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Abstract:

This paper is concerned with the relationship between A-calculus and m-calculus. The
A-calculus talks about functions and their applicative behaviour. This contrasts with the x-
calculus, that talks about processes and their interactive behaviour. Application is a special
form of interaction, and therefore functions can be seen as a special form of processes. We
study how the functions of the A-calculus (the computable functions) can be represented as
m-calculus processes. The w-calculus semantics of a language induces a notion of equality
on the terms of that language. We therefore also analyse the equality among functions that
is induced by their representation as w-calculus processes.

This paper is intended as a tutorial. It however contains some original contributions.
The main ones are: the use of well-known Continuation Passing Style transforms to derive
the encodings into 7-calculus and prove their correctness; the encoding of typed A-calculi.

Note: This is a draft of a chapter of a book that I am writing with David Walker. In the
hope of making the paper self-contained, I have added appendices with background material
on m-calculus.
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L’interprétation des fonctions comme processus du
m-calcul

Résumé : Le sujet de cet article est la relation entre le A-calcul et le w-calcul. Le
A-calcul parle des fonctions et de leur comportement applicatif. En revanche, le w-calcul
parle des processus et de leur comportement interactif. L’application est une forme spéciale
d’interaction, et donc une fonctions peut étre vue comme un cas particulier de processus.

Nous étudions comment les fonctions du A-calcul (les fonctions calculables) peuvent étre
représentées comme processus du w-calcul. La sémantique en w-calcul d’un langage induit
une notion d’égalité sur les termes de ce langage. Par conséquent nous analysons aussi
I’égalité entre fonctions qui est induite par leur représentation comme processus du 7-calcul.

Cet article est congu comme un “tutorial”. Néanmoins, il contient quelques contributions
originales. Les principales sont: ’utilisation de transformations Continuation Passing Style
bien connues pour dériver les codages dans le m-calcul et pour prouver leur correction; le
codage du A-calcul typé.

Mots-clés :  A-calcul, w-calcul, types, stratégies de réduction, équivalences comportemen-
tales, abstraction complete
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Motivations

A deep study of representations of functions as m-calculus processes is of interest for sev-
eral reasons. From the m-calculus point of view, the representation is a significant test of
expressiveness, and is helpful in getting deeper insight into the theory. From the A-calculus
point of view, the representation makes it possible to apply process-calculus techniques to
A-calculus, and also to analyse A-terms in contexts which are not purely sequential. This
study may be useful for providing a semantic foundation for languages having constructs
for functions and for concurrency, and techniques for reasoning about them (behavioural
equalities between functions preserved in sequential contexts may not be preserved in non-
sequential contexts, we shall see examples of this in Section 11). The study may also be
helpful in development of parallel implementations of functional languages and in the design
of programming languages based on process calculi.

Summary

The paper is ideally divided into four parts. The first (comprising Sections 1 to 3) is about
the A-calculus. The second (Sections 4 to 9) is about the encoding of the untyped -
calculus into m-calculus. Part 3 (Section 10) does the same for the typed A-calculus. Part 4
(Sections 11 to 13) is about the full abstraction problem for the simplest of the w-calculus
encodings, namely that of the untyped call-by-name A-calculus. A more detailed summary
follows.

In Section 1 we review the syntax and reduction rules of the untyped A-calculus. In
Section 2, we look at some properties of the A-calculus that make it strikingly different
from the m-calculus: sequentiality and confluence. We also touch on the differences and the
similarities between the basic computational rules of the two calculi.

A )-term may have several reducible subterms. A reduction strategy specifies a reduction
order. The most important reduction strategies are call-by-name and call-by-value, and
variants of these such as parallel call-by-value and call-by-need (the last is actually an
implementation technique, rather than a reduction strategy). We review these strategies
and their properties in Section 3.

Section 4 begins the core of the paper, which is about the encodings of A-calculus strate-
gies into w-calculus. We analyse the encoding of call-by-value in Section 5, and that of
call-by-name in Section 6. We derive both encodings from well-known Continuation Passing
Style transforms (which transform functions by adding continuations to them) and the com-
pilation of the Higher-Order w-calculus (HO7) into w-calculus. Variants of these strategies
and encodings are examined in Sections 7 and 8. The strategies considered up to this point
do not allow reductions inside the body of a function. Technically speaking, they do not
allow the £ rule of the A-calculus. In Section 9 we discuss when and how the £ rule may be
encoded.

In Section 10 we address what happens to the type structure of functions when they are
represented as processes. In A-calculi, types are assigned to terms, and provide an abstract
view of their behaviour. In contrast, in the type systems for the m-calculus types are assigned
to names and hence reveal very little about behavioural properties of the processes. The
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semantic relationship between the two forms of types is therefore not obvious. Understanding
how A-calculus types are transformed by the 7-calculus encodings is important if we wish
to use the m-calculus as a semantic basis for typed programming languages. We look at the
simply-typed A-calculus in detail, and briefly discuss extensions.

Both for typed and for untyped A-calculi, we derive m-calculus encodings of call-by-name
and call-by-value in three steps: a CPS transform, the inclusion of CPS terms into HOm,
the compilation from HO7 to w-calculus. This is useful for understanding the encodings
and for proving their properties. Conversely, a reader familiar with 7-calculus might find the
encodings helpful for understanding the CPS transforms; indeed, one can also go the other
way round, and use the w-calculus encodings to derive results about the correctness of the
CPS transforms—see Remark 5.21, for instance.

The encoding of untyped call-by-name A-calculus (AN) is the simplest and perhaps most
natural encoding of A-calculus into 7-calculus. In Section 11 we study the equality on -
terms induced by this encoding. This equality, =,, relates two A-terms if their encodings are
behaviourally-equivalent 7-calculus processes. As behavioural equivalence for the w-calculus
we choose barbed congruence. The results obtained are, however, largely independent of
this choice, due to the special form of the processes encoding A-terms. The same results
hold, for instance, for testing equivalence or trace equivalence.

We begin by comparing =, with the equality given by the operational semantics of AV.
The latter can be formulated as a form of bisimilarity, applicative bisimilarity. An interpre-
tation of a calculus is sound if it equates only operationally equivalent terms, complete if
it equates all operationally equivalent terms, and fully abstract if it is sound and complete.
We shall see that the 7-calculus interpretation of AN is sound, but not complete.

When an interpretation of a calculus is sound but not fully abstract, one may hope to
achieve full abstraction by enriching the calculus. (This is exemplified by the solutions to the
full abstraction problem for PCF—a typed A-calculus extended with fixed points, boolean
and arithmetic features—proposed by Plotkin [Plo77], in which PCF is augmented with a
‘parallel or’ operator.) We follow this approach for AN in Section 12. We augment AN
with operators, that is symbols equipped with reduction rules defining their behaviour. We
prove that the addition of certain operators that yield non-confluent reductions is necessary
and sufficient to make the 7-calculus interpretation fully abstract (on pure A-terms). The
operators needed are rather simple. One example is a unary operator which when applied
to an argument either behaves like the argument itself or diverges. These results imply
that the operational equivalence of simple non-confluent extensions of AN is robust: its
equalities remain valid in rich extensions of AN, possibly including operators for expressing
concurrency.

In Section 13 we investigate the meaning of =;: Which A-terms does it equate? To
determine this, we prove a few characterisations of =, on the pure A-terms. The most
important one is a characterisation in terms of a tree structure of the A-calculus, the Lévy-
Longo Trees. We also discuss how to obtain a characterisation in terms of the other main
tree structure of the A-calculus, the Béhm Trees. Tree structures are an important part of
the theory of the A-calculus; they are especially useful in studying its models. A corollary of
the characterisations in terms of trees is that the equality induced by the 7-calculus encoding
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is the same as that induced by well-known models of the A-calculus. This is a remarkable
agreement between the classical theory of functions and their interpretation as processes.

Note: The paper proposes several exercizes. They normally require some familiarity with
the m-calculus. Those marked with a asterisk are the hardest.

1 The M-calculus

The beauty of the A-calculus is that it achieves Turing completeness (all computable func-
tions are definable in it) with a very simple syntax. The basic operators of the A-calculus,
in its pure form, are A-abstraction, for forming functions, and application, for applying a
function to an argument. A A-abstraction has the form Az. M; in the body M of the func-
tion, the variable z is a placeholder for the argument. Letting x and y range over the set of
A-calculus variables, the set A of A-terms is defined by the grammar

M=z | .M | MyM,.

In Ax. M, the initial x is a static binder, binding all free occurrences of x in M. We omit the
definitions of a-conversion, free variable, substitution, etc. We identify a-convertible terms,
and therefore write M = N if M and N are a-convertible. A A-term is closed if it contains
no free variables. The set of free variables of a term M is written fv(M). The subset of A
containing only the closed terms is A°.

To avoid too many brackets, we assume that application associates to the left, so that
M N L should read (M N)L, and that the scope of a A extends as far as possible to the right, so
that Az. M N should read Az. (M N). We also abbreviate A\xy.---. Azp. M to Az - 2. M,
or A\Z. M if the length of ¥ is not important. We follow [Bar84, HS86] in notations and
terminology for the A-calculus.

The basic computational step of the A-calculus is B-reduction:

B

(M. M\)N — M{N/m}

in which the placeholder z is replaced by the argument N in the body M of the function.
An expression of the form (Az. M)N is called a 3-reder, and the derivative M{V/z} is its
contractum.

The following rules of inference allow us to replace a f-redex by its contractum in any

context:
M — M’ N — N’ M — M

m v 13 (1)
MN — M'N MN — MN' Ax. M — dx. M!
We write M — g N if M — N is derivable from the rules 3, 1, v, . Relation — g is the

reduction relation of the A-calculus, also called full B-reduction.

Relation — 3 defines a directed form of rewriting. A A-term M without (-redexes (i.e.,
for which no N exists such that M —g N) is a normal form (briefly nf). A reduction path
is a sequence of reduction steps M; — g My — 3 ... that may have finite or infinite length.

The axiom (3 and the rules of inference (1) define a single-step reduction relation on
A-terms. Adding rules for reflexivity and transitivity we obtain the multistep reduction

INRIA
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M=M N =N M=M
MUN=I'N 'MN=MN o =re il
Refl SymM =N TransM =N N=1
M= N=M M=1

Table 1: The rules for a A-calculus congruence

relation, =>3. The resulting formulas M =3 N define the formal theory of 3-reduction of
the A-calculus. The predicate | distinguishes the abstractions; that is, M | holds just if M
is of the form Az.N. Further, M g N means that M =>3 N and N |, and M |3 means
that M g N for some N.

Turning the oriented rules defining =3 into equations gives rise to the A3 theory, also
called the formal theory of B equality. It is defined by the axiom

B

(\z. M)N = M{N/z}

plus the axiom and inference rules for congruence in Table 1. We write A F M = N if
M = N can be proved in the A3 theory.

We give names to some special A-terms:

def

I = M.z
o & (Az.zz)(Ax. 22)
g & (Az. Ay. zz)(Az. Ny. x).

I is the identity function, because for all NV, we have IN —3 N; we may call  a “purely
divergent term”, because 2 — 3 0 —3 ...; and we may call = a “purely convergent term”,
because = — 5 A\y.E —5 (A\y. )22 ... —5 .. ; indeed, for all n, we have Z =5 (\y.)"E.

2 Contrasting A and 7

Without doubt the A-calculus had an important influence on the development of process
calculi like CCS, CSP and ACP in the early 80’s. In the case of calculi for mobile processes
and higher-order calculi, an important heritage from the A-calculus is static binding, a
concept that is understood largely as a result of work on A-calculus.

Two important features of A-calculus that distinguish it from 7-calculus are sequentiality
and confluence. We discuss these below. First, we briefly compare the basic reduction
axioms of the two calculi.

2.1 Reduction axioms
The basic reduction axioms of A-calculus and 7w-calculus are 8 and com:

(Az. M)N — M{NJz} p(z). P | Bla).Q — P{%} | Q

RR n° 3470
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There are three noticeable differences:

1. The A-terms Ax.M and N are committed to interacting with each other, even if
(Ax. M)N is part of a larger term; this is so because different A-redexes act on differ-
ent parts of a term. In contrast, interference from the environment can prevent the
interaction between the 7-calculus terms p(z). P and p{a). Q. For instance, the envi-
ronment, could contain a process p(r). R that is in competition with 7{a). @ for access
to p(x). P. For this reason, w-calculus is not confluent. Using a terminology from
term-rewriting, we may say that the A-calculus is orthogonal, whereas the w-calculus
is not.

2. The A-calculus reduction requires a term substitution, whereas the m-calculus reduction
requires a (simpler) name substitution.

3. The A-reduction is asymmetric: the argument N is completely swallowed by the func-
tion Az. M. The w-reduction is more symmetric (and in variants such as 7l [San96] it
is symmetric) as both interacting subterms persist after the reduction.

2.2 Sequentiality

The A-calculus captures sequential computations. That is, Ad-terms express functions that,
algorithmically speaking, look at the arguments they need in sequence. If in doing so
a function reaches a divergent argument, then the whole computation will diverge. The
A-calculus, in its untyped or typed versions, cannot describe functions whose algorithmic
definition requires that some arguments be run in parallel. An enlightening example is the
non-definability in PCF (a typed A-calculus with fixed points, booleans and integers) of a
‘parallel or’ function Por, where for closed terms M and N,

reduces to true, if M or N reduces to true

Por MN{ diverges, otherwise.

With parallelism, this function is algorithmically easy to compute: just let M and N
reduce concurrently and return true if and when one of them evaluates to true.! There is no
PCF term that behaves as Por. The sequentiality of the untyped A-calculus is already clear,
at least intuitively, in the normalisation theorem, a corollary of one of the main syntactic
theorems of the A-calculus, the standardisation theorem. The normalisation theorem asserts
that if a term has a normal form, then this will be found by the leftmost strategy. This
strategy selects the reduction path of a term in which, at each stage, the contracted redex
is the one with the leftmost A-symbol.

The leftmost strategy is clearly sequential: once begun, the evaluation of a subterm
continues until a value (a A-abstraction) is found; only then can control pass to another
subterm. Therefore simultaneous or interleaved evaluation of subterms is forbidden.

1In the untyped A-calculus, where there are no ground data types and abstractions are the only closed
values, ‘parallel or’ should be probably defined as the parallel convergence test (Section 11, or sensible
versions of it such as in [Bar84, pag 375]). However, in typed A-calculi the two operators are different:
parallel convergence is usually more powerful (one can derive ‘parallel or’ from it, but the converse is often
false).

INRIA
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In contrast, the m-calculus naturally describes parallel computations. The w-calculus
‘world’ is that of processes, rather than functions. Since functions can be seen as special
forms of processes, parallel functions like Por can be described in the 7-calculus (we show
the encodings of similar functions in Sections 11 and 12.2).

2.3 Confluence

The reduction relations of both A-calculus and mw-calculus are non-deterministic, because a
term may have more than one redex. However only in the 7-calculus is non-determinism
semantically significant. Consider a term

def _ _ _
Q = a(b) |afc) | a(z).7
The two outputs are in competition for the input. If a{b) wins, then @(c) may remain without
a partner, and conversely if @(c) wins. Indeed, the two immediate derivatives of @, namely
0|0|band 0|0 |z are behaviourally very different.

This situation cannot happen in the A-calculus, where contracting a redex never damages
other redexes, in the sense of leaving a subterm without a partner. The fact that the
non-determinism of the A-calculus is harmless is expressed by the confluence (often called
Church-Rosser) property, that says that if a term M has two derivatives N; and Na, then
we can always find a third term L to close the diamond:

Some consequences of the CR, property of the A-calculus are: (1) the normal form of a
term M (if it exists) is unique, up to alpha-conversion; (2) the A-calculus is consistent, that
is there are terms M and N such that A3 F M = N does not hold (just take M and N to
be different normal forms, for instance Az. z and Az. zy; by point (1) they are not provably
equal); (3) the order in which redexes of a term are reduced is unimportant, in the sense
that all finite reduction sequences can be continued to reach a common derivative.

Point (3) does not imply that all reduction paths must meet. For instance, a term with
a normal form may have an infinite reduction sequence that never finds it. An example is
the term (Az.I)Q); it has normal form I, obtained by contracting the outermost redex, but
it also has the infinite reduction sequence

M. )Y —p (Az. 1)Q —p5 ...

obtained by contracting the innermost redex.

RR n° 3470
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3 Reduction strategies for the A-calculus

As the reduction relation — 3 of the A-calculus is non-deterministic, a term may have more
than one -redex and therefore several reduction paths. Some of these may lead to a normal
form while others may not (as illustrated for the term (Az.I)Q above).

Different paths from a term to its normal form may have different lengths. A reduction
strategy specifies which (-redexes in a term may be contracted. Reduction strategies are
useful both for theoretical reasons (for instance, to prove that a term has no normal form),
and for practical purposes (for instance, to obtain efficient implementations). Usually a
reduction strategy is deterministic; in that case the one-step reduction relation is a partial
function on A-terms.

Formally, a reduction strategy R is defined by fixing a reduction relation — g C A x A
that we will usually write in infix notation. The reflexive and transitive closure of —p is
=>p. We say that M is an R-normal form (R-nf) if there is no N such that M —px N;
and that R has an R-normal form if there is a R-nf N such that M —z N. We also write
Mg Nif M =g N |,and M g if M ||g N for some N. For instance, Az. M is a
normal form for any reduction strategy that does not allow the & rule.

An example of a strategy is the leftmost strategy mentioned in Section 2.2. Important
strategies in programming languages are call-by-name and call-by-value, and variants of
them such as call-by-need, parallel call-by-value and strong call-by-name.

A notion of reduction gives rise to a A-theory, when one adds the rules that turn the
reduction relation into a congruence relation.

There is no ‘best’ reduction strategy. Different languages, even single languages, adopt
different strategies for the evaluation of function or procedure applications. The coding or
implementation of different reduction strategies may require different techniques (there are
also reduction strategies that are non-computable, and hence impossible to implement!).
Below we consider a few important reduction strategies; then we show how they can be
encoded in 7-calculus.

3.1 Call-by-name

The idea of the call-by-name strategy is that the redex is always the leftmost, but reduction
should stop when a constructor is at the top; in the untyped A-calculus the only constructor
is A-abstraction; in typed A-calculi there may also be constructors for data, such as ‘cons’
for lists. A benefit of not continuing the evaluation underneath an abstraction or a data
constructor is that among the call-by-name normal forms are terms representing infinite
objects, for instance a term that evaluates to the list of all natural numbers. Therefore one
can write meaningful programs for manipulating infinite objects. These programs diverge
under other evaluation strategies.

On open terms, the call-by-name strategy also stops on terms with a variable in head
position, that is terms of the form xMj ... M, ; this is so because, intuitively, we need to
know what the variable is instantiated to in order to decide what reduction to do next. The
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one-step call-by-name reduction relation —yC A x A is defined by the two rules

M—>NMI

P Oa DN g M{Vi} N —y MW

Reduction is deterministic: the redex is always at the extreme left of a term. As the £ rule is
absent, evaluation does not continue underneath an abstraction; and as the v rule is absent,
the argument of a function is not evaluated. Examples of call-by-name reductions are

M. 1) —y I (2)
Az 22)(IT) —y (IT)(II) —sy I(IT) —y IT —sy T (3)
(Azy.2)z(IT) —y (Ay.2)(II) —y 2 . (4)

Since call-by-name is based on the 3 rule, the A-theory induced by call-by-name is the
same as A\(. Therefore a correct semantics of call-by-name should (at least) validate the
equalities of \Q.

3.2 Call-by-value

In the call-by-name strategy, the contraction of a redex (Az. M)N is performed without
restriction on the form of the argument N. This contrasts with the call-by-value (or eager)
strategy, where the argument N is reduced to a value before the redex is contracted. The
values of the untyped call-by-value A-calculus are the functions (that is, the A-abstractions)
and, on open terms, also the variables (it makes sense that variables be values because in
call-by-value substitutions replace variables with values—mnot arbitrary terms—and therefore
the closed terms that can be obtained from a variable are closed values):

Values V:=Xz.M |z MeA

The one-step call-by-value reduction relation —y C A X A is defined by these rules:

ﬁv()\x.M)V —sy M{V/z}
M —y M’ N —y N’
FUMN — M'N (& M)N —y (e M)N'

Examples of call-by-value reductions are

Az. QA —y Az [)Q —y ... (5)
Az zx)(IT) —y Az xx)] —y [T —y 1 (6)
(Azy.2)z(11) —v (Ay. 2)(IT) —v (Ay-2) —vy 2 (7)

Call-by-value is based on the 3, rule; the A-theory induced by this rule is the A3, theory,
also called the formal theory of B, equality, defined by the axiom

B \z. M)V = M{V/z}

plus the inference rules in Table 1. A correct semantics of call-by-value should (at least)
validate the equalities of A\3,.
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Call-by-value is very common in language implementations. Advantages of call-by-value
are: (i) if in (Axz. M )N the variable z occurs more than once in the body M, then evaluating
N before replacing 2 may avoid having to reduce several copies of N (contrast example (3)
with (6)); and (ii) in languages with side effects, call-by-value is easier to understand and
mathematically more tractable. On the other hand, call-by-name has the advantages that:
(i) one does not perform useless reductions of the argument N of a redex (Az. M)N if z
does not occur in M and therefore N is not used (contrast example (4) with (7)); and (ii) on
certain terms, the call-by-name strategy terminates whereas call-by-value fails (an example
is the term (Az.I)Q, as shown in (2) and (5)).

A variant of call-by-value is parallel call-by-value that has the ordinary v rule in place of
Vy. Its one-step reduction relation is denoted by —py. This strategy is not deterministic,
because in an application M N both the function and the argument can be reduced. Normal
forms are, however, unique (that is, if M =>py M’ and M =py M" and both M’ and M"
are PV-nfs, then M’ = M"), and if M has a PV-nf, then all reduction sequences from M are
finite. Because of these properties, behavioural equivalence under parallel call-by-value is
usually the same as that under (sequential) call-by-value (we shall talk about behavioural
equivalences for A-calculus in Section 11).

3.3 Call-by-need

In a language without side effects, where the evaluation of a term always yields the same
result, the inefficiency problems of call-by-name arising from repeated evaluation of copies
of the argument of a function can be avoided as follows. The first time the argument is
evaluated, its value is saved in an environment; if needed subsequently, the value is fetched
from the environment. In this way, the evaluation of the argument is shared among all
places where the argument is used. This implementation technique is called call-by-need. It
is usually presented as a reduction strategy on graphs, where sharing of subterms is easy to
represent. Alternatively, call-by-need can be formalised in a A-calculus with a let construct,
to model sharing. The 3 rule is replaced by the let rule

z & tv(N) (8)

(M. M)N —ye letz=N in M

In the derivative, the evaluation continues on M and only when the value associated to z is
needed, is the subterm IV evaluated. The value to which IV reduces replaces the occurrence
of z in question, and all subsequent occurrences of  when their value is needed. There
are also some structural rules for manipulating let expressions, that usually make use of a
notion of evaluation contexrt to define the next redex.

