N

N

On-line Scheduling with WIP regulation
Fabrice Chauvet, Jean-Marie Proth, Yorai Wardi

» To cite this version:

Fabrice Chauvet, Jean-Marie Proth, Yorai Wardi. On-line Scheduling with WIP regulation. [Research
Report] RR-3432, INRIA. 1998, pp.19. inria-00073258

HAL Id: inria-00073258
https://inria.hal.science/inria-00073258
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00073258
https://hal.archives-ouvertes.fr

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

On-Zine Scheduling with WIP regulation

Fabripé Chauvet - Jg:an-Marie Prpth - Yorai Wardi

N° 3432
Mai 1998

 THEME 4

Les rapports de recherche de I'INRIA
- sont disponibles en format postscript sous’

ftp.inria.fr (192.93.2.54)

si vous n'avez pas d'acces ftp

la forme papier peut étre commandée par mail :

’ e-mail : dif gesdif@inria.fr

(n'oubliez pas de mentionner votre adresse postale).

par courrier :

Centre de Diffusion

INRIA

BP 105 - 78153 Le Chesnay Cedex (FRANCE)

INRIA research reports:
are available in postscript format
ftp.inria:fr (192.93.2.54) -

if you haven't access by ftp .
we recommend ordering them by e-mail :

~ e-mail : dif.gesdif@inria.fr

(don't forget to mention your postal address). -

by mail :.

Centre de Diffusion

INRIA :

BP 105 - 78153 Le Chesnay Cedex (FRANCE)

it}

3
.

L]

Processus d’ordonnancement en temps réel avec
controle des en-cours

Fabrice CHAUVET*, Jean-Marie PROTH* and ** and Yorai WARD] **
RESUME

Le systéme considéré est composé de plusieurs machines. Certains sous-ensembles de ce
systtme sont composés de machines identiques ou différentes mais capables d’exécuter les

- mémes opérations. Le systéme est automatisé, et il n’est pas possible de stocker des

composants ou des produits semi-finis au cours de la fabrication. Une flexibilité limitée du
systéme existe : il est possible d’étendre les temps opératoires dans certaines limites, mais dans
ce cas la ressource concernée n’est pas disponible pour exécuter une autre opération. Il n’y a
pas de conflit entre les Tessources ; en d’autres termes, une méme machine n’est jamais utilisée
pour exécuter plus d’une opération sur le méme produit. Du fait de la fréquence élevée d’arrivée
des produits & fabriquer, il n’est pas possible de remettre en question 1’ordonnancement des
produits déja ordonnancés. Par conséquent, lorsqu’une nouvelle commande arrive dans le
systéme, il faut tirer avantage au mieux des périodes de vacuité des ressources. L’objectif est
d’exécuter la commande au plus t6t. Nous proposons un algorithme qui garantit I’obtention

- d’un temps de fin de fabrication (makespan) aussi court que possible. Cet algorithme est illustré

par des exemples numériques. Il est appliqué en particulier au contrdle des en-cours dans un
systtme d’assemblage.

MOTS CLES

Ordonnancement temps réel, makespan.

* INRIA Lorraine, Technopdle Metz 2000, 4 rue Marconi, 57070 Metz, France
** Institute for Systems Research, University of Maryland, College Park, MD 20742, USA

**% Scholl of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta,
GA 30332, USA :

On-line Scheduling with WIP regulation
Fabrice CHAUVET*, Jean-Marie PROTH* &4 ** and Yorai WARDI ***

ABSTRACT

The system under consideration is composed with several machines, and some of these
machines may be identical or able to perform the same operations. The manufacturing system is
fully automated, and semi-finished products or components are not stored during the process.
A limited flexibility exists since the manufacturing times can be extended within certain limits at
the expense of the unavailability of the resource in charge of the operation. There are no
conflicts between the resources; in other words, the same machine is not used to perform
different operations required to complete the same product. Due to the intensity of the flow of
products to be manufactured, it is impossible to reschedule the products which have been
previously scheduled. Thus, when a new product requirement arrives in the system, we have
to take advantage of the idle time windows. The goal is to complete the product as soon as
possible. We give a real-time scheduling algorithm which guarantees an optimal makespan to
any product which arrives in the system. Some numerical examples are provided to illustrate
this approach. In particular, this approach is applied to the regulation of the WIP in an’
assembly system.

KEYWORDS
Makespan optimization, Real-time scheduling, On-line scheduling.

