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Génération de Circuits pour la Vérification de Programmes
ESTEREL

Résumé : Nous proposons dans cet article une méthode qui permet de prendre en compte les
variables Booléennes dans la vérification de programmes ESTEREL. Le code intermédiaire que nous
utilisons est un circuit qui contrdle une table d’actions. Le circuit code la structure de contrdle du
programme, et la table des actions manipule les variables externes du programme. Notre méthode
transforme les actions en portes logiques et registres qui agissent sur des fils au lieu des variables.
Ceci suppose de coder les variables d’entrée dans le circuit et de décoder les variables de sortie. Cette
méthode d’expansion a été mise en ceuvre dans le processeur scdata qui peut étre utilisé conjointement
avec le compilateur ESTEREL.

Mots-clé : Génération de chemin de données, ESTEREL, vérification formelle, programmation
parallele, systemes réactifs, circuits séquentiels, programmation synchrone.
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1 Introduction

1.1 Reactive Systems

Reactive systems are computer systems that react continuously to their environment, at a speed impo-
sed by the latter [18]. This class of systems contrasts on one hand with transformational systems, i.e.,
classical programs whose inputs are available at the beginning of their execution, and which deliver
their outputs when terminating, and on the other hand with interactive systems, i.e., which react
continuously to their environment, but at their own speed: for instance, operating systems. Among
reactive systems are most of the industrial real-time systems: control, supervision and signal-processing
systems. One of their most important features is dependability, since these systems are often critical
ones. For instance, the consequences of a software error in an aircraft automatic pilot or in a nuclear
plant controller are disastrous. Therefore these systems require rigorous design methods as well as
formal verification.

1.2 The Synchronous Approach

Synchronous languages [14] were introduced in the 1980’s to make the programming of reactive systems
easier. They are based on the synchrony hypothesis: all parallel activities share the same discrete time
scale. Each activity can then be dated on this scale; this has the following advantages:

e Temporal reasoning is made easier.

¢ Interleaving-based non-determinism disappears, which makes program debugging and verification
easier.

The main languages based upon the synchrony hypothesis are STATECHARTS [18], ESTEREL [7],
LUSTRE [15], SIGNAL [20], ARGOS [22], and SYNCCHARTS [1].

1.3 Formal Verification of Reactive Systems

Since reactive systems often concern critical applications, verification is a key issue. It has been shown
in [24, 26] that the main goal concerning reactive systems is to verify a set of “safety” properties.
These are properties which express that something bad will never happen.

The main formal verification technique is performed on a model of the program: hence it is called
“model checking” [25, 9]. Basically, for a given safety property, it checks that this property is satisfied
for each reachable state of the program model. The verification can be explicit, i.e. performed on
a explicit model of the program, or implicit, i.e. performed on an implicit model of the program.
The automaton encoding OC format (for “object code”) is such an explicit model: the automaton
transitions correspond to the system reactions to an input. OC is produced by the ESTEREL, LUSTRE,
ARrcos, and SYNCCHARTS compilers. Several explicit verification tools have been designed for LUSTRE
programs [26] as well as ESTEREL programs [19)].

As an alternative to the explicit automaton format, the ESTEREL compiler can produce a Boolean
sequential circuit written in the SC format (SC standing for “sequential code”), which can be considered

RR n“ 3582



4 Alain Girault and Gérard Berry

as an implicit automaton [2]. An SC program is a circuit driving an action table. The circuit represents
the program’s control, while the action table performs computations over the program’s data. When
the source program is pure ESTEREL (that is, without valued signals and variables), the SC code has
no action table. This circuit representation yields both compact code and good execution time. In
particular, it avoids the model size explosion problem often encountered in the explicit approach.

Formal verification of the program is also possible using the sequential circuit format [10, 8]. Several
tools based on model-checking already exist that permit verification of sequential circuits: for example
SMV [23], TIGER [11], XEVE [6], and V1s [29]. For instance, VIS checks that a given safety property
written in the temporal logic CTL [9] is satisfied by the program. However, verification can only be
performed on the program’s control part, that is, it cannot take into account the actions performed by
the circuit.