For instance, in call-by-need we have

IT=(z.2)(A\y.y)

—y letx=Ay.y inx )
—yr  letz=Ay.y in Az.z
= Me.z=1

where = indicates application of the garbage-collection rule

(letz=M in N)=N z¢fv(N) (10)
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(Garbage-collection rules may or may not be present in the definition of a call-by-need
reduction; in any case, a rule such as (10) can be proved valid for behavioural equivalences.)
Similarly, we have

Iy =y =y (11)

Using derivations (9) and (11) to compress reductions, here is a more interesting call-by-need
computation. Note that the work for the evaluation of the argument I7 is done only once:

(Az. (Iz)z)(II)
—E let ¢ =1II in (Iz)z

—wy = letax=1II in zx
=y = letx=1 in zx
——NE let x =1 in Ix
=N = letzx=1 inz
—NE = I

We shall not present a formal system for A-calculus with let ; the intuitions given above
should be enough to understand our uses of call-by-need.

As call-by-need is an implementation technique for call-by-name, its theory is closely
related to that of call-by-name. The sets of A-terms that have a normal form under call-by-
need and call-by-name coincide; and two A-terms are behaviourally equivalent in call-by-need
iff they are so in call-by-name.

4 Interpreting A-calculi into w-calculus

All of the translations of A-calculus strategies into m-calculus that we shall present have two
common features:

e Function application is translated as a form of parallel combination of two processes,
the function and its argument, and (-reduction is modelled as an interaction between
them.

e The encoding of a A-term is parametric over a name. This name is used by (the
translation of) the A-term to interact with the environment.

In Section 2.1 we observed that a redex of the A-calculus gives rise to a private interaction
between two terms. In contrast, a redex of the 7-calculus is susceptible to interference from
the environment. This interference is avoided if the name used by the two processes to
communicate is private to them. Therefore, the appearance of a 8-redex in a A-term should
correspond, in the m-calculus translation of that term, to the appearance of two processes
that can communicate along a private name.

We also observed in Section 2.1 that the 3 rule of the A-calculus is strongly asymmetric.
To cope with this, the w-calculus language that we will use for encoding A-calculus strategies
is the asynchronous w-calculus, whose asymmetry of the communication rule reflects that of
the A-calculus. Recall that in the asynchronous w-calculus there is no process underneath
an output prefix. For convenience, however, we sometimes use output prefixes of the form
vb (¢, b). 7. P, where b € b and b is the subject of prefix 7, to highlight ordering among
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actions (under those hypotheses, vb a(¢,b). o. P is semantically the same as vb (a(c,b) |
a. P)).

A name parameter is needed in the w-calculus encodings of A-terms for the following rea-
son. Roughly speaking, in the A-calculus, ) is the only port; a A-term receives its argument
at A. In the m-calculus, there are many ports, so one needs to specify at which port (the
encoding of) a A-term interacts with its environment.

4.1 Continuation Passing Style

The parameter of the 7-calculus encoding of a function can also be thought of as a continua-
tion. In functional languages, a continuation is a parameter of a function that represents the
‘rest’ of the computation. Functions taking continuations as arguments are called functions
in Continuation Passing Style (briefly CPS functions), and have a special syntactic form:
they terminate their computation by passing the result to the continuation. The continua-
tion parameter may also be thought of as an address to which the result of the function is to
be delivered. For an informal example, take the following function from integers to integers:

F¥ Ny, let g=M.n+2 in (9y) + (9v)
Here is a CPS version of f; in the body, gcpgs is a CPS version of g, and k is the continuation
parameter:

fcps def 2k y.let gops = Akn. let m =n+2 in k(m)
in gcps ()\v. gops ()\w. letu=u+n in k(u))y)y

In programming languages continuations are widely used, for programming, as an im-
plementation technique (to generate an intermediate language that is easier to optimise and
manipulate), and for giving denotational semantics. A fairly vast literature of functional
programming studies transformations of functions into CPS functions. They are called CPS
transforms. The best known are the CPS transforms for call-by-name and call-by-value
A-calculus studied by Plotkin in his seminal paper [Plo75].

We shall develop the analogy between m-calculus encodings and CPS transforms. We
shall derive 7-calculus encodings of call-by-name and call-by-value A-calculus via the CPS
transforms of [Plo75]. We shall observe that the target of the CPS transforms are essentially
subcalculi of HOw. We shall therefore be able to apply compilation C from HOxw to n-
calculus to derive m-calculus encodings (C is defined in Section D). This is the programme
for Sections 5 and 6, and is summarised in Figure 1, where: AN and AV are the call-by-
name and call-by-value A-calculi; Cy and Cy are the call-by-value and the call-by-name CPS
transforms; CPSy and CPSy are languages of CPS A-terms, that is the target languages of
the two CPS transforms; H is the injection of these CPS languages into HO7; and C is the
compilation from HOx to w-calculus. There is a vast literature on CPS transforms; we used
the transforms that, in our view, yield the simplest and most robust encodings.

The schema of Figure 1 also applies to typed A-calculi, by extending the translations of
terms to translations of types.
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Figure 1: The derivations of the 7-calculus encodings of AN and A\V.

Having obtained encodings of call-by-name and call-by-value, in Sections 5.3, 7, and 9
we can then play with them and derive encodings of similar strategies, such as call-by-need,
parallel call-by-value, and strong call-by-name.

Convention. For simplicity, we adopt the convention that A-calculus variables are also
mw-calculus names.

5 The interpretation of call-by-value

In this section we develop the left part of the diagram of Figurel. The n-calculus encoding of
call-by-value A-calculus (AV) is obtained in three steps, the first of which is the call-by-value
CPS transform of [Plo75]. The reader who is eager to see the w-calculus encoding, and does
not want to go through the CPS transform, may go directly to Section 5.2.

We will not usually give detailed proofs of results about the CPS transforms, as they are
not the subject of the paper; see Section 14 for references.

5.1 The three steps

Step 1: the call-by-value CPS transform

The call-by-value CPS transform, Cy, transforms functions of AV into CPS functions. In its
definition, the translation of values uses the auxiliary translation function Cy (which will
be particularly useful when considering types). We call a term Cy[V] a CPS-value. The
transform is presented in Table 2. Its definition introduces a new variable, the continuation
variable k, that represents continuations and that has to be kept separate from the other
variables. In the m-calculus encodings, and in typed versions of the CPS transform, the
continuation variable and the other variables will have different types. (In the definition
of Cy we also use special symbols v,w for the formal parameters of continuations. The
distinction between these variables and ordinary variables is, however, somewhat artificial
because the former may be instantiated by the latter.)
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In this table we abbreviate Cy[M] as [M] and C5[V] as [V]:

Call-by-value values V = lx. M | x

vl € Ak.k[V]

[MN] € Ak [M](w. [N](\w. vwk))
2] £ o
M. M] L€ Az [M]

Table 2: The call-by-value CPS transform

We explain informally how the CPS transform works. The CPS image of a A-term L
immediately needs a continuation. When a continuation is provided, L is reduced to a
value, and this value (precisely its CPS-value) is passed to the continuation. Therefore if
L is itself a value, then it can be passed directly to the continuation. If, however, L is
an application M N then the following happens. First M is evaluated with continuation
Av. Cy[N](Aw. vwk). When M becomes a function, say Az. M1, this function is passed to
the continuation, and the body of the continuation is evaluated. This means evaluating N
with continuation Aw.vwk{Ci[Az- Mi]/y}. When N in turn becomes a value V, this value
is passed to the continuation, and the body of the continuation is evaluated. This body
is the term (vwk){CV[VIw}{Ci[Az. Mi]p}, that is (Az.Cy[M1])Cy[V]k. This term reduces to
Cy[M:1]{Ci [V)/x} k, which is the same as Cy[M1{V/z}]k. Therefore the flow of control of AV
on application is correctly mimicked: first the operator M of the application is evaluated,
then the argument N is evaluated, and finally the two derivatives of M and N are contracted.
Finally the reduction of Cy[M1{V/x}]k continues and, at the end, the value that M;{V/c}
reduces to is passed to k.

To help understanding the behaviour of application, we report below the details of how
a By reduction
(Az. M)V —y My {V/z} (12)

is simulated. We use the call-by-name reduction —y for the target CPS terms, but we
could just as well have chosen call-by-value, since these strategies coincide on CPS terms
(see Remark 5.3).
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o[z, M)V ]k (13)
- ()\k.Cv[[/\x.Ml]]()\v.Cv[[V]](/\w.vwk)))k

—y Cy[Az. M1](Av. Cy[V](Aw. vwk))

= Ah RCE[Az. Mi] (M. Gy [V](Aw. vwk))
—y (M. GV](Aw. vwk))C[Az. My]
—n G [V](Aw. Cy[Az. Milwk)

= A RCHV](Aw. Gy [Az. Mi]wk)
—n (AMw.Cy[Ax. My|wk)Cy[V]
— Cy[Az. My ]Cy[V]k

= (.G [M]CVIE

= GIMA{V/z}]k

All but the last reduction can be regarded as administrative reductions, because they do

not correspond to reductions of the source terms. The last reduction can be regarded as a
proper reduction, because it directly corresponds to the reduction on the source terms.

The call-by-value CPS transform maps A-terms onto a subset of the A-terms. The closure

of that subset under 3-conversion gives the language CPSy of the call-by-value CPS:

CPSy € {4 : IM € A with Cy[M] =>4 A}

We will call the terms of CPSy the CPS terms.

The first theorem shows that on CPS terms, 3- and [,-redexes coincide.

Theorem 5.1 (indifference of CPSy on reductions) Let M € CPSy and let N be any
subterm of M. For all N', we have: N —y N' iff N —y N'.

Proof: Below we shall give a grammar, Grammar 15, that generates all CPS terms. It is
immediate to check that on terms generated by that grammar, a S-redex is also a (,-redex,
because all arguments of functions are values of \V' (abstractions and variables). |

Essentially as a consequence of Theorem 5.1, we obtain

Theorem 5.2 (indifference of CPSy on A-theories) For all M,N € CPSy, we have:
AMBEM=N iff \G, - M =N.

Proof: We consider the implication from left to right (the converse is easier). Since full
B-reduction =>4 is confluent, A3 L; = L, implies that there is Ls such that Ly =>4 L3
and Ly =g L3. When L; and L, are CPS terms, L3 is also a CPS term. By Theorem 5.1,
all B-redexes contracted in the reductions Ly =3 L3 and Ly =3 L3 are also (,-redexes.
Hence A3, + Ly = L. |

Remark 5.3 These indifference properties allow us to take either call-by-name or call-by-

value as the reduction strategy and the A-theory on CPS terms. We choose the call-by-name
versions, because they are simpler.
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The next two theorems are about the correctness of the CPS transform. The first shows
that the computation of a A-term is correctly mimicked by its CPS image. The second shows
that the CPS transform preserves [y,-conversion.

Theorem 5.4 (adequacy for Cy) Let M € A°.

. If M =y V then Cy[M]k = kCF[V] (note that the term kCy[V] is a N-nf).

. The converse: If Cy[M]k =y N and N is a N-nf, then there is a call-by-value value V' such
that M =>y V and N = kC}[V].

This theorem can be proved by going through an intermediate CPS transform obtained
from the original one by removing some administrative reductions. Doing so is useful because
administrative reductions complicate the operational correspondence between source and
target terms of the CPS transform. This is clear by considering the open term zx: this term
is not reducible (it is a V-nf), but its image Cy[zz]k has 5 (administrative) reductions.

Theorem 5.5 (validity of the g-theory for Cy) Let M,N € A. If A\, - M = N then
AB E Cy[M] = Cy[N].

Proof: [sketch] First one shows that if M =y N then A§ F Cy[M] = Cy[N]. Then one
concludes using the fact that 3, is confluent. [ |

The converse of Theorem 5.5 fails. For instance if

M ¥ Qy = Az.zz) Az 22)y (14)

N & Az zy)Q2 = (Az. zy) (Az. zz)(A\2. 22))

then AB F Cy[M] = Cy[N] holds, but A3y F M = N does not.

The statements on the correctness of the CPS transform complete step 1 of the left part
of Figure 1.

Step 2: from CPSy to HO7

The next step is to show that, modulo the different syntax for abstraction and application,
the terms of CPSy are also terms of HOn. To do this we present a grammar that generates
all CPSy terms, and show that the terms generated by this grammar are also terms of HO.

The grammar has four non-terminals, for principal terms, continuations, CPS-values,
and answers. Principal terms are abstractions on continuations; they describe the images of
the A-terms under the CPS transform. CPS-values correspond, intuitively, to the values of
AV; they are used as arguments to continuations. Answers are the results of computations:
what we obtain when we evaluate a principal term applied to a continuation. Answers are
the terms in which computation (3-reductions) takes place.

INRIA



Interprering juncrions as m-CalCutus processes

z1

continuation variable k& (15)
ordinary variables «x,...
answers P = KV | VVK | AK
CPS-values V := Az AP | z
continuations K := k | Az. P
principal terms A = Mk. P

Remark 5.6 In the grammar for CPS-values, the production Az. k. P can be simplified
to Az. A, but the expanded form is better for the comparison with HO7 below. |

Remark 5.7 Having only one continuation variable guarantees that the continuation occurs
free exactly once in the body of each abstraction Ak. P. (When working up to a-conversion,
the continuation variable ¥ may be renamed, but the linearity constraint on continuations
remains.) |

The relationships among the four categories of non-terminals in Grammar 15 can be
expressed using types. Assuming a distinguished type ¢ for answers, the types Ty, Tk and
T4 of CPS-values, continuations and principal terms are

A% def nX. ((X - (X —-90)— ()))
TK d:ef TV — (16)
Ta ¥ Tk —o

The type judgements for the terms M generated by Grammar 15 are of the form
'tM:T (17)

where T € {Tv,Tk,Ta, o} and T is either  : Ty or & : Ty, k : Tk, for some T with
Z Ctv(M).

We shall see in Section 10 that there is a general schema for translating type judgements
on A-terms to type judgements on the CPS-images of the A-terms, and that the schema
applies also to untyped A-calculus.

All CPS terms are indeed generated by Grammar 15:
Proposition 5.8 If M € CPSy, then M is a principal term of Grammar 15.

Proof: One can show that the set of principal terms includes the set {Cy[M] : M € A}
and is closed under 3-conversion. |

It is easy to see that the set of terms generated by Grammar 15 is, essentially, a subset
of HO7 terms. Precisely, answers may be regarded as HO7 processes, and CPS-values,
continuations, and principal terms as HOn abstractions. Recall from Section C that the
grammar of (polyadic) HOw requires that abstractions be either variables or parametrised
processes. CPS-values, continuations, and principal terms of Grammar 15 are indeed of this
form, if we read P as a ‘process’, and we uncurry a CPS-value Az. Ak. P to A(z, k). P and
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an answer VV K to V(V, K) (thus in Table 2 Cj[A\x. M] becomes A(z, k). Cy[M]k, and in the
translation of M N, the term Aw.vwk becomes \w.v{w, k)). It is therefore straightforward
to define the injection H from the terms of Grammar 15 to HO7. On terms, modulo this
uncurrying, the injection rewrites A-abstractions into HOn abstractions, and A-applications
into HO7 applications. The injection is the identity on (uncurried) types; thus

H[Tv] & ux. ((X x (X = ¢)) — 0) (18)

We have H[¢] def ¢, which explains the abuse of notation whereby the same symbol ¢ is
used for the type of answers of Grammar 15 and for the type of processes of HOw. The
image of H is a HOw language that has recursive and product types.

The proofs of these lemmas are straightforward:

Lemma 5.9 Suppose that M is a term generated by Grammar 15, and that T+ M : T for
T and T as in (17). Then H[T'] - H[M] : H[T] .

As a corollary of Lemma 5.9, if M € A with fv(M) C Z, then
Z : H[Tv] FH[C[M]] : H[T4] = H[ITv] — ¢) — ¢ (19)

We remind that if P,Q are HOm processes, then P —3 @ and P =g () denote (-
reduction and S3-convertibility in HOw, respectively (Section C).

Lemma 5.10 For all terms M of Grammar 15, we have: if M —y M' then H[M]—p =5
H[M']; and conversely, if H[M] —p P then there is M' such that M —y M’ and
P =5 H[M'].

(In the lemma above, the use of =g is due to the uncurrying that is used in the injection
H.)

Corollary 5.11 For all terms M, N generated by Grammar 15, \g = M = N implies
H[M] =g H[N].

Proof: Since =3 is confluent, A3 = M = N holds iff there is some L such that M =5 L
and N =>4 L. Therefore, by Lemma 5.10, H[M] =g H[L] =g H[N]. ]

This concludes the second step of the left part of Figure 1.

Step 3: compilation C

The third and final step for the left part of Figure 1 is from HO7 to w-calculus. This step is
given by the compilation C from HOx to m-calculus of Section D. In Section D we showed
that there is a precise operational correspondence between source and target terms of the
compilation, and studied its behavioural properties. Recall that the compilation acts also
on types, and that for translating the arrow types of HOm we used the i/o types of the
m-calculus.
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Ve Ml = (p). B(y). ly(a) VIM]
Vel € ().
VIMN] £ (p).vq (VIM], | a().vr (VINT | r(w). 5w, 1))

(z)

il

Table 3: The encoding of AV into the 7-calculus

5.2 Composing the steps

Composing the three steps, from AV to CPSy, from CPSy to HOx, and from HO7 to n-
calculus, we obtain the encoding V of AV into 7-calculus in Table 3. Precisely, the encoding
V[M] of a A-term M is obtained thus (omitting the type environment index)

VIM] € c[HI C[M] ] ]

The encoding V uses two kinds of name:

e Location names (p, q,r) that are used as arguments of the encodings of M-terms. These
names correspond to the continuation variable of the CPS Grammar 15.

e Value names (z,y) that are used to access values. These names correspond to the
ordinary variables of the CPS Grammar 15.

(A notation reminder for abstractions: V[M] is an abstraction, say (¢).Q; then in Table 3,
y(z) V[M] is y(z,q). Q@ and V[M], is Q{"/q}. These and other notations for abstractions
are discussed in Section B.1.7.)

We explain informally how the encoding works. Suppose a A-term M reduces to a value
V. This value represents the result of the A-term. In the w-calculus encoding, V[M], reduces
to a process that, very roughly, returns the value V' at p (this is the analogue of passing
the result to the continuation in the CPS transform). The value V can be a variable or
an abstraction. If V' is a variable then the corresponding m-calculus name is returned at p.
If V is a function then it cannot be passed directly at p because w-calculus does not allow
communication of terms; instead, a pointer to the function is passed. Thus the function
sits within the process as a resource that can be accessed arbitrarily many times, via the
pointer: when a client sends a value v and a return name ¢, the function will answer by
sending a result at ¢ (if a result exists).

The encoding of an application M N at location p is a process that first runs M at
some location q. When M signals that it has become a value v, the argument N is run at
some location r (¢ and r are private, to avoid interference from the environment). When
also N signals that it has become a value w, the application occurs: the pair {w,p) is sent
at v. This communication is the step that properly simulates the §,-reduction of AV; the
previous communications were “administrative” (exactly as it happens in the CPS transform,
see Section 5). The second argument of the pair (w, p) is the location where the final result
of M N will be delivered.
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Remark 5.12 In Table 3, the inputs at location names (¢ and r) are not replicated because,
in the step of translation from HO7 to m-calculus, we take into account the linearity con-
straint on continuations (Remark 5.7) and therefore adopt the optimisation of Section D.0.9.
Despite this, however, in the paper we shall not use linear types, on the one hand to keep
the type languages simpler, on the other hand because linear types would not affect the
results presented. ]

For the sake of readability the translation of Table 3 is not annotated with types. Types
are needed, however, to prove its correctness. The w-calculus translation of type H[Ty] in
(18) is the recursive type

Val &' 41X . (0 (X,0 X))

We do not need the i tag on types, because both location and trigger names that are
communicated may only be used by a recipient for sending. Here is the encoding in which
names bound by a restriction are annotated with their type (we recall that if T is a 7-
calculus type, then (7))~ is the type obtained by replacing the outermost i/o tag in T' with
b, possibly after unfolding 7T if its outermost construct is recursion):

V. M] € (p).Bly ¢ (Val)=°).ly(z) V[M]

Visl & (9).5)
VIMN] =" (p). (vg:b(Val))
VIMI, | a(@). (vr : b (Val) ) (VINT, | 7(9)-2(y, )

’EI

Types Val and o (Val) are, respectively, the types of free trigger and free location names
of process V[M],. These types change the outermost tag to b in the case of names local to
V[M],, thus becoming, respectively, (Val) =" and b (Val) .

The translation of (19) into w-calculus gives

Lemma 5.13 Suppose fv(M) C Z. Then

Z : Val,p : o(Val) FV[M],

From the correctness of the 3 steps from which encoding V has been derived, we get the
two corollaries below. Thereafter, we shall also derive direct proofs of these corollaries, which
do not go through the CPS transforms but, instead, appeal to the theory of the w-calculus
(Exercise 5.20).

Corollary 5.14 (adequacy of V) Let M € A°. It holds that M |, iff V[M], |, for any
.

Proof: From Theorem 5.4, Lemma 5.10, and the operational correctness of the encoding
of HO7 into the m-calculus (Lemma D.2 and its extensions, Section D.0.9). [ ]

Corollary 5.15 (validity of \3, theory for V) Suppose fv(M,N) C Z, and let H = 5 .
Val; o (Val). If \G, - M = N then V[M] =5, V[N].
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Proof: From Theorem 5.5, Corollary 5.11, Lemma B.5, and Lemma D.3 (more precisely,
the extension of it with products and linear types, Section D.0.9). [ ]

Remark 5.16 (effect of i/o types on behavioural equivalences) In the relation of
barbed congruence of Corollary 5.15, the presence of i/o types is important. The result
would not hold if each i/o type I T (for I € {i,0,b}) were replaced by the (less informative)
channel type 1 T. As a counterexample, take M Lef (Az.(A\y.z))Az.z and N Lef Ay. (Az. z).
With a B,-conversion, M reduces to N. However, without i/o types V[M], and V[N], could
be distinguished; see [San92, page 128]. [ |

By Corollary 5.15, we know that if M —y M’ then V[M] and V[M'] are behaviourally
indistinguishable. One might like, however, to see how the reduction of AV is simulated in the
w-calculus. This is shown below. Recall that the local-environment notation P{z = (Z). R}
stands for vz (P | 'z(Z). R), under the hypothesis that P and R only possess the output
capability on z (Section B.0.9).

Notation. We write P —4 P’ if the reduction P — P’ is deterministic (i.e. P — P"
implies P’ = P"”, and there is no p such that P |,). If P —4 P’ then in any context,
P — P’ is necessarily the first action that P can participate in. We write P —7% P’ if P
evolves to P’ by performing n deterministic reductions.

Lemma 5.17 V[(Az. M)\y. N], —3 ~ V[M],{z = (y) V[N]}.

