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Abstract: We are given a set of points in a high dimensional space. For instance, this
set can represent many visual appearances of an object, a face or a hand. We address the
problem of approximating this set by a manifold in order to have a compact representation
of the object appearance. When the scattering of this set is approximately an ellipsoid, then
the problem has a well-known solution given by Principal Components Analysis (PCA). Yet,
in some situations like object deplacement learning or face learning this linear technique can
be ill-adapted and nonlinear approximation must be introduced. The method we propose
can be seen as a Non Linear PCA (NLPCA), the main difficulty being that the data points
are not ordered. We propose an index to find projection axes encouraging the choice of axes
which preserve as well as possible the structure of the closest point neighborhood. These
axes determine an order for visiting all the points when smoothing. Finally, a new criterion,
called "generalization error" is introduced to determine the smoothing rate, that is the spline
number of knots in this case. Experimental results conclude this paper: the method is tested
on artificial data and on two data sets coming from databases used in visual learning.

Key-words: Data analysis, Example-based analysis and synthesis, Visual learning, Face
representation, Principal components analysis, Nonlinear PCA models, Dimensionality re-
duction, Multidimensionnal scaling, Projection pursuit, Eingenfeatures.
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Représentation Non-linéaire de Données pour
I’ Apprentissage en Vision

Résumé : Nous avons pour données un ensemble de points dans un espace de grande di-
mension. Par exemple, cet ensemble peut représenter de nombreuses apparences d’un objet,
d’un visage ou d’une main. Nous cherchons & approcher cet ensemble par une variété de fagon
A obtenir une représentation compacte de ’apparence de I’objet. Lorsque cet ensemble de
point est approximativement distribué selon un ellipsoide, le probléme a une solution connue
donnée par I’Analyse en Composantes Principales (ACP). Cependant, dans certaines situa-
tions, comme par exemple 'apprentissage du mouvement d’un objet ou ’apprentissage de
visages, cette technique linéaire peut étre mal adaptée, et une approximation non-linéaire
doit alors étre utilisée. La méthode que nous proposons peut étre vue comme une ACP
non-linéaire, la difficulté essentielle provenant du fait que les données ne sont pas ordonnées.
Afin de choisir des axes de projection, nous proposons un index favorisant le choix d’axes
conservant, aussi bien que possible la structure de voisinage du plus proche voisin. Ces axes
déterminent un ordre de parcours des points lors du lissage. Enfin, un nouveau critére,
appelé “erreur de généralisation”, est introduit afin de déterminer le taux de lissage, c’est &
dire le nombre de noeuds des splines dans ce cas. Des résultats expérimentaux concluent ce
rapport, la méthode est testée sur données simulées ainsi que sur deux jeux de données issus
de bases d’apprentissage pour la vision.

Mots-clé :  Analyse de données, Analyse et synthése basées sur des exemples, Appren-
tissage en vision, Représentation de visages, Analyse en Composantes Principales, ACP
non-linéaire, Réduction de dimension, Poursuite de Projection, Caractéristiques propres.



1 Introduction

In many situations in pattern recognition, machine intelligence, or artificial vision, it is ne-
cessary to approximate multidimensional data by a parametric model in order to be able
to handle more easily the information contained in these data. In this paper, we keep in
mind that the data set X = {z;, 1 < j < N} belongs to a high dimensional space :
Tj = (wgz))lggn € IR". The problem is then to compress this data set to a low-dimensional
manifold. A technique now commonly used for dimensionality reduction in computer vision
is Principal Components Analysis (PCA) which yields a linear representation. Since this
technique summarizes the data by the mean and the standard deviations (the covariance
matrix), the linear representation is accurate only if the data distribution is gaussian, that
is, if the cloud X is a n-D ellipsoid (Fig. 2(a)). Although this linear model is effective
in a very broad range of applications, there are however situations where the PCA breaks
down. It happens when mean and standard deviations do not accuratly reflect the data
distribution, or in other words, when the cloud is not an ellipsoid (Fig. 2(c)). This indicates

the need for nonlinear representations.

