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An Unified Approach to Find an Optimal Parameterized Path
| in a Digraph with Multiple Features

Nikolai GUS_CHINSKY*, Genrikh LEVIN"‘ and Jean-Marie PROTH**ond***

ABSTRACT.

This paper is devoted to a class of problems which are modeled by a digraph, and such that ea,cH arc
is characterized by several weights which depend on a parameter. This parameter takes its values in a
set which characterizes the arc. The goal is to find a so-called parameterized i)ath (i.e. a path and the
values of the parameters corresponding to its arcs) that optimizes a criterion which is a combination
of the weights of the arcs. The problem is introduced using transportation, communication and
manufacturing problems. An unified formulation is provided, as well as an ,algorithm. A numerical

example is proposed to illustrate this algorifhm. '
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Une Approche Unifiée pour le Calcul d’'un Chemin Paramétré dans

un Graphe Orienté a Caractéristiques Multiples

Nikolai GUSCHINSKY*, Genrikh LEVIN* et Jean-Marie PROTH**¢!***

RESUME

Cette communication est consacrée i une classe de probléemes modélisés par-un graphe orienté
dans lequel chaque arc est caractérisé par plusieurs poids qui dépendent d’un paramétre. Le paramétre
prend ses valeurs dans un ensemble qui caractérise I'arc. L’objectif est de trouver un chemin paramétré
optimal (i.e. un chemin ef les valeurs des paramétres correspondant a chaque arc) qui optimise un
critére formé d’un combinaison des poids attachés aux arcs. Le probléme est introduit a l’aide de
problemes de transport, de communication et de fabrication. Une formulation unique est proposée,

ainsi que ’algorithme correspondant. Un exemple numérique illustre cet algorithme.

MOTS-CLEFS

Programmation de réseaux, Chemin optimal, Caractéristiques multiples

"Insitute of Engineering Cybernetics, National Academy of Sciences of Belarus, Surganova str., 6, 220012 Minsk, Belarus
**INRIA Lorraine, Tecnopdle Metz 2000, 4 rue Marconi, 57070 Metz, France

***Institute for System Research, University of Maryland, College Park, MD 20742, USA

Ce travail a été financé par le projet INTAS 96-820.



1. INTRODUCTION

The shortest path problem has been introduced in [1] and has attracted many researchers since then
(see, for instance, [12, 18]). The solutions to this problem have been widely used to solve real life
problems as in (19, 17]). In discrete optimization, the shortest path problem often appears as a
subproblem in effective algorithms (see (3, 5, 10, 14]). The complexity of the shortest path problem
has been studied when the graph under consideration contains circuits of negative lengths. In this
case, finding the shortest path which does not contain such a circuit is an NP-hard problem (see [13]).
Otherwise, algorithms of polynomial complexity have been proposed as, for instance, in {4, 12].

Freeze [11] generalized the shortest path problem to the case when the function to be optimized
is recurrent-monotone (i.e. when it can be given by recurrent relationships and when non-decreasing

_real-valued functions are the lengths of the arcs). ‘

In [15, 16] the constrained shortest path problem is considered. It is showed in [13] that this problem
is NP-hard but, when all weights or all lengths of arcs are the same, an algorithm of complexity O(|V|3)
is developed, where |V is the number of vertices of the graph. In these papers, pseudo-polynomial
algorithms and e-approximate algorithms are proposed. |

In [2] the problem of finding the path with maximal value of the product of reliability and capacity
is studied. The problem of finding path of minimal cost/capacity ratio is considered in [19]. The
proposed algorithms consist in solving a secuence of problems of longest or shortest path in graphs
which are derived from the initial graph by removing some arcs.

This paper is devoted to a class of problems which are modeled by a digraph, and in which each
arc is characterized by several parameters (time and cost, or reliability and capacity, for instance).

In section 2, we introduce three basic problems which can be solved using the same approach.
Section 3 is devoted to the transformation of the basic problems in ordér to reach formulations having
the same properties. In sections 4, the properties are used to develop a common algorithm for these
problems; the discrete and continuous cases are considered. Section 5 contains a numerical example
concerning the design of a flow shop. Some simplifications of the general algorithm are introduced in

section 6. Section 7 is the conclusion.