Proof: We apply the laws of Lemma B.9 and the laws 5-7 of Theorem B.10:
V[(Az. M)Ay.N],
= v (22).12(@) VIM] | (). vr (7(w). 'uly) VINT | 7(u)- (u.p))
—an~ (vr,z )(‘z(x)V[M]] | 7(u). lu(y) V[N] | r(u).E(u,p))
—a~ (vu,2)(22(@) VIM] | u(y) VINT | Z(u.p))
—a~ (vu,2) (VIMIp{%z} | 12(2) VIM] | tu(y) VIND)
~ (o) (VM | 12(y) VIN])
= VIMy{z = () VIN]}

This proves the lemma, since ~ commutes with —. |

The reader might like to compare the derivation in the proof of the lemma with that in
(13), to see the similarities.
Lemma 5.18 Suppose fv(M,N) C Z, and let H L. Val; o (Val) . We have V[M]{z =
(v) VINT} =5 VIM{N:}].

Proof: We proceed by structural induction on M. There are three cases: when M is a
variable, an abstraction or an application.

Variable: M = z.

Both the case z = z and the case z # x are easy.
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Abstraction: M = \z. M'. We have

VIM[{z = (y) VIN]} =

(3)- W VIMT){z = @) VIN}  ~ (20)
p(v)- ((y(:)VIM Dz = @) VIND}) =5 (21)
By)-w(x) VIM Wz = W) VINTY) =% (22)
PY)- () VIM{NEY =
VIM{Nz}]

where, in (20), the scope of the local environment {x = (y) V[N]} has been reduced, since
x does not occur in p(y); the equality (21) pushes the local environment inside prefixes and
replication, and is derived from the strong replicator theorem (Section B.1.6); finally the
equality (22) follows from the inductive assumption.

Application: M = M;M,.

This case is similar to that of abstraction; we leave it as an exercise.

Corollary 5.19 Let M € A°.

1. If M —y M’ then V[M], —3 P =~ vy VIM'],.

2. The converse, i.e., if V[M], — P then there is M' such that M —y M', P —2 27 o (Val)
V[M'],, and moreover the reduction V[M], — P is deterministic.

Proof: An easy exercise, using the previous two lemmas. |

Corollary 5.19 shows that, in response to M —y M’, process V[M], deterministically
performs three reductions, whose derivative P is not precisely the encoding of M’, but can
be proved equal to it using some laws that “reorder” the structure of P (relation 7o (Val) ).

Exercise 5.20 Use Corollary 5.19 to prove Corollaries 5.15 and 5.14.

Remark 5.21 The results on the CPS transform, notably Theorems 5.4 and 5.5, have been
used to derive results about the correctness of the m-calculus encoding. Sometimes, we
may also go in the opposite direction, that is use the w-calculus encoding to understand,
and reason about, the CPS transform. For instance, in Exercise 5.20 we have derived a
direct proof of Corollary 5.14. Using this, Lemma 5.10, and Lemma D.2, we can derive
the adequacy of the CPS transform (Theorem 5.4). Similarly, in the same Exercise 5.20 we
have derived Corollary 5.15; using this (and Lemma D.4), we can prove a weaker version
of Theorem 5.5, saying that if A3, - M = N then Cy[M] and Cy[N] are observationally
equivalent as terms of AN. (Observational equivalence equates terms that are behaviourally
indistinguishable and will be defined and studied in Section 11; informally, two AN-terms
L, and L, are observationally indistinguishable if for for all w-calculus contexts C' it holds
that C[L1] x iff C[L2] {x.)
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In this table we abbreviate Cy[M] as [M] and C5[V] as [V]:

call-by-name values V := Az. M
[z] ¥ Mook
V] € Me.k[V]

[MN] € M. [M](\v.v[N]k)

M. M] = Az [M]

Table 4: The call-by-name CPS transform

5.3 Parallel call-by-value

From the call-by-value encoding it is easy to obtain variants with different disciplines for
reducing the operator and the operand of an application. One such variant is the parallel
call-by-value strategy, that has the ordinary v rule in place of v,. Here is the definition of
application for the parallel call-by-value encoding, denoted by PV:

PYIMN] % (p). (vg,r ) (PVIMI, | PVINT, | q(@).7(3). 7y, 7))

The operator and the operand are run in parallel. The clauses for abstractions and values
for PV are the same as for (the sequential) V.

Exercise 5.22 Ezhibit o term M on which the encodings of sequential and parallel call-by-
value do not give the same behaviours, i.e., V[M] % PV[M].

Exercise 5.28 Supposefv(M,N) C Z, and let H 5. Val; o (Val). Prove that PV[(Az. M)\y. N|] =%

PY[M{Ay-N/z}]. (Hint: it is similar to the proofs of Lemmas 5.17 and 5.18.)

2. Conclude that if N\, - M = N, then V[M] =5, V[N],.

6 The interpretation of call-by-name

In this section we develop a w-calculus encoding of call-by-name A-calculus. The approach is
similar to that for call-by-value in Section 5. The reader not interested in the CPS transform
may see directly the encoding into 7-calculus of Section 6.0.1.

Step 1: the call-by-name CPS

Table 4 shows the call-by-name CPS transform of [Plo75] (in fact, a rectified variant of it,
see the notes in Section 14). Here is how a 8 reduction

(\z. M)N —sy M{N/z}
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is simulated in the transform. (As in call-by-value, we choose to take call-by-name for the re-
duction relation on the images of the CPS, but these terms are evaluation-order independent:

see Theorem 6.1.)
Cu[(Ax. M)N]k
— N CNll/\.Z'M]]()\/U/UCN[[N]]k)
= (M. (kCE\a. M])) (M. vCy [NTk)
—y (M. vCy[N]k)Cy[Az. M]
= (Az.Gy[M])Cy[N]k
—sy Cu[M]{&INY 2}k

In general Cy[M]{C:[N]/z}k is not equal to Cy[M{N/z}]k, because Cy does not commute
with substitution. The two terms are, however, 3-convertible; indeed Cy[M[{Cx[N]/z}k =5
Cu[M{N/z}]k.

Closing the image of the transform under (-reduction gives the language CPSy of the
call-by-name CPS:

CPSy {4 : IM € A with Cy[M] =>4 A}

When there is no ambiguity we call the terms of CPSy the CPS terms.

The theorems below are the call-by-name versions of Theorems 5.1-5.5. They show the
indifference of the CPS terms to the choice between call-by-name and call-by-value, and the
correctness of the CPS transform. Theorem 6.3 is slightly weaker than the corresponding
result for call-by-value. The reason is that, as illustrated above, Cy commutes with substitu-
tion only up to [-conversion. In contrast, Theorem 6.4 is stronger than the corresponding
result for call-by-value: it asserts a logical equivalence rather than an implication.

Theorem 6.1 (indifference of CPSy on reductions) Let M € CPSy and let N be any
subterm of M. For all N', we have: N —y N' iff N —y N'.

Theorem 6.2 (indifference of CPSy on A-theories) For all M, N € CPSy, we have:
MBEM =N iff \G - M =N.

Theorem 6.3 (adequacy of Cy) Let M € A°.

. If M =y V where V is a call-by-name value, then there is an N-nf N such that Cy[M]k =y
N and \BF N = kC}[V].

. The converse, i.e., if Cy[M]k =>x N and N is an N-nf, then there is a call-by-name value
V such that M =y V and AB+ N = kC{[V].

Theorem 6.4 (validity of the S-theory for Cy) Let M,N € A. Then A+ M = N iff
AB F Cy[M] = Cy[N].

Step 2: from CPSy to HO7

The grammar below generates all terms of CPSy. The intuitive meaning of the various syn-
tactic categories in the grammar is the same as for the call-by-value Grammar 15. The main
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differences are the addition of the value variable v, representing the parameter of continua-
tions, and the splitting of the set of answers into the sets P; and P,. These modifications
are made in order to capture the linear use of the parameters of continuations within the
grammar (dropping linearity we would have the CPS language of Table 6). As in the call-
by-value grammar, there is only one continuation variable k because continuations are used
linearly.

continuation variable & (23)
ordinary variables w,...
value variable v

answers P = P | Py
P = KV | VAK | AK
P2 = vAK
CPS-values V := Az.)k. P,
continuations K := k | . Py
principal terms A = Ak. P | T

Using ¢ as the type of answers, the types Ty, Tk and T4 of CPS-values, continuations,
and principal terms are

Ty % X (X = 0) = 0) = (X = 0) =) (24)
Tk d:ef Ty — ¢

def

Ta Tk — ¢

The value variable v has the type Ty of the CPS values. The typing judgments for the terms
generated by the grammar are as expected, given these types.

Proposition 6.5 If M € CPSy, then M is also a principal term of Grammar 23.

Proof: One can show that the set of principal terms includes the set {Cy[M] : M € A}
and is closed under (-conversion. |

The injection H, from the terms generated by Grammar 23 to HOw, is defined as for the
call-by-value Grammar 15, and similar results hold:

Lemma 6.6 Suppose M is a term generated by Grammar 23, and T = M : T . Then also
H[T] FH[M] - H[T] .

Therefore, if M € A with fv(M) C Z, then
T : H[Tal F H[GIM]] : H[Tal = (H[Tv] = 0) = ¢ (25)

Lemma 6.7 For all terms M of Grammar 23, we have: if M —y M' then H[M]—p =5
H[M']; and conversely, if H[M] —p P then there is M' such that M —y M' and
P =5 H[M].

Corollary 6.8 For all terms M, N generated by Grammar 15, A3 v M = N implies
H[M] =g H[N].
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NDae.M] € (p).5(v). v(z) N[M]
Nl = (v).3(p)
NIMNT % (p).vg (MM, | a).ve (2, p). 2 NN]))

X

Table 5: The encoding of AN into the 7-calculus

Step 3: compilation C

This step is given by compilation C of HOx into w-calculus.

6.0.1 Composing the steps

Composing the three steps, from AN to CPSy, from CPSy to HO7, and from HO7 to n-
calculus, we obtain the encoding of AN into m-calculus in Table 5.

The encoding uses three kinds of name: location names (p,q,r), trigger names (x,y), and
value names (v). Location names are arguments of the encoding, and are the counterpart of
the continuation variable of the CPS Grammar 23. Trigger names are pointers to A-terms,
and are the counterpart of the ordinary variables of the CPS grammar. Value names are
pointers to values (more precisely, to CPS-values, in the terminology of Grammar 23), and
are the counterpart of the value variable of the CPS grammar.

We explain briefly how the encoding works. As in the call-by-value encoding, a A-term
M that reduces to a value V is translated as a process N [M], that, roughly speaking, emits
V at p. But, in contrast to call-by-value, in call-by-name a value can only be a function.
Moreover, a A-term that is evaluated may only be the operand — not the argument — of
an application. As such, it may not be copied; that is, it may be used only once. In the
encoding of abstraction in Table 5, this linearity is evident in the fact that the input at v is
not replicated. Another difference from call-by-value is that in call-by-name the argument
passed to a function may be an arbitrary A-term, which, in the body of the function, has to
be evaluated every time its value is needed. This difference is evident in the encoding of a
variable z: the corresponding w-calculus name x is used not as a value but as a trigger for
activating a term and providing it with a location. In the encoding of an application M N
at location p, when M signals that it has become a function, it receives a trigger for the
argument /N and the location p for interacting with the environment.

Remark 6.9 In the table, in the definitions of function and application, the inputs at v and
q are not replicated because of the linearity constraint on value variables and on continuation
variable of Grammar 23 that, in the compilation of HO7 to the w-calculus, enables us to
adopt the optimisation of Section D.0.9; we did similarly in the call-by-value encoding, see
Remark 5.12. |

Remark 6.10 The linearity of the value names of Table 5 (and similarly, of the value
variables of Grammar 23) may be lost whenever one adds further constructs to the A-calculus,
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ol

as we will do in Section 11. To support extensions, the definition of abstraction in the table
requires a replication in front of the input at v — as in the call-by-value encoding. We
derive such an encoding in the next section (we also use it in Exercise 6.17). When possible,
however, it is good to avoid the replication, to keep the encoding simpler and therefore
make it easier to prove properties of the encoding (which we shall do in this section and in
Sections 11-13). [

In the encoding of Table 5, we have omitted type annotations. Below is the complete
encoding including types. The type

Trig @ 11X (0 (00 X,0 X)) (26)

is the translation into w-calculus of the type Ty in (24).

NPz M] % (p).B(v : (Trig)=?). v(z) N[M] (27)
Nzl € (p)-7(p)
NIMN] % (p). (vq: b (Trig) )

NIM], | g(v). (v : bo (Trig) ) ((z, p). 1= NNT))
The translation of (25) into w-calculus gives
Lemma 6.11 Suppose fv(M) CZ. Then T : oo (Trig) ,p : o(Trig) F N[M], .
We also derive the following two results about the operational correctness of the encoding:
Corollary 6.12 (adequacy of N) Let M € A°. Then M |y iff N[M], |, for any p.

Proof: From Theorem 6.3, Corollary 6.7, and Lemma D.2 (actually an extension of it with
products and linear types, Section D.0.9). |
Corollary 6.13 (validity of A3 theory for N') Suppose tv(M,N) C Z and let H 5 .
oo (Trig) ; o (Trig) . If \G+ M = N then N[M] =5, N[N].

Proof: From Theorem 6.4, Lemma 5.11, Lemma B.5, and (the appropriate extension of)
Lemma D.3. |

Encoding A validates rule 3 of the A-calculus. By contrast, as Exercise 6.15 shows, N/
does not validate rule 1, namely

Az, (Mx)=M if x & tv(M)

Neither does the call-by-value encoding V satisfy n. These failures make sense, as 7 is not
operationally valid either in call-by-name or in call-by-value A-calculus (see Exercise 11.4).
The 7 rule is operationally valid, however, if M is a value; indeed the encoding does validate
this restricted form of n (Exercise 6.16).
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Exercise 6.14 Show that N'[Q], = 0

Exercise 6.15 (non-validity of the 7 rule) Show that there is a A-term M with x ¢
ftv(M) such that if fv(M) = {Z} and H Y7 o0 (Trig) ;0 (Trig) , then N z. (Mz)] %5
N[M]. (Hint: use Ezxercise 6.14.)

Exercise 6.16 (validity of the conditional 7 rule) Let V € A be a call-by-name value.
Show that if x & tv(V) then N[Az. (V)] = N[V].

Exercise 6.17 (from call-by-value to call-by-name via thunks) The CPS transform
Cy gives us an encoding of call-by-name (AN ) into call-by-value (A\V) A-calculus. Another
way to achieve this goal is by means of thunks. A thunk is a parameterless procedure; it
may also be thought of as a suspended computation. To represent thunks, we can introduce
a constructor delay(M) and a destructor force(M). Keeping in mind that they represent
parameterless abstraction and application, it is straightforward to add them to AV and to its
w-calculus encoding V (Table 3); the additional operational rules are:

M —y MI
force(M) —y force(M’) force(delay(M)) —y M

and the additional clauses for V are:

V[delay(M)] % (p).5(v). wV[M]
V[torce(M)] ¥ (p).vq (V[M], | a(v).5(p))

We can now encode AN into this extended \V thus:

D[] ief force(z)
Dz.M] = Az.D[M]
D[MN] = D[M](delay(N))

An adequacy results holds for D that is similar to the adequacy of the CPS transform Cy
(Theorem 6.3).

Let M be the encoding of AN into w-calculus defined as N (Table 5) but with a replication
in the clause of abstraction:

Mz M] % (). pv). (z) M[M]
Prove that M factorises through the above encoding D and V (extended with (28)); i.e., for
all M € A
V[D[M]] = M[M] .

We conclude the section by proving some properties of insensitivity to behavioural equiv-
alences for the call-by-name encoding; we shall use some of these properties in later sections
(Sections 11-13).

The next Lemma show that i/o types are not actually necessary in the assertion of
Corollary 6.13. This is in contrast with the corresponding result for call-by-value, see Re-
mark 5.16. (The reason types are needed for call-by-value but not for call-by-name has to
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do with the replication theorems: for the proof of Lemma 5.18, the strong replication theo-
rems of Section B.1.6 are necessary, and these theorems use i/o types. They are necessary
because, in the assertion of Lemma 5.18 name z may appear in output object position in
M due to the definition of the encoding V on variables. The same does not happen in the
call-by-name encoding A, which uses a different translation of variables.)

Let us call Ny the encoding into the plain polyadic w-calculus, without i/o types; omitting
types, the definition of N is the same as that of A; the difference is that in Ny each i/o
type I T (for I € {i,o,b}) is replaced by the less informative channel type  T. We remind
that in the plain polyadic m-calculus we write barbed congruence as =€, omitting the type
environment index.

Lemma 6.18 Suppose fv(M,N) C ¥ and let H % 00 (Trig) ; o (Trig). Then N[M] =%
NINT iff Ny [M] 2= A; [N,

The proof of Lemma 6.18 is rather complex; rather than giving it, we invite the reader to
prove the variant of Corollary 6.13 without i/o types, through the following four exercises.

Exercise 6.19 Show that, for all M, N € A with x & fv(N),
Ny [(w. M)N], —3 N; [M]p{z = N; [N]}
Exercise 6.20 Show that, for all M, N € A with x & tv(N),
N; [M{z = Ny [NT} = N [MAN/}] -
(Hint: proceed by induction on M, and use the replication theorems B.10.)

Exercise 6.21L From the two previous ezercises, conclude that if M —y N then Ny [M], —3

~ N [N],-

. Check that in item (1), relation = can be refined to 2

2> (the expansion relation, Defini-
tion B.6).

Exercise 6.22 Use Ezercise 6.21 to prove that if \3 = M = N then Ny [M] =°¢ Ny [N].

Exercise 6.21 can also be used to get a direct proof of Corollary 6.12.

The encoding of call-by-name satisfies some further properties of insensitivity to the
behavioural equivalence chosen for the w-calculus. We show one of these (insensitivity to
the choice between barbed congruence and ground bisimilarity), that will be useful in the
study of full abstraction for this encoding, in Sections 11-13. We state the result, whose
proof takes the reminder of the subsection, and is partly conducted through exercises (these
are technical and fairly advanced exercises).

Corollary 6.23 For all M,N € A, it holds that Ny [M] =¢ Ny [N] iff Ny [M] ~ Ny [N].

Definition 6.24 A process P is T-insensitive under ground transitions if P — P’ implies
P =~ P’ and, moreover, this property is preserved under ground transitions.
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Lemma 6.25 Suppose that P and Q) are processes of the asynchronous polyadic 7 -calculus
and T'F P,Q . If P and Q are T-insensitive under ground transitions, then P =°¢ Q iff
P=Q.

Proof: [sketch] On processes of the asynchronous w-calculus, ground bisimulation implies
barbed congruence (Theorem B.4).

If a process R is 7-insensitive under ground transitions, then for each ground action p the
set {R' : R = R'}, modulo =, is finite. Using this fact, and proceeding in a way similar
to that used for characterisations of barbed congruence in terms of labeled bisimilarity (such
as early bisimilarity) [San92, ACS96], one proves the opposite direction. [ |

Definition 6.26 A name a is directional in P if a appears free in P either only in input
prefixes, or only in output prefixes.

Exercise* 6.27 Suppose a w-calculus process P satisfies these two properties:

. oll free names of P are directional in P;

. each name of P is either linear receptive, or w receptive (that is the process is typable using
only the types for linear receptiveness and for w receptiveness, Section B.1.4).

Then P is T-insensitive under ground transitions.

Exercise* 6.28 Prove that Ny [M], satisfies the hypothesis of Ezercise 6.27, for all M € A.
Conclude then that Corollary 6.23 is true.

7 A uniform encoding

The differences between the definitions of application in the m-calculus encodings of call-by-
name and call-by-value are inevitable — just because application is precisely where these
strategies differ. One may wonder, however, whether the definitions of abstraction and
variable need to differ too. In this section, we make some simple modifications to these
encodings to obtain new ones that differ only in the definitions of application. We shall then
show that other forms of application, such as call-by-need application, can be easily defined.

Having a uniform encoding for a variety of strategies makes it easier to compare them.
It also facilitates translation to w-calculus of programming languages that employ different
strategies for evaluating arguments of functions.

We obtain the new encodings again by going through a CPS transform, an injection
into HOw, and the compilation of HO7 into 7-calculus. We begin with the CPS transform.
Starting from the call-by-value and call-by-name transforms examined in the previous sec-
tions (Tables 2 and 4), it is easy to give a CPS transform that is uniform for call-by-value
and call-by-name, in that it has the same clauses for abstraction and variables. The call-by-
value and call-by-name CPS have the same clause for abstractions; to obtain a uniform CPS
it suffices to adopt the call-by-name CPS, and modify the definition of application of the
call-by-value CPS to compensate for the different clauses for variables. (We cannot adopt
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In this table we abbreviate Cy[M] as [M]:

[z] € Ak.zk
P M] € Ak k(Aa. [M])

call-by-name application:

[MN] % M. [M](w.o[N]k)
call-by-value application:

[MN] %€ M. [M]Ow. [N]Ow. v( k. kw)k))

Table 6: A uniform CPS transform

the definition of variables of the call-by-value CPS transform because it treats variables as
values, and this is correct only when variables are always substituted by values.)

The uniform CPS transform is given in Table 6. The associated grammar, which is similar
to that for the call-by-name CPS transform but lacks the constraint on linear occurrence of
value variables, is this:

continuation variable & (29)
ordinary variables =z, ...
value variables v,w,...

answers P := KV | VAK | AK
CPS-values V = Az.Mk.P | o
continuations K = &k ‘ . P
principal terms A := Ak.P ‘ T

The types of the non-terminals of the grammar are the same as those of the call-by-name
CPS transform. With the usual injection on terms and on types, the terms generated by
this grammar and their types become a sublanguage of HOn. Applying the compilation of
HO= into w-calculus we obtain the encoding given in Table 7. In this table, there is also
the code for the call-by-need application. We present call-by-need directly on the m-calculus
— without going through HO7m — because, as explained in Section 3.3, call-by-need is an
implementation technique with explicit environment in which S-reduction does not require
substituting a term for a variable but just substituting a reference to a term for a variable.
Therefore for the encoding of call-by-need the process-passing features of HO7 are not so
helpful.

We explain the encoding of a call-by-need application M N. When U[M], becomes a
function it signals so on ¢, and receives a pointer z to the argument N together with the
location p for the next interaction. Now the evaluation of M continues. When the argument
N is needed for the first time, a request is made on z. Then U[N], is evaluated and,

RR n° 3470



. Sangiorgi

Uz M] ¥ (p).5(). W(z) U[M]

Uzl = (p).3(p)
call-by-value application:

UIMN] = (p). (vg) (UM, | g(v). w7 ( UINT, |

r(w). ve vz, p). lz(r'). W(w)))
call-by-name application:

UPNT % (o). (va) (UIM], | a(v)- v o, p). 1w UINT)

call-by-need application:

U[MN] &

(v)- (vg) (UIM], | g(v). veB(a.p). o(r). vq’ (UIN]y |
¢ (). (Fw) | (). 7 (w))))

Table 7: The uniform encoding of call-by-name, call-by-value, call-by-need

when it becomes a value, a pointer to this value instantiates w. This pointer is returned
to the process that requested N. When further requests for NV are made, the pointer is
returned immediately. Thus, by contrast with call-by-name, in call-by-need the argument
N of the application is evaluated once. To appreciate this, the reader might like to compare
the reductions of the encodings of (\.zz)(II), in call-by-name and in call-by-need. In the
former, 17 is evaluated twice, in the latter once.