* INRIA Lorraine, Technopdle Metz 2000, 4 rue Marconi, 57070 Metz, France
** Institute for Systems Research, University of Maryland, College Park, MD 20742, USA

*** Scholl of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta,
GA 30332, USA ’ A

1. INTRODUCTION

The system considered in this paper is fully automated. Customers’ requirements stream in
the system, and each new requirement should be scheduled as soon as it enters the system, the
goal being to reduce its completion time as much as possible. In other words, the goal is to
minimize the makespan of each product considered individually. Due to the importance of the
production flow, it is impossible to reschedule a product previously scheduled. In other words,
when a customer’s requlrement arrives in the system, and this can happen at any time, the goal
is to take advantage of the idle periods available on the resources to complete the product as
soon as possible. , B}

We assume that a component is not allowed to wait in front of a resource: the next operation
to be performed on the component should start as soon as the current one ends. This constraint
is very strong, mainly in case of assembly, since several components which have to be
assembled should be completed exactly at the same time. This constraint aims at reducing the
work-in-process (WIP) as much as possible.

Nevertheless, limited flexibility exists: the processing time associated ‘with a given operation
may be extented within certéin»limjts, but the resource on which an operatioh is performed is
unavailable for another operation as long as the current operation is not completed. In
particular, we can find this kind of limited flexibility in chemical processes.

Numerous papers have been dedicated to no-wait or blocking problems In these problems,
it is assumed that no intermediate buffers exist between the resources.

Callahan [1971] uses a queueing model to study a no-wait processing in the steel industry.
Chu and all [1998], and Chauvet and all [1997] consider the surface treament which is a no-
wait problem. McCormick and all [1989] study a cyclic flowshop with buffers which can be

- transformed into a blocking problem by considering buffers as resources with totally flexible .

processing times, i.e. processing times which can take any value between 0 and +c. Hall and
Sriskandarajah [1996] make a survey on scheduling problems with blocking and no-wait, while
Rachamadugu and Stecke [1994] classify the FMS scheduling procedures. This paper should
be considered as an intermediate approach: some flexibility exists in the model, but this

flexibility can be limited. An application to the regulation of the WIP in an aésembly systeni is

proposed. The same regulation can be introduced in any automated production system.

2. NOTATIONS

Each operation of the process is defined by its minimal and maximal processing times. For
instance, operation i is characterized by 6,, minimal processmg time, and 6, +9,, maximal
processing time. :

Each operatlon 11s characterized by the set of its predecessors denoted by I", and the set of
its successors denoted by I;*. In this paper,je [T means that j ends exactly when i starts.
Similarly, j€ ;" means that j ends as soon as istarts. The set of operations which begin at the
same time as operation i is denoted by ®; and the set of operations which end at the same time

. ' 3
as 1is denoted by ®;. In other words, if ie I, then any je I belongs to ®. Similarly, if
ie I, then any je T belongs to D ' '

Thus, a process P is characterized by the list {1, 2, ..., n} of its operations, each operation
ie {1, 2, ..., n} being characterized by six elements: {6,, §,, I, Q7, O, I} We
denote by b; the starting time and by €, the completion time of operation i, i€ {1, 2, ...,n}. At
this point, the introduction of ®; and @ may appear as being somewhat useless since it is
possible to use I'; and T to define these variables. Nevertheless, these notations: will
considerably simplify the following explanations.

Note that if ie I'L andjeT,, then for any k' such that ie I, we have also je I'y, since no
delay is allowed between two consecutive operations. Similarly, if ie I and je I/, then for
any k' such thatie I}, we have also je . Furthermore, since no operation begins at the
same time it finishes, j¢ @ if je I, and je @] if je I,

3. PROBLEM FORMULATION

The manufacturing system is composed with several machines, and some of these machines
may be identical. Since other products have.been scheduled previously, the machines may be
partially busy when a new product is introduced in the system. The manufacturing system
being fully automated, semi-finished products or components are not stored during the process.
The only flexibility available in the system is given by the 8 ; values, which express the fact that
the manufacturing time 6, of operation i can be extented to 8, +90,. This is in some way
equivalent to the storage of semi-finished products or components, but makes the machines
unavailable for other operations. | ,

For each operation i, we have a series of available windows denoted by: [at], Bi].
[as, By]. .. [O‘;.’ B,] These windows may be available on different machines. For each
operation i, they are ordered in the increasing order of the o, k=1,2, .. » . When two
o, are equal, the order is the increasing order of the B. There are no conflicts between the

resources; in other words, the same machine cannot be used to perform different operations for
a same product. The last window q; associated with each operation i, is such that B;, = oo,