2 THREE BASIC PROBLEMS

This section is devoted to the presentation of three basic problems which are at the root of the general
problem that is solved in this paper. The first problem concerns the reliability of a communica-
tion network, the second is a transportation problem, and the last one concerns the selection of a

manufacturing process in linear production systems.
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2.1 Reliability of a communication network"

A communication network can be represented by a graph G = (V, E), where V is the set of vertices
and E the set of arcs. The following notations are used to formulate the problem which has been
introduced in [2] : | .

¢(i,j) is the reliability of arc (7,7) € E. It is the probability that arc (z,j) be able to transfer

information when needed.

b j) is the capacity of (i,j) € E, that is the quantity of information which can be transfered

simultaneously.
We consider two vertices s and ¢ of the graph, and we want to select. the optimal path to transfer

" information from s to t. Let P;; be the set of paths from s to t. The goal is to find p* € Ps; such

that:

I e (mi“ 1’(«',3')} (1)

H (i g) ° min b'(,-,j) = max { m
(ep D

(1 j)ep, (ivj)ep‘ PEPs,t

2.2 Transportation optimization

This problem, presented in [19], is modeled by G = (V, E), where each vertex represents a city and

each arc the connection between two cities. The following notations are the same as those introduced

in subsection 2.1, but the meaning of ¢(; ;) is quite different: 7
¢(i,j) is the cost incurred for transporting a unit of good from ¢ to j.

In this case, the optimal path p* is such that:

> e/ min ”(i,j)=;§}§t{(z “(ig)/ (;f;.;gpb(},j)} (2)

(i.y)ep* _(Z'J)ep i,j)€p
In this problem, we select the path which minimizes the total cost for transporting a good from
s to t divided by the capacity of the path. In other words, we select the path such that the cost per

unit of capacity is minimum.

2.3 Selection of a manufacturing process in a transfer line

In this problem (see [8]), each arc of G' = (V, E') represents an operation, and each vertex represents
the beginning or the end of operation. The following notations are used:

b(; ;) is the manufacturing time of operation (i, j),

¢(i,j) is the cost per unit of time to perform (¢, j),

d(i ;) is the cost incurred to prepare the resource to perform (7,7). In other words, d j) is the
set-up cost related to operation (¢, j).

p* is the optimal manufacturing process to transform a product from state s to state ¢:

Z C(i,g) *

max bij+ Y, duj =
(i,)Ep* v

(5 (i5)ep®



min { Y i) max b+ ) d(i,j)} 3)
( ' .

pEP;, - € =
“LGg)er _ (hi)ep (ig)€

In this formulation, (m;);x b(i,j) reflects the time required to manufacture one unit of product, since
n7)ep 4
the system is a transfer line. Thus, the first term of each side of (3) is the production cost, while the

second term is the total set-up cost.

In the next section, we show how to generalize these problems and to propese a unified formulation.

3 GENERALIZATION AND.UNIFICATION OF THE
FORMULATIONS

3.1 Generalization of the formulations

A generalization can be introduced in the problems presented in subsections 2.2 and 2.3.

In the transportation problem,'c(; ; and b(; ;) may depend upon the transportation system used.
In other words, we may have the choice amongst several elements of a set of transportation resources
denoted by [(i ;) and this set may be different from one connection (i.e. arc) to the other.

Let us introduce a parameterized path = = (p,v).The parameter v(; ;) € [ j), (7,7) € pis associ-
ated with the arc (4,5). If X, denotes the set of all parameterized paths from s to ¢, then relation

(2) can be rewritten as follows:

> cea(ig)/ min by (i) =

(ii)ep* (ha)er®

' : {
min C(i.4 i i b,’ ; I 4
oin. (i%:ep () (160))/ min b (v(i) (4)

where p* and 7({, ;) are the parameters to be defined to optimize the criterion.

Similarly, if we assume that an operation (i,j) can be performed using different machines, the

criterion (3) can be rewritten as:

> <G (i) (ma\ b (M) + D0 dea (i)

(i,5)€p* yer® {i.j)ep*
min { Y cin(nig) - max (i) + 2 4 ,J)(V(m))} (5)
T€Xq s (i,7)€p

(i.7)€p {t.3)€p

where I'(; ;) is the set of machines available to perform (i, 7).