It is not by chance that the call-by-need encoding is best derived from the uniform
encoding of Table 7, because call-by-need combines elements of the call-by-name and call-
by-value strategies. Indeed it can be defined as call-by-name plus sharing, but can also be
seen as a variant of call-by-value where the argument of an application is evaluated at a
different point.

We do not prove the correctness of the call-by-need encoding, for it would require formally
introducing the call-by-need system. See the notes of Section 14 for references, and see also
Exercise 7.3.

Exercise 7.1 Add type annotations for local names to the encodings in Table 7. What are
the types of the free names? Show that these types are correct, by proving the appropriate
type judgements on encodings of A-terms.

Remark 7.2 Proving properties of the encodings of call-by-value A-calculus and call-by-
need in Table 7 (for instance, in call-by-value, the validity of 8, reduction) may require i/o
types. i/o types may be avoided by adopting the modifications proposed in Exercise 7.3.

Exercise 7.3 LetUs; be the encoding of call-by-value as defined in Table 7 with the exception
that in the clause for application the last output v'{w) is replaced by v (w').w’ —w (where
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MDa.M] E (p). p(z) M[M]
Mzl € (p).7(p)
MIMN] £ (p).vg (M[M], | ve gz, p). 'z M[N])

gl

Table 8: An optimised encoding of AN

w' —w is a link, Section B.1.5). Similarly, let Uy, be the encoding of call-by-need as defined
in Table 7 with the exception that in the clause for application the last output r'{(w) is replaced
by r'(w').'w' —w. Finally, let Ux be the encoding of call-by-name in the same table.

Take a A\-term M inside which all applications have the form N(Ax.L) (i.e., the argument
is an abstraction). Show that

Uy [M] = Un[M] ~ Uy [M] .

8 Optimisations of the call-by-name encoding

We now examine a possible optimisation of the encoding V' of AN into w-calculus (Table 5).
Consider the encoding of abstraction in that table. The name v sent via p is immediately used
in an input. Dually, in the definition of application the name received at ¢ is immediately
used in output. We can compress the two communications into a single one where an
abstraction uses its location in input. The resulting optimised encoding is shown in Table 8.
This is the simplest encoding of the A-calculus into 7-calculus we are aware of. (It is also
Milner’s original encoding of the A-calculus into 7-calculus [Mil91].)

The optimisation from which the new encoding is obtained is valid in the standard seman-
tics of the m-calculus; but it is not valid in an asynchronous semantics. Indeed, the encoding
is not quite satisfactory with respect to asynchronous semantics such as asynchronous must
testing or typed asynchronous barbed congruence. For instance, these semantics equate
processes M[Az. ], and M[Q],, but Az.Q and Q are not behaviourally equivalent in AN
(technically speaking, with these semantics the encoding is not sound). Behavioural equiv-
alence in AN will be discussed in Section 11.

In summary, the encoding of Table 8 is attractive because it is the shortest of all the
A-calculus encodings presented, but it is less robust than the encoding of Table 5. In the
remainder of the chapter we shall prefer the more robust encoding.

An optimisation of the encoding N (and of the other call-by-name encodings in this
section and in Section 7) is possible using types. The definition of application when the
argument is a variable is, including type annotations:

NIMy] = (p). (vq:bTrig)
(MM, | a(v). (vz : boTrig) (5(x, p). 1a(r). 7(r)))
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From the type b Trig of ¢ it follows that v is used in the body with type Trig. The definition
of Trig shows that only the output capability of names may be communicated along v.
Therefore if we confine ourselves to the asynchronous w-calculus, then we can apply the law
of Lemma B.12, and optimise the above clause to

NIMy] % (p). (v : b Trig) (MM, | a(v).5(y,p)) (30)

This optimisation is a useful one, because the appearance of variables as arguments of
applications is rather frequent. It is the analogue of a very common tail-call-like optimisation
of functional languages.

9 Encoding the ¢ rule

The only rule of the A3 theory so far totally neglected is the £ rule, for evaluating under-
neath the A. This rule is normally disallowed in implementation of programming languages.
Nevertheless, it is interesting to see how the ¢ rule can be encoded, for at least two reasons.
First, it is a test of expressiveness for the process calculus. Secondly, certain optimisations
of compilers of programming languages act on the body of functions and have similarities
with the £ rule.

In this section we show how to add the £ rule to the call-by-name encodings. Adding &
to the call-by-value and call-by-need encodings is much harder; we explain why at the end
of the section. We shall work in the 7-calculus only: we have gained enough experience by
now with encodings of the A-calculus in the previous sections so that it is not necessary to
go through HO7 again. The strategy defined by the rules of call-by-name plus ¢ is called
strong call-by-name.

We obtain an encoding of strong call-by-name by modifying the definition of abstraction
in the call-by-name encoding of Section 6. This clause is, expanding the input at v:

NDa.M] € (9).50). v(z, q)- N[M], .

Intuitively, to allow the £ rule, we need to relax the sequentiality imposed by the input
prefix v(z,q) that guards the body N[M], of the function. Precisely, we would like to
replace this input with the delayed input introduced in Section B.1.8 thus (recall that the
difference between a strong input a(Z2): P and an ordinary input a(Z). P is that the former
allows reductions in the continuation P):

NDa M E (p).vv (5(v) | v(z,q): N[M],) (31)

The resulting encoding is correct for strong call-by-name, because it is obtained from an
encoding that is correct for call-by-name and because the introduction of the strong input
in (31) has precisely the effect of the £ rule of the A-calculus.

Tt is shown in Section B.1.8 that, under certain conditions, a strong input a(Z) : P can be
coded up, applying transformation (57). The conditions are that processes be asynchronous
and the continuation P have only the output capability on the bound names z. Both
conditions hold in (31); the condition of the output holds because the type of v is (Trig)—° =
b (o o Trig, 0 Trig), as shown in (26).
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NDaM] € (p). (vz,0) (B0)-o(y, 7). oy | g—r | N[M], )
Nl € (0).5(p)
NIMNT & (p).vq (VM1 | av).va @z, p). e NIND))

Table 9: The encoding of strong AN into the w-calculus

We can therefore apply transformation (57) to (31) to get

NAz. M], L (v, 2,q) (ﬁ(v).v(y,r). lx—y|g—r| N|[M]]q)
(The links on the location names 7, ¢ are not replicated because locations are used linearly,
i.e., at most once.) The correctness of transformation (57) (and of its linear variant without
replication on links) guarantees that the result is still a correct encoding of strong call-by-
name. Table 9 gives the complete encoding of strong call-by-name, including the unchanged
clauses for variable and application.

It is actually possible to eliminate the link !z — g in the translation of abstraction. The
exercise below invites the reader to show this.

Exercise 9.1 A small modification of the encoding of Table 9 allows the elimination of the
link 'x —y. Write down this encoding, and prove a correctness result for it analogous to that
in Ezercise 6.21. (Hint: begin from an encoding of call-by-name in which the definition of
abstraction is
def —
Da.M] = (va,v)(®(z,v) | v[M])

and where the clause for application is changed accordingly.)

In contrast, encoding call-by-value plus the £ rule is much more complex. To repeat the trick
we used in the call-by-name case, we would need to allow reduction underneath replication,

that is to add the rule
P— P

P — P!
Rule (32) appears necessary to encode in 7-calculus any strategy having at least rules By, vy, &

(32)

(another such strategy is full 5 reduction =>g). The reason is this: Suppose the argument
N of an application (Az. M )N reduces to a function Ay. N'. As this function could be used
arbitrarily-many times in M, the m-calculus encoding of N should reduce to a replicated
process. The £ would allow reduction within the body N’, and to model this in w-calculus
we would need rule (32).

For similar reasons, rule (32) appears necessary for the encoding of any reduction strategy
that allow rules 3, i, v.

Remark 9.2 Reasoning as above, we can also obtain an encoding of strong call-by-name by
modifying the definition of abstraction in the optimised call-by-name encoding of Section 8.
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In this case, we need both transformation (57) and transformation (58). After eliminating
a replication in front of a link because of linearity, we obtain

M z. M] def (ua:,q)(p(y,r).(!x—»y|q—>r)|M[[M]]q)

However, we recall from Section B.1.8 that the proof of correctness of transformation (58)
requires some advanced properties of process with i/o types, that we have not examined in
the paper. The same properties are needed to prove the correctness of the encoding above.

[ |

Exercise 9.3 What are the types of the local and free names of the encoding in Table 9%
Show that these types are correct, by proving the appropriate type judgements.

10 Interpreting typed A-calculi

In this section we show that the encodings of the previous section can be extended to
encodings of typed A-calculi. To do this we have to define translations on types to match
those on terms. We analyse the case of the simply-typed A-calculus in detail, and discuss
subtyping and recursive types. For studies of other type systems, see the notes of Section 14.

In a core simply-typed A-calculus, types are built from base types, such as integers and
booleans, using the arrow type constructor. The syntax of terms is that of the untyped
A-calculus plus base constants. Each constant has a unique predefined type. We use only
constants of base types: this is sufficient to have a non-empty set of (closed) well-typed terms.
This simply typed A-calculus is presented in Table 10. As usual, arrow type associates to the
right,soT — S — U readsT — (S — U). Base types are ranged over by ¢, base constants by
c¢. The reduction relation and the reduction strategies are defined as for the untyped calculus;
the only difference is that the set of values for a reduction strategy normally contains the
constants. We call the typed versions of AV and AN (simply-)typed call-by-value (A\V ™)
and (simply-)typed call-by-name (AN "), respectively.

We add the same base constants and base types to HOn and w-calculus and repeat the
diagram of Figure 1, this time for AV~ and AN~". We show how to extend the encodings of
AV and AN (from Sections 5 and 6), and their correctness results, to take account of types.
The encodings in Sections 7-9 can be extended similarly.

Lemma 10.1 In the simply-typed A-calculus, every provable type judgment U= M : T has
a unique deriwation.

10.1 The interpretation of typed call-by-value

We begin with the left part of Figure 1, that concerns AV ~. We follow a schema similar to
that of Section 5, pointing out the main additions. The set of values of AV ™ also include
constants:

V = d. M | T | c
To the definition of the CPS transform Cy (Table 2) we have to add a clause for constants:

Cyle] def
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a1

Terms M = x | c | Ax. M | MN ¢ € base constants
Types T := Ty —Ts | t t € base types
Type environments T = 0 | Tx: T
Tx:SFM: T Nx)=T

Typing rules TE M ST Ttz :T

'rM . S—-T T'EFN: S
T'-MN:T

Table 10: The (core) simpy-typed A-calculus

It is important to understand how the CPS transform acts on types. Recalling from
Section 5 that ¢ is a distinguished type of answers (answers being the ‘results’ of CPS
terms), the call-by-value CPS-transform modifies the types of AV ™ -terms as follows:

def

GIT] = G —=0)=o (33)
* def . .
Cilt] = t if ¢ is a base type
Gils —T] ¥ 18] — GiIT]

The translation of arrow types is sometimes called the ‘double-negation construction’ be-
cause, writing =7 for T — ¢, we have

Ci[S — T = G[S] = ~~Cy[T]
Type environments are modified accordingly:

] £ o
Il z : 8] & &[],z : Gi[S]

and similarly for Cy. The correctness of this translation of types is given in
Theorem 10.2 (correctness of call-by-value CPS on types) If M € A then
THFM:T iff CFT)FG[M] : G[T]
(Tt follows that for any value V,
TV . T if CFIFCFIV] : CF[T]

which shows the agreement between the definitions of the auxiliary function Cj on terms
and on types.)

Remark 10.3 Schema (33) is also useful for understanding the types of the CPS images
of the untyped AV in (16), because the untyped A-calculus can be described as a typed
A-calculus in which all terms have the recursive type

TEIX. (X - X) (34)
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To apply the type translation to (34) we just need to add the clauses for type variables and
for recursion to those in (33):

GIXIE X CuX . T] = uX . C[T] (35)
The translation of type T in (34) is then
CiT] = pX. (X = (X = 0)—90)

which is precisely type Ty in (16); moreover

Gy[T] T = 0) =0
= Ty —9¢)—¢

= TA

The grammar of CPS terms is obtained from grammar 15 by adding a production for
constants to those defining CPS-values. The relationship between the CPS grammar and
HOm is as in the untyped case, both on terms and on types. That is, modulo a modification
of the syntax and some uncurrying, the CPS grammar generates a sublanguage of HOw.
Thus Theorem 10.2 can also be read as a result about the encoding of AV ™ into HOx.

Finally, we apply the compilation C of HO7 terms and types into m-calculus terms and
types, and we obtain the encoding of AV ™ into typed w-calculus in Table 11, and the results
below about its correctness. The translation of terms is annotated with an environment
and a type. These are the environment and the type of a correct typing judgment for that
term; that is, writing V[M]"? means that T - M : T holds. We need these annotations
to write the types of the bound names in the target w-calculus processes. (An alternative to
annotating the encoding would be to add type annotations to the syntax of A-terms.) Apart
from type annotations, the translation of terms is the same as for the untyped calculus,
with the addition of the clause for translating constants. Recalling that (7)™ is the type
obtained from T' by cancelling the outermost i/o tag, and therefore (V[T'])~ is o V*[T], the

translation of Theorem 10.2 into 7-calculus gives

Corollary 10.4 Let M be a term of a simply typed \-calculus. Then
TEM:T if VO,p: (VIT])™ F VIM]"

The results for the encoding of untyped AV, namely validity of §,-rule and adequacy
(Corollary 5.15 and 5.14), remain valid for the typed calculus, with the necessary modifica-
tions to the statements to take account of types. For instance, Corollary 5.15 becomes

Corollary 10.5 (validity of 3, theory) Suppose that ' M : T and T+ N : T, and

let H V), (V[T])~. IfAB. - M = N then V[M]'T =5, V[N] 2.

Exercise 10.6 Derive the subject reduction property of \V ™" from the w-calculus encoding;
that is, prove that if T M : T and M —y N then alsoT - N : T.
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In this table we abbreviate V[M]]IE?T as [[M]]g?T, and for a type or type expression E, we
abbreviate V*[E] as [E] and V[E] as [E]:

Translation of types:
[T1 = oolT]

[t] L t € base types

[S—T] € [s]~[T]=o(S]0[T])

Translation of type environments:

[0 =10 = o
[T,z : 8] % [,z : [S]
Tz:S % [M,z:1[9]

Translation of terms:
D MI55=T € (p). By = [S — T]7°). ty(a) [M]"= ST
[T = (9).B(x)
[457 = (p).5(c)

[[MN]]F;T
(). (va : b [S = T)) (IMIES=7 | (). (v : b[S]) (IN]ES | 7(9). 7y, 2)))

3

3l

where, in the encoding of application, S is the type assigned to N in the unique derivation
of ' MN : T (the type is unique by Lemma, 10.1).

Table 11: The encoding of AV ™ into w-calculus
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Remark 10.7 The types of m-calculus names used for the encoding of untyped AV in
Section 5 agree with those used for AV~ in this section, when we view the untyped A-
calculus as a typed A-calculus where the only type is uX.X — X (Remark 10.3). From
(35), the translation of recursive types and type variables of AV into w-calculus is

VX ¥ X VX T) € uX VT
Therefore type Val of Section 5 is precisely V*[uX. (X — X)], so that Lemma 5.13 can be
presented thus: If fv(M) C Z, then

7V uX.(X - X)],p : (V[uX. (X - X))~ F V[M],
n

Remark 10.8 (subtyping) In typed A-calculi with subtyping, the arrow type is contravari-
ant in the first argument, and covariant in the second. Therefore, if < is the subtype relation,
then § - T < 8" — T' holds if S’ < S and T' < T' hold. For instance, suppose int and
real are the types of integers and real numbers. It holds that int < real (an integer is also a
real number) and therefore real — int < int — real. This is correct because a function that
takes a real and returns an integer may also be used as a function that takes an integer and
returns a real (but the converse is false).

The i/o tag o is a contravariant type constructor. In the translation of an arrow type
S — T, component V*[S] is in contravariant position, because it is underneath an odd
number of o tags; in contrast V*[T] is in covariant position, because it is underneath an
even number of o tags. Therefore the 7-calculus translation of types validates the subtyping
rule for arrow type. As a consequence, the translation of this section can be extended to
one of AV~ with subtyping.

|
10.2 The interpretation of typed call-by-name
Constants are also among the values of AN :
Values V = Xz M | c

Therefore we add a clause for constants to the definition of the CPS transform in Table 4:

Gl & ¢

The call-by-name CPS modifies types as follows.

Gl € (G —0)— o

36
Cxlt] df if t is a base type (36)

CiS—-T) ¥ ¢S] — alT]
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Type environments are then translated thus:

Gl = 0
Gl z : 8] ¥ [T,z : G[S]

and similarly for Cj.
Theorem 10.9 (correctness of call-by-name CPS on types) Let M € A. Then

TEM T if CT]F Ce[M] : Cy[T]
A corollary is that for every value V of AN,

TV T iff GT)FCy[V] : CyIT)
Remark 10.10 Adding clauses for type variables and for recursion as in (35), the above
translation of types can also be applied to untyped AN. The translation of T’ ef uX. (X —
X)is

GIT] = wX.((X = 0) = 6) = (X = ¢) = 0))
and
GITT = Gl —0) =0

which is type T'4. ]

The modifications needed to the CPS grammar for untyped AN, and the injection of the
terms generated by the grammar to HO7, are the same as for call-by-value.

The final step of the compilation of HO7 into w-calculus gives us the encoding of types,
type environments, and terms of AN~ into w-calculus in Table 12. Theorem 10.9 then gives

Theorem 10.11 Let M be a term of a simply typed \-calculus. Then
TEM T 4f N[Tp: N[T])” FN[M],
The results on A/ from the untyped case, namely Corollaries 6.12 and 6.13 and Exer-

cise 6.22, remain valid, with the expected modifications to the types in the statement of
Corollary 6.13.

Remark 10.12 The types of 7-calculus names used for the encoding of untyped AN in
Section 6 agree with those used for AN~ in this section, once we add clauses

NAX]E X N [pX.T] € u X N*[T)

The type Trig of Section 6 is precisely N*[uX.(X — X)], so that Lemma 6.11 can be
presented thus: Suppose fv(M) C Z. Then

T :NpX (X - X)],p: VN[pX.(X - X)]) FN[M],
|

Remark 10.13 (subtyping) As in call-by-value, so in call-by-name the encoding of types
validates the standard subtyping rule for arrow types. |

Exercise* 10.14 Prove the analogue of Theorem 10.11 in the case that N is the encoding
of Table 8.
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In this table we abbreviate N[[M]]ZF,?T as [M]]ZF,?T, and for a type or type expression E, we
abbreviate N*[E] as [E] and N[E] as [E]:
Translation of types:

7] L 0o [V]

[N] dof t € base types
[N] € [S] 7 [T] = o ([S],0 [N])

Translation of type environments:

Pl=[N] £ o
[[,z:S] % [,z : [9]
N] & [N]z : [N]

Translation of terms:
o MIPS=T S0 (p).p(o < [N]7°).v(a) [M]"= 5T
L]5T < (p).7(p)
[T = (0)-B(e)
[MN]DT L
(p). (vq : b [N]) (IMIFS=T | q(v). (va : b[N]) (o{, p). 1o [N]TS))

where, in the encoding of application, S is the type assigned to N in the unique derivation
of THMN : T.

Table 12: The encoding of AN~ into the m-calculus
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11 The full abstraction problem for the m-interpretation
of call-by-name

An interpretation of the A-calculus into w-calculus, as a translation of one language into
another, can be considered a form of denotational semantics. The denotation of a A-term is
an equivalence class of processes. These equivalence classes are the quotient of the w-calculus
processes with respect to the behavioural equivalence (barbed congruence) adopted for the
mw-calculus.

In the previous sections, we have seen various 7-calculus interpretations of A-calculi and
have shown their soundness with respect to the aziomatic semantics of the calculi (where
equivalence between A-terms means provable equality from an appropriate set of axioms and
inference rules). In this section we go further and compare the 7-calculus semantics with
the operational semantics of the A-calculus. We study the important case of the untyped
call-by-name A-calculus (AN); the problem is harder in the call-by-value case, and is briefly
discussed in Section 13.5. The encoding of AN into m-calculus will be that of Table 4, but
without i/o types. We can assume that the encoding is into the plain polyadic m-calculus,
without i/o types, because Lemma 6.18 shows that i/o types do not affect behavioural
equivalence; in Lemma 6.18 we indicated the encoding without i/o types as V. From now
on we omit indices that signify call-by-name; thus the relations —y and =y become —
and =>, and the encoding N; [.] becomes [.].

An interpretation of a calculus is said to be sound if it equates only operationally equiv-
alent terms, complete if it equates all operationally equivalent terms, and fully abstract if it
is sound and complete. We show in this section that the 7-calculus interpretation of AN is
sound, but not complete.

When an interpretation of a calculus is not fully abstract, one may hope to achieve full
abstraction by

1. enriching the calculus,
2. choosing a finer notion of operational equivalence for the calculus, or

3. cutting down the codomain of the interpretation.

In Sections 12 and 13 we prove full abstraction results for the m-interpretation by following
(1) and (2). In Section 14 we shall hint that our main theorems are, by large, independent
of the behavioural equivalence chosen for the w-calculus, which suggests that (3) is less
interesting. We begin by presenting the standard operational semantics of AV.

Sometimes we simply refer to AN as ‘the A-calculus’; this is partly justified by the fact
that the call-by-name strategy is a weakly normalising strategy, that is a term converges
under the full 8 reduction of the A-calculus iff it does so under call-by-name (therefore the
operational equivalence relation of Definition 11.1 below does not change if the convergence
predicate is taken to mean convergence under the full § relation —g).
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11.1 Applicative bisimilarity

In an operational semantics, two terms are deemed equivalent if they have the same observ-
able behaviour in all contexts. What is an appropriate notion of observability for A-terms?
We have adopted the viewpoint that what is observable of a process are its interactions
with its environment. Regarding functions as processes, it is natural to stipulate that a
(closed) A-term is observable if it is an abstraction, which interacts with its environment by
consuming an argument. (In the typed A-calculus, also constants like integers and booleans
would be observable; the integer or the boolean that a term reduces to can be thought as
the output of that term to the environment.)

Having decided what is observable, we can define barbed congruence for any reduction
strategy we like, in particular for call-by-name, the strategy that interests us. As call-
by-name is confluent (indeed deterministic), the definition of barbed congruence can be
simplified, by removing the bisimulation clause on interactions. The definition then becomes
the same as that of Morris’s context-equivalence, sometimes called observation equivalence
in the literature. A closed context is one without free variables.