In this paper a novel technique for designing and fitting nonlinear models is proposed.
From the geometric point of view, we try to approximate X by a d-dimensional manifold
with d < n [30]. This manifold will be given by an implicit equation G(6,z) = 0, where 6
is a vector of parameters and G(6,.) is a continuously differentiable function from R"™ to
IR™. A model is a particular analytical expression of G, the most simple being the linear
representation as it is given by Principal Components Analysis. Concisely speaking, our
problem is a smoothing problem. But in our case, it is not a classical smoothing problem
since the points z; are not ordered. Fitting of manifolds is a much more difficult problem
than function fitting. Here, this difficulty is emphasized by a second one. The number of
points z; in the data set is usually moderate with respect to the dimension n. This means
that the space IR™ is nearly empty, what it is known as the "curse of dimensionality" [22].

1.1 Application domains

We are going to illustrate our purpose by examples in visual learning although our technique
is not limited to this domain. The data set X are IV instances of an object appearance. Here,
"object" is a generic term which designates for example a rigid or flexible manufactured ob-
ject, a face, a hand,... [32, 15, 23, 26]. It is convenient to see X' as a set of occurrences
of a random vector X in IR™. Such an occurrence can be a curve [16], an image [23], or a
feature vector as Gabor coefficients for example [29]. An approach for the visual learning
problem consists in fitting a compact model of the object’s appearance to X. The aim of
this appearance-based representation is to capture the flexibility or the changes of the object
in a compact manner such that every occurrence of X can be approximated by a point of
the manifold defined by the model. Such a representation has wide applications: recogni-
tion and pose of 3D objects [32], face recognition [23, 19, 42], face tracking [29], gesture
recognition, [34], image retrieval [43]. In visual learning, PCA is widely used for reducing
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dimensionality to enable efficient learning. However, the limitation of the PCA use is limited
since its linear representation is inappropriate for modelling nonlinear effects such as ben-
ding or rotation of shape. This drawback has been highlighted by Murase and Nayar [32].
These authors have used the principal components of many views of a single rigid object
to visualise the low dimensional manifold describing changes due to rotation and illumina-
tion conditions. The object’s pose could then be determined by its position on this manifold.

Let us say a few words on the application which has motivated our research. In [15],
the authors address the problem of identifying the radiographic projection of an object (its
appearance) from incomplete data extracted from a radiographic image. They assume that
the unknow appearance is a particular instance of the projection of a flexible object. Their
approach consists first in learning a deformation model and its probability distribution
able to represent and to simulate a great variety of appearances. This modelization is
achieved using a training set of complete appearances. Then, given the incomplete data, the
identification task consists in estimating the unknown appearance using the previous model
whose probability distribution plays the role of a prior distribution in a Bayesian framework.

1.2 PCA and its limitations

Let us recall some important points of the PCA method [28], which will be usefull for the
forthcoming nonlinear model. The PCA model is linear. When the data are centered, its
expression is:

dzef

G(a,x) z — F(a,z) (1)

d
with F(a,z) = Zak (aFz),
k=1

where a;, € IR™ are unit orthogonal vectors which span the principal axes. Then, G(a, z) =
0 defines a d-dimensional linear subspace in IR™. As the z; are observations of a non-
degenerated random variable, it is clear that they cannot verify the deterministic equation
G(a,z;) = 0 all together : G(a,z;) # 0 and we define :