1.4 Extended Verification

We propose a method that extends formal verification to ESTEREL programs with Boolean variables.
We call this data expansion. We have implemented the data expansion within the scdata processor:
it takes as input an SC circuit and gives as result the expanded corresponding circuit, still under the
SC format. The scdata processor can thus be used in conjunction with the other ESTEREL tools.

After a short presentation of constructive circuits in Section 2 and the SC format in Section 3, we
present the method in Section 4. Then we present the steps in detail in Section 5. In Section 6 we
illustrate the formal verification with an example. Finally, in Section 7, we show how to extend data
expansion to enumerated types.

2 Constructive Circuits

If an ESTEREL program contains no cyclic instantaneous signal dependencies, then the circuit obtained
by the translation has no combinational cycle. Since we also want to deal with dependency cycles in
ESTEREL programs, we have to understand combinational cyclic circuits. To schematize, two semantics
have been used in the ESTEREL compilers to produce sequential circuits: the Boolean semantics and
the constructive semantics [27, 4, 5]. They differ on the analysis of combinational cycles, also known as
causality analysis. The goal of the causality analysis is to be consistent with the electrical behavior of
circuits. The Boolean semantics uses the classical Boolean calculus to solve equations. The constructive
semantics propagates the known value of nets.
Consider the following cyclic program and the corresponding circuit:

— o X
X = X or not x

Figure 1: The hamlet cyclic circuit

INRIA
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Under the Boolean semantics, x or not x will be simplified and replaced by 1, leading to the
equivalent program x := 1. This is inconsistent with the electrical semantics which tells that the
hamlet circuit has no stable behavior for some gate delays. On the other hand, under the constructive
semantics, such a simplification is forbidden and the construct x or not x propagates a 1 if the net x
is defined. In the hamlet circuit, since the value of x is not known a priori, the circuit has no behavior:
we say that it is not constructive.

The ESTERELV5 compiler' implements this constructive semantics.

Now, handling data in finite domain is standard in SMV and Vis. Our goal is to provide the same
facility for ESTEREL, considering only Boolean variables for simplicity. Compared to the standard
approach, the difficulty lies in the fact that the control circuit can have combinational cycles. Since
the data part can interfere with the constructive causality analysis, we must deal with data expansion
beforehand.

3 The SC Format

Basically, an SC [3] program is a control circuit driving an external action table. Several tables describe
the objects manipulated by the program (types, constants, variables, signals, and so on), and a net
table describes the circuit itself. Each net has a number and is defined by an “access list” and an
“expression”:

e The access list indicates sequential dependencies: the value of any net in the access list must be
known before the value of the net that bears the access list can be computed. Remember that
a net does not compute an output but propagates a value as soon as it has enough inputs [27].
According to the constructive semantics (see Section 2), a gate controlled by an access net could
be implemented with only regular gates. Indeed, the ¢ or not c gate propagates 1 if and only
if the net c is defined! Hence, the circuit of figure 2(a), where the link between the gate and its
access net is represented by a doted line, is equivalent to 2(b), but contains less gates. When c
is not defined, no matter what the output of the gate 1 is, it cannot propagate itself past the
gates 3 and 4. In other words, access nets are shortcuts.

a
d
b .

co—e
(a)

Figure 2: A gate with an access net and the equivalent circuit

LESTEREL is available at http://www.inria.fr/meije/esterel.
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e The expression indicates the inputs of a net. It is either a conjunction or a disjunction of nets
or negated nets. Expressions cannot be nested. Two expressions are predefined: $0 for 0 and $1
for 1.