Definition 11.1 (observation equivalence, or barbed congruence for AN) Let M,N €

A. We say that M and N are observationally equivalent, or barbed congruent, if, in all
closed contexts C, it holds that C[M] {x iff C[N] Yx.

As for the m-calculus, a tractable characterisation of barbed congruence on A-terms is
useful.

Definition 11.2 A symmetric relation R C A° x A® is an applicative bisimulation if M R
N and M = \z. M’ imply that there is an N' such that N => \z. N’ and M'{L/z} R
N'{Ljz}, for all L € A°. Two terms M, N € A° are applicative bisimilar, written M =, N,
if M R N holds, for some applicative bisimulation R.

Applicative bisimilarity is extended to open terms using closing substitutions: if M,N €
A with fv(M, N) C %, then M ~, N if for all L C A%, we have M{L/z} ~) N{L/z}.

Theorem 11.3 Applicative bisimilarity and observation equivalence coincide.

Proof: The proof in [AO93, page 11] is by Stoughton and uses a variant of Berry’s context
lemma [Ber81]. ]

Therefore, applicative bisimilarity is a direct characterisation of barbed congruence on
AN in the same way as ground and early bisimilarities are direct characterisations of barbed
congruence on the w-calculus.

In the light of this characterisation, and of the fact that applicative bisimilarity is a math-
ematically more tractable relation than barbed congruence, we shall prefer to use applicative
bisimilarity rather than barbed congruence.

Exercise 11.4 (n rule)

INRIA



Interprering juncrions as m-CalCutus processes

. Show that the n rule is not operationally valid in the call-by-name A-calculus, i.e., show that
there is a A-term M with x & tv(M) such that A\x. (Mz) %\ M.

. Show that the n rule is valid if M is a value, i.e., if x € tv(Ay. N) then Az. ((Ay. N)z) =
Ay. N.

11.2 Soundness and non-completeness

We now compare applicative bisimilarity with the equivalence on A-terms induced by the
encoding into w-calculus.

Definition 11.5 We write M =, N if [M] =° [N]. We call =, the local structure of the
m-interpretation.

Because of Corollary 6.23, we can work with ground bisimilarity (=) in place of barbed
congruence. Ground bisimilarity is easier to work with.

Remark 11.6 The terminology in Definition 11.5 is consistent with the standard terminol-
ogy of the A-calculus. The local structure of a A-model is the equality on A-terms induced by
that model (two A-terms are equal if they have the same interpretation in the model). The
encoding [.] of the A-calculus into w-calculus gives rise to a A-model. This follows from the
facts that the encoding is compositional and that it validates the AS theory (Corollary 6.13);
see [San95a] for the details. [ |

From the adequacy of the interpretation (Corollary 6.12), we can prove its operational
soundness.

Proposition 11.7 M =, N implies M ~) N.

Proof: We have to show that for all M, N € A and p, if [M], = [N], then M ~, N. We
exploit the characterisation of =) as observation equivalence (Theorem 11.3).

From [M], = [N], we deduce that [M], | iff [N], J. Therefore since [.] is compositional
and = is a congruence on the asynchronous w-calculus, from [M], =~ [N], we also deduce
that [C[M]], | iff [C[N]], J, for all closing A-calculus contexts C. So by Corollary 6.12,
C[M] | iff C[N] |, for any C, which proves that M and N are observationally equivalent.
|

While soundness is a necessary requirement for an interpretation, completeness (the
converse of soundness) is a very strong demand, one that often fails. We would not expect
the w-calculus semantics of the A-calculus to be complete: the class of m-calculus contexts is
much richer than the class of A-calculus contexts, and hence potentially more discriminating,.
In the m-calculus one can express parallelism and non-determinism that, as discussed in
Section 2.2, are not expressible in the A-calculus.

More concretely, there are at least two reasons for not expecting the m-calculus semantics
to be complete. The first has to do with the call-by-name CPS transform, from which the
m-calculus encoding was derived. This transform, as a translation of AN into AV, is not
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complete: there are terms of AN that are applicative bisimilar (and therefore operationally
indistinguishable) but whose CPS images are distinguishable as terms of AV. It is reasonable
to expect that the distinctions made by AV contexts can be exposed by w-calculus contexts.
The second concrete reason for not expecting the 7-calculus semantics to be complete is
some results on the canonical model of AN. This model is defined as the solution to a
domain equation [Abr87, Abr89]. The model is sound but not complete. Completeness
fails because the model contains the denotation of terms that are not definable in AN, and
whose addition to AN increases the discriminating power of the contexts of the language.
Examples are convergence test and parallel convergence test, fairly simple operators (defined
below) that one expects to be expressible in w-calculus.

Both the CPS transform and the models of AV offer good candidates for counterexamples
to the completeness of the 7m-calculus encoding. We begin by looking at those from the models
as they give insight into what makes the 7-calculus more discriminating than the A-calculus.

Convergence test is a unary operator, C, that can detect whether its argument converges;
it is defined by these rules:
M| M — N
Cl——— 22— —
CM — 1 CM — CN
Parallel convergence test is a binary operator, P, that can detect whether either of its
arguments converges; it is defined by these rules:

- M| P9 M|
PMN — I PNM — I
M — M’ M — M’
P3———————— P4A————
PMN — PM'N PNM — PNM'
Let AC be AN with the addition of convergence test, and AP be AN with the addition of

parallel convergence test. In AP, convergence test is definable as CM ©fp Q.

Here are two terms that are operationally indistinguishable in the pure A-calculus but
that can be are distinguished in AC:

M = Az (z(\y. (z2))E)

(37)
N Az. (2(zEQ)E).

These terms are further discussed in Remark 13.9.

Remark 11.8 There are also A-terms that are indistinguishable in AC but that can be
distinguished in A{C,P} with the help of the parallel convergence test, see [BLIG|. [ ]

Now, to prove that the w-calculus semantics is strictly finer than the operational seman-
tics of the A-calculus, it suffices to show that convergence or parallel convergence test are
definable in 7-calculus. Here are their definitions:

[cM] € (p).vq(q(e). [, | [M],)  qfresh (38)
[PMN] < (). (vq,r,a)(q(2)-a | r(z).a | [M], | [N]. | a. [I],) (39)
q,1,a fresh
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Exercise 11.8 Show that [CAz. M| = [I], whereas [CQY] 2 [Q].

. Show that, for all M, N € AP:
(o) [P(Az. M)N] = [I], and [PN(Az. M)] =~ [I];

Corollary 11.10 (non-completeness of the m-interpretation) M =) N does not im-
ply M =, N.

Proof: Take the terms M and N in (37). These terms are applicative bisimilar (see
Remark 13.9). However, M #, N (Exercise 11.11). [ |

Exercise 11.11 Prove that [M] # [N], for M,N as in (87). (Hint: prove that [CM], %
[CN]p, and for this use Exercise 11.9.)

We may now ask whether the addition of parallel convergence test to AN is enough to give
the same discriminating power as the w-calculus. The canonical domain model mentioned
earlier is fully abstract for AP, therefore tackling this question is also comparing the model
with the w-calculus interpretation. We shall see in the next section that the answer is
negative: the m-calculus semantics is strictly finer.

Exercise* 11.12 . This exercise invites the reader to prove that in the simpler encoding of
call-by-name in Table 8, convergence test is not definable if we only use the operators of the
asynchronous m-calculus. (To make the exercise simpler, we work with ground bisimulation
instead of barbed congruence.) Let M be the encoding of Table 8. Prove that there is no
context C' of the asynchronous w-calculus and name q such that

CIM[E]] =~ M[I],

CMIN,] ~ M,

(Hint: prove, by induction on n, that there is no n > 0 and context C such that

CIMIE]] (—)» "D —r M]a].
cminl,] ~ M9,

For this, reason by contradiction. You might need also the following result: for all p, P,Q,
ifvp (P | Q) = 0 then also vp P~ 0.)

12 Extending the A-calculus

We have seen that the w-interpretation is sound but not fully abstract. We now study how
to achieve full abstraction by enriching the A-calculus. We have already seen extensions of
the A-calculus: AC obtained by adding convergence test, and AP obtained by adding parallel
convergence test. Another interesting extension is AU obtained by adding the unconditional
choice (or internal choice) operator U defined by

l——— 22—
UUMN—)M UUMN—)N
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Exercise 12.1 Eztend the encoding of Table 5 to an encoding of \U.

In general by an operator we mean a symbol with reduction rules defining its behaviour:

Definition 12.2 A signature ¥ is a pair (O,r) where O is a set of operator symbols,
disjoint from the set of A-variables, and r is a rank function which assigns an arity to each
operator symbol.

Definition 12.3 If ¥ = (O,r) is a signature then the set AL of A-terms extended with
operators in ¥ is defined by

M:=pMy..Myp | o | Xo.M | MyM,,  wherepe O. (40)

An extended \-term is a member of some AX. We write AX° for the subterms of AY without

free variables (the closed terms).

To define the behaviour of extended A-terms, we need operational rules for the operators
of the extension. In general, the operational rules of an operator are of two kinds: evaluation
rules such as C2, P3 — 4 for evaluating arguments of an operator, and §-rules such as C1,
P1 — 2, Ul — 2 for manipulating the operator. To give a formal definition of these kinds of
rules, we need a metalanguage for talking about terms of a generic extended A-calculus. The
grammar for the metalanguage is just that of the extended A-calculus (Grammar 40) plus
metavariables. We have used letters M and N for metavariables so far, so we stick to this
convention. We write T € AX°(My, ..., M,) if T is a closed metaterm that may contain
metavariables among My, ..., M,.

Definition 12.4 (well-formed operators) Let ¥ = (O,r) be a signature and p € O.
A b-rule for p (in X) is an aziom of the form

{M;|: iel}
le"'Mr(p) — T

I1c{1,...n}

where T € AEO(Ml, ooy Mypy). In this case, we also say that the rule tests position i, for
allie I.

An evaluation-rule for p (in X) 4s an inference rule of the form

M1—>MZI
le---Mi‘--Mr(p) —>leM{MT(

ie{l,...,7(p)}

)
We say that the rule evaluates position 1.

Let R be a set of 6-rules and evaluation rules for the operators in ¥ such that for all
p€ O and 1< i< r(p), if in R there is a 6-rule for p that tests position i then there is also
an evaluation rule for p that evaluates that position. In this case, we say that (X, R) is a
specification of well-formed operators.

Definition 12.5 IfS def (X, R) is a specification of well-formed operators, and M, N € AY,

we write M —s N if M — N is derivable from the rules in R together with the rules (3
and p of AN.
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Further, AS is the extended \-calculus with set of terms AY and reduction relation —g.

The rules in R together with the rules B and p are the operational rules of AS. Relation
=—>s is the reflexive and transitive closure of —s, and M s N means M —s N |.

When there is no ambiguity, we drop some indices, writing AO for AX, — (or even
—) for —y, and M Jo N (or even M | N) for M |s N.

The reader might like to check that the rules describing the operators C,P, U in this and
in the previous sections, fit the format of Definition 12.4.

Lemma 12.6 Let S = (X,R) and M € AX°. If M —s N then N € AX°.

Exercise 12.7 We can define an operator Q that expresses call-by-value application. Its
rules use an auziliary operator @Q':

o M—M - M|
@QMN — @QM'N @MN — @MN
N — N N|
12 !
TN = an TN = IN

For M € A let M be the term of A{@, @'} obtained by replacing all subterms of M of the
form My My with @My M,. Show that if M,N € A°, then M —y N iff M (—a,e/})® N.

Definition 12.8 Let S = (X, R) be a specification of well-formed operators. We say that S
is Church-Rosser (CR) if =>s has the Church-Rosser property; that is, for all M,N,L €
AX, if M =>s N and M —>s L, then there is M' such that N =5 M' and L —>s M’.

We sometimes abbreviate the terminology, saying that O is a set of well-formed operators
or, if —p is CR, that O is CR. Observe that if — ¢ is deterministic then O is CR.

The sets {C} and {P} are CR. But many operators break the CR property. A simple
example is unconditional choice U; for instance, we have both UQ] — Q and UQ] — I,
but I and Q have no common derivative. An even simpler example of a non-CR operator is
U, defined by the rules

U, U,

l— 22—
U M—M U M—Q

(This operator is definable from U thus: U ef uQ).

To generalise the definition of applicative bisimilarity to an extended A-calculus, we add
a clause for internal activity (clause (2) of Definition 12.9 below). This clause is important
if the set of operators is not CR, for detecting the branching structure of terms, as Example
12.10 shows. The clause can be omitted when the added operators are CR since then a
derivative of a term is bisimilar to that term (Lemma 12.13).

Definition 12.9 Let S = (X, R) be a specification of well-formed operators. A symmetric
relation R C AX® x AX® is an applicative S-bisimulation if M R N implies:

. whenever M =5 Az. M', there is N' such that N =>s A\z. N’ and M'{L/z} R N'{L/c},
for all L € AXY;
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. whenever M =—>g M', there is N' such that N =5 N' and M' R N'.

Two terms M,N € AX® x AX° are applicative S-bisimilar, written M ~g N, if M R N
holds, for some applicative S-bisimulation R.

Tt is easy to see that =g is an equivalence relation. (Indeed it is a congruence, as can be
proved using Howe’s technique [How96].)

Again, if § = {(O,r), R} we sometimes drop indices and write ~p for ~s. Further,
when O is a singleton {p}, we write ~, for ~s. Relation x5 is extended to open terms in
the usual way, by means of closing substitutions.

Example 12.10 It holds that I %y UISQ), since the latter has the reduction UIQ) — Q
which the former cannot match. This distinction is sensible, since I always accepts an input
whereas UIQ can also refuse it. The terms I and UIQ would be equated without clause (2)
of Definition 12.9 .

Remark 12.11 The format of the rules that we have used for defining well-formed operators
ensures that the operators are well-behaved, in the sense that their behaviour depends only
on the semantics — not on the syntax — of their operands. The format captures a large
and interesting class of such well-behaved operators, but not all of them. For instance, the
format allows the evaluation of the argument of an operator, but does not allow evaluating
such an argument in some context. Also, the format does not allow rules with negative
premises. The format can be extended in several ways to capture larger classes of well-
behaved operators. It is good to realise, however, that the format cannot be arbitrary, if we
wish the behaviour of operators not to depend on the syntax of their operands. For instance,

an operator p with a rule
M — Q

pM — 1

is disastrous. The rule looks at the syntax of the derivative to which the operand M reduces

(41)

to, by demanding that this derivative be syntactically equal to Q2. Using p we can distinguish
terms such as Q from Qf2, since pQ? = I whereas pQ2Q2 has no reductions. It is quite
unnatural to distinguish between Q and Qf2, however: both are divergent terms, without
any observable behaviour. With rules like (41) it would be difficult to define interesting
behavioural equivalences that are congruences. |

We base our operational study of AS on =g, because it seems a reasonable notion of
behavioural equivalence, and because it is more tractable than barbed congruence. We do not
know whether, in general, ~s coincides with the appropriate notion of barbed congruence,
although we know it does in certain cases and we do not know any counterexample.

12.1 The discriminating power of extended \-calculi

We now compare =, (the local structure of the 7-interpretation) and the relations ~s. Since
they may be defined on different classes of terms, we compare them on the common core of
closed pure A-terms. We present some of the results without digging into the details of their
proofs, which are fairly elaborate.

INRIA



Interprering juncrions as m-CalCutus processes

The first result is that =, is at least as discriminating as any applicative S-bisimilarity.
That is, A-terms that cannot be distinguished as 7-calculus processes cannot be distinguished
by any extension of the A-calculus.

Theorem 12.12 Let M,N € A. Then M =, N implies M ~gs N, for any S.

Proof: This theorem is proved [San94| by going through a characterisation of =, similar
to that in terms of LTs that we shall study in Section 13. We omit the details. |

The next question is whether there are sets of well-formed operators for which the con-
verse of Theorem 12.12 is true and, if so, what is a minimal such set. These are interesting
problems, for their solution will tell us what it is necessary to add to the A-calculus to make
it as discriminating as the m-calculus.

We begin by looking at sets of CR operators. We show that CR sets of operators do
not give full discriminating power. In the remainder of this section, we write CR for an
arbitrary set of CR operators.

Lemma 12.13 Let M € ACR. If M =—> N then M =~¢gr N.

Corollary 12.14 In ACR the following conditional n-rule holds:
M Yor implies \y. (My) ~cr M

Proof: By hypothesis, M = Az. M'. By repeated applications of Lemma 12.6, and since
X cR is a congruence,

Ay. (My) =cr M. (Az. M')y) =cor Ay. (M'{Y/z}) = A\x. M' ~cr M.

Theorem 12.15 M =~¢cr N does not imply M =, N.

Proof: Take M = Az.(xz) and N = Az. (zAy. (zy)). It holds that M #, N (this can be
proved directly, but it is even simpler to derive it from the characterisation of =, in terms
of Lévy-Longo Trees in Section 13).

However M =¢gr N. For this, we have to prove that for each R € ACR, RR ~cr R\y. (Ry).
There are two cases, depending on whether R is convergent or not. If R is convergent, then
RR ~¢r R\y. (Ry) using Corollary 12.14; if it is not then RR ~¢cr Q ~cr R)\y. (Ry). W

Remark 12.16 Since the parallel convergence operator test P is Church-Rosser, Theo-
rem 12.15 also proves that =, is finer than =p. Therefore the local structure of the canon-
ical domain of AN [Abr87, Abr89]|, which coincides with =, is different from that of the
m-interpretation. |

Theorem 12.15 shows that we cannot achieve the discriminating power of w-calculus by
a confluent extension to the A-calculus. The next theorem shows that, in contrast, this is
possible with non-confluent extensions. For this, one of the simplest forms of non-confluent
operator one could think of, the unary operator U, that when applied to some argument
either returns this argument or diverges, suffices.
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Theorem 12.17 Let M,N € A. Then M =y, N implies M =, N.

This theorem is proved in [San94] using a variant of the Bhm-out technique. This result,
together with Theorems 12.12, shows that any non-confluent extension of AN in which U
is expressible can be encoded in 7-calculus in a way which is fully abstract on pure A-terms.
(By developing this result further, it should actually be possible to prove that the encoding
is fully abstract on all terms of the extended A-calculus, provided that the operators of the
extension can be faithfully encoded.)

12.2 Encoding the operators of the \-extensions into n-calculus

In this section we show how to encode extended A-calculi into m-calculus. This should be
mainly thought of as an exercize with the w-calculus; the non-interested reader may safely
skip the section.

We add the following constraint to the Definition 12.4 of well-formed operators: for each
operator p, if p has a rule that evaluates position ¢, then each of the é-rules for p either tests
position 4 or the rule has a conclusion pMj ... M, — T where M; does not occur in 7.
This is, pragmatically, a reasonable constraint; it is satisfied by the operators encountered
so far, such as C, P, U, and @. Without this constraint the encoding would be very complex
(for instance, it is possible to define a A-calculus reduction strategy that has rules 3, pu and
v; as discussed in Section 9 this combination of rules is hard to encode).

Fix one such signature ¥ and specification of well-formed operators S def (X,R). To
make the encoding of AS into the w-calculus easier to read, we assume that ¥ contains a
single operator Q of arity 2, with §-rules

Q1N1l Ny | Q2N1l Ny |

QNiNy — T3 QN1Ny — T3
(where T} and T, are some terms in AQ°(Ny, N5)) and evaluation rules

N1 — N{ N2 b N2/
evl ev2 ;
QN1 Ny — Q| N> QN1 Ny — QN1 N,

for evaluating the two arguments of Q. We wish to encode this extended A-calculus AQ into
m-calculus.

The main problem is to define the encoding of a AQ-term QM; M,. The encoding of the
other constructs (abstraction, application, and variable) is as in Section 6, but with the
non-linear encoding of abstraction discussed in Remark 6.10 and used in the encoding of
AN in Table 7. (It is necessary to use this encoding as, due to the rules of Q, a function that
appears as argument to Q may be used more than once.)

Remark 12.18 Adding the replication in the definition of abstraction does not affect the
local structure of the w-interpretation (see discussions in Remark 13.23). ]

We present an encoding that is easy to reason about and is flexible—so that if we modify
the rules for Q it is easy to modify the encoding (see Exercise 12.20-12.21). We shall consider
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optimisations of the encoding in Exercises 12.22-12.25. The enterprising reader might like
to try the encoding of QM; Ms before reading further.

We define the encoding of a term QM; M € AQ thus:

(@M Me] (). (whdEa)( i [M] | the [M] (42)
| EVi(hi,d1,d2) | EVa(ho,e1,e2)
| DP1<d1,€1,a> | UPQ(dg,@Q,LL)

a(p))
where h stands for hi, ha, and similarly for d and e, and where

DP1<d1, er, a) d:ef dl(xl)‘ 61(332). a ﬂTl{xla x2/N1, Ng}]]
1, %o fresh for T

EVi(h1,di,do) % hi(r).r(v).vz (di(z) | da(z) | 12(r). F(w). w —v)

and similarly for OP2(ds, ez, a) and EVa(hs, €1, e2). The process w — v is a link, as defined in
Section B.1.5. We briefly explain these definitions. The process 0P1{d;, €1, a) implements the
6-rule Q1. It waits for signals at di and ds from EVy{hy,d;,ds) and EVa(ha, €1, €2), indicating
that the arguments M; and M, have become values (i.e., functions). Then 0Py {d1, e, a) tries
to grab the lock at a; if it succeeds, then the rule may be completed, and T gets evaluated.
If the lock cannot be grabbed, 0Py {dy, ey, a) is garbage. Only one between 0Py {d;, e1,a) and
0P5(ds, es,a) can grab the lock, so only one of the é-rules can be completed.

EVi(h1,d1,d2) controls the evaluation of the argument M; (and EVa(ho,eq,es) that of
Ms). First, EVy(hy,dy,ds) triggers the evaluation of M;. When M; signals that it has
reduced to a value, M say, then EVi{h;,d;,d2) informs 0P1{d;,e1,a) and OPy{ds,esz,a),
using names d; and dy. In these actions at d; and ds, a pointer z is passed, which the
recipient can use to activate copies of Mj.

Exercise 12.19 For all My, My € AQ, it holds that
Q(A.Z' Ml)()\y MQ) — T1{>\£D Mla Ay M2/N1, N2}

Prove that
[0\ My) Ay Ma)], o (w21, 22 )( [Tafz1 22/, Na}],

| 1z1(7). [Ax. Mq]-
| 122(7). [My. Ma],)
. Show that, for all M,N € AQ with x € fv(N),

N[MHz = N[N} = N[M{N[e}] -
(Hint: add one case in the inductive proof of Exercise 6.20.)

Exercise 12.20 Suppose that rules Q1 and Q2 do not test position 2 (i.e., their premise is
simply N1 |) and there is no evaluation rule ev2. How should the definition of EVa{ha, €1, e2)
in (42) be modified?
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Exercise 12.21 Suppose that the 6-rules of Q are modified so that rule Qi (1 = 1,2) only
tests position i (i.e., the premise of Qi is simply N; |) and its derivative T; does not contain
metavariable N; (j # i). How should the definitions of EVy(h1,d1,d2) and EVa(ho, e1,€2) in
(42) be modified?