Note that the problem introduced in 2.1 (reliability of a communication network) can be generalized

in the same way. We have only to assume that I'(; ;) contains only one element. N
Sets I'(; ;) can also be derived from the following transformation. If, in graph G, there exist paths

the vertices of which (except start and end vertices) have only one predecessor and one successor,

4



then each such a path can be replaced by a unique arc. The reliability and the capacity of this unique
’ arc are equal, respectively, to the product of the reliabilities of the arcs of the initial path and to the
minimal capacity of these arcs. In this case, the set ['(; ;) represents paths amongst which the choice

has to be made, and thus, criterion (1) can be rewritten as:

I i) - min b ,J)(Ww)—zr&“,{ II ciq () - min ”(z‘,j)(ma‘))} (6)

(i.7)ep* ha)ep? (.)€p (ha)er

3.2 General formulation and properties

* In this subsection, we propose a unified approach to formulate these problems. The objective of this
formulation is twofold: (i) provide an unified formulation, and (ii) provide a formulation which permits
to develop a unique algorithm. We will consider the three problems introduced in section 2 and show

how to re-write them as an unique formulation. All the components of the umﬁed formulation have

the same properties, as explained in the next subsections.

3.2.1 Reliability of a communication network

Criterion (6) can be rewritten as:

| 1 ]
max H C(i,j)* min b; 5y 0 = min |ln H . (7)
ZGX”'{ i)ep RS FEX e (i.j)ep “(0d) ()€p b(i J :

Criterion (7) is equivalent to:

min |In¢ J] L max ! =
PP | | e S (M) e (biyy iy (V6.5)

-

r ; :
Jmin | > (=In i) (T(6.)) + max (~In b(i,j)(')’(i,j)))} 7 (8)
L(i.0)€Ep _
By setting &;,_, . (vi,j) = — I cip_ i (7)) and b, _ vis (Yag)) = = biy_ i (i j))s the criterion
becomes: : '
min ¢ Y &6 (v64) + max bei.y (v, ) (9)
TEX e {(m‘)ep (hoep J
If we set:
1(2) = max b
fH(=) (nax p,;)( (i)
Ple)y= T eupntvis)
‘ (i.7)€p
then the criterion is:
. min (f(2)+ @) = min 8(f @), Siw) (10)

where @ is increasing with regard to f!(2) and f2(z).



3.2.2 Transportation optimization

Using the same approach as in subsection 3.2.1, criterion (4) can be rewritten as:

i ' 1
xgl)l{r,l,{ Z ¢, 5)(7,5)) - max ____}

(Ga)er biij) (Vi)

(¢,7)€p

" N(g)€Ep
If we set
1 _ 1
fiz)= (g}?gp bi,j) (Vi)
@)= T eann)

then the criterion is:

min (f!(2) f*(2)) = min @(f'(2), f*(2))

.’L‘EX,,: Ast |

where @ is increasing with regard to f!(z) and f2(z).

3.2.3 Selection of the manufacturing process in a transfer line

Consider criterion (5) and set’
e) = max bi; (76
Fi@) = max bii.j) (76.))
fiz) = Z c(i,j)(')’(:‘.j))
(i.0)er
Pe)y= T duj)(16.5)
(ivj)ep ’

With these notations, the problem is:

min (f1(2) - @)+ £(2)) = min @/ (2), /(). S(@)

J«'EXA,!

where ® is increasing with rega&d to fl(z), f*(z) and f3(z).

3.2.4 General formulation

(11)

(12)

(13)

In this subsection, we introduce a formulation which encapsulates formulations (10), (12) and (13).

If we set
[ fl(z) = (g}?gpbb,j)(')’(i,j))
fAz)=; bzi: (Yi.5))
: (5ep )

)= 0 (i)

\ (H])EP




Fes

then this formulation is:

min g(z) = min ®(f(z), f2(z),..., f"(2)) =

TEX:,: T€EX, ¢
in (6 0 (@) + (o F)(a) - F(e) 44 (g7 0 ) (a) - (@) (14

where ¢” is an increasing non-negative function for r = 1,...,m.
We also assume that bfi,j)(’)’(i,j)) >0forr=1,...,m.
It should be remembered that z represents two parameters, that is:
- a path p; |
- the value of v(; ; for each (i, 7) € p.
If we set m = 2, g' = identical function and g2 = 1, then we obtain (10). ‘
If we set m =2, ¢! = 0 and ¢ = identical function, then we obtain criterion (12).
If we set m = 3, g' = 0, ¢® = identical function and ¢® = 1, then we obtain criterion (13).