We will not list all the different nets that exist, but just describe the most useful of them:

e A standard net defines a net with an expression and an access list. It builds basic Boolean
expressions. For instance, the net 26 computes 24 and not 25, but only after the net 4 has
been computed to either 0 or 1:

26: ELSE_5_KO_
access: (4 )
and: (24 '25)

e An action net drives an action defined in the action table. This action is called whenever the
net bears the value 1. An action is a variable assignment?. For instance, the net 18 launches the
action 4 when the net 12 takes the value 1, but only after the net 15 has been computed:

18: ACTION_1_OUT_KO_ act: 4
access: (15 )
12

e An ift net drives a test defined in the action table. This test action is called whenever the net
takes the value 1. The ift net is assigned the result value of the test. For instance, if the net
24 is at 1, then the net 25 launches the test action 6 and sets the net 25 to the test result value:

25: THEN_5_KO_ ift: 6
24

e An input net corresponds to an input signal defined in the signal table. It behaves like an
ift net. Its value is determined by calling the presence action associated with the input signal.
That call returns the Boolean presence value of the signal, i.e., 1 if the input is present, and 0
otherwise, and sets the variable associated with the input signal. Note that an input net does
not have an expression. For instance, the input net of X can be:

3: X__I_ in: 1 ift: 1
e An output net corresponds to an output signal defined in the signal table. It behaves like an
action net by calling the output action whenever it bears the value 1. For instance, the output

net of Y can be:

9: Y__0_ out: 3 act: 3

2There are also external procedure calls.
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e A register net defines a register, with a single input net and an initial value. For instance,
here is a register with net 51 as input and 0, i.e. $0, as initial value:

49: REG_19_
reg: $0 51

For instance, consider the following ESTEREL program:

module foo :

input c : boolean;
input x : boolean;
input y : boolean;
output o : boolean;
var a : boolean in

a := false;
loop
if not 7c then
a := (7x and ?7y) or (not 7x and not ?7y); % xnor
else
a := (7x and not ?7y) or (mot ?7x and ?y); % xor

end;
emit o (a);
each tick
end var
end module

Figure 3 shows the SC circuit obtained after compiling the program foo. Action nets are shown
with the action on top of them. Action a:=xor(x,y) stands for a:=(x or y) and (not x or not
y). For the sake of readability, register nets are represented by registers, and standard nets are
represented by logical gates. The control flows from the boot register to the last output net. After
the ift net, it divides in two, a then branch and an else branch. Finally, the dotted lines represent
the sequential dependencies indicated by access lists. They ensure that an input value is never used
before the input is actually read by the input net.

RR n“ 3582



8 Alain Girault and Gérard Berry

loop register 0

boot register ift not ?c

output o
a:=0 ’ *

0!

input ¢ _..--*"
@

input ?x
*—@

) input ?y
Figure 3: The foo SC circuit

The program foo has a sequential behavior. Remember that reactive systems react continuously
to their environment. This is reflected by having a sequential circuit with registers. At each tick of its
clock, the circuits reads the new values of its inputs, computes the new values of its internal variables,
and emits the new values of its outputs.

4 Data Expansion’s Principle

In the original SC circuit, wires carry the control while variables carry the values of signals. For the
data-expansion, first we associate with each Boolean variable a net bearing its value, and then we
implement actions by new logical gates.

In the SC circuit of figure 3, it is impossible to formally verify that, for instance, if ¢ equals 1, then
the value carried by o must be equal to the xnor of x and y, because all actions are external to the
circuit.

The data expansion produces one data-path for each program’s Boolean variable. A data-path is a
sequence of Boolean operators driven by control nets. It computes the successive values of one Boolean
variable in the current instant, realizing the appropriate assignments according to the action table.

4.1 The Memory of the Circuit

Values must be carried from one instant to the next instant. This is done by having one register for
each Boolean variable. The value of the variable at the beginning of the instant is the output of this
register. The value at the end of the instant is stored in the register to become the initial value at the
next instant.

INRIA
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4.2 The Control Flow

When expanding action nets, we must preserve the control flow. Indeed, in the expanded SC circuit,
it is the control flow that will ensure that the correct values will be assigned to the variables. Thus,
each action net in the source SC circuit must be transformed into a standard net in the final circuit.
Each one of these new standard nets will drive a portion of the data-paths.