In some cases, the encodings obtained following the schema above can be optimised, as
shown in the exercises below.

Exercise* 12.22 Prove that, for [QM1Ms] as defined in (42), we have:

[0Mi M, & (vde, i, ) [Miy, | M),
| @1(0)- d(2).12(r). 7(w). w v
| @2(0)-2(2). 12(r). T(w). w v
| d(@1). e(@s). ( 7. [Ti{zr 22N, Na}],

)-

I

+ 7. [Ta{ono2/Ny, Vo))
. Exhibit two terms My and My such that

[0Mi M), # (vd,e,q1,02) ( [Mil, | [,
| @1 (v1). g2(v2).
(vz1,22) (lza(r). F(w). w— vy
| 1za(r). F(w). w — vq
| ( 7. [To{=1:%2/N1, N2}

7 (D {0y, M)

Exercise 12.23 Write down an encoding VW of AP (operator P is parallel convergence test,
defined in Section 11.2) following the schema for encoding well-formed operators indicated
above

Prove that if A is the encoding defined as W but with clause (39) (in place of (42)), then
for all M € AP, it holds that W[M] =~ A[M].

Exercise 12.24 Repeat Exercise 12.23 for AU, where the encoding A uses the clause for U
from Exercise 12.1.

Exercise* 12.25 Let @ and Q' be the operators, and M the transformation of a A\-term M
defined in Ezercize 12.7. Define an encoding W of A{Q, @'} following the schema above for
translating well-formed operators. Prove that, if Us; is the encoding of AV in Exercise 7.3
(this encoding is a simple variant of that in Table 7), then for all M € A it holds that
WIM] =~ U5[M]. (Note: In this exercise we are using Uy, which is a variant of the
encoding in Table 7, because in this way the proof does not require i /o types and therefore
can be carried out with the standard theory of the w-calculus (see also Remark 7.2).)

13 The local structure of the m-interpretation

The local structure of the m-interpretation, =, is the behavioural equivalence induced on -
terms by their encoding into m-calculus. In the previous section we proved a characterisation
of =, as the operational equivalence of extended A-calculi.
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We continue the study of =, in this section, with the purpose of understanding the
meaning of function equality when functions are interpreted as processes. We shall prove
characterisations of =, in terms of tree structures which are an important part of the theory
of the A-calculus. This will show that the equivalence induced by the m-calculus encoding
is a natural one. It will also show the utility of some of the w-calculus proof techniques:
using techniques such as ‘bisimulation up to context’ and ‘bisimulation up to expansion’,
the proofs of the main theorems will be much easier than they would have been otherwise.

The main result says that =, coincides with LT-equality, whereby two A-terms are equal
iff they have the same Lévy-Longo Trees (LTs). Lévy-Longo Trees are the lazy variant of
Béhm Trees (BTs). We shall also discuss modifications of the 7-calculus interpretation so
that its local structure is the analogous BT-equality.

We begin by recalling what LTs are. A reader familiar with them may go straight to
Theorem 13.8.

13.1 Sensible theories and lazy theories

Bohm Trees (BT) are the most well-known tree structure in the A-calculus. BTs play a
central role in the classical theory of the A-calculus. The local structure of some of the most
influential models of the A-calculus, like Scott and Plotkin’s Pw, Plotkin’s T, Plotkin and
Engeler’s D 4 is precisely the BT equality; and the local structure of Scott’s Do, (historically
the first mathematical, i.e., non-syntactical, model of the untyped A-calculus) is the equality
of the “infinite n contraction” of BTs.

BTs naturally give rise to a tree topology that has been used for the proof of some seminal
results of the A-calculus like Berry’s sequentiality theorem (briefly discussed in Section 2.2).
BTs were introduced by Barendregt [Bar77], and called so after Bohm’s proof and theorem
about separability of A-terms. The proof technique for this theorem, called the Béhm-out
technique, roughly consists in finding a context capable of isolating a given subtree of a BT;
in this way, certain A-terms that have different BTs may be separated.

BTs are at the heart of the classical theory of the A-calculus, sometimes referred to as the
sensible theory. In this theory, a A-term is meaningful just if it solvable, that is it has a head
normal form (hnf). The unsolvable terms, that is the terms without hnf, are identified as
the “meaningless terms”. In the mathematical models for this theory, the unsolvable terms
are those terms whose image is the least element of the model (the undefined or bottom
element). The BT of a term conveys the essential behavioural content of that term under
this proposal.

A hnfis a term of the form \x. yﬁ. Examples of terms without a hnf are 2, Az. Q, and =
(recall that = satisfies the equation A + Z = (Az.)"E, for all n). Finding the hnf of a term
requires computing underneath A, in order to uncover the head variable after a sequence of
N’s. Computing underneath A is a debatable decision; for instance it does not reflect the
practice of programming language implementations. An alternative proposal for identifying
the meaningful terms does not require computing under \: it uses weak head normal forms
(whnf’s) in place of hnf’s. A whnf is a term of the form Az. M or zM. This second proposal
forms the basis of the lazy theory. Its tree structures under this proposal are the Lévy-Longo
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Trees. There are interesting mathematical models of the A-calculus whose local structure is
precisely the LT-equality, see [Ong88].

As an example, the terms Azx. and 2 are distinguished in the lazy theory because
only the former has a whnf; but they are identified as meaningless in the sensible theory
because neither has an hnf. Similarly, = and Az. (), are meaningless in a sensible theory,
but are meaningful and distinguished in a lazy theory (they are distinguished by feeding an
argument since, for all N, ZN has a whnf, whereas (Az. Q)N has not).

13.2 Lévy-Longo Trees and the local structure theorem

To define LTs we need the notions of the proper order of a term, and head reduction, which
we now introduce. We use n to range over the set of nonnegative integers and w to represent
the first ordinal limit.

The order of a term M expresses the maximum length of the outermost sequence of
A-abstractions in a term to which M is B-convertible; it says how “higher-order” M is. More
precisely, M has order n if n is the largest ¢ such that A\ F M = Axy - - - x;. N, for some N.
Therefore a term has order O if it is not (-convertible to any abstraction. The remaining
terms are assigned order w; they are terms such as = which can reduce to an unbounded
number of nested abstractions. A term has proper order n if it has order of unsolvability n,
i.e., after the initial n A-abstractions it behaves like Q. Formally,

e M has proper order 0, written M € POy, if M has order 0 and there is no N such
that A\G+ M = xN;

e M has proper order n + 1, written M € PQO,41, if A\ - M = Ax. N for some
N € PO,;

e M has proper order w, written M € PQ,,, if M has order w.

A M-term is either of the form )\ﬁ.yﬂ, or of the form \z.(Ax. Mo)M; ---M,, n > 1.
In the latter, the redex (Azx. Mp)M; is called the head redez. If M has a head redex, then
M —y N holds if N results from M by -reducing its head redex; =, is the reflexive and
transitive closure of —y. Head reduction =y, is different from call-by-name reduction

—: a call-by-name redex is also a head redex, but the converse is false as a head redex can
also be located underneath an abstraction. We have, however,

Lemma 13.1

. M =y Mx. N iff M = \z.N', for some N' such that N' =, N.
.M =y, )\:clu--xn.yﬁ iff there are terms M;, 1 < i <n, such that

M:>)\.’L‘1.M1, Mi:>)\xi+1.Mi+1, 1 Si<’l’L, and Mn:>yj\7

Proof: (1) and (2) hold because both => and =, progress using the leftmost redex; (3)
follows from (1) and (2). [ ]

INRIA



Interprering juncrions as m-CalCutus processes

The definition below of LT is simple but informal. A precise definition would require
formalising the notion of labeled tree.

Definition 13.2 (Lévy-Longo Trees) The Lévy-Longo Tree of M is the labelled tree,
LT(M), defined inductively as follows:

1)LT(M)=T if M € PO,,
2) LT(M)=Az1---2n. L if M € PO,,0< n < w,
3)LT(M) = \g.y

/\

LT(My)  *°  LT(M,)

if M =y \#.yM, -+ M, n > 0.

Example 13.3 Let M = z(\y.y)QzE(Az122. Q). Then

Ay.y L z2 T Arizme. L

We identify a-convertible LT’s. LT-equality can also be presented as a form of bisimilar-
ity. This bisimilarity, open applicative bisimilarity, is a refinement of applicative bisimilarity;
indeed it is perhaps the simplest way to extend applicative bisimilarity to open terms.

Definition 13.4 A symmetric relation R C A x A is an open applicative bisimulation if
M R N implies:

1. if M = Ax. M, then there exists N' such that N = Az. N’ and M' R N';

2. if M = zM, ... M,, for some n > 0, then then there exist Ni,..., N, such that N —
Ny ...N, and M; R N, for all 1 <i < n.

Two terms M,N € A are open applicative bisimilar, written M ~¥*" N, if M R N, for
some open applicative bisimulation R.

Clause (2), concerning terms with a variable in head position, was absent from the def-
inition of applicative bisimilarity, where all terms are closed. Moreover, in contrast with
applicative bisimilarity, in clause (1) no term instantiation on A-abstractions is required.
This simplification is possible because we work on open terms and is justified by the congru-
ence of ~F°". (A straightforward proof that ~5F*" is a congruence utilises the full abstraction
Theorems 13.20 and 13.21 and the congruence of 7-calculus bisimilarity ~.) Two useful facts
are:

Lemma 13.5 If M = N, then M =Y*" N.
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Lemma 13.6 Let p be a substitution from A-variables to A\-variables. If M ~SF** N, then
Mp ~F" Np.

Theorem 13.7 M ~*" N iff LT(M) = LT(N).

Proof: Using Lemma 13.1 we can show that ~5**" also coincides with the largest relation
R on A x A such that M R N implies:

. M € PO, iff N € PO,
. M € PO, iff N € PO,,

CHa, dtv(M,N),1 <i<n,then M =y, A1 ... Tp.yMy ... Mp if N =>4 A1 .. . Zp.yNy ... Ny,

andMi'RNi, 1S1Sm
Finally, it is immediate to see that R is the LT equality. |

Theorem 13.7 is useful for relating LT-equality to other behavioural equivalences on
A-terms. We shall use it to prove that LT-equality is the same as equality in the x-
interpretation. We state the result and then briefly discuss it, deferring the proof to Section
13.3.

Theorem 13.8 (local structure of the m-interpretation) M =, N iff LT (M) = LT(N).

Remark 13.9 Consider the terms

M ¥ Az (z(\y. (229y))E) N % Az, (2(22Q)=).

These terms are applicative bisimilar; this can be proved by a case analysis on the order of
the A-term that is given as an input to the two terms. The two terms can be distinguished
using the convergence test C, for M (Az.Cx) reduces to an abstraction, whereas N(Az.Cz)
diverges. Since M and N are distinguished using the operator C, by Theorem 12.12 they
are distinguished by =,.

Using Theorem 13.8, we can prove M #, N simply by observing that their LT’s are
different:

LT(M)= ).z LT(N)= )v.z
AN AN
N A~

T 1y T 1

13.3 The proof of the local structure theorem

In order to prove Theorem 13.8, we first need to establish the operational correspondence
on weak transitions between functions and their process encodings (Propositions 13.14 and
13.16 below).
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The encoding of a A-term is an abstraction, that is a function from names to processes;
abstractions are ranged over by F,G. We introduce a process notation which allows us
to give a simpler description of encodings of A-terms with a variable in head position (see
Lemma 13.12).

Definition 13.10 For n > 0 we define:

def
On<r07rn7F17"'aFn> =e
Vrtys Tty @@ ( To(0)B1(@1 1) || s 1 (0a). T (@, )
Mz Fy | ... | zann)
where names r1,...,Tn—1,21 -- -, Ty, and q are fresh.

The i-th process r;—1(v;). Vi{x;,7:) of On(ro,7n, F1, ..., F,) liberates the agent !z; F; and
the (i + 1)t process.

Lemma 13.11 Suppose n > 1.

. On<T0,Tn,F1,.‘.,Fn) ~

(VTn—hxn )(On—1<TOaTn—17F17 e aFn—1> | Tn—l(vn)-ﬁn<xnarn> | ‘xn Fn)

If Onlro, T, Fry .. F) 2522 P)othen g = ro(v1), pe = (var,r )i{z1,71) and P ~
On—1<T17Tn7F27"'7Fn> | !xlFl-

Lemma 13.12 Ifn > 0, then
[xMy ... My])r, ~vro (F(ro) | Onlro, Tn, [Mi],. .., [Mn])).
Proof: By induction on n. Forn =1,

[[le]]Tl

vro ([x]]m | vy (ro(v1). T (@1, 1) | 121 [Ml]])) ~
VT (f(’f‘g> | 01<’I“0,’f'1, |[M1]])) .

For n > 1, we have, abbreviating 7, _1(vpn). On{(Zn,"s) | 2, [M,] to P:

|I.Z'M1 ...Mn]]Tn ~

(wrams, 20 ) (M. My, | P) (43)
(Vrn—1,%n )(VT‘(] (Z{ro) | On—1{ro,rn—1, M, ... D P) ~
vro (E(ro) | Wrn—1,2n )((’)n,l(ro,rn,l,Ml, e 1) | P) ~ (44)
vro (3(r0) | On(ro, rm, M, .., M) (45)
where (43) uses induction and (44) uses Lemma 13.11(1). [ |
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We recall the < is the expansion relation, Definition B.6.

Lemma 13.13

. If M — N, then [M], = [N],.
If M = \e. N, then [M], 2% 29 [N,
If M =z, then [M], "% 0.

. If M =xM; ... M, where n >0, then [M], =, On{q,p, [Mi],- - ., [Myn])-

Proof: (2) and (3) are immediate from the definition of the encoding. (4) follows from
Lemma 13.12(2). (1) is an immediate consequence of Exercise 6.21. |

Proposition 13.14 (operational correspondence on the reductions of M)
. If M = N, then [M], 2 [N],.
If M = \e. N, then [M], Z2 > v(z) [N].

. If M = x, then [M], E:(quO

CIf M = ¢M ... M, where n >0, then [M], 22 > 0,(q,p, [M]1,. .., [M.]).

Proof: (1) is by induction on the number of reductions and Lemma 13.13(1). The other
assertions are consequences of (1) and Lemma 13.13(2-4). [ ]

Lemma 13.15 Suppose [M], - P.

. If p =7, then there is N such that M — N and P 2 [N],.

. If p is an output at p, then p = P(v) and there are x, N such that M = \x. N and P =
v(z) [N]-

. If p is a free output, then there is x such that p = T(p) and P = 0.

. otherwise, there are x and My,...,M,, n > 0, such that p = E(q), M = zM; ... M,, and
P~ 0,{q,p,[M]1,-..,[Mn])-

Proof: For each M and p, [M], has only one possible transition. The assertions follow
from Lemma 13.13. u

Proposition 13.16 (operational correspondence on transitions of [M],) Suppose [M], ==
P:

. If =7, then there is N such that M => N and P 2 [N],.

. If u is an output at p, then u = P(v) and there are x,N such that M = \x.N and
P 2 v(z) [N].
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Interprering juncrions as m-CalCutus processes

. If w is a free output, then there is x such that p =T(p) and P 2 0.
. otherwise, there are x and My, ..., M,, n >0, such that u =T(q), M = xMy ... M,, and
P > 0.{¢q,p,[M]1,-..,[Mn]).

Proof: By induction on the length of the transition of [A/],. For the base case, note that
for each M and p, process [M], has only one possible transition. The assertions follow by
Lemma 13.13. |

We need a few lemmas before tackling the full abstraction theorems. Lemma 13.17 shows
a decomposition property for ground bisimilarity; Lemmas 13.18 and 13.19 show properties of
the processes O (10, 7n, F1, - .., F,), introduced in Definition 13.10 to represent the encoding
of A-terms with a variable in head position.

For a process P, we let Np be the set of names along which P can perform an action,
ie.,
Np={a : for some and P’ and p with subject a, P =£> P'}.

Lemma 13.17
. Suppose fn(Py, P2) N (Ng, UNg,) =0. Then P, | Q1 =~ P> | Q2 implies P, ~ P;.
. Suppose x,q & In(F,G). Then !z F =z G implies F, = G,.
Proof: We first prove (1). The relation
def
R = {(Pl,PQ) : P1 |Q1§P2|Q2
for some Q1, Q2 with In(Py, P) N (Ng, UNg,) =0}

is a ground bisimulation. The proof is straightforward, for if fn(P;, P5) N (Ng, UNg,) = 0,
no interaction between P; and @; is possible, ¢ = 1,2. Moreover, if all bound names of
actions of P; and P, are fresh, then the side condition of R is preserved.

Now assertion (2). We have to show that F, = G,. We can assume, without loss of generality,

that ¢ # x. Since !z F = !z G and !z F =) F, | 'z F, we have, for some P,

G Z%— P~F, |1zF. (46)

Since z does not occur in G4, no interaction between G, and !z G may have occurred;
therefore P is of the form Pg | !z G, for some Pg such that

Gq — — Pg. (47)
Thus (46) can be written Pg | !z G = F, | lz F. From this we get
PG ~ Fq (48)

using the assertion (1) of the lemma, since Vi, ¢ = N 7 = {2} and z is not free in F, and
Pg. Similarly, (exchanging F' and G), we can derive, for some Pp,

Fq —_— == PF s and Pp ~ Gq . (49)
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Now, we exploit (47-49) to show that F; ~ G,: For this, we take
def
R E {(Fy, Go)s (Gg, Fy)} U &

and show that it is a ground bisimulation. Suppose Fj £ Qp. We show how G,
can match this move: Since Fy ~ Pg we have Pg =5 Q¢ ~ Qp. Therefore, using (47),

G, — = FPg =5 Q¢ =~ Qr, which closes the bisimulation. Similarly F, can match an
action of G,. |

Lemma 13.18 If O, {10, Tn, F1, ..., Fp) = On(r0,7m,G1,--.,Gm) then n = m.

Lemma 13.19 O,(ro,rn, F1,..., Fy) & On(ro,rn,G1,...,Gr) iff (Fi)q = (Gi)q for all
1 <i<n and for some fresh q.

Proof: The implication from right to left follows from congruence properties of =. For
the converse we proceed by induction on n. We only consider the inductive case. Let

P Y0, (ro, 10, F1,...,Fy), Q¥ 0,(ro,70,G1,...,Gp).

By Lemma 13.11(2), their first two transitions are

p T&))(VZE17T1)_”71><Z1,T1>N On_1(7'1,7'n, B, ... 7Fn) | e, Y,
@ W) gy e, Gay .., G) | 121 Gy
From this, we can derive P ~ Q implies Op—1(r1,7n, Fo, ..., Fp) | 121 F1 & Op_1{r1,7n, G2, . ..

lz1 G1. Let PL € O, 1(r1,7n, Fs,..., F,) and Q1 & On_1(r1,70,Go, . ..,Gy). The only
actions that !z; F; and !z; G; can perform are at z; and, by Lemma 13.11(2), the only
actions that P; and @1 can perform are at ry. Since r; is not free in !z F; and !z; Gy, and
21 is not free in P; and @1, using Lemma 13.17(1) twice we infer

lz1 F1 = 21 G; and P, = Q1

From the first by Lemma 13.17(2) we get (F1), = (G1),. From the second by the induction
hypothesis we get (F;), = (G;)q, for 2 < i <n. [ ]

We now ready to prove that open applicative bisimilarity is the same as the local structure
of the 7w-interpretation.

Theorem 13.20 (soundness w.r.t. ~7°") M =, N implies M =" N.

Proof: By Definition 11.5 and Corollary 6.23, we have to prove that [M] = [N] implies
M =F*" N. We prove that

RE{(M,N) : [M] ~[N], }

is an open applicative bisimulation. First, suppose M — A\x. M'. We have to find N’ such
that N = Az. N’ and (M',N') € R. From M = A\z. M’ and Proposition 13.14(2), we
get, for arbitrary names p and g,

7Gn>|
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[M], 22 20 > 1,

~

Since [M], =~ [N],, there is P such that

[V, 22 "2 pr o [, (50)
ﬁ(’u) ’U(z,q) I s ﬁ(v) / ’U(I,q) /1 12
We can decompose [N], = =" P" into [N], =— P’ =" P”, for some P’. Then,
using Proposition 13.16(1-2), we infer that there are N’ and N” such that N = Az. N’
and N' = N" with P’ 2 v(z) [N'] and

P" 2 IN"],. (51)
Moreover, by Proposition 13.14(1),
[N 2 IN"] - (52)

Since SCr, we can combine (50), (51) and (52) to derive [M'], = [N'],; hence (M',N') €
R, as required.

Now suppose M = zM; ... M,. We suppose n > 0; the case n = 0 is simpler. We have to
find Ny,..., N, such that N = zN; ... N, and M; R N;, for all 7.

From Proposition 13.14(4), we get

M], 29 > 0,(q,p, [Mi], ..., [Ma])

and, from [M], = [N], and Proposition 13.16(4), for some m and Ny, ..., Ny,

N, 22 > 00(g,p, [N -, [Nm]) (53)

with On{(q,p,[Mi],---,[Mn]) = Om{g,p,[Ni],---,[Nm]). From this and Lemmas 13.18
and 13.19 we infer that m = n and that [M;] ~ [N;], for all i. Moreover, from (53) and
Proposition 13.16(4) we infer that

N — 2xN;...N,.

Hence (M;, N;) € R. [ |
Theorem 13.21 (completeness w.r.t. =) M ~F*" N implies M =, N.

Proof: We show that

def open
RE [ JU([M]y, [N]p) : M =P N}
P
is closed under substitutions and is a ground bisimulation up-to context and up-to 2. By

Theorem B.8, this implies R C =.

First, we show that R is closed under substitutions. The free names of a process [M], are
{p} U fv(M). Therefore, for each name substitution o there is a variable substitution p such
that

(IM]p)o = [Mplpo -

RR n° 3470



. Sangiorgi

open

Since by Lemma 13.6 =~ is closed under variable substitutions, R is closed under name
substitutions.

Now we show that R is a ground bisimulation up-to context and up-to 2. Let ([M],, [N],) €
R and suppose that [M], -— P. By Proposition 13.16, there are four cases to consider,
according to the form of u. We only show the argument for the case when y is a bound
output Z(q) (this case needs both up-to context and up-to >; the other cases are simpler
because they only need only up-to 2).

By Proposition 13.16(4), and there are z and My, ..., M, such that M = xM; ... M,,M and
P 2 0,(q,p, [Mi],...,[M,]). Since M =¥** N, there are Ny,..., N, such that

N = zN;...N, (54)

and
M; =" N forall 1 <i<n. (55)

Now, from (54), by Proposition 13.14 we get
[N]]P Z:(q")) Z On(Qapa |[N1]]7 RN} [Nn]])

and from (55) we get
(IMi]-, [N]-) e R
for all r. Summarising, we have obtained that

z(q)

[M], =

Vv

On{q,p, [Mi], ..., [Mn]),

N, 22 2 Oulg,p[Ni],...,[Na]) , and
(IM:]+,[Ns]») € R, forallrandl <i<n.