We denote by A the problem which consists in minimizing criterion (14).

4 METHOD FOR SOLVING PROBLEM A

4.1 Basic principle

Function g(x) is discrete: each path between s and t will provide one point of this function.

To solve this problem, we introduce function §(z,y) defined as follows:
9z, y)=g'W)+9*W) - @)+ ... + 9™ (@)

where y € Yo O {f!(2)]v € X}

Function §(z,y) is a weighted sum of functions f!(z),..., f™(z) which are discrete functions
related to the paths between s to ¢.

Let us define X,,(y) = {z|z € X, and f!(2) < y}. This subset of X, is easy to define since,
according to the definition f', X, ,(y) is the set of paths which include only arcs (4, j) whose “length”
b%i, j)('y(i'j)) is less than or equal to y. These paths are obtained by removing from the set of initial
arcs the ones whose length is greater than y.

Let z*(y) be the optimal solution related to g(x,y), that is

i(2*(y),y)-= xe‘_l?f,’,](y)g(w"y)

~ We know that fflay= Y bT(‘{.j)(’Y(-i,j)) for r =2,...,m. As a consequence,
: (tj)ep
i) =g' W+ W) - FPla)+ ..+ M) =

g W)+ D W) 0f (v + o+ 97 W) 05 ()]
(tg)ep



and the minimization of §(z,y) for x € X, (y) is obtained by solving the shortest path problem (see

annex 1).

Obviously: - : i
i@ W)y 2 9" w) | (15)

and the equality is reached if and only if f!(z*(y)) = y.

Assume that §(z,y) is minimized for a sequence y, ..., yx of values belonging to Y. The optimal
solutions will be z*(y1),...,2*(yx) respectively. The minimal value among those solutions is an ap-
proximation of the optimal value of g(z). The greater k, that is the greater the number of trials, the

better the approximation.

4.2 Refinement in the case of finite sets of resources

We consider the case when T'; ;) is ﬁmte, whatever the arc belonging to a path joining s to ¢.
Instead of choosing a sequence y,...,y; at random in Yy, we propose to build the sequence of

values really taken by f(z) for 2 € X,;. To build this sequence in the decreasing order of the values,

we define fM(J = max{f!(z){z € X5 and f!(2) < y} and compute

{ v = fig(o0) (16)
yr = far(ys—1) for k=2,3,... K, .
where K is the cardinality of {f'(z)|z € X,.(y)}.

The way to find y; knowing yi; is explained in annex 2.

Doing so, we are sure to reach the value of y which meets the optimal vatue of f!(z). For each y, ¢
we solve the problem which consists in optimizing §(z,yx), as explained in 4.1. The value 2*(yx) is
composed with the optimal path p* and the values VG, iy corresponding to each (i, j) € p*.

It is easy to prove the following theorem:

Theorem 1 If 2* = 2™ (y*) such that §(z*(y*),y") = 1r2mn a(z*(yx), yr), then g(z*) = zrél{,ntg( ).

Proof :
Assume that there exists 2’ € X, such that g(2') < g(2*). According to the process given in
(16), all the possible values of y are generated. Thus, one of the values generated, say yx, is such that

yr = f!(z') an z’ belongs to X;(yx). As a consequence:
g(&") = (¢" 0 (@) + (¢*0 1Y (@) fra) + ...+ (g™ 0 f)(2) - [T (2) 2

min  {g"(y) + ¢*(wx) - @)+ ..+ 9" () - M)} =
z€X ., e(yx) &

Gz () yk) 2 §(27(y7), ) = g(27).

This contradicts the assumption.



Q.E.D
It should be noticed that K’ < 37 ny; ;) where ny; ;) is the cardinality of F(;,j).
) (t.)eE

4.3 The case of infinite sets of resources

In this case, the approach presented in 4.2 does not apply. We generate a sequence 11,3, - ., at random
in Yo and compute the optimal z*(y) for & = 1, 2,‘. .., L. We keep z*(y*) such that §(z*(y*),y*) =
[ min, Gz (ye), yi). | |

This value is not an optimal value to g(z), but hopefully a near optimal value if the number of

trials is large enough.