4.3 Choice of the Variables to be Expanded

Prior to data expansion, we must decide which variables are to be expanded. Only variables that
are modified exclusively by Boolean actions can be expanded. Such a decision can easily be made
through type checking. Note that external procedure calls are always considered to be non Boolean
actions since it is impossible to check their code. Several optimizations are also made at this point.
For instance, a variable that is neither used nor modified in the program will not be expanded.

5 Data Expansion’s Successive Steps

5.1 Expansion of an Assignment

The expansion of an assignment is done with a multiplexor driven by the same net that drove the
assignment in the original SC program. The two inputs of the multiplexor are the net bearing the
value on the right side of the assignment, and the net bearing the previous value of the variable on
the left side of the assignment. Thus the output net of the multiplexor bears the new value only if the
driving net equals 1.
standard net n
control flow

action net n:

a:=e 3 value of e — 1
0

old value of a

control

Flow new value of a

Figure 4: An assignment’s data-path

Note that the action net a:=e has been turned into a standard net and now drives the multiplexor
that implements the assignment. The multiplexor in figure 4 does not exist in SC. It is implemented
with three standard nets in the following way (here 94 is the old action net, 95 carries the value of
e, 55 carries the old value of a, and 98 carries the new value of a):

96: NETEXPR_96_
and: (94 95)
97: NETEXPR_97_
and: (194 55)
98: NETEXPR_98_
or: (96 97)
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10 Alain Girault and Gérard Berry

In the sequel, we will draw multiplexors in place of the three standard nets.

5.2 Expansion of a Test

A test modifies the control flow of the program. An ift net evaluates its expression and takes the
result of this evaluation as its new value. Thus, to expand an ift net, we expand the expression tested
by the ift, and we make sure that the control is propagated only in the correct branch:

flow
else
branch

else control
branch flow®

then value of e * D—. then
control ift e branch 3 branch

Figure 5: A test’s data-path

5.3 Expansion of an Expression

The expansion of a Boolean expression is straightforward: the expression is just replaced by the
corresponding Boolean gates. For instance:

value of

value of y 9 (z and y) or (not x and not y)

Figure 6: An expression’s data-path

5.4 Expansion of an Input Variable

An input net is expanded by encoding the value of the input variable into the circuit. This is done
by an ift net, where the expression tested is just the input variable. Indeed, a ift net evaluates its
expression and takes the result of this evaluation as its new value. Moreover, as an input variable is
never modified in the rest of the SC program, its data-path contains only the encoding part.

e presence of x
input ?x § input 7x | ift ?x
. . Lo

1 ® value of

Figure 7: An input’s data-path

INRIA
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5.5 Expansion of an Output Variable

An output net is expanded by decoding the value of the output variable. For the resulting SC program
to be compatible with the original one, we must still use a net invoking an output action to emit the
variable. But the SC variable bearing the value of the signal is not assigned to anymore since the
assignment actions have been replaced by gates. Therefore we must assign it to the value carried by
the data-path. This is done by two action nets, one to assign the output to 1, and one to 0. Finally
we must make sure that the assignment is done before the output action is invoked. In other words,
we must force the output net to wait for the two action nets. This is achieved with the access
mechanism provided in SC (represented by the two dotted lines):

control flow o >011tp11t 0

o:=1

output o
co%gz}l o ? value of o

Figure 8: An output’s data-path

5.6 Sorting the Actions

A data-path is a sequence of Boolean operators driven by the control flow. The control flow ensures
that the actions implemented by the data-path are performed in the correct order. For instance,
consider the following sequential portion of ESTEREL program:

X := true;
y = X;
x := false;

In the corresponding SC program, the control flow makes sure that the three assignments are
computed in the correct order. After the data-expansion, we still want these actions to be computed is
this order. It is essential because some variables may be assigned more than once, as it is the case for
x in this example. To make sure that the sequential order will be preserved after the data-expansion,
we have to expand the actions in the order of the control flow [21].