(@) € Gla,z;) 2)
For a d-dimensional model, r;(d) is interpreted as the residual approximation error of z; by
F(a,z;). The model (1) is said to be auto-associative since 27 is approximated by a func-
tion of {z;}. The model parameters a = (a1, ...,aq) in (1) are estimated by minimizing the
empirical mean square Z;vzl |l7;(d)||>. These estimations are related to the z; orthogonal
projections on the desired subspace and consequently the r; are the Euclidian distances to
the subspace.
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Let us consider an artificial data set X composed of translated curves (Fig.1(a)). This
set corresponds to a cloud in IR™ located on a 1-dimensional manifold. We can imagine
what this manifold looks like by projecting X on the first principal plane computed by PCA
(Fig.1(d)). This kind of figure is known in the statistical litterature as "the horseshoe effect"
[28]. We get a similar phenomenon when X is composed of faces in rotation [29]. On the
artificial training set, the estimated linear model leads to non-realistic curve simulations
and does not allow to reproduce the variations due to a translation (Fig.1(c)). Here, the
simulated curves are obtained by drawing random points on the principal axes. This very
simple academic example is only presented to illustrate our purpose and it must not be
mistaken with a registration problem [36]. Even for variation as simple as translation, the
linear model given by PCA is ill-adapted. More complex exemples are showned in Fig.6
and Fig.8. Recently, in the context of visual learning for object representation, nonlinear
problems have arisen several times, but no general solution has been proposed [6, 32].

1.3 Relationship to previous research

The reconstruction of n — 1 dimensional manifolds in IR", like curves in IR? or surfaces in
IR3, seems closed to our problem at first glance. In [21], a numerical algorithm is proposed.
Its input is an unordered set X C IR® near an unknown manifold, and its output is a surface
that approximates the manifold. Reconstruction problems of this kind occur in engineering
applications like representation from range data. This algorithm makes heavy use of the fact
that the data set is "continuously dense" in some sense, around the unknown manifold. This
situation is not verified in our case and furthermore, we are firstly interested by manifolds
whose dimension d is much smaller than n, and secondly by representations based on an
analytical model.

The PCA methods for analysing the variations of flexible curves, have become an own
research topic these last years, called "Fonctional data analysis" [36]. The basic philosophy
of functional data analysis is that one should think of observed data functions as single
entities, rather than merely a sequence of individual observations. Nevertheless, the results
of this research have not been generalized to flexible surfaces, i.e. to images.

Besides, PCA generalizations have been proposed in order to take into account nonlinear
phenomena. PCA-like auto-associative methods have been studied from the neural networks
point of view with perceptron networks [24], but in fact these models remain linear. In the
case n = 2, a truly nonlinear approach is proposed in [20]. It consists in searching a curve
called "principal curve" which passes through the middle of the data set. This means that
every point on the curve is the average of the observations projecting onto it. This yields
a second approach to the n — 1 dimensional manifofd reconstruction as introduced above.
Yet, this technique is mainly dedicated to the dimension n = 2 and is non-parametric. Its
extension to a greater dimension is a difficult task.
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A specific technique closed to PCA is Multimensional Scaling (MDS) [3, 27, 39]. MDS is
concerned with the problem of constructing a configuration of N points Y = {y;, 1 < j < N}
in R? satisfying ||y; — y;|| = ||z; — z;||. This is achieved by minimizing a distorsion index
whose expression is for instance [39):

Dicilyi = yill = llzi — =;51)*
Yici llvi = will?

In this spirit, MDS technique has been applied to build self-organized neural networks which
give a low-dimensional mapping of the submanifod of a high-dimensional and non linearly
related data set. It yields an unfolding of the data submanifold. We shall come back later
to that kind of index.

Is(Y)

3)

In the second section of this paper, we define a Non Linear Principal Component Analysis
(NLPCA) that we limit to one axis (d = 1) for sake of clarity. Our aim is to approximate
X by a n-dimensional curve C. In other word, we search to determine a curve C' which
estimates an ideal curve C* using the sample X. From this point of view, we have to deal
with a curve reconstruction problem. Curve reconstruction has efficient solutions when the
x; are ordered and a parametrization of the curve is given. So, like for MDS technique, our
approach consists in searching a parametrization axis which yields an approximate ordering
of the points x;. It follows that our methods shall work well when the curve to reconstruct
is, roughly speaking, the graph of a function over an unknown azis in IR™. In IR%, this
approach is less general than the principal curves one. In the third section, this analysis is
extended to several axis (d > 1). Finally, in the fourth section, experimental results will be
described.

2 Nonlinear PCA with one axis

2.1 Introduction

Let us gradually introduce our algorithm in an intuitive fashion using Fig.2. In Fig.2(a),
X is a non-isotrope Gaussian cloud and thus PCA is well adapted. Each point z; in X is
approximated by its projection on the principal axis defined by the unit vector a;. This
projection is:

F(ay,z;) = ailaiz;) .