This is enough, because R is a ground bisimulation up-to context and up-to 2. |

It is worth stressing that without the “up-to context and up-to 2” technique the proof
of Theorem 13.21 would be much longer.

Theorems 13.20 and 13.21 prove Theorem 13.8. We summarise the results of Theorems
13.7 and 13.8:

Corollary 13.22 For all M,N € A, it holds that
M =, N iff M =" N iff LT (M) = LT(N).

Remark 13.23 (other call-by-name encodings) The local structure of the 7-interpretation
(Theorem 13.8) does not change if the call-by-name encoding is taken to be that in Table 7
(that has a replication in from of the abstraction) or that in Table 8. The proofs are similar
to those given in this section. |

13.4 Bohm Trees

The (informal) definition of B6hm Tree (BT) is obtained from that of LT (Definition 13.2)
by replacing clauses (1) and (2) with the clause:
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BT(M)=1 if M € PO,,0<n<w.

We briefly discuss how to obtain BTs from an encoding of the A-calculus into m-calculus.
The definition of BT is based on the notion of head normal form (rather than on weak head
normal form as in the case of LTs) since only the terms with head normal form have BTs
different from 1. To define a w-calculus semantics that captures BT-equality we therefore
need the following two modifications:

1. The m-calculus encoding of a A-term should allow reductions under A (rule ).

2. The behavioral equivalence chosen for the w-calculus should be divergence-sensitive,
that is regard divergence of a w-calculus process as disastrous. This is necessary
because the computation under the ‘A’ may never terminate (this happens in terms
that have a whnf but no hnf, like Az.Q and =).

To satisfy (1), we can take the 7-calculus encoding of strong call-by-name, in Section 9.
For (2), we can take a divergence-sensitive bisimilarity [Wal90], or must-testing [Hen88]. In
this way, the m-interpretation validates equations such as Az. Q2 = Q2 and = = 2, that are at
the basis of the difference between LTs and BTs.

13.5 Local structure of the call-by-value encoding

Proceeding as for the call-by-name encoding, one can show that also the call-by-value en-
coding of Table 3 is sound, but not complete, w.r.t. the operational equivalence of AV. For
closed A-terms M, N, if V[M] and V[N] are behaviourally indistinguishable as w-calculus
processes, then M and N are operationally equivalent in AV (defined as for call-by-name,
Definition 11.1). But the converse may fail. For a counterexample, take M 4f 2.z and
N & Az. Ay. (zy) (note: this counterexample is again obtained using the 7-rule). Be-
havioural equivalence in call-by-value is different from call-by-name: for instance in call-
by-name (Az.I)Q2 and I are semantically the same, whereas in call-by-value (Az.I)Q is the
same as 2.

No characterisation is known of the equivalence on A-terms induced by the call-by-value
encoding V.
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14 Notes

The A-calculus was introduced by Church [Chu32, Chu41] who was hoping to use it, on the
one hand, to produce a foundation for logic and mathematics and, on the other hand, to
understand mathematically the notion of function. While the first goal failed, the second
one has been a remarkable success. Church (and Kleene, who proved important results on
A-definability) realised that the A-calculus captures the notion of function that is ‘effectively
computable’, and conjectured that the class of effectively computable functions should co-
incide with the class of A-definable functions. This proposal, referred to as Church’s thesis,
is now generally accepted.

The A-calculus was redescovered by computer scientists in the 60’s, mainly thanks to
Bohm, McCarthy, Scott, and especially Landin, as a basis for programming languages. It
has been important to understand essential programming constructs such as parametrisation
mechanisms (those, for instance, of procedures) and types. In particular, it has served as a
mathematical foundation for the class of languages known as functional languages.

The standard references on the classical theory of the A-calculus (the sensible theory)
are [Bar84, HS86]. The textbooks Mitchell [Mit96] and Gunter [Gun92| contain detailed
presentations of PCF and typed A-calculi.

PCF was introduced by Plotkin [Plo77]. In the same paper, he shows a sequentiality
lemma for PCF from which the non-definability of parallel operators, such as forms of
‘parallel-or’ and ‘parallel-if-then-else’, can be derived. The classical sequentiality theorem
for the untyped A-calculus is due to Berry [Ber78]. A recent treatwise on sequentiality in
the A-calculus is Bethke and Klop [BK98]. The standardisation and normalisation theorems
of the A-calculus are proved in [CF58].

Call-by-need was proposed by Wadsworth [Wad71] as an implementation technique. For-
malisations of call-by-need on a A-calculus with a let construct or with environments include
Ariola et al. [AFM*95], Launchbury [Lau93|, Purushothaman and Seaman [PS92], Yoshida
[Yos93].

The term “continuation” is due to Strachey and Wadsworth [SW74], who used them to
give semantics to control jumps. See Reynold [Rey93] for a history of the discovery of con-
tinuations and CPS transforms. For continuations in denotational semantics, see Gordon
[Gor79], Schmidt [Sch86], or Tennent [Ten91]. For continuations as a programming tech-
nique, see [FWT92]. For the use of CPS transform in compilers, see Appel [App92], where
the language is ML, or [FWT92|, where the language is Scheme. Hatcliff and Danvy [HD94]
present a unifying account of various CPS transforms based on Moggi’s computational met-
alanguage [Mog91]. The encoding of AN into AV using thunks in Exercise 6.17, and its
relationship to the CPS transform Cy, are studied by Danvy and Hatcliff [DH92, HD97].
The idea of using thunks for implementing call-by-name dates back to Ingerman [Ing61].

The call-by-value CPS transform of Table 2 is due to Fischer [Fis72] (of which a more
complete version is [Fis93]). The call-by-name CPS transform of Table 4 is that of Plotkin

[Plo75], based on work by Reynolds (such as [Rey72]); however, we have adopted the recti-
fication in the clause for variables due to Hatcliff and Danvy [HD97] (Plotkin’s translation
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for variables was Cy[z] ef x; the rectification is necessary for the left-to-right implication of
Theorem 6.4 to hold).

Theorems 5.1-5.4 and 6.1-6.3, on CPS terms and CPS transforms, are proved by Plotkin
[Plo75]. (The assertions of these theorems is actually slightly different from Plotkin’s, but
the content and the proofs are similar.) Plotkin also presents counterexample (14) to Theo-
rem 5.5. The terms M and N used in the proof of Theorem 12.15 (non-completeness of the
call-by-name encoding) are the same used by Plotkin [Plo75] to prove the non-completeness
of the call-by-name CPS transform (Table 4) as a transformation of AN into AV. A CPS
transform for call-by-need is studied by Okasaki, Lee and Tarditi [OLT94], using a A-calculus
extended with mutable references as target language. We did not find in the literature gram-
mars for the terms of the CPS transforms (grammars (15), (23), (29)); the closest to one
of these grammars is Sabry and Felleisen’s [SF93|, which is the language of an optimised
version of Fischer’s call-by-value CPS. We also did not find in the literature the uniform
CPS transform of Table 6.

The relationship between types of A-terms and types of their CPS images was first
noticed by Meyer and Wand [MW85]. Other important papers on types and CPS are
[Mur92, HL93, HDM93|. Theorem 10.2 is due to Meyer and Wand. The translation of
arrow types is sometimes called “double-negation construction” after Murthy [Mur92]. The
transformation of types for the call-by-name CPS in (36), and Theorem 10.9, are by Harper
and Lillibridge [HL93], who follow what Meyer and Wand had done for call-by-value.

The connection among functions, continuations and message-passing is already clear in
Carl Hewitt’s works on actors [Hew77, HBG173, HB77]. A function is represented as an
actor that accepts messages containing an argument for the function and a continuation to
which the result of the function should be sent. This is the same idea that we used for
representing functions as w-calculus processes in the paper.

The analogy between Milner’s encodings of A-calculus into w-calculus and the CPS trans-
forms was noticed by several people, and was first partly formalised by Boudol [Bou97] and
Thielecke [Thi97]. Boudol compares encodings of call-by-name and call-by-value A-calculus
into, respectively, the blue calculus and the 7-calculus. He noticed that, for either strat-
egy, if the CPS transform is composed with the encoding of (call-by-name) A-calculus into
the blue calculus, then the results can be read as the standard encoding of that A-calculus
strategy into the w-calculus. Thielecke introduces a CPS calculus, similar to the interme-
diate language in Appel’s compiler [App92]. He shows that this CPS calculus has a simple
translation into the m-calculus and that, if Plotkin’s CPS transforms are formulated in the
CPS calculus, then their translations into the w-calculus yield an encoding similar to Mil-
ner’s [Mil92]. In this paper we go further, in that the encodings of both call-by-name and
call-by-value A-calculus into the 7-calculus are factorised using the CPS transforms and the
compilation C of HO7 into m-calculus, for both typed and untyped A-calculi; and we use the
factorisation to derive correctness results.

Translations of functions into process calculi have been given by Kennaway and Sleep
[KS82], Leth [Let91], Thomsen [Tho90], Boudol [Bou89]. Robin Milner’s work on functions
as m-calculus processes [Mil92] is a landmark in the area. Milner considers the call-by-name
and parallel call-by-value strategies (his encodings are, respectively, that in Table 8 and a
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variant of that in 3). Milner proves the operational correpondence between reductions in
the A-terms and in their process encoding (the analogue of Lemma 5.17 and Exercise 6.19);
he also proves that, in both cases, the encoding is operationally sound but not complete.

Regarding the call-by-value encoding, (variants of) Corollary 5.14 and Lemma 5.18 are
by Milner [Mil92]; Corollary 5.15 is by Sangiorgi and Pierce [PS96]; Remark 5.16 is from
[San92].  Regarding the call-by-name encoding, Corollary 6.12 and 6.13 are by Milner
[Mil92, Mil91]. The remainder of Section 6 is new. The uniform encoding in Section 7
is from [OD93]. A study of the correctness of the call-by-need encoding in Table 7 is in
[BO95]. Encodings of graph reductions, related to call-by-need, into m-calculus are given
in [Bou94, Jef93] but their correctness is not studied. The encoding of Table 8 is precisely
Milner’s original encoding of AN. The optimisation (30) is from [MS98]. An encoding of the
£ rule into m-calculus was first given in [San96], where the target calculus is 7I; the encoding
presented in Section 9 is from [MS98§].

Turner first established a relationship between the types of A-calculus terms and those
of their encodings into 7-calculus [Tur96]. He takes (variants of) Milner’s encodings of
the A-calculus into the m-calculus and proves that for some of these encodings there is a
correspondence between principal types of the A-terms and principal types of the encoding
m-calculus terms; the w-calculus type system used is (the structural version of) Milner’s
sorting plus polymorphism. Turner also extends Milner’s encodings to the polymorphic -
calculus. Using i/o types, as we have done in the paper, the relationship between A-calculus
and w-calculus types is clearer and sharper, and can be easily extended to other type systems.
The work presented in Section 10 is new; it follows the schema of the interpretation Abadi
and Cardelli’s typed object calculus [AC96] into m-calculus in [San98].

Applicative bisimulation was introduced by Abramsky [Abr89|, inspired by the work
of Milner and Park in concurrency [Par81, Mil89]. Since Abramsky’s work, the idea of
applicative bisimulation has been applied to a variety of higher-order sequential languages;
see [Gor95, Pit97] for surveys.

Open applicative bisimulation coincides with the equivalence induced by Ong’s lazy PSE
ordering [Ong88]; however, a conceptual difference between the two is the emphasis that
Ong’s preorder places on n-expansion.

The operational and denotational theory of AN (that they call the lazy A-calculus) has
been extensively studied by Abramsky and Ong [Abr87, Abr89, Ong88, AO93]. The canon-
ical model of AN mentioned in Section 11 was defined by Abramsky, as the solution to a
certain domain equation [Abr87, Abr89]. He and Ong then proved that this model is sound
but not complete [Abr87, Ong88, A093].

The internal choice operator in Section 12 is inspired by an operator introduced by De
Nicola and Hennessy [DH87] in a CCS-like process calculus. Studies of format of operators
in concurrency include [DS85, BIM88, ABV94, GV92], and in functional languages [Blo90,
How96, San97a.

The Lévy-Longo Trees were introduced by Longo [Lon83]—where they were simply called
trees—developing an original idea by Levy [Lév76]. They were called Lévy-Longo Trees by
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Ong [Ong88|]. Bohm Trees are studied in depth in [Bar84]. For models of the A-calculus,
such as Pw, T¥, D4, D, and free lazy models, see [Bar84, HS86, Ong88|.

Most of the results in Sections 11-13 are from [San94|,[San92, chapter 6] (some of the
results in [San92, chapter 6] have also appeared in [San95a]). The grammar of well-formed
operators in [San94] is more generous. Section 13.4 (Bohm Trees) is from [San95b].

The equivalence on A-terms induced by their encoding into the 7-calculus (Definition 11.5)
is largely independent of the choice of the behavioural equivalence on 7-calculus processes.
We have adopted bisimilarity which is widely accepted as the finest extensional behavioural
equivalence one would like to impose on processes; at the opposite extreme, as the coarsest
equivalence, one normally places Morris’s context-equivalence (defined as barbed congru-
ence but without the clause on 7 moves). On processes encoding A-terms, the main forms
of m-calculus bisimilarity that appear in the literature (ground, late, early, open, and their
asynchronous variants) coincide. They also coincide with may-testing equivalence. The lat-
ter fact intuitively holds because the encoded lazy A-terms are deterministic, and is formally
proved in [BL95].

Other characterisations of Lévy-Longo Trees as Morris’s context-equivalence of extended
A-terms include: Boudol and Laneve [BL96], who use lambda calculus with multiplicities, a
form of AN where arguments of functions have a multiplicity and reduction, although deter-
ministic, may introduce deadlock; and Dezani-Ciancaglini, Tiuryn and Urzyczyn [DCTU97]
who use the concurrent \-calculus, a form of AN extended with forms of call-by-value ap-
plication, and operators for nondeterminism and parallelism.
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[a=0b]P matching

Grammars:
a,b,...x,y,z2 Names
Values
v, W = a names
Processes
PQ,R = 0 nil
| PP parallel
| va P restriction
| Pref prefixing
| \P replication
|
|

Pref+ Pref summation

Prefizes
Pref = a(x).P input
| a(v). P output
| T.P silent prefix

Table 13: The w-calculus

APPENDIXES: background on the m-calculus

A The 7-calculus
A.0.1 Processes

The grammar of the w-calculus is in Table 13. 0 denotes the inactive process. An input-
prefixed process a(z). P waits for a value v at a and then continues as P{V/z}. An output
process @{v). P emits value v at a and continues as P. A 7-prefixed process 7. P can evolve
internally to P. A parallel composition P; | P2 is to run two processes in parallel. A
restriction va P makes name a local, or private, to P. A replicated process !P stands for
a countable infinite number of copies of P. Matching [a=">b]P is to test for the equality
between the names a and b. Summation expresses a choice between two behaviours (it is
also called guarded summation, as the summands are guarded by a prefix).
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P{a=(b).Q} local environment (Section B.0.9)
~°, & strong and weak barbed congruence
(Sections B.0.4, B.0.6, B.1.5)
~, strong and weak ground bisimilarity
(Section B.0.5, B.0.6, B.1.5)
< expansion (Section B.0.7)
2, —a strong transitions (Section A.0.2)
= = weak transitions (Section A.0.2)
o ground action (Section B.0.5)
§ T channel type (Section B.1.2)
(T) product type (Section B.1.2)
unit, x unit type and unit value (Section B.1.1)
uX. T recursive types (Section B.1.2)
iT,0oT,bT i/o types (Section B.1.3)
S<T subtype relation (Section B.1.3)

(T)=,(T)=®, T ™ S  auxiliary notation for i/o types (Section B.1.3)
F,b(c) F,bF,F = 1 G notation for abstractions (Section B.1.7)

Table 14: Main notations for the w-calculus

We use o to range over substitutions; for any expression E, we write Eo for the result
of applying ¢ to E, with the usual renaming convention to avoid captures. We assign sum
and parallel composition the lowest precedence among the operators. Substitutions have
precedence over the operators of the language.

In an input a(b). P and an output a(b). P name q is the subject and name b the object of
the prefix. An input prefix a(b). P and a restriction b P are binders for name b, and give rise
in the expected way to the definitions of free and bound names, and of a-conversion. Symbol
‘=" denotes equality up to a-conversion. We identify a-equivalent processes. In statements,
we always assume that bound names of the expressions of the statements (processes, actions,
etc.) are fresh, i.e., they are different from the other bound and free names of the expressions
in the statement; and we say that a name a is fresh for an expression E to mean that a does
not appear in E. We write fn(E) and bn(E) for respectively the free and bound names of
E, and n(E) for all names in E (free and bound). A contezt is a process expression with a
single occurrence of a hole [-] in it; a context is obtained by replacing an occurrence of 0 in a
process with [-]. We abbreviate vavb P as (va,b)P. We write a. P and @. P when the value
communicated along name @ is not important. We omit the trailing 0 in prefixed processes
7. 0. Finally, @(b). P (bound output prefiz) abbreviates vb (a(b). P).

We use a tilde to represent tuples of expressions. With some abuse of notation, we
sometimes view E both as a tuple and a set. We extend notations to tuples componentwise.

Table 14 collects some notations for the 7-calculus (for behavioural equivalences, types)
that are discussed in the sections below.
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A.0.2 Operational semantics

The operational semantics of processes is given by means of a labeled transition system,
which expresses the internal steps that a process can make and the communications with
other processes in which it can engage. (This is the standard transition system of the 7-
calculus, in the early style.) The set of rules is given in Table 15, plus the symmetric variants
of CoM and PAR and SuM. Transitions are of the form P — P’ where the label a ranges
over actions of the following forms:

T interaction
a(v) input of v at a
(vb)a(v) output of v at a, extruding bound names b

In the case of input and output, a is the subject of the action. Input and output actions
describe possible interactions between P and its environment, while a 7 action represents
an internal action in which one subprocess of P communicates with another. We write

P p,

and call it bound input action, to mean that P o) P’ and z is not a free name of P; in
this case, x is a bound name of the action, and a a free name. We sometimes abbreviate
P s P'as P — P', and call it a reduction. We also write P(—)™P' to mean that P
becomes P’ by performing n 7-transitions. Weak transitions are defined as usual: relation
— is the reflexive and transitive closure of —; and == stands for =—">=>.

We write P —4 P’ if the reduction P — P’ is deterministic i.e. P — P’ is the only
immediate possible transition for P. We write P —7 P’ if P evolves to P’ by performing
n deterministic reductions.

A.0.3 The asynchronous 7w-calculus

A common subcalculus of the 7-calculus is the asynchronous m-calculus (m,) [HT91, Bou92,
ACS96], which has no operators of summation and matching, and all output prefixes are of
the form @(b) (they have no continuation). The encodings of the A-calculus in this paper
are written in 7,. The processes of 7, enjoy some interesting behavioural properties, some
of which are reported below.

B Behavioural equivalences

B.0.4 Barbed congruence

We define behavioural equality using the notion of barbed congruence [MS92]. This is a
bisimulation-based equivalence that can be defined uniformly on different calculi. Barbed
congruence can be defined on any calculus possessing a reduction relation (the 7 steps of
the m-calculus) and an observability predicate |,, for each channel a, which detects the
possibility for a process of accepting a communication at a with the external environment.
In the w-calculus, P |, holds if there are a derivative P’ and an input or output action «
with subject a such that P %+ P’. Barbed congruence is the congruence induced by barbed
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P a-convertible to P! P’ = p”

ALPHA —
P — P!
@ !
Inp PAR A Tpll bn(a) Nfn(Py) =0
a(z). P % P{vj) PL| P,—=P] | P,
(vb)a() ., a{v) -
P P P P ~
ovr — Com —— L2 "2 jnfn(P,) =
alw). P X p P | B,—vb (P | B)
@ ! @ 1§
MAT # SuMm i
[a=a]P — P’ P+Q— P
P =P PP
Rep — RES —— ¢ ¢ (fa(a) Ubn(a))
P —IP| P vc P—vc P!
(vb)a(v)
P P ~
TAU ———— OPEN ———————c¢€ fn(v) — b
7.P — P CP(V 7C)G(U>P,

Table 15: Transition rules for the w-calculus.

bisimulation. The latter equates processes that can match each other’s reductions and, at
each step, are observable on the same channels.

Below, we define barbed congruence on a generic process calculus £ that has reduction
and observation relations as above. An L relation is a relation on the processes of L.

Definition B.1 (strong barbed bisimilarity and congruence) A L relation R is an
L strong barbed bisimulation if P R Q implies:

if P - P’ then there is Q' such that Q — Q' and P’ R @',

2. for each channel a, P |, implies Q |,,

and the converse, on the transitions from Q.
Two L processes P and Q are strongly barbed bisimilar (in £), written L> P ~ Q, if
PR Q for some L strong barbed bisimulation R.

Two L processes P,Q are strongly barbed congruent (in £), written L P ~¢ Q, if, for
each context C in L, it holds that L C[P] ~ CIQ].

When there is no ambiguity on what the calculus £ is, we may abbreviate L>P ~ Q as
P <~ Q,and L> P ~°Q as P ~° Q. (When P,Q are m-calculus processes, P ~° () means
> P ~°@Q, even if both P and @ are processes of the asynchronous m-calculus—which is a
subcalculus of the m-calculus).
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B.0.5 Ground bisimilarity

The main inconvenience of barbed congruence is that it uses quantification over contexts
in the definition, and this can make proofs of process equalities heavy. Against this, it is
important to find proof techniques, especially formulations of bisimulation whose definition
does not use context quantification. One such formulation is ground bisimilarity below. Its
input clause only checks bound input actions; therefore processes need not be tested on
names that they already possess. We call T-actions, output actions and bound input actions
the ground actions, ranged over by p.

Definition B.2 (strong ground bisimilarity) A relation R on m-calculus processes is a
ground bisimulation if P R Q implies, for all ground actions u:

if P 5 P’ then there is Q' such that Q - Q' and P' R Q’,

and the converse, on the transitions from Q.

Two w-calculus processes P and @Q are strongly ground bisimilar, written P ~ @Q, if
PR Q, for some ground bisimulation R.

(In the clause of ground bisimulation, we omit the requirement “bound names of y fresh
for @7, since we work up-to a-conversion). On processes of the asynchronous w-calculus,
ground bisimulation implies barbed congruence:

Theorem B.3 Let P,Q € ,. Then P ~ @Q implies 1> P ~° Q.

(On processes of the asynchronous w-calculus, ground bisimilarity coincides with early
bisimilarity [San95a].)

B.0.6 'Weak equivalences

The weak versions of the above equivalences are defined by replacing the transition Q — Q'
with the weak transition Q = @Q’, and, if p is an input or an output action, the strong
transition Q -~ Q' with the weak transition Q == Q'; also, in Definition B.1, the predicate
Q lo with Q U}, where /%= |,.

