(A=i-a)}.Pr(A=i} (2)
where g = Max(0,a- Ma) ande = Min(Y,a- Mi) and a=1, 2, ...Y,
and:
S Pr(A=a)=1 ©)
a=0

When the constraints on the truck are not relaxed, the meanrval@elower bound of the
mean value of the number of customers that cannot find a car when they arrive in a station.
Proof:

Relation (1) is straightforward in steady state.

Let U be the random variable that represents the number of cars that are actually taken fror
the stationsy<0) or returned in the stationd¥0) during one elementary period. Since the
constraints on the truck are relaxed, a car can be transported from a station to another or
instantaneously. In other words, the position of the cars in the stations does not influence thei
use. It is why we can consider that the cars in the stations are at the disposal of anyone of tf
customers.

If the number of cars in the stations or in use would not be bounded, we would+Hé\mit,

in general:

Pr(U=u)=Pr(V=u).Pr(A=-u) +Pr(V <u).Pr(A=-u) if —-Mi<u<0 4)
and:

Pr(U=u)=Pr(V=u).Pr(A<Y-u)+Pr(V>u).Pr(A=Y-u) if O<u< Ma 5)

We consider two consecutive elementary periods denotécmyt+1. We also denote b4,
andA,,, the random variables representing the total number of cars in the stations during the
elementary periodisandt+1 respectively.

Relation (6) is straightforward:

Py =2) = 3 PrAu =al A =D).Pr(A =) (6)
This relation can be rewritten as:

Pr(A, =a)= i_§9P|r(u =a-i).Pr(A =i)

If we remember that we are in steady state, we finally obtain:

Pr(A=a)= 5 Pr(U=a-i).Pr(A=i) (7)
i=g

The boundgy ande are derived from the following inequalities:

- O<i<Y since equalityA=i is included in (7).



- Miga-isMa since equalityJ=a-i is included in (7). This leads ssMa<i<a-Mi.

Finally Max(0a-Ma)<isMin(Y,a-Mi), org<i<e.

By replacing Pi{=a-i) in relation (7) by (4) and (5) whetea-i, we obtain relation (2).
Relation (3) is straightforward.

If we reintroduce the constraints on the truckecomes the lower bound of the mean value
of the number of customers that cannot find a car when they arrive in a station.

4. Algorithm 1: a fixed circuit is assigned to the truck

In this algorithm, we assign a valueHoand we choosg in the interval [0.7,1]. The value of

H should be large enough to allow the truck to visit each station once during this period. In
other words, we should be able to find at least one circuit that can be covered in Ht most
elementary circuits. Ldt be the set of circuits that meet this constraint. We then compute the
subsetl ,[JL of circuits that does not meet the constraint of result 1, that is the subset of
circuits that meet the necessary condition on the capacity of the truck.

The best circuit will be selected among the circuitk,dfy simulation: it is the one that leads

to the smallest percentage of customers who do not find a car when they arrive in a station.
Formally, algorithm 1 can be presented as follows.

Algorithm 1:

1. Generate a circuit at random. lle¢te the number of elementary periods during which we
want to cover this circuit once.

2. Compute the sdt of circuits that can be covered in let thalementary circuits.

3. We set,=@.

4 .For each circuit Z={s,s,.,5}0L, ~we check if there exists
. : o : : ixs ixs
{Ij, i1 o |j+s} O{iy, iz, ..., Iy} such that eltheH.kZ m >c orH.kZ m_<-c. If not,
=) =]

we setl,= L,[1{Z}.
5. If L,=9, we seH=H+1 and we go to 2.
6. Simulation This simulation applies to each one of the circuits,pf L
6.1We introduce the capacityof the truck, the numbewu of cars that are in use
and the numbeat of cars transported by the truck.
6.2We choose in the interval [0.7,1] and deriv@(n7 )={a.(n), (1), -..,a.(N)}

from the probability rules of the random variablgsi=1,2,...1n.

n
As we can see, the totahmberof cars in the system is cu+cfq (17).
i=1



6.3IntroduceNs that is the minimal number of elementary periods covered by

the simulation. In fact, the simulation will coviis1=[N${,[]H elementary

periods.
6.4Fori=1 ton, setm\i)=q(n). Initialization ofthe number of cars in the truck.
6.5Fori=1 ton, setw(i)=0. This step initializes the delays in the stations.
6.6 Fori=1 toNsl, do:

6.1.1. Compute the actual number of ca(§$) that enter or leave
each station during the elementary periodTo obtain these
values, we generate at random the quantib@y for
j=1,2,...n, using the probability distributions of the
random variables. Then:

a.lf b(j)<0, seta(j)= b(j) if -b(j)< muj) anda(j)=-m\yj)
if — b(j)= myj).

b.If b(j)=0, seta(j)= b(j) if b(j)<cu anda(j)=cu if
b(j)=cu.

6.1.2. Forj=1,...nhdo:

a. If b(j)<0, setw(j)= w(j)- b(j)+ a(j). The delays are
adjusted at this step.

b. If b(j)<0, setm\yj)= myj)+a(j). The number of cars
in each station is adjusted at this level.

c. If b(j)=0, setcu=cuw-a(j).

6.1.3. If the end of the elementary periods the statiork of the
circuit, then:

a. If muk<q(n) then, if ct>q(n)-muk) then
X(K)=q,(n)-mvK) elsex(k)=ct.
b.If muk)=q(n) then, if c-ctbmuk)-g«(n) thenx(k)=-
(mv(k)-a(1)) elsex(k)=-(c-cy.
c. Setmvk)= mv(k)+x(Kk).

10



d.Setct=ct-x(k).
6.7 Computation of the mean value of the unsatisfied demands:
Fori=1 ton dow(i)=w(i)/Ns1

6.8. Computation of the rat® of the number of unsatisfied demands over the total

number of demands for the circuiL,.
A numerical example
We applied algorithm 1 to a case with 5 stations. The system works in steady state. The
random behavior of each station is given by a list of pairs. The first element of each pair is ar
integer that is negative or positive. If this integer is negative, it means that the number of car
that are returned in the station during one elementary period minus the number of cars that ai
required by the customers during the same period is negative. In this case, the tendency of tf
station is to get empty. If the first element of a pair is positive, the tendency of the station is to
get full. The second number of each pair is the corresponding probability. Indeed, if the first
element of a pair is negative, its opposite value may be greater than the number of cars in th
station: this means that some demands remain unsatisfied. Similarly, if the first element of ¢
pair is positive and greater than the number of cars in use, it means that fewer cars tha
expected will enter the station: this balances the unsatisfied demands. For simplicity, we
denote by a statiors in the remainder of this paper.
In the case considered in this example, the data are the following:
Station 1: (-2; 0.2), (-1; 0.1), (0; 0.3), (1; 0.3), (2; 0.1)
Station 2: (-2; 0.4), (-1; 0.2), (0; 0.2), (1; 0.2)
Station 3: (-1; 0.3), (1; 0.4), (2; 0.3)
Station 4: (-2; 0.1), (-1; 0.1), (0; 0.2), (1; 0.5), (2; 0.1)
Station 5: (-1; 0.4), (0; 0.5), (1; 0.1)
The distances between the stations are given in table 1. These distances are the number
elementary periods the truck requires to move from one station to another.
We assume that the truck is empty at the beginning of the simulation. We propose some

results withH=12 and 8 and=0.9. Each simulation covers 30,000 elementary periods.

11



The results are proposed in tables 2.a and 2.b. For each run, we selected the circuit that led
the lowest raticg and we provided the circuit, the ragoand the mean value of unsatisfied
demands per elementary period for each station (in the order 1, 2, 3, 4 and 5).

For each pairH,n), the parameters of the runs are the capacity of the truck and the number of
cars in use at the beginning of the simulation. This number allows changing the total numbe;
of cars in the system.

Table 1: Distances between stations.