In Fig.2(b,c,d) the cloud X is no more Gaussian and thus its approximation by projection
on the pincipal axis is inaccurate. In Fig.2(b), we are naturally led to approximate X by a
smooth curve with parameter b;. In that case, the z; approximation is:

F(el,iﬂj) = Sb1 (alT;cj) with 01 = (al,bl) .

S is a function of u = af z. Let us note that u; = al z; is the coordinate of the z; projection
on the axis a;. On this figure, the order of the u; in IR approximatively corresponds to the
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Figure 1: (a) Translated curves. (b) Simulation using PCA. (c) Simulation using NLPCA.
(d) Projection on the first PCA plane.
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"topological order" of the z; in IR™: this is a crucial point. On the contrary, in Fig. 2(c)
the principal axis a; does not allow to determinate the topological order. For instance, two
non neighbor and distant points in IR™ may have neighbor projections on the axis a;. It is
a crucial problem. If we still attempt to approximate X by a smooth curve parametrized
by u = a z, the representation would be inadequate for synthesis: outside the values uj,
the function Sy, (u) would not deliver realistic occurrences of X (Fig.2(c)). This difficulty
can be overcomed by choosing an axis which preserves as well as possible the topological
order after projection (Fig.2(d)). For this, we shall define an index I(a,X) measuring the
preservation of the neighborhood structure of X'. The selected axis will maximize this index:

a; = argmaxlI(a,X) (4)

Finally, the smooting function parameter is obtained as follows:

N
1 2
by = argmin NZI (L)
J:
with T‘j(l) = .’Ej—Sb (aij) - (5)

Our curve fitting algorithm consists of two stages: axis search (4) and smoothing (5). The
next several sections develop in more details the successive steps of the algorithm.

2.2 Definition of / and S

In (4) and (5), we have to define the projection index I(a, X) and the smoothing function
Sh.

Projection index

A first idea would be to use the index (3) which attempts to preserve all the distances. In
our context, the important point is not the distance preservation but the preservation of
the neighborhood structure of X' : if two points are neighbors in IR™ then their projections
should be neighbor in IR and conversely, as it is illustrated in Fig.2(d) but not in Fig.2(c)
for many points.

To simplify this criterion, we decide not to preserve the neighborhood structure entirely,
but only the closest neighbor structure. Yet, it is usually impossible to preserve the whole
neighborhood structure. So, the chosen index is naturally the number of points for which
the constraints are verified:

N
I(a,X) = ZZ ¥[(z; closest to 7;) = (a’z; closest to a’ ;)] , (6)

i=1 j#i
where ¥ is the indicator function. The analytical expression of I is obtained as follows. Let
Tg(;) be the closest neighbor of x;. We want aTx¢(,~) to be the closest neighbor of a”z; in
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IR. Consequently, for every i, a has to verify N — 1 inequalities:

N
Ia, @) = 3 > W[|a"zi - oy < |a"s; - a'ay|]
i=1 ji
N
= DD U[aTTigw| < [aTEyl]
i=1 j#£i

where z;; = 2; — z;. Finally, since a and —a define the same axis, we get:

N
Ia,X) =Y [T ¥ [a" (@io(0) — 715) 2 0] x ¥ [a” (Tig() +745) < O] - (7)
i=1 j#i

It can be showned this index has the following invariance properties: (1) I(a,X) = I(a, X +
t), t € R™; (2) I(a,8X) = I(a,X), s € R; (3) I(Da,DX) = I(a,X) with !DD = I. The
first two invariance properties with respect to translation and scale indicate that this index
belongs to the class III defined by Hubert [22], which is well-adapted for Projection Pursuit
algorithms. The last property shows that the search for the axis does not depend on the
orientation of X' (rotation and symmetry invariance).