A feasible solution to the problem associated with a set [a:} , B'r] of idle windows (where

1=1,2,...,n and =1,2, .., q)isaset of operations whose starting and completion
times are respectively b ande, i=1,2, ... n. These times verify, for i= 1,2,...,n:

(a} <b, ()
€ SBL ‘ @
6, <e,-b, 3)
e, ~b, <0, +9, (4)
|b, =e,, Vjer; (5)
b,=b,, Vje¢; | | (6)
e, =e;, Vjeo! (7
e, =b,, Vjer; : @)

Note that mequalmes (3) and (4) allow to assign to operation i a processing time
w,€[6;, 6,+5;] such that b, + w. = e. A feasible solution is optimal if the makespan

1
nl}ax (e;) is minimal.
iy

The goal is to schedule the operations required to manufacture a product whose process is P,
in order to minimise the makespan, i:e. to complete the product as soon as possible. This |
scheduling has to be performed as soon as the product arrives in the system. Due to the
intensity of the flow of products, it is not allowed to reschedule products which have been
previously scheduled. '

NB. The scheduling problems with no-wait and blocking are two particular cases of the
problem presented in this paper. In the first case (no-wait problem) & ;=0 while 3,=+0c0 in the
blocking problem.

4. OPTIMAL SOLUTION OF ACYCLIC PRODUCTION SYSTEM

4.1. MODELING AND TEST OF CYCLICITY

The system at hand can be represented by a precedence graph G where:

(1) Each arc represents one operation, and we call i the arc representing operation i. -

(i) If je I, then the end of the arc representing j is the origin of the arc representing i. This
means that operation 1 should start as soon as operation j ends. Similarly, if je ®;, then the
origin of j is the origin of i. In other words, operations i and j start simultaneously. If je D,
then the end of j is the end of i, i.e. operations i and] end s1multaneously If]E I, then the
origin of j is the end of i, or j starts as soon as i ends. :

The precedence graph G is the set of arcs {1, 2, ..., n}, each arc ie {1,2, .., n)} bemg
connected to the arcs belonging to {F ueud Ul } Thus, G can be deﬁned as follows

({F q) (D r } =L2.., n)-
An undirected path of G is a sequence 1, , ..., i, of p arcs distinct from each other and such
that either i,,, e (I;, U®;) or i €(@; UTY) fork = 1, 2, ..., p-1, and such that i i, and

l,,, are not connected to the same end of i L, fork=1,2, ..., P-2. Acycle of G is an
undirected path i, i,, ..., i, (with p = 2) such that either (i, e (I3 V) andi e (P U o,

5

or (i, e (<I);‘p U Fi:)andi e (I, U@)). Acyclic (resp. acyclic) precedence graph is such that
it doés (resp. does not) contain a cycle. }

The goal of algorithm 1 presented hereafter is to number the arcs of the precedence graph G
such that the number associated with an arc i is greater- than the numbers associated with the
arcs connected with one end of i. Indeed, two arcs will have two different numbers.

Algorithm 1- Number the arcs of an acycﬁc precedence graph
1. Initialization)
1.LI. p=1 ,
p is a counter used to number the arcs.
12, For i=1,2,...n, set m(i)=0
When m(i) = 0, arcs are said t0 be unmarked. Thus, at the beginhing of the algorithm,
" all the arcs are unmarked. A
2. While there exists i such that m(i) = 0 and at least one of the four following conditions is
verified:
O T ue) = @
The origin of arc i is not connected with another arc.
@) (@} UIY) = @ | |
The end of arc i is not connected with another arc.
(iii) for any je T ud), m@(G)=0
All the arcs which either end or start when arc i starts are marked.
(iv) for any je (@7 UT}"), m(j) =0
All the arcs which either end or start when arc i ends are marked.
2.1. Set m(i)=p
_Arciis marked
22. Set p=p+l
The counter is increased by one, which guarantees that the arcs will be marked Sfollowing
the increasing order of the positive integers. |
3. If some of the m(i) are still at O then the graph is cyclic, otherwise it is acyclic
Remark. The algorithm starts with the initial numbers 1 assigned to the operations and
generate an order m(i) which is required by the approach presented in this paper.

i

Result 1 |
If, at the end of algorithm 1, there exists i€{1, 2, ..., n} such that m(i) = 0, then the
graph is cyclic. Otherwise, the graph is acyclic. '

Proof:

6

a. If at the end of algorithm 1, there exists ie{1, 2, ..., n} such that
m(i) =0, then the graph is cyclic.