Stations

Stations 1 2 3 4 5
0
1 0 2 1 3 4
2 2 0 2 3 2
3 1 2 0 4 2
4 3 3 4 0 1
5 4 2 2 1 0

Table 2.a concerns the caseH=12 and n=0.9. The computation leads to q,(0.9)=6,
0,(0.9)=15,0,(0.9)=1,0,(0.9)=1 andg;(0.9)=6. In factg,(0.9) andq,(0.9) are equal to zero,
but we assign systematically 1 in this case. As we can see, the minimum total number of car
in the system should be equal to 29 in this case. It explains why the column "total number of
cars in the system=25" remains empty.
We then consider the cabk=8 andn=0.9. The computation leads ¢¢0.9)=5,0,(0.9)=11,
05(0.9)=1,0,(0.9)=1 andgs(0.9)=5. The results are given in table 2.b. As we can see, the
minimum total number of cars in the system should be equal to 24 in this case. Note that th
truck is much more active whet=8 than wherH=12, which explains why the results are
better in table 2.b than in table 2.a for the same number of cars and the same capacity of tt

truck.

12



Table 2.a.: Case H=12 ang=0.9

Total number of cars in the systenlm

[ 25 40 55
[] Capacity of the truck
Circuit 3,5/4;2,1;3| 2,3;5/4,1;2
10 Ratiog (in %) 10.9 9.4
Unsatisfied dem 22.5;14;2.6;7;| 14.3;14.2; 2.1;
(in %) 6.1 3.4;7.3
Circuit 2;3;54,1;,2| 2;3;4,5;1;2
15 Ratiog (in %) 9.6 8.6
Unsatisfied dem 20.7; 8;5.1; | 20.2;9.3;4.9;1
(in %) 12.5; 7 6.2
Table 2.b.: Case H=8 ang=0.9
Total number of cars in the systenlm
[ 25 40 55
[] Capacity of the truck
Circurt 3;5/4;2,1;3 | 2:3,54;,1;2| 23;5/41;2
10 Ratiog (in %) 12.7 8.8 6.3
Unsatisfied dem| 26.2; 12.9; 7.9;| 19.2; 7.8; 4.8; 12.9; 5.9; 3.3;
(in %) 19.9; 5.1 10.9; 5.4 5.1; 4.9
Circuit 3;54,2,1;3| 2;3,54,1,2| 2;3,5/4,1,2
15 Ratioeg (in %) 11.9 9.4 6.6
Unsatisfied dem| 25.8;9.9;8.7; | 22.3;6.6;6.2; | 15.2;4.9; 3.9;
(in %) 22.2; 4.4 15.3; 4.8 74,43

13




If we make some simulations with=7 andn=0.9, we obtain results that are worst than the

ones of table 2.b.. The reason is that the number of elementary periods required to cover tr
most favorable circuits (in the sense that the truck visits alternatively stations that require anc
station that provide cars on the average) is greater than or equal to 8. Thus, they are nc

considered in the cast=7.

5. Algorithm 2: The reactive algorithm

In this section, we present an algorithm that computes the next station to be visited by the
truck each time it enter a station. This computation is based on the state of the whole system.
The user provides a horizéth As in algorithm 1H is used to compute the number of cars
that should be available in each station to provide cars to customers Huelegnentary
periods with a probability greater than or equal to a given vialuehese numbers are the
thresholds associated with the stations. The threshold associated with i§tétion,n} is
denoted byg(n). We use the same notations as the ones of section 4. In addition, we denote
by cmi and cma two values such thats@miscmasc. These value are respectively the
minimum and the maximum threshold associated to the truck. The truck can unload cars in :
station only if it contains more thazmi cars, that is itt>cmi. It will choose as the next
station the one in which it is possible to load cars in the truck.

When the truck is in a stationthe numbemv(k) of cars in each statidnis known. We thus

are able to compute the numl€k) of elementary periods over which statioman meet
customers’ requirements with a probability greater than or equaluging only themv(k)

cars available.

the number of cars that can meet customers’ requirements over the shortest period.