Smoothing function

The choice of Sp is much more simpler than the index choice. We express Sp as a multivariate
spline function S, : IR — IR™ [10]. This representation is well-known. The i-th coordinate
of S is noted S,Efi)) with b = (b));<;<,, We approximate the ith coordinate {x&’), ...,;cg\’,)}
of the vector set X with respect to the parametrization {uy,...,un}, by a cubic regression
spline S[E(?) (), ¥ € [Umin,Umax)- To do that, for each coordinate i, we need to sort the
set {u;}. Let {uy(;)} be the sorted set. The i-th coordinate smoothing is performed on
the couples {(ua(j),mff()j)), j = 1,..,N}. Such a spline representation implies to choose
discontinuity knots in the u, ;) series. The number of knots tunes the smoothing rate. In
general, this choice is quite difficult and will be discussed in Appendix.

2.3 Computation

Index maximization

To perform this optimization, we have to note that I(a,X) is a finite piecewise constant
function. Since the equation a”2 = 0 implies that a belongs to the hyperplane orthogonal
to x, the I(a,X) expression (7) shows N(N — 1) hyperplanes noted Hy:

Hy,={a€R" st. a"ny =0}, 1<k<N(N-1),
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Figure 3: Random walk on the regions.

These N(N — 1) hyperplanes determine a IR partition in L regions Ry, (L < 2V(V=1) in
which the index is constant: I(a, X) = Zle I, ¥la € Ry).

Although it is possible to compute I for every vector a by applying (7), we do not know
how to extract a vector a from every region R,;. To overcome this difficulty, the idea is to
construct an iterative algorithm A of type a(p+1) = Ala(p)] which visits the regions from an
initial solution a(0) (as a gradient algorithm would do it in the case of a regular function),
a(p) and a(p + 1) being in distinct regions. The framework of the stochastic algorithms
yields a general formalisation to that optimization problem.

The idea to maximize I is now to build a random walk upon the regions in order to try to
increase the index value at each step. Each step is defined by a hyperplane Hj, obtained
by a random choice of the integers k& and considered as a border of the new visited region.
If a(p) is the solution at the previous step, the new candidate a(p + 1) is obtained by the
orthogonal symmetry sj with respect to Hy: sg(a(p+ 1)) = a(p) — 2(a(p)X ng)ng.
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Algorithm A

1. Initialization: a(0) is chosen randomly.
2. a(p) is known, a(p + 1) is computed as follows :

- k is chosen randomly between 1 and N(N — 1).

- Comparison between the regions separated by Hy:
a' — s(a(p))-
I Ia,X) > Ia(p), X)
Then a(p+1)«—a Else a(p+1)« a(p)-

3. Go back to 2, until convergence.

The resulting index sequence is decreasing, the algorithm converges quickly towards a local
maximum. An iteration cost isequivalent to the index I(a’, X) computation cost, that is
O(nN?) (differences % are computed as a preprocessing at the intialization step).

Algorithm A’

When a local maximum has been reached, all the regions accessible by the operator s (dark
grey regions in Fig.3) have an index value lower than the maximum one (clear grey regions
in Fig.3).Yet, the index value on the other regions (white regions in Fig. 3) could be greater
than the local maximum. As it is impossible to reach directly these regions from the region
of local maximum, a solution for visitingthem is to pass by a region of lower value (a dark
grey region), the transition being governed by a probability. This is the basic idea of the
simulated annealing that we briefly describe in our context [35]. Contrary to the algorithm
A which imposes at each iteration p that AI=[I(a(p+1), X)—1I(a(p), X)] > 0, the stochastic
algorithm (algorithm A') authorizes AI to be negative: AT > T log¢ where £ is a uniform
random number on ]0,1[ and 7T}, is a sequence decreasing towards 0 : T, = Tp AP, with
A < 1. The algoritm A’ is the algorithm A in which the condition If...Then is modified by
plugging AT > T, log&. As p grows T} log€& — 0, and the probability to accept a region of
lower index becomes zero. A rigorous writting of this algorithm can be derived from the
Metropolis dynamic [5].