Assume that, at the end of algorithm 1, there exists i€{1, 2, ..., n} such that m(i) = 0
Arc i cannot be marked because there exists WETT V@) and k, (P UT,") such that
m(j;)=0, m(k,)=0, j #i, andk, # i. Let us select j,. Making the same reasoning, we
find j, € (I';, U ;) such that m(j,) = 0 J» # j, and the two arcs i and j, are not connected to
the same extremety of Ji- In this way, we build an unlimited sequence i = _]0, Ji» Jp -.- of arcs.
Since the number of arcs in the graph is limited, this sequence will contain two arcs j; and j,

- suchthatj = j. Thus, the sequence of arcs Jo Jears -+ JsqiS acycle.

b. If at the end of algorithm 1, there doesn’t exist le{l 2 ..., N} such
that m(i) =0, then the graph is acyclic. o
Assume that the graph G contains a ¢ycle i 1,1, .-, i, and that at the end of algorithm 1, there

doesn’t exist i such that m(i) = 0. Since m(i,) # 0, we claim that either m(i,) < m(rp) or
m(i,)< m(i,) to be allowed tomark i,. If m(i,) < m(i,), it turns out that m(i,) < m(i,) and,

" step by step, we find that m(rp) < m(rp_l) < ... <m(i) <m(i) < m(i,). Similarly, if
m(i) < m(ip) we obtain m@i,) <m(i)) < ... < m(1p ,) < m(1p) < m(i,). In both
-cases, we obfam m(i,) < m(1p) which is impossible. ’
~ This completes the proof.
_ OFD

Result 1 etablishes that algorrthrn 1 converges even if the precedence graph is not acychc If

o the graph is acyclic, each arc i verifies at least one of the two followmg conditions:]
(i) Either each operatlon J whmh begms or finishes when the operation i begins,

is such that m(]) < m(i). .
, (i1) Or each operatlon] whrch beglns or finishes when the operation i ends, is
such that m(j) < m().

- Result 2 _
The complexity of algorithm 1 is in o(n).
Proof:

A node of the graph is one of the ends of an arc. The common end of two arcs connected to
each other is considered as a ‘unique node. A way to work out algorithm 1 is to weight each

node of the graph with the number .of arcs which end or start at this node An arc

i€{1, 2, ..., n} can be marked if one of its ends i is weighted at 1 since, in this case, all the
arcs which end or start at this end are already marked, except the arc under consideration.

When marking an arc i, we substract one to the weights of each of its ends.. We continue the

process, selecting at each step one arc having one of its ends werghted at 1. At mostn steps are
necessary to complete the process. Note that, each time we substract one to the weight of each

3

L3)

7

of the ends of an arc, we test if one of these weight is equal to one. If yes, we store this arc in a
particular list which contains the arcs ready for marking. Thus, the selection of an arc which
. can be marked is stralght foreward. Finally, algorithm 1 consists in:
® substracting 1 to two weights at most n times,

® storing an arc in a special list at most n times.
Thus, result 2 holds.

QED
4.2. COMPUTING AN OPTIMAL SOLUTION
In the remainder of this section, we assume that the precedence gfaph is acyclic and we use
algorithm 1 to number the arcs. The numbers assigned to the operations are given in figure 1.
Then, we apply algorithm 2, which is the matter of this subsection, in order to obtain an optimal
solution, i.e. a solution which minimize the makespan.

The idea behind the algorithm 2 is quite simple and can be explained using figure 1. Let us
assume that the window to which each operation is assigned is known.

3 6 L" 7

Figure 1. A process composed with seven operations

In this process, there is an assembly-desassembly operation which is operation 4. The other

ones are processing operations. Assume that the window where operation i should be located is
[ail, Bi,i], for ie{1,2,...,7}).

R We compute 3, lower bound of the starting time of operation i, and d,, lower bound of the

completion time of operation i, for ie {1, 2, ..., 7}. We obtain successively:
® operation 1:a, = oc' and, since 8, is its minimal processing time, d =a +0,

* operation 2: Since operation 1 must be finished before the beginning of operation 2,

a, = max(a)andd2 = a, +0,,

® operation 3:a, = (x, andd, = a, +8,,

. operation 4:a, = max(, d,, d)and d, = a; +60,.