5 NUMERICAL EXAMPLE: SELECTION OF THE MACHINES
IN A TRANSFER LINE

We consider a manufacturing system dedicated to a unique type of product. A set of operations is
applied to each product, in the same order. Let N be the number of operations to be performed on
each product. - '

Operation j € {1,2,...,N} can be performed using a machine of the set {m{,m%,.. mf
Performing J on m{ requires a time b(m{) Furthermore, c(mk) is the cost per unit of time when
using mk, and d(mk) is the set-up cost of machine mk We assume that the set-up cost results from
the set-up time required at the beginning of each operation: it is, for instance, the time required to
unload a product and to load the next one.

" The goal is to select one machine for each operation in order to solve:
N _
Z c(mi_j) max b(ml )+ Z (lfmk
j=1

min
ki,..knEKX 1<]<V

where K is the set of indices which define a manufacturing process.

This criterion is the criterion (5) rewritten using manufacturing terms. It takes into account the
fact that, in steady state, a transfer line works at the speed defined by the bottleneck machine. It
provides the minimal cost incurred when manufacturing one product. * .

~ The problem arises at the design level, when the goal is to select one machine for each operation
in order to minimize the production cost. ' A

Let us consider a four stage manufacturing process. In Table 1, we provide, for each machine:

- the manufacturing time, .

- the ma,nufé.cturing cost per time unit,

- the éet-up cost. '

5 machines are candidates for operation 1, 7 for operation 2, 6 for operation 3 and 4 for operation



Table 1. Machines and their characteristics.

Operation 1 -| Operation 2 Operation 3 Operation 4
MIC|{T|SIM{|C|T|SIM|C|T|SIM|{C|T|S
1{8|6(2]1|2|6[4]1]6|9]111]9]3]|2
2121213121111 211|2(7]2(212)212}1
31 7{14113 8141391313 14]61}3
4 14|17 413 |1|2(4|2|8(3|4|5]4]2
5113 517131285 ]11161}2

61271365 ]|1}4
7181211

The following abbreviations are used in table 1: M - machine, C - manufacturing cost of time unit,
T - manufacturing time, S - set-up cost. '

For this problem, graph G is shown in Fig. 1 and set X, ; consists of only one path.

O—0O0—0—0
4

s=1 2 3. t=5

Fig. 1. Graph G.

When applying the approach proposed in 3.2, we obtain:

Y1=9,y2=8,ya=T7,y4=6,ys = 4,56 = 3 and y7 = 2. \
For y = 9 we have: ' )
§(z,9) = 9[c(m} ) +c(mi)) + c(m) + c(mi)] + (Z(Tn,l”) + (l(mzzj + d(mzs.) +d(mg,) =
9¢c(mi,) + d(ml)) + 9c(m?,) + d(mi,) + 9e(m3, ) + d(m3,) + 9e(mi,) + d(m},),
where : - _
m}q = argmin{8-9+2,2-9+3,7-94+1,4-9+3,1-9+2} = argmin{74,21,64,39,11} =5,
mzz = argmin{2-9+4,11-9+1,8-9+1,3-9+2,7-9+2,2-9+43,5-9+ 1} =
argmin{22, 100, 73,29, 65,21,46} = 6,
m3, = argmin{6-0+1,7-0+2,9-9+1,2:9+3,11:9+2,5:9+4} = argmin{55, 65, 82,21,101,49} = 4,
mg, =argmin{9-9+2,2-9+41,4-9+3,5-9+ 2} = min{93,19,39,47} = 2. ‘
Thus, §(z,9) = 11 + 21 + 21 + 19 = 72. ’
In the same way, we obtain:
 §(2,8) =10+ 19419+ 17 = 65
5z, 7) =9+ 17+39+15=80
3(z,6) =8+16+34+13 =71
3(z,5) =T+17+4+29+11 =64
§(z,4) =6+ 14+24+9 =53
§(2,3) =5+11+19+7 =42
9(2,2)=T+8+14+5=234

o Q
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Then the solution is y* = 2, m}, =2, mi =4, mj =6, m{ =2.

An improved approach is proposed hereafter to solve problem A. This approach allows us to avoid
the computation of §(z,y) for some ' <y. o ,

Let us consider y € Yy and f2(y), ..., f™(y) the minimal values of f2(z),..., f™(z) forz € Xt (y).