Spline smoothing

At this time, the principal axis is known through its estimation a; as obtained above. We
have now to deal with a well-known smoothing problem since we use a spline regression
model. Let us denote again u; = alz; the coordinate of the projection of z;. The goal
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here is to find b; which minimizes the approximation error :

N
e = 32 lnmP = NZII% I,

- %Zn: i::( X 515()“1))2 N gef(b“)). (8)

i=1

It appears that the approximation error €2 is expanded into n independent approximation
errors €. Let us note B the B-spline matrix corresponding to the chosen knots. Each of the
n approximation errors is then written as :

N 9 ' .
(20 - S we)) = 19 - B3, 1<i<n, 9)

Jj=1

where |||y is the RN Euclidian norm. Let bﬁi) be the least-squares minimum, and v the

spline number of knots. Let us emphasize that bgi) is computed as soon as v is fixed, hence

is denoted as bgi)(v). We use a second criterion to determine the best number of knots, as
presented in Appendix.

3 Nonlinear PCA with several axes
In the spirit of the Projection Pursuit [22], a second axis of projection can be computed on

the residuals r;(1) which take the place of X in (4) and (5), leading to new residuals r;(2).
This procedure can be again performed on the new residuals r;(2), and so on.

RR n~ 3550
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NLPCA algorithm

1. Initialization:
k—0 and r;(0) «—2z; ,j=1,.,N

2. Parameter estimation: 01 = (ag+1,bkr1)

apr = argmaxT(a, {r;(K)}}L,) (10)
N

besr = argmin ) [lrj(k) = Sp(agyy ri(R)I* (1)
j=1

3. Residual errors update:
Tj(k + 1) — Tj(k) - Sbk+1 (a%;-l T](k)) ) .7 = ]-a aN

4. Go back to 2, if the residual errors are too large, with k «— k + 1;
else d = k and end.

Orthogonality conditions

We achieve the algorithm by adding some constraints that we have not given so far in order
to make the presentation clearer. Up to now, we have implicitly supposed that the residual
errors 7;(k) are orthogonal to the axis ay:

apri(k) =0, Vj. (12)

It is straightforward to show that (12) follows the natural condition a} Sj, (v) = u. Thanks
to this condition the algorithm is very simple. After an approximation with respect to the
axis ay, the residual errors 77 (k) are located in its orthogonal subspace. So, the new axis
as well as the new smoothing function are built in the ag, ax_1, ..., a1 orthogonal subspace,
that is:

arag = 0, V1<l k <d (13)
al Sy (uw) = 0, V1i<i<k <d, ueR.

Let us emphasize that the orthogonality condition (13) gives an answer to the difficult
problem of iterating the Projection Pursuit algorithm from ay to ag41, [11].
Associated model

Now, the question is: what kind of representation is produced by our algorithm ? For d =1,
the answer is simple since X is approximated by a curve whose equation is G(61,z) =0, G
being the model G(0y,z) = — Sy, (af ) (see (5)). In order to write this model for d > 1 in
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a concise form, let us denote al z = P,, (z), P,, being the function R™ — IR which defines
the orthogonal projection of z; on the axis a;. With this notation, from the algorithm, we
get:

TJ(l) = (IdR" - Sb1Pa1) (xj)
rj(2) = (Idmr — Sp,Pa,)(ri(1)) ...
. T'j(d) = (Ilen — dePad)(’l'j(d— 1))
that can be rewritten as:
’r'j(d) = (Idmn — depad)---(IdIR" — szpaz)(.[dmn — Sblpal)(mj)
1
= (H(Idﬂ?" - Skaak)> (mJ) .
k=d
Finally, it appears that the representation of X is defined by G(8,z) = 0 with:
1
G(G,a:) = (H(IdB" - Skaak)> (IE) ) (14)
k=d

where § = (6, ...,04), the error being r;(d) = G(0,x;).

Properties

The model (14) has the following properties : (1) with d axis, G(f,2) = 0 defines a d-
dimensional manifold, (2) the errors are decreasing, (3) with d = n, the model is exact.
Proof is given in [17]. Let us note that linear PCA shares these propreties. Like for PCA,
we define the information ratio associated to the d-dimensional model:

Ky = 1- lerj(d)llz/ZIIwW-

We deduce from the previous proposition that the K  series is increasing and that K, = 1.
K4 allows to choose the model dimension for a given information ratio.