For operations 1 to 4, we computed a, the lower bound of the starting times of the
operations ﬁrst and, based on these bounds, we computed d;, the lower bound of the
completion tlme of the operations. The problem is quite different when considering operation 5

since as, the lower bound of the starting time of this operation does not depend only on d,, but
also on a, the lower bound of the starting time of operatlon 6, which is unknown at this stage

8

of the computation. It is the reason why we reverse the way of the computation process and

compute d;, the lower bound of the completion time of operation 5, first. We obtain:
* operation 5: d; = o; +0, and, since ©,+8, is its maximal processing time,

max(ai, d, -6, —85),

3
® operation 6: Since operations 5 and 6 must start at the same time,
a = max(afﬁ, d,, as) andd;, = ag+6,"

e operation 7:a, = rnax(oc7)andd7 = a,+0,.

We then apply a backward process starting from d, to define a set of feasible starting times
of the operations. This process leads successxvely to b, minimal starting time of operation i,
and to e, minimal completion time of operation i, for i€ {1, 2, ..., 7}. Indeed, a, < b, and
d, < e. Applying the backward process, we obtain successively:

* operation 7:e, = d, andb, = a, »

® operation 6: Since operation 6 must end when operation 7 starts, e, = max(d6, -b,)
and, since , + 9§ is its maximal processing time, b, = max(ag, e, —0, — 86),.

e opei’ation 5: b; = max(a,, bs) and, since 6, is its minimal processing time,
€5 = max(ds, by +80,), |

* operation 4:¢, = max(d,, b6) andb, = max(a,, ¢, -0,-3,),
" e operation 3:e, = max(d;, b,) andb, = max(a3, e;~0,-3,),
* operation 2:e, = max(d,, b,) andb, = max(a,, e, -6, - 3,),

* operation l:¢, = max(d,, b,) andb, = max(a,, e, -6, -3,).

If operation i cannot be completed before B! , ie. if e, > B, . we replace window [()Liri , B!]

T

]

by the next one, that is [aiw, Biriﬂ], and we restart the process. We can speed up the
‘computation replacing the window [ozir . B] by the first window [ai By,] (i.e. k is as

n+k; *

low as possible and k; = 1) such that the operation i can be completed before B ~If all the

operations can be completed in the windows to which they are assigned, then the b values are
the solution of the problem. This simple example illustrate the general algonthm proposed
hereafter.

Algorithm 2- Acyclic precedence

In the remainder of this section, the operations are labelled by the order m(i) obtain by

applying algorithm 1. In other words, i should be understood as m(i).
1. Initialization -)
1.1. For ie{1,2,...,n}, set r, =1

1, is.the rank of the idle time window which is under conszderatzon to perform operation i.

1.2. For ie{1,2,...,n}, set fa)=0

- fli) is the operation on which the computation of the schedulée of operation i will be

based.
2. Foreward process

"

4]

9

Computation of lower bounds for the starting times and the completion times of operations.

2.1.

Fori=1tondo,

2.1.1. SetE, = (i+1, i+2, ..., n}

E, is the set of arcs which have not been consider yet.
2.1.2. a = :

a is a lower bound of the starting time of operation i. Initially, a, is set at the value
of the lower llmzt of the window corresponding to operation i. |
213. d = a, +6, '

d, isd lower bound of the completion time of operation i. Initially, d, is set at the
value of the lower limit of the window correspondmg to operatzon [increased by
the lower value of the manufacturing time.

2.14. If (I ud)i)mEi—@then _

This condition means that, for each operation J which begins or finishes when the

operation i begins, a; and d; have been previously computed.

2.14.1. a = max|a,, rjrelerligc(d,-) maX(a,»))

jed;
The starting time a, is the maximal value omong, (i) a lower bound of a,
(ii) the greater completion time of the operations which preceed i, and (iii) the
greater starting time of the operations which are supposed to start at the same
.time as i.
2.14.2. d = max(d;, a,; +6,)
The completion time d, is the maximal value among, (i) a lower bound of d,
and (ii) the sum of the starting time of operation i and the minimal processing
time of i.
2.14.3. Forje(F ud7) do f(])-l
Any operation j which begins or finishes when the operation i begins, will be
scheduled taking into account the starting time of operaiion i.
2.15. If (@ VT)NE, =@ then
This condition means that, for each operation which begins or finishes when the

operation i finishes, a; and d; have been previously computed.