We also compute such thath(i,) = max h(k), wherekE ={k/k(J(1,...,n) andmvk)= q(n)}. If

several stations lead to this maximum, we select,fire one that maximize the difference

my(K))- a(1)-

14



If the truck contains more thammacars, then, is the next station it will visit, otherwise he
will visit i,. Formally, algorithm 2 is as follows. The introduction of the data is missing.
Algorithm 2:
1. Compute the thresholdg(n), k=1,...n, using the probabilities distributions of the random
variablesv,
2. Introduce the number N of iterations
3. Fori=1to Ndo
3.1. Compute the actual number of caj$ that enter or leave each statjon
during the elementary periad To obtain these values, we generate at
random the quantitidy(j), for j=1,2,...n, using the probability distributions
of theV! random variables. Then:
a. If b(j)<0, seta(j)= b(j) if -b(j)< myj) anda(j)=-m\yj) if — b(j)=
my;j).
b. If b(j)=0, seta(j)= b(j) if b(j)<cu anda(j)=cuif b(j)=cu.
3.2Forj=1,...nhdo:
If b(j)<O, setw(j)= w(j)- b(j)+ a(j). The delays are adjusted at this
step.
If b(j)<0, setm\(j)= m\yj)+a(j). The number of cars in each station is
adjusted at this level.
If b(j)=0, setcu=cu-a(j).
3.3If at the end of the elementary periaihe truck arrives in station j then:
3.2.1. If Z(j)=-1 then, ifm\Vj)<qg;(n7) andct>cmithen:
Setx=Min(ct, q(17)-myj))
Setmyj)= muj)+x
Setct=ct-x
z(j)=-1 means that the station where the truck arrixexuires
additional cars. This value was computed when the car visited the

previous station.
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3.2.2. If Z(j)=1 then, ifmyj)>q;(n) andct<cmathen:
Setx=Min(cma-ct myj)-q,(17))
Setmyj)= muj)-x
gggSett=ct+x
z(j)=1 means that the station where the truck arriveas provide cars
to the truck. This value was computed when the car visited the previous
station.
3.3.3. Based on the numheamk) of cars that are in statidq derive
h(k) from the probabilities distributions of the random variatés

for k=1,...n.

3.3.5. Compute i, such that h(iZ):TDaEXh(k)’ where

E={k/kO(1,...,n) andmvk)= q«(n)}. If several stations lead
to this maximum, we select foy the one that maximize the
differencemv(k))- q.(n).
3.3.6. If ct>cmi setz(i,)=-1. The next station to be visited is station
i
3.3.7. If ct<cmasetz(i,)=1. The next station to be visited is station
i
4. Computation of the mean value of the unsatisfied demands:
Fori=1 ton dow(i)=w(i)/Ns1
5. Computation of the ratig of the number of unsatisfied demands over the total number

of demands for the circuitL,.
A numerical example

The data are the same as those of the previous example. We introduce two more variable

that iscmiandcma The results are presented in table 3.

16



Table 3: Case H=8 ang=0.9

Total number of cars in the systenlm

L] 25 40 55

[] Capacity of the truck

cmiandcma 2: 8 2: 8 2: 8

10 Ratiog (in %) 11.6 4.1 2.6

Unsatisfied dem| 13.6;4.7; 18.6;| 4.6; 1.8;6.2; 6.6;2.9; 1.2; 1.7; 4.4;

(in %) 18.1; 2.8 1.2 0.8
cmiandcma 2:6 2:6 2:6
15 Ratioeg (in %) 10.1 4 2.3

Unsatisfied dem| 12.3;4.1; 15.9;|4.7; 1.8;6.1; 6.5, 2.6; 1; 3.3; 4.1;
(in %) 15.9; 2.4 1 0.7

For the same number of cars and the same capacity of the truck, algorithm 2 performs bette

than algorithm 1.

6. Conclusion

The first part of the paper analyzes two cases. In the first one, only the constraints on the truc
are considered, and we assume that the number of cars in the system is not limited. Assumir
that the truck covers a given circuit once during a given period, a necessary condition for the
truck to be able to balance the system is proposed. In the second case, the constraints on t
truck are relaxed, and only the total number of cars in the system limits its efficiency. We
showed how this situation could lead to a lower bound of the probability that a station runs
out of cars.

The study was made in steady state. This hypothesis was adequate to show how th

characteristics of the truck on ohand, and the total number of cars available in the system
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on the other hand, influence the efficiency of the first balancing approach. It was also enoug}
to show that the reactive algorithm is much better than the algorithm in which the truck is
forced to cover always the same circuit.

In transient state, it is obvious that the reactive method would be much easier to adapt than tr
first one. The only difficulty would be the evaluation of the thresholds associated with the

stations: this will be the next step of the research.
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