We write =¢ for weak barbed congruence; and = for weak ground bisimilarity; we some-
times just call them barbed congruence, and ground bisimulation. Theorem B.3 also holds in
the weak case:

Theorem B.4 Let P,Q € 7,. Then P =~ Q implies 7> P =° Q.

Weak barbed congruence is the semantic equality on the w-calculus we are mainly in-
terested in; other relations, like strong bisimilarities, ground bisimilarity, and expansion
(defined below), will serve as auxiliary to it.

Lemma B.5 Suppose P,Q € w,. Then wv> P =° Q implies 7, > P =° Q.

Proof: 7, is a subcalculus of 7, therefore all contexts of 7 are also contexts of 7. [ |
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B.0.7 The expansion relation

The expansion relation [AKH92, SM92], written <, is an asymmetric variant of &~ which

~)

takes into account the number of 7-actions performed by processes. Thus, P < @ holds if
P =~ @ and @ has at least as many 7-moves as P.

Definition B.6 (expansion) A relation R on m-calculus processes is an expansion if P R
Q implies:

. If P X5 P' then there is Q' such that Q = Q' and P’ R Q';
. if Q = Q', then either P R @', or there is P’ such that P - P’ and P' R Q';

L if @ L5 Q', where W 48 an output or a bound input action, then there is P’ such that
P P and PRQ.

We say that @ expands P, written P < @, if P R Q for some expansion R.

Lemma B.7 Let P,Q be w-calculus processes. Then P < @ implies P = Q.

B.0.8 Techniques of “bisimulation up to”

We shall use a proof technique for bisimulation in order to reduce the size of the relations to
exhibit. In the bisimilarity clause, this technique allows us to manipulate the derivatives of
two processes with the expansion relation and to cancel a common context. The technique
uses the notions of ground bisimulation up-to context and up-to 2 and of relation closed
under substitutions. A polyadic context may contain an arbitrary number of different holes,
and, moreover, each of these holes may appear more than once.

e The definition of ground bisimulation up-to context and up-to 2 is like that of (weak)
ground bisimulation, except that the clause P’ R Q' is relaxed to:

there are a polyadic context C' and processes P" and QV” st. PP > C [ﬁ], Q =C [QV”]
and P" R Q"

e A relation R is closed under substitutions if P R @ implies Po R Qo, for all substitu-
tion o.

Theorem B.8 If R is is closed under substitutions and is a ground bisimulation up-to
context and up-to 2, then RC~.

B.0.9 Some laws for the w-calculus

Lemma B.A Abelian monoid laws for parallel composition:
PlQ~Q|P, PI(Q|R)~(P|Q)|R, P[0O~P;

. va0~0, vavbP ~vbvaP;

. (waP)|Q ~wva(P|Q), if a not free in Q;
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We report some distributivity laws for private replications, i.e., for systems of the form
va (P | la(z).Q)

in which @ may occur free in P and @ only in output subject position. One should think
of @ as a private resource of P, for P is the only process who can access @); indeed P can
activate as many copies of @ as needed. We write such a system as P{a = (z).Q}. The
notation {a = (z). @} has syntactic precedence over the operators of the calculus.

Theorem B.10 (replication theorems) Suppose a occurs free in P, R,Q only in output
subject position. Then:

(P RB){a=(2).Q} ~ Pla= (2).Q} | R{a = (). Q};

(!P){a = (2).Q} ~ 'P{a = (2).Q};

(b(y). P){a = (z).Q} ~ b(y). P{a = (). Q}, if y is not free in Q and a # b;
(ve P){a = (2).Q} ~ ve P{a = (2).Q}, if ¢ is not free in a(z). Q;
P{a=(2).Q} ~ P, if a is not free in P;

a(d{a = (2).Q} 2 (Q{¥}h){a = (2).Q}.

B.1 Extensions and types

B.1.1 Some conventions and notation for typed calculi

In typed w-calculi, type environments, ranged over by T', are a finite assignment of types
to names. A typing judgement I' - P asserts that process P is well-typed under the type
assumptions I', and T' F v : T that value v has type T under the type assumptions I'. In
typed calculi, a restricted name is annotated with a type, as in (va : T) P, b(a : T). P, and
P{a : T = (z).Q}; the type T is omitted when not important. Substitutions are performed
only between names of the same type. When we deal with several typed calculi, to avoid
ambiguity, we sometimes add the name of the calculus to typing judgements; thus we write
LT F P to mean that the typing judgement I' - P holds in the calculus £.

We distinguish between wvalue types and channel types. The former are the types of
the values that may be communicated; the latter are the types of the names along which
these values are communicated. In the 7-calculus, channel types are also value types; in the
Higher-Order m-calculus of Section C, by contrast, value and channel types are distinct. A
type environment I' is closed if T' is an assignment of channel types to names.

We write Z : T' to mean that each z € ¥ has type T; and I' + P, to mean that both
T'FP and T'F Q@ hold.

INRIA



Interprering juncrions as m-CalCutus processes

ol

B.1.2 Polyadicity

In the polyadic m-calculus tuples of names can be communicated. For this, the following
production is added to the grammar of values:

Values

v = (U) tuples

Having added a constructor for values, we need a corresponding destructor. Usually a
destructor is added as a new operator to the grammar for processes. In the case of tuples,
however, it is convenient to decompose a value by means of pattern matching in input prefix,
thus adopting the polyadic form of input a(Z). P.

In an untyped polyadic m-calculus there can be run-time errors due to arity mismatch
on communication. These errors can be avoided by assigning types to names. We call
polyadic m-calculus the calculus with channel types, recursive types, and product types
[Mil91, VH93, PS96, Tur96]. Channel types are of the form ¢ T'; product type of the form
(Ty...T,) for n > 0; recursive types of the form uX.S, where X is a type variable. For
instance: (T, S) is the type of a pair, whose first component has type 7" and the second type
S; a name a with type ¢ (T} ...T,) may only carry n-uples of values, where the i-th value
has type T;.

Notations, definitions and results for the monadic 7-calculus in this section generalise to
the polyadic 7-calculus in the obvious way.

B.1.3 /o types

The i /0 types [PS96] are a frequently used refinement of the above mentioned channel type.
They allow us to separate the capability of using a name in input or in output, and may be
three forms:

e 07T is the type of a name that may be used only in output and that carries values of
type T

e iT is the type of a name that may be used only in input and that carries values of
type T

e b T is the type of a name that may be used both in input and in output and that
carries values of type T'.

For instance, a type p : b{i S,0T) (for appropriate type expressions S and T') says that
name p can be used both to read and to write and that any message at p carries a pair of
names; moreover, the first component of the pair can be used by the recipient only to read
values of type S, the second only to write values of type T'.

One of reasons why i/o types are useful is that they give rise to subtyping: Type annota-
tion i (an input capability) gives covariance, o (an output capability) gives contravariance,
and b (both capabilities) gives invariance. Moreover, since a tag b gives more freedom in
the use of a name, for each type 7' we have bT <iT and bT < oT.
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Subtyping judgements are of the form ¥ + S < T, where ¥ represents the subtyping
assumptions (this is written S < T when the subtyping assumptions are empty). As an
example, here are the subtyping rule for the i/o type constructs:

YES<T YT < S
YEbS<bT

I € {b,i} THES<T
YFIS<IT

I € {b,o} YFT<S
YFIS<oT

For readability, we sometimes use brackets with i/o types, as in o (T"). We also occasion-
ally use these notations for channel types:

e (T)~ is the type obtained from T by cancelling the outermost i/o tag.
e (T)~" is the type obtained by replacing the outermost i/o tag in T with b.

o for I € {b,0,i}, we write T ™ I S for I (S,T).

For instance, (i §)~ is S, and (i $)~" is b .S. Both for (T')~ and for (T')°, we might need
to unfold T first, if its outermost construct is recursion.

B.1.4 Linearity and receptiveness

Further refinments of the i/o types are the type systems for linearity [KPT96] and for
receptiveness [San97b]. We do not present these type systems here, as they are mentioned
in very few places in this paper. We only recall that linearity allows us to say that a name
may be used to perform a reduction at most once.

B.1.5 Types and behavoural equivalences

The use of types affects contextually-defined forms of behavioural equivalence like barbed
congruence, for in a typed calculus the processes being compared must obey the same typing
and the contexts in which they are tested must be compatible with this typing. A (I'/A)-
context is a context that, when filled in with a process obeying typing A, becomes a process
obeying typing I'.

We define typed barbed congruence on a generic typed process calculus £ that has
reduction and observation relations as above, and typing judgements for processes of the
form LT F P; we assume that contexts, closed typing, etc. are defined in £ as in w-calculus.
A typed L relation is a set of triples (A ; P ; Q) where A is a closed typing and L>A + P, Q.

Definition B.11 (strong barbed congruence) Let A be a typing, with LoA F P, Q. We
say that processes P,@Q are strongly barbed congruent (in £) at A, written L(A)> P ~° Q,
if, for each closed type environment T and (T'/A)-context C, we have L1 C[P] ~ C[Q].
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Again, weak barbed congruence at A is defined by replacing ~ with ~ and ~° with
=¢ in Definition B.11.

When there is no ambiguity on what the calculus £ is, we may drop £, and abbreviate
L(A)>P =°Q as P =5 Q. We write P =% Q (or L(A) > P =° Q) without recalling the
assumption that P and @ are well-typed in A. In the case of the plain polyadic w-calculus,
without i/o types, we shall also drop the type environment index A, and just write P &° Q;
the omitted type environment will always be very simple, and will be clear from the context.
The same conventions apply for strong barbed congruence.

Generalising the definitions of ground bisimulation and expansion to the polyadic n-
calculus is straightforward—one just has to make sure that the names received by the pro-
cesses in input actions have the appropriate types. Adopting the same convention as for
barbed congruence, we write P ~ @ and P < @ for ground bisimulation and expansion on
polyadic processes, omitting the type environment index.

We also use ground bisimulation and expansion on processes of the polyadic w-calculus
with i/o types, by ignoring the i/o types as follows (as an example, we take weak ground
bisimulation). If P, @ are such processes, then we set P = Q if Py = Qy, where: P; and Qy
are obtained from P and @ by replacing each i/o type I T (for I € {i,o0,b}) by the channel
type ¢ T'; and Py =~ @y is ground bisimulation of the plain polyadic w-calculus.

If P and @ are processes of the asynchronous 7w-calculus, T' a typing assumption that
may contain i/o types, and I' - P,Q then P ~ @Q implies P =§

A useful law of the asynchronous 7-calculus, for whose validity i/o types are necessary,
is Lemma B.12 below. In this lemma, we use special processes called links. A link between
a name a and a name b, written a — b, behaves like an ephemeral one-place buffer from «a
to b: it receives names at a and emits them at b. Names a and b must be of the same type.
The definition is

a—b % (@) b(@)

Lemma B.12 says that if only the output capability of names may be communicated
along a name a (this is the hypothesis a : 00 S; because of subtyping it also covers the case
a : bo S), then sending a known name b along a is the same as sending a fresh name ¢ that
is linked to b.

Lemma B.12 Let WL/ °’X_’” be the polyadic asynchronous ﬂ-calculu_s with i/0, and suppose
/O F LT a(b) and 7/ sTFa 008, for some S. Then m/°*(T) »a(b) = (ve :
b S) (@{c) | le—b).

B.1.6 The strong replication theorems

Using i/o types, it is possible to formulate more powerful versions of the replication Theo-
rem B.10, called the strong replication theorems [PS96, San98|. The condition “a occurs free
in P, R, Q only in output subject position” of Theorem B.10 is relaxed by requiring, roughly,
that the typing of processes P, R, Q) only requires the output capability (i.e., a type of the
form o T) on a. This means that these processes, as those of Theorem B.10, may not use a
in input; but, by contrast with those of Theorem B.10, these processes may communicate a,
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in which case the constraint on the output capability on a is transmitted to the recipients
of a.

B.1.7 Abstractions

In the encodings of the A-calculus into the m-calculus described in the paper, the encoding of
a A-term is parametric on a name, that is, is a function from names to w-calculus processes.
We call such expressions abstractions, and use F,G to range over them. An abstraction
with parameters @ and body P is written (@). P. An abstraction (a).P is a binder for @
of the same nature as the input prefix b(a). P. Indeed, the input b(a). P may be seen as
constructed by juxtaposition of the name b and the abstraction (a@). P. Accordingly, if F
is the abstraction (@). P, we sometimes write b F and P{b = F'} for the processes b(a). P
and P{b = (a). P}, respectively. We use the following abbreviations for abstractions: if F'
is (a). P then b(¢) F' and P{b = (¢) F'} stand for b(¢,a). P and P{b = (¢, a). P} respectively,
F. stands for P{%} — the actual parameter ¢ substitutes the formal parameter a in the
body P of F — and F{b = (¢). Q} stands for (a).(P{b= (2).Q}).

We extend behavioural equivalences to abstractions; if < is a behavioural equivalence
defined on processes, then F' < G means that F, < G, for all ¢; in typed 7-calculi F' <xr,7 G
means that F, <p .1 G, for all csuch that T',c : T F F;, G, (as usual we omit typing indexes
in the plain polyadic 7-calculus)

B.1.8 The delayed input

In the asynchronous 7-calculus, input prefix is the only syntactic construct for sequentialising
process actions. Consider an input

a(x). (b(v) | T(w))

It is reasonable that T{(w) should execute after the input a(z) because the input binds z,
and this creates a dependency between the two prefixes. By contrast, the other output b(v)
has no syntactic dependency on the input. One could therefore argue that the temporal
dependency of b(v) on input a(z) is not justified. Accordingly, one might wish to replace the
m-calculus input prefix a(x). P with a delayed input prefiz a(z): P whose SOS rules include:

Dinpl Dinp2 PP =4 ( )
inp inp z €n(p
a(z): P o) P{b/x} a(z): P a(z): P (56)
p 2 pr p X pr
Dcomi — Dcom2 — b#£x
a(x): P - vb (P'{be}) a(z): P = P'{bz}

Rule Dinp1 is analogous to the rule for the ordinary input; Dinp2 allows the continuation
of the delayed input to interact with the environment. Rules Dcoml and Dcom?2 allow the
continuation to interact with the prefix itself. The delayed prefix is attractive because it
allows more parallelism in processes. However, the sequentialisation forced by the ordinary
prefix is useful both for expressing many interesting behaviours, and for having simple
algebraic laws in axiomatisations. Moreover, in some cases a delayed prefix can be coded
up, as we are going to show. For this, we make use of the link processes, introduced in
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B.1.5. We show how to code a delayed prefix a(z) : P of the asynchronous w-calculus, under
the assumption that P only possesses the output capability on x. This condition on the
usage of names received in an input is often used (for instance, in most of the encodings
of higher-order communications and of functions in this paper). Consider the following
equality:

a(@): P = va (a(y). (e —y) | P) (57)

Under the hypothesis that P is asynchronous and possesses only the output capability
on z, the two processes are behaviourally indistinguishable [MS98]. Lemma B.13 is about
this claim, under the additional hypothesis that P cannot export x. With this hypothesis,
rules (56) completely define the behaviour of the delayed input construct; without it, other
rules are needed and the proof of the correctness of (57) is more complex.

Lemma B.13 Let P be a process of the asynchronous w-calculus, and suppose that x appears
free in P only in output subject position. Assume that the behaviour of the delayed input
construct is defined by rules (56). Then

a(z): P = vz (a(y).(lz—y) | P)
where y is fresh for P and x.

A similar encoding can be given of a delayed prefix a(z) : P under the hypothesis that P
only possesses the input capability on x: we just invert the direction of the link:

vy (a(y)-('y —»z) | P) (58)

However, the correctness of this transformation is more delicate, and requires additional
hypotheses on the contexts in which the processes can be used. The context must be
composed of processes that are asynchronous, and the context should keep only the output
capability on the names that are sent at a. These conditions can be nicely formalised using
a behavioural equivalence for asynchronous calculi and type systems. We omit the details.
Both in (57) and in (58), the replication in front of the link can be eliminated if = is used
linearly in P.

C The Higher-Order w-calculus

Starting from the basic constructs for concurrency of the 7-calculus we move to higher-order,
by allowing values built out of processes. We call this higher-order calculus the Higher-Order
w-calculus (HO).

Passing a process is like passing a parametreless procedure. The recipient of a process
can do nothing with it but execute it, possibly several times. Procedures gain great utility
if they can be parametrised so that, when invoked, some arguments may be supplied. In
the same way a process-passing calculus gains power if communication of parametrised pro-
cesses is allowed. We call parametrised processes abstractions. We have already introduced
abstractions in the w-calculus, where we presented them as a convenient syntactic notation
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for representing the encodings of A-terms. The role of abstractions is important in HOm, as
they can be used as values and exchanged in communications.

When an abstraction (z). P is applied to an argument w it yields the process P{wW/z}.
Application is the destructor for abstractions. The application of an abstraction v to a value
v’ is written v(v'). At the level of types, adding parametrisation means adding arrow types,
so that an abstraction (z). P has type V' — ¢, where V is a value type and ¢ is the type
behaviour, that is the type of all processes.

A process, before being communicated, must be converted into a value, a process value.
A process value is the special case of abstraction in which the argument has unit type.
Therefore process values are expressions (z). P of type unit — ¢. We write unit for the
unit type, and % for the unit value.

Example C.1 Here are a process @ that is willing to send a process P along a channel a
and then continues as Q', and a process R that is willing to receive and evecute what Q is
sending on a:

Q = a((x).P).Q
R < ay).y(x)
These processes can interact as follows:
QIR
— Q[ ((2)-P)(%)
— Q| P{¥x}

Summarising, with respect to the grammar of the 7-calculus, that of HO7 has the following
additional productions: the grammar for values has the production (z). P for abstractions;
the grammar for processes the production v(w) for application; that for types the production
V — ¢ for arrow types, where V' represents a value type. The operational semantics has an
additional rule for when an abstraction meets an application:

R-App

((2). P){v) — P{¥x}
In this paper, we use extensions of this calculus with unit types, recursive types, and product
types.

In HO7, no expression reduces to a value, therefore we need not specify a reduction
strategy for value expressions. The right-hand side of an arrow type is always the behaviour
type ¢; allowing nesting of arrow types on the right, like in Ty — T» — ¢ (which would
mean allowing nesting of abstractions such as (z).(y). P), would lead us towards issues
of reduction strategies. HOn does not have reduction to values because it is conceived for
studying and understanding basic issues of processes that may exchange higher-order values;
reduction strategies for value expressions is an orthogonal issue (that can be studied with
the A-calculus).

Barbed congruence is defined on HO# as by Definition B.11.

If P is a HOx process, and the proof of the derivation of P — P’ uses rule R-APP,
then we write P — g P’, and say that P 3-reduces to P'; =p is the equivalence induced by

—3.
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D Compiling agent passing into name passing

The process-passing features of HO7 can be faithfully coded up using name-passing. In the
encoding, the communication of an abstraction v is translated as the communication of a
private name which acts as a pointer to (the translation of) v and which the recipient can
use to trigger a copy of (the translation of) v, with appropriate arguments. For instance a
process a@{(x). R).0 is translated into the process vy (a{y) | 'y(z).C[R]); a recipient of the
pointer y can use it to activate as many copies of C[R] as needed. However, when translating
a{v). P, if v is a name or the unit value, then v is also a m-calculus value and therefore v
can be directly sent along a; in this case we say that v is w-transmittable.

In the translation of an application v{w}, the function v is located at some fresh name
y; the function is activated by receiving its argument at y. Again, if the argument w is
m-transmittable, then v is applied directly to w. The translation of application is very close
to that of output, which reveals the similarity between the two constructs.

The compilation modifies types: a name used in HOx to exchange processes becomes,
in m-calculus, a name used for exchanging other names. Let HOx~®**#* the HO7 calcu-
lus in which the type constructs for values are arrow types, recursive types, unit types (in
HOx~¥#™% there is also the channel type T, needed for typing channels; but channels
may not be passed around as values); and let 7'/°#"nt bhe the 7-calculus with i /o types,
recursive types, unit types. The compilation from HOz = ¢»#uit o gi/0mumit jg defined on
types, type environments, values and processes in Table 16. We only translate well-typed ex-
pressions. The translation of an expression is annotated with the typing environment under
which that expression is well-typed. For instance, C[P]" is defined if HOx~¢*™* b T |- P,
This annotation is used for assigning the appropriate types to the names introduced by the
compilation. Note that, by the notations for abstraction, an expression C[(x). P]]g‘T is the
result of applying the abstraction C[(x). P]"T to name y, that is the process C[P]"=T {y/x}.

Proposition D.1 For all P,v,T',T and p fresh for ', we have:
. HOn 7Ot u T | P jff pi/osmunit, O[T - C[P] ;
L HOn 7 O#™ p Tk g o T — ¢ iff w/omuaitp [T, p : C[T] - Cv]5 .

Lemma D.2 (adequacy of C) Suppose HOr~**™* s T P . Then P |, iff C[P]* Ua,
for all a.

Encoding C agrees with the behavioural equivalences of HO7n and w-calculus. For in-
stance, it is fully abstract for barbed congruence [San92, San97b]. However, stating and
proving full abstraction requires more than i/o types (for instance receptiveness types); we
therefore only present some simpler results, that are sufficient for our needs in the paper:

Lemma D.3 Suppose HOr~ %™ o P,Q. If P =5 Q, then 7'/%#=it(C[T])>C[P]" =*
clert.

Lemma D.4 Suppose HOn 9™ o T P,Q . If w/or=it(C[]) » C[P]" =° C[Q]F, then
HOn =™ (T) » P ¢ Q.
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In this table we abbreviate all expressions C[E] as [E]:

Translation of types:

T] % b[T]

[unit]] def unit
Translation of type environments:
19
[T,z : T
Translation of higher-order values:

[(2). PPT

[y]™"

Translation of processes:

(we say that a value v is 7-transmittable if v is a name or T' F v

is a fresh name)

(w). [P]°
N oy

[v]%
[v(w)]" =
[¢(z). P]F %
[.P]F € [Pt
P1QlIF = [PI°][QIF

[(vz:T)P]T &

[T—o] < ofr]
[nX.T] = pX.[7]
def g

= [T,z : [T]

£ @

= (2).7()

: unit ; and we assume y

if w is w-transmittable

(vy - b[T]) @(w)- [PT" | 'y [w]™T)

if wisnot aname, and T'Fw : T — ¢

if w is m-transmittable

(vy b [T]) ([l |ty [w]™7)

if wis not aname,and T'Fw : T — ¢

(we - [T]) [PI"=7

2[(x). P]5T T kz:4T

o] = o
[P+QI" = [PI"+[QI
[LPlm = Py

Table 16: The compilation C of HOx ~®#1¢ into the 7w-calculus
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D.0.9 Extensions

The compilation and the above results can be extended to calculi with richer type structures,

for instance with products and linearity. If we have linear types, so that we know that the

argument w of expressions T(w). P and v{w) is used at most once, then in the clauses of

Table 16 no replications is needed before y Cw

]]F;T‘
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