We define |

z=min{y"|g"(v") + * (") Py + ...+ g7 ") " (y) > o} ' (17)

where a is an arbitrary value.

We claim that ¢'(y/) +¢*(v") - f2(2) +...+ g™ (¥) - f™(x) is greater than a if 2 < y, y’ € [2,¥] and
z € X;4(y'). The reason is that

9'W) +9° ) - @)+ A ™) - () 2

9@+ (W) )+ ) )
since f7(y') > fT(y) if o' <y (ie. X,.(v) C Xanl(y)).

The following algorithm is derived from the above remarks.

Algorithm 1

1. Compute Yp, set of all possible values of f!(z) for z € X,;. Since we do not want to consider
all the paths and, for each arc (z,7) of each path p all the elements of [, we just compute the
minimal and the maximal values in Yy, and consider that Yy is the interval defined by those values.
The minimal value is:

Y = min{f1(2)]2 € X,.}
and it can be found by applying Dijkstra algorithm (see annex 1) by setting ¢;; = b%i,j)(‘)’(l,',j)) and

using the maximum operation instead of the sum operation.

The maximal value is:

yar = max{bf; (7)) € B} = fly(o0).

Thus, we consider that Yy = [ym, yas].

2. We optimize g(z,y) for y = yn and y = yar. The optimal paths are respectively z*(y,») and
2*(yam). According to (15), we then consider g(2*(ym)) and g(z*{(yas)) and keep the path z* which

leads to the minimal value. In other words:

z*lg(2) = min{g(2*(ym)), (" (va))}.

3. Set y = yus.

4. Compute f7(y) for r =2,3,...,m.

5. Comp,ute z as defined in (17) replacing ¢ by g(2¥).

6. Compute y = fi,(z).

7. If y = ym, then stop the computation since, in this case, all the values of y have been explored,
at least implicitly. ' |

8. If y > ym, compute j(a,y) and g(z™(y)).

9. If g(2*(y)) < g(z*), then set ™ = 2™ (y) a‘.ncl g(."c*j =g(2"(y)).

10. Go to 4. |
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Remarks

1. In general case, computation of z in point 5 can be performed using dichotomy method since,

") + 2" - FPy) + ...+ g™(y") - f™(y) is increasing with regard to y”. But, for special cases,
it is better to use the procedure defined by user. For instance, for the problems presented in 3.2.1 -

'
3

3.2.3 these procedures can be defined respectively as follows:

z=a- f*(y)
z=a/f*(y)

_o- P
Py

2. When computing f"(y) for r = 2,3,...,m, we can take into account the fact that friy)=Ff(y)
for y' < f(z"(y)) where 2" (y) is the path such that f"(2"(y)) = ().

6 FURTHER SIMPLIFICATIONS

a. Let assume that we compute the solution of j(z,y) for a y chosen at random in [Um,ynrr]. The
optimal solution is a path 2*(y), and this path depends on y, since it has been computed on X, (y) C
Xt

Let us now consider that our graph is restricted to this unique path z*(y), and that we try to find ‘
the opt;ima.l solution on X, , which represents path z*(y) with all the possible values of T'(; ;) for eé.ch;
arc (4,7) of z*(y). Since we relax the constraint on I'(; ;;, we may improve the solution z*(y).

b. Another improvement is possible when m = 2. In this case, point 4 of Algorithm 1 can be
drastically simplified since it is no more necessary to compute F2(y): it is equal to f2(z*(y)). This is?
the conseﬁuence of the following inequality:

g'W) +9°W) - £ (W) 2 9" (W) + ¢* (W) (=) |
which holds for all y' < y since 27(y’) € X, :(y) and 27(y) is the optimal solution.

c. Using this inequality for m > 2, we can also obtain an expression for fT(z*(y")) in the following

way:

Far) 2 e 3 L8 gy

As a consequence,

gz, v) 2 ¢ W) + 28 g, y) + 2, 0w~ P ) - 2 - i (y)
L I=2.5%r
If » € {2,...,m} is such that (g7(y') - 9 (y) - er((%)) > 0 forall j € {2,...,m}, j #r, then (17)"
can be rewritten as: ‘
. T(y" - dde ; 3 g"( %
—minfy e ) + L) et Y @) - P L) e e ()
9" (y) Pyl g9"(y)

12
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For instance, for problem A with criterion (13), relation (18) becomes:

2= min{y|5-3(2,9) + (1= ) Ply) 2 0) (19)
and therefore h ‘
a— f3y) o (20)

2=y

(=, y) = fy)

Now we apply this approach to the numerical example.