2.1.5.1. 'di = max(di,’ ma_gc(dj) max(aj))

jer?
The completion time d. is the maximal value among, (i) a lower bound of d,
(ii) the greater completion time of the operations which are supposed to end at

the same time as i, and (iii) the greater starting time of the operations whtch

succeed to 1.
2152. a = maX(ai, d,-6,-3,)

e

10

The starting time a; is the maximal value among, (i) a lower bound of a, and
(ii) the completion time of operation i decreased by the maximal processing
time of i.
2.1.53. For je (P UT) do f(j) =i
Any operation j which begins or finishes when the operation i finishes, will
be scheduled taking into account the completion time of operation i.
3. Backward process
Computation of b,.,' the minimal starting time, and e, the minimal completion time of
operation iefl, 2, N
3.1. For i=n down to 1 do,
3.1.1. If f(1) = O then ,
Operation i is scheduled before any operation which begins or finishes when
operation i begins or finishes.
3.1.1.1. b =a
3.1.1.2. ¢ = d
3.1.2. If f(i)e I then
Operation i is scheduled taking into account to ey, minimal completion time of
operation f{i) which has been previously scheduled and which ends when operation
i begins.
3.12.1. b = max(a,, e,
3.1.22. ¢ = max(d;, b, +6,)
3.1.3. If f(i)e ®; then
Operation i is scheduled taking into account b qip Minimal starting time of operation
J(i) which has been previously scheduled and which begins when operation i
begins.
3.13.1. b = max(a,, by,)
3.1.32. ¢ = max(d;, b, +86,)
3.1.4. If f(i)e @ then ' _
Operation i is scheduled taking into account ey, minimal completion time of

operation f{i) which has been prevzously scheduled and which ends when operation
-1 ends.
314.1. ¢ = max(di, ef(i))
3.142. b = max(a;, ¢, -6, -8,)
3.1.5. If fi)e I} then
Operation i is scheduled taking into account by, minimal starting time of operation
J(i) which has been previously scheduled and which begins when operation i ends.
3.151. ¢ = max(di , bm))

1

3.152. 'b, = max(a,, e, -6, -8,)

@

11.

4. Test

4.1. Fori=1 to n do,
4.1.1. Whilee, > B,,setr, = 1, + 1

. Each operation i must be completed before B'r It is why we have to try the next
time window. . ' |
4.2. If none of the 1, has been modified, then
4.2.1. max (e;) is the minimal makespan
- 4.2.2. b, are the earliest starting time of the operations
4.3. Else '
4.3.1 Return to step 2.

In algorithm 2, it is assumed taht, for each operation i, the corresponding windows are
ordered in the increasing order of o, and, in case of equality, in the increasing order of B,

Under this assumption, we see that:

® In the forward process, a°and d, are computed once for each operation i, and used once to
compute ag, and d; so, the complexity is in o(n). '

¢ In the backward process, we compute 3 and d; once once for each operation i, which leads

to a complexity is in o(n), too.

. o
* The previous computation is performed at most q times, where q =Zqi is the total
sl

number of idle windows.

Finally, the complexity of the whole algorithm is in o{qn).

Results 2 and 3 presented hereafter guarantee that the solution obtained by applying this
algorithm is optimal.

Result 2 _
Algorithm 2 leads to a feasible solution.

Proof:

a. We start by proving the results (9)-(14) which will be used in the second
part of the proof. ‘

Considering steps 3.1.‘1.1, 3.1.2.1, 3.1.3.1, 3.1.4.2 and 3.1.5.2 in algorithm 2, we derive:

3 < b, Vie{l, 2, .., n}. :)
Considering steps 3.1.1.2, 3.1.2.2, 3.1.3.2, 3.1.4.1 and 3.1.5.1 in algorithm 2, we derive:
d = e, Vie{l, 2, .., n}. ’ ©(10)

Assume that f(i)e I, then ieTy,. Thus, according to step 2.1.5.1 in algorithm 2,

8 < dg,. Since dgy < eg, (see relations (10)), we can wri;e & < € Considering step

12

3.1.2.1 in algorithm 2, it leads to:

b = ey, Vie{l, 2, ..., n} such that f(i)e 7. (11)
Assume that f(i)e <I>, , then 1E(I)f(l) Thus, according to step 2.1.4.1 in algorithm 2,

& = ag. Since ag < by (see relatxons (9)), we can write 3 < by, Considering step 3.1.3.1

in algorithm 2, it leads to:)

b, = by, Vie{l, 2, ..., n} such that f(i)e @;. . (12)
Assume that f(i)e (I>+ then i€ @7, . Thus, according to step 2.1.5.1 in algorithm 2,

d; < dg,. Since dy, < ey (see relations (10)), we can write d. < (. Considering step

3.1.4.1 in algorithm 2, it leads to:

€ = ey Vie{l, 2, ..., n} such that f(i)e ®;. (13)
Assume that f(i)e F then ie€ly;. Thus, according to step 2.1.4.1 in algorithm 2,

d; < ag. Since ag < by, (see relations (9)), we can write d, < bg,. Considering step 3.1.5.1

in algorithm 2, it leads to:

€ = by, Vie{l, 2, ...; n} suchthat f(i)e I'". : (14)

b. We now etablish condltlons (1) to (8) which define the feasxblllty
b.l. We prove that @, <b, Vie{l, 2, ..., n}. (inequalities (1))

“According to steps 2.1.2, 2.1.4.1 and 2.1.5.2 in algorithm 2, we have:
o <a, Vie{l, 2, ..., n}. Furthermore, according to relations (9), o <b;: this leads to
inequalities (1). ' '

b.2. We prove that e, <f, Vie{l, 2, ..., n}. (inequalities (2))

Since we setr; = r, + 1 whene, > B (see step 4.1.1 in algorithm 2), and since the last
window q; associated with each operation i is such that B; =+oo, then the first solution
obtained verifies: e, < B‘ri: this proves inequalities (2). ,

b.3. We prove that 9, <e;—b, Vie{l, 2, ..., n}. (inequalities (3))

Case 1: If f(i)=0, steps 3.1.1.1 and 3.1.1.2 in algorithm 2 lead to b, = a and ¢, = d.
Furthermore, if f(i) =0, then (ITU®; U®; UT})A{i+1, i+2, ..., n}=@ and
a; +0; <d, (see steps 3.2.4.2 and 3.2.5.1). Asa consequence, b, +86, <e,.

Case 2: Iff(i)e I’ or f(1)e ., then according to steps 3.1.2.2 and 3.1.3.2: €; b, +0,.

Case 3: If f(i)e @ or f(i)e I7", then we derive from steps 3.1.4.2 and 3.1.5.2:
b, +6, =max(a; +0,, e, -§,). Thus, b, +6, < max(a; +6;, ¢,). Furthermore, if f(i)e ®;
or fli)e I'*, then C(®ror)n{i+l, i+2, .., n} 2o,
((Dl' v Fi;)rj{i+ L, i+2, ..., n}=Q and a, +6, <d, (see step 2.1.4.2). Asa consequence,
b, +6, <max(d;, e,). Using relations (10), we obtain: b, +6, <e,. '

This proves inequalities (3). -

b.d. We prove that ¢, -b, <6, -3, Vi €{l, 2, ..., n}. (inequalities (4))

@

- Using relations (12), we obtain: b = by, = by = b,

13
Case 1: If f(i)=0, steps3111and3112malgor1thm21eadtob a,ande =d

Furthermore, if f(i) = 0, then (Fi Vo, ud)+ul“,)r_{1+1, i+2, .., n}=J and

d; -8, -9, <a; (see steps 3.2.5.2). As a consequence, €, —08, -3, <b..
Case 2: If f(l)eI" or f(i)e @], then we derive from steps 3.1.2.2 and 3.1.3.2:
e; =6, -8, = max(d, =6, -5,, b, -3,). Thus, e, -0, -39, Smax(di—ei -3,, b,).

Furthermore, if f(i)e r; or f)e®], then (ITUD)N{i+1, i+2, ..., n}=0,
(@ UL) {i+1, i+2, ..., n} =@ and d;~0,-8 <a, (see step 2.1.5.2). As a
consequence, e; —6; —8, <max(a;, b;). Using relations (9), we obtain: e, —0, -3, <b..

© Case 3: If f))e®’ or fi)eT", then according to steps 3.1.4.2 and 3.1.5.2:

'b; 2e; -6, -8,.

This proves inequalities (4).
b.S. We prove that b, =e;, Vjel[, Vie{l, 2, ..., n}. (inequalities)

Forany jeI,, if f(j) =i, according to relations (14), ¢ = by = b,

1

Forany jeI, if f(i) =], according to relations (11), € = ey = b.

For any jeI such that ie D, and f(i) #1i, je I"f” Thus, considering step 2.1.4.3..
f(j) = f(i). Using relations (12) and (14), we obtain; ¢ = €y = by = bI
For any jeI; such that ieT iy and f(i) # j, je @, Thus, considering step 2. 1.5. 3

() = f(i). Using relations (11) and (13) we obtain: e = b,m =b b,

fw = O
This proves inequalities (5).
b.6. We prove that b, =b;, Vied], Vie{l, 2, ..., n}. inequalities (6))

Forany je @, if f(j) =i or f(i) = =J, according to relations (12), b =
For any je ®; such that ie D) (i) # 1 and f(i) # J, J€ gy Thus considering step

2.1.4.3, f(j) = f(i). Using relations (11), we obtain: b = ey = ¢, =b.