Let us come back to the condition (12). It justifies the residual errors definition. This
definition comes directly from the model equation G(6,z) = 0 by setting ri(d) = G(0, 7).
This way of defining an approximation error may be ill-conditioned. For instance when
G(0,z) = 0 defines a quadratic curve, r; does not come from an orthogonal projection on
the curve (except in the circle case), and r; can even be infinity for some points close to the
curve (see [2]). However, in our case, for a given axis, we avoid this problem thanks to the
orthogonality.
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4 Experimental results

First experiment

This is an academic example.  Fig.1(a) shows a sample of a set of curves obtained by
translating a given curve. Let us denote this set as {g;(s),j =1,..., N} where N = 100 and
j corresponds to the translation index. All these curves are sampled on a same interval. For
each of them, this leads to a vector z; = ((g;(s1),...,9;(sn)), with n = 50. This set corres-
ponds to a cloud X in IR™ located on a 1-dimensional manifold. The number of examples
N may look small compared to the space dimension n, but the important thing here is to
have a large number of samples compared to the intrinsic dimension of X. We can imagine
what this manifold looks like by projecting it on the first principal plane computed by PCA
(Fig.1(d)). Using the 1-dimensional PCA approximation, we get a straight line. This re-
presentation is not sufficient. To get a good approximation of the one-dimensional set X,
five axes are necessary. This leads to a five-dimensional linear subspace representing 95% of
the cloud variance. PCA simulations provide points in IR™ which are not representative of
the training set (Fig.1(b)), illustrating in this case, the very poor PCA generalization ability.

Now, let us consider the NLPCA modeling. We do not know if there is a parametrization
axis. The translation, which was used to build the set of examples cannot be written as
a linear combination of the coordinates. In order to search for a parametrization axis,
the algorithm A’ was used for the index maximization. The resulting axis a; yields the
neighborhood preservation of 93 points among the 100 initial points.

The generalisation criterium ((15) in Appendix) has given an optimal spline smoothing
for v = 29, (Note that the standard cross-validation criterium (16) gives v = 18). This
generalisation criterium was computed using M = 8000 simulated values {iy, k=1,..., M}
on the axis a; , with respect to the probability density of the projection of X on this axis.
It gives M points S(%*) in IR™ located on the manifold approximating X. Fig.1(d) shows
the projection of theses points on the PCA principal plane.

The corresponding simulated curves are very closed to the ones of X, (Fig.1(d)). Let us
note that a bad choice of the number of knots (v = 96) leads to a very poor generalization
behavior (Fig.4).

Second experiment

The object of interest is a lamp for which N = 45 appearances have been obtained by
varying the azimuth and elevation of the viewpoint ! (Fig.5). This experiment is closed
to that of Murase and Nayar [32] who have shown the nonlinear nature of such data. A
one dimensional NLPCA model has been selected. The algorithm A’ used with Ty = 1 and
A = 0.995, has converged after 1000 iterations. It tooks 9 mn on a Pentium 233 Mhz.
The axis a; keep the neighborhood of 33 points among the 45 points of X. In Fig.6, the

LCentre for Intelligent Systems, University of Plymouth
http://www.cis.plym.ac.uk/cis/3Darchive.html.
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Figure 4: Simulation with a wrong number of knots.

representation of the lamp by NLPCA is more precise than the PCA representation which
shows blur contours and detail removing. In particular the knob of the lamp is not depicted.

Third experiment

X is composed of N = 400 face images from 40 individuals ? (Fig.7). Here, the quality of
the representation is measured from the approximation error. To represent faces with 20%
of mean error, the PCA model requires d = 210 whereas the NLPCA model requires d = 80
for v =1 and d = 65 for » = 2. In this experiment, let us note that PCA and NLPCA axes
are closed. Fig.8 show representation by PCA and NLPCA for d = 89 in the two cases. The
mean error is 35% for the PCA representation and 20% for the NLPCA one. As for the
lamp experiment, we see that the NLPCA model keeps many details contrary to the PCA
model which yield severe blurred faces.