We have ym = 2, yar = 9, §(z,4m) = 9("(um)) = 34,.and G(z,up) = 72, 9(2"(ym)) = 65.
Therefore, g(z*) = 34. ' :

34— 4
£3 = >2=9. = 3.97
P9 =4,2=9 =2 3.97
y = f3;(3.97) = 3, §(z,3) = 42, g(2*(3)) = 42
34 -4
F3 = Z2=3°¢ — = 2.;
P3)=4,2=3 53 2.36

y = fis(2.36) =2
Algorithm stops since y = yn,.

7 CONCLUSION *

In this paper, we considered problems which can be expressed in a unified form given by relation (14).
The properties of the components of this formulation are precisely fixed. We showed that the optimal
solution can be reached if the problem is discrete, and that we can converge in probability to the

optimal solution if the problem is continuous. '
The basic algorithm can be drastically improved using the results of section 6.
Further research will consist in listing real life problems which can be written using the unified

formulation, so we can use the proposed algorithm to obtain their solution.
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Annex 1 Minimiiing the function §(z,y) on X .(y) (Dijkstra algorithm)
The problem is modeled by a graph G = (V, E), where V is the set of vertices and E the set of
arcs. Furthermore, s is the origin and ¢ the extremity of the path under consideration.

1. For each arc (i, j) € E compute ¢(i,;)(y) and 7("1.,].)(3;) as follows:

i) (y) = HOE b?i,j)(')’;i,j)(?/)) +o+ 9" W) OG5 (W) =

min{g®(y) - f; ;) (7)) + - -+ 9™ (W) - O 5 (Vi) Vi) € iy and biisy (Vi) < ¥}

" Set c(i,){y) = oo if there is no (; ;) € I'; ;) such that b(li’j)('y(i,j) <uy.

2. Set I{s) = g*(y), pr(s) =0, and [(¢) = oo, pr(i) = —1 for other i € V.

3. Set V; = {s}.

4. Choose a vertex ¢ in Vj such that {(:) = 521‘21(]) If © =t then go to step 6, otherwise set
Vi =W\ {:}.

5. For any (¢, j) € E whose origin is ¢ and such that c(; jj(y) # oo compute lt(5) = I(¢) + e ()
If I(7) > i1t(j) then set I(j) = It(5), pr(j) =7 and V; = V; U j. Go to step 4.

6. Set k=0and j=t.

7. Set i = pr(j).

8. If ¢ is equal to 0 then stop. Otherwise set k = k + 1, p(k) = (4, 7), and (k) = 'y(*z-,j)(y). Go to
step 7.

15
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Annex 2 Finding f};(v)

1. For each arc (7, j) € E compute b; ;)(y) as follows:
(i, (y) = max{b(; ;y(16.) ) € Tiii) 30 (i) (V6) < 93

Set by; j)(y),= oo if there is no v(; ;) € I'; ;) such that b%,-,j)(’,V(i,j)) <y.

2. Set ps(i)=0forallie V.

3. Set V; = {s}. ]

4. Choose a vertex i in V; such that ps(:) = 0. If there is no such vertex then go to step 6.
Otherwise set ps(i) = 1 and V; = Vi\{i}.

5. For any (i, ) € E such that b(; ;y(y) # oo and ps(j) = 0 set ps(j) =1 and V} = V1 U {7}. Go

to step 4.
6. Set pt(i) =0 forallie V.
7. Set Vi = {t}.

8. Choose a vertex j in Vj such that pr(j) = 0. If there is no such vertex then go to step 10.
Otherwise set pt(j) = 1 and Vi = Vi\{j}. . ,

9. For any (i,j) € E such that b; ;)(y) # oo and ps(i) = 0 set pt(1) =1 and V; = VUi Goto
step 8.

10. Compute faly) = (g;?é(E{b(,-’j)(prs(i) =1 and pt(j) = 1}.

In steps 2-5 we determine all the vertices 7 € V for which there is a path between s to 7, and in

steps 6-9 we determine all the vertices j € V for which there is a path between j to t.

‘7
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