The control flow is directly induced by the net dependencies. Here we face the problem that the
SC circuit might not be acyclic. An SC circuit is cyclic if it has an instantaneous cycle without any
register. If this is the case, it has one or more non empty strongly connected component (SCC for
short). If an SCC contains more than one action or ift nets, then we must decide in which order we
have to expand them. A lot of work has been done on the analysis of cyclic circuits [21, 17, 27]. They
have led to the definition of the admissible behavior of cyclic circuits, as well as precise algorithms for
checking if a circuit has an admissible behavior. This is known as “causality analysis”.

RR n“ 3582



12 Alain Girault and Gérard Berry

Here we will allow for a more rudimentary algorithm since we assume causality analysis has already
been been performed by the ESTEREL compiler. To achieve this, we use an algorithm based on Tarjan’s
algorithm for sorting the SSCs of a circuit [28]. Sorting the SCCs indeed sorts the actions that must
be expanded.

If an SCC contains two or more ift nets, it means that we cannot sort these tests. Since an ift
action modifies the control flow of the circuit, there exists no admissible behavior for the circuit and
we reject it by exiting.

If an SCC contains two or more action nets, it means that we cannot sort these actions. We then
have to check that all these actions do not interfere one with each other:

o If they all commute, then we can expand them in any order.

¢ If among any two actions that do not commute, only one can be invoked in each instant, then
we can expand them in any order.

e Otherwise, it means that the program is not causal and we reject it by exiting.

To check that two actions commute, we compare their respective sets of input and output variables.
This analysis is performed by the ESTERELV5 compiler.

5.7 Final Result

Figure 9 shows the expanded circuit obtained with the foo circuit of figure 3. The original foo.sc
circuit contains 52 nets and 2 registers. The resulting foo.data.sc circuit contains 101 nets and 4
registers. Both figures are of course more compact since only indispensable nets are drawn.

INRIA
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0
o:=1
o
data-path of o —1 r :
0 L 0:=(

loop register 0

input ¢ |ift ¢
1e ¢ then s
’—7\ | Loutput o
e else L/ |
boot register
oo !

01 1 1
1 0o 1 0o 7
data-path of a
0

input ?x ift ?x

1
input ?y ift 7y -
1 [ L
—O
0
xor
0
0

Figure 9: The expanded foo SC circuit

6 Formal Verification

In this Section we illustrate the formal verification method on the program foo of Section 3. We have
used the ESTERELV5 compiler, and the VIs tool designed by the CAD group at UC Berkeley [29].
First we compile the program towards an SC circuit:

esterel -sc foo.strl
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14 Alain Girault and Gérard Berry

Second we expand its Boolean actions. The scdata processor takes an SC circuit as input and
gives the expanded corresponding SC circuit as a result:

scdata < foo.sc > foo.data.sc

This produces the file foo.data.sc. Now VIS uses the BLIF input format [13] for describing
circuits. An option of the ESTEREL compiler allows the translation into BLIF, and the -Lblif:-soft
option makes sure that action nets are correctly translated [12]:

esterel -Lblif:-soft foo.data.sc

This produces the file foo.data.blif, which contains the description, known as “model” in BLIF,
of our expanded circuit. To verify properties, we use the model-checking algorithm provided by Vis.
This algorithms checks that a given temporal logic formula written in CTL [9] is satisfied by the BLIF
circuit. Now the header of foo.data.blif is:

.model foo

.inputs \
IfOutWire10_1_1 \
IfO0utWire11_3_5 \
IfOutWirel12_5_6 \
c\
x \
y

.outputs \
o\
IfInWirel10_1_1 \
IfInWire11_3_5 \
IfInWirel2_5_6 \
ROOT_RETURN_ \
ActWire_13_6_2
ActWire_14_7_2

ROOT_HALTING_

5\
6 \
We want to verify that the property:
o = if not ¢ then xnor(x,y) else xor(x,y)
holds forever, which can be expressed by the following CTL formula:

AG ( (M (c=1)->(o=xnor(x,y))) * ((c=1)->(o=xor(x,y))) )

Here we face two technical problems:

INRIA
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e Because of the encoding for input values (Section 5.4), the values of inputs ¢, x and y are res-
pectively carried by the wires TEST_c_, TEST_x_ and TEST_y_. For similar reasons (Section 5.5),
the value of output o is carried by the wire ActWire13_6_25. To observe these inputs, we must
add their corresponding wires to the output list of the foo model (except ActWire13_6_25 that
exists already).

e In the ViIs tool, temporal formulae can only instanciate registers outputs and local variables, i.e.,
no inputs. Although this restriction should disappear in a future version of VIs, it forces us to
use the synchronous observer method [16]. It consists in computing separately our formula, and
feeding the result into a register. Note that a BLIF file can contain several models, one for each
circuit described, and circuits can be hierarchically nested.

We thus add to the expanded circuit a small observer circuit which computes the property we
want to verify. The observer model must have the same input list as the foo model. Moreover, it
must call the foo model as a sub-circuit:

.model observer

.inputs \
IfOutWire10_1_1 \
IfOutWirel11_3_5 \
IfOutWirel12_5_6 \
c \
x \
y

.subckt foo \
IfOutWirel0_1_1=If0utWirel10_1_1 \
IfO0utWirell_3_5=IfOutWirel1_3_5 \
IfO0utWirel2_5_6=If0utWirel2_5_6 \
c=c \
x=x \
y=y \
o=o0 \
IfInWire10_1_1=IfInWirel10_1_1 \
IfInWirel1_3_5=IfInWire11_3_5 \
IfInWirel2_5_6=IfInWirel2_5_6 \
ROOT_RETURN_=ROOT_RETURN_ \
ActWire_13_6_25=ActWire_13_6_25
ActWire_14_7_26=ActWire_14_7_26
ROOT_HALTING_=ROOT_HALTING_ \
TEST_c_=TEST_c_ \
TEST_x_=TEST_x_ \
TEST_y_=TEST_y_

.latch comp bad 0

\
\
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16 Alain Girault and Gérard Berry

.names bad TEST_c_ TEST_x_ TEST_y_ ActWire_13_6_25 comp
1--— 1

00110 1

00000 1

01100 1

01010 1

.end

As a consequence, the CTL formula becomes AG(bad=0), and is easily checked by VIs:

vis> read_blif foo.data.blif

Warning: Some variables are unused in model observer.
vis> init_verify

vis> model_check foo.ctl

# MC: formula passed --- AG(bad=0)

7 Enumerated Types

Data expansion can be extended to enumerated types. For each enumerated type, we need to define a
Boolean encoding of the possible values of the type. Then such a variable’s data-path will have several
nets instead of one (i.e., one net for each booelan of the encoding). Moreover, we have to redefine the
encoding of inputs, the decoding of outputs, and to extend the translation of computations into logical
gates.

For instance, consider the type color with the following possible values red, blue, and white. We
encode these values with two Booleans in the following way:

red 00
blue 01
white || 1 | 0

Then, figure 10 shows the portion of the expanded SC circuit corresponding to the assignment
x := blue.

INRIA
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control flow "_.ﬂ\"-
01

___._0<
1¢ 1
0

data-path of t N  ___ e

Figure 10: Data-path for enumerated types

8 Conclusion

To perform formal verification on an ESTEREL program, we compile it into a sequential circuit and
then use hardware verification tools. However, this verification cannot take into account the external
variables manipulated by the program.

We have presented a method that transforms computations over Boolean variables into portions
of the sequential circuit. The transformation builds one data-path for each Boolean variable of the
program. Each data-path remains driven by the control part of the program, which ensures that
the computations are performed in the correct order. This data expansion allows formal verification
on complete ESTEREL programs with Boolean variables. We have presented an example of formal
verification performed with the Vis tool. We have also shown how it can be extended to enumerated
types.

The algorithm for data expansion has been implemented within the scdata ESTERELV5 compiler
module. Tt runs on SUN-Sparc, DEC-Alpha workstations, and LINUX. It contains 11,000 lines of C
code, for a 300 Kb executable. Finally, for debugging purposes, it provides an option for visualizing
the values of the expanded variables within the ESTEREL symbolic debugger XES.
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