5 Conclusion

We proposed a parametric model to approximate a set of points X which are non-linearly
distributed in a large multidimensional space. From the geometric point of view, this re-
presentation is done using a d-dimensional manifold, computed by a Projection Pursuit
algorithm. The main points of this method are the following : The axes are searched for by
optimizing an index which preserves the neighborhood structure of X. When the optimized

20livetti and Oracle Research Laboratory
http://www.cam-orl.co.uk/face database.html.
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Figure 5: Several appearances of a lamp.

Figure 6: (a) An appearance. (b) PCA representation. (¢) NLPCA representation.
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Figure 7: Faces.

index is large, the smoothing makes sense because the axis provides a natural order to the
points. The second point deals with the ability to control the manifold dimension using the
information ratio. Then, the last point is the determination of the smoothing rate using a
generalization criterion. These operations are fully automatic, they do not ask the user to
adapt some parameters. Finally, when the index and the information values are close to
their maximum value, then the model can be considered as valid.

Let us note that the modeling process leads to the estimation of a large number of para-
meters : axis parameters and spline parameters. However, there is no over-parametrization
but on the contrary a dimensionality reduction. This appears clearly when the method is
used in a compression framework. Once the model estimated on X', the spline parameters
are definitively stocked. A new observation compression z only requires the transmission
of d scalars, the projections of z on the d axes. The restoration is given by the points on
the manifold relative to the d scalars thanks to the model generalization properties. The
compression rate is very important.

In fact, our research has been motivated by the need to synthesis artificial observations
2. In this framework, the set X is seen as an observation set of a flexible "object" and
we are more interested by the simulation of deformation than by the approximation. More
precisely simulating "object" deformations provides useful prior information to solve some
inverse problems [15].
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Figure 8: PCA and NLPCA representation.
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Appendix

Choice of the number of knots. The problem is a classical one, numerous works have dealt
with it. A well-known solution is based on the cross-validation error [47]. As it was said
above, our final goal is to simulate X in order to get simulations that "looks like" the
observations X'. With the approximation error alone, the model quality is measured only
at the u; points. The use of the model can lead to unrealistic simulations away from these
points, that is to say, very different from the observations X (see Fig.2(c)). So, we need
a criterion which takes into account the smoothing behavior between the points u;. We
propose to use the following generalization error criterion.

Definition 1 Let U be the random variable X projected on the azis a : U = a¥ X and f(u)
its probability density on IR. The theoretical generalization error is :

G(v) = BIQ*X,585,,(U)]

where Q? is the square of a distance, E is the mathematical expectation with respect to f(u)
and b is the least-square solution (11) .

In practice, an empirical version G¢™? of G is proposed [45]. Let f(t) be an estimation of the
density f(t), (see [40]). In order to define this empirical version, we simulate U according
to the f density. Let @ be such a simulation and ¢(@) the point u; which is the closest
neighbor of i on the axis a : ¢(f) = argmin; (% —u;)?. The empirical generalization error is
then defined using M realizations (&1, ..., %) of U as follows :

gem (v Z 265 = Sy I - (15)

Qemp is a quadratic distance between the simulations {5 o )( r)} of X and the initial data

X. (At this point, we can see how X is simulated using the random variable U). We choose
the number of knots v that minimizes this criterion. (Let us note that when v is fixed,
the knots are chosen so as to give to each interval defined by two neighboring knots the
same probability for f ( )). We could easily show that this criterion can be expanded into a
variance term and a bias term and that the v choice realizes a compromise between these
two terms [13]: when v is too large, the bias is small (good data approximation) but the
variance is large (bad generalization).

Finally, let us note that the classical cross-validation criterium C takes also into account the
smoothing behaviour between the points u; by dropping successively one point u; at a time,
as follows:

1 N
= NZII% LG (16)
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where (v, j) is the least-square solution based on the data X \ {z;}. Yet, when X suffers a
curse of dimensionality [22], this criterium seems to be less adapted than the generalization
error criterium (15).
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