1

For any je @] such that ie T}, je Te- Thus con51dering step 2.1.5.3, f(j) = £(i).

~ This proves inequalities (6).
b.7. We prove that e, =e;, Vje®, Vie{l, 2, ..., n}. (inequalities)]

Forany je @/, if f(j) =i or (i) = j, according to relations (13), e =
For any je ®; such that ie Itiy, J€ Ty, Thus, considering step 2.1.4.3, £(j) = £(3).

Using relations (14), we obtain: e, = by = by, = e.

For any je @ such that ie (D;'(y f(1) # i and f(i) # j, je CI)f(,) Thus, considering step
2.1.5.3, 1(§) = £(i). Using relations (13), we obtain: & = €y = €y = €.

This proves inequalities (7).
b.8. We prove that e, =b;, VjeI7, Vie{l, 2, ., n}. (inequalities (8))

Forany jeT7, if f(j) =i, accordmg to relatlons (11); b, = e = ¢

Forany jeI'’, if f(i) =j, according to relatlons (14), b, = by, = e,
For any jeT; such that ie I, and f(i) # j, je @g;,. Thus, considering step 2.1.4.3,

fQ).= f(i). Using relations (12) and (14), we obtain: bj =

14

For any J€T such that ie @, and f(i) # i, je I'ti,- Thus, considering step 2.1.5.3,
f(j) = f(i). Using relations (11) and (13), we obtain: b = €y = Cm = €
This proves inequalities (8).
QED

Result 3 .
In the first feasible solution obtained by applying algorithm 2, all the completion times, and
the starting times of the operations, are minimal. As a consequence, this solution is optimal.

Proof:

a. For a given set of idle windows we prove that, if there exits a feasible
solution, the solution obtained by applying steps 2 and 3 in algorithm 2 is such
that no other solution leads to a set of completion times which are lower.

Considering steps 2.1.2 to 2.1.5 in algorithm 2, and keeping in mind that 0, and 0, + 9,
are respectively the minimal and the maximal processing time for operation i, we see that the a,
values and the d; values cannot be reduced. As a consequence of steps 3.1.1 to 3.1.5, we claim
that the b, values and e, values given by algorithm 2 cannot be reduced either. ,

As a first consequence, if the solution obtamed by applying steps 2 and 3 of algorithm 2 to a
given set of windows {[a, , B!]} does not verify constraint (2) for at least one

i€ {1, 2, ..., n}, no feasible solution exists for this set of windows.

As a second consequence, if the solution obtained is feasible, it is composed with the lower
possible b, and e, starting and compietion times of the operations i, for this set of idle
windows. Thus, the makespan cannot be reduced, for this set of idle wmdows

This completes the first part of the proof. ‘

b. We prove that the first feasible solution obtained by applying algorithm 2
is optimal.

If the solution denved from the set of windows having the minimal lower bounds a is

feasible, it is optimal, and the starting time of the operations are rmmmal for this set of wmdows
(see a.). Furthermore, since the completion times increase with the a! values, the solution is

optimal and the starting time are minimal for any set of idle windows {[ozr , B,|]} e

Moreover, if the operation i is such that e > B then any set of windows contammg
- [aii , B] will lead to the same inequality and thus w1ll not lead to a feasible solution.
This completes the proof.

QED

B

e,

.

123

15

S. EXAMPLES

Two examples are given in this section. The first example is introduced to illustrate
algorithm 2. The second example show how to use the approach presented in this paper for
Work-In-Process (WIP) regulation in automated system. ’

4

5.1. ILLUSTRATE EXAMPLE : A

The process represented in Figure 1 is composed with 7 operations. Each operation is
defined by 6,, its minimal processing time, and 6, + 3§, its maximal processing time. Since the
system is fully automated, components cannot be stored in front of the resources. In this
example, operations (except operation 1, which is a chemical treatment) can be extented as

much as necessary, but in this case, machines are unavailable for other operations until the
current operation stops. '

Table 1- Processing times

i 1 2 3 4 5 6 n=7
0, 1. 2. 3, 3. 2. 1. 2.
d, 1. 400 400 400 400 +00 400

Each operation is assigned to a given machine. Since severals operations are previously
scheduled, these 7 operations must be performed in one of the idle periods [a:_ , B'r] available

on the resource.

Table 2- Available - windows

i| 1 2 3 4 s | 6 n=7
q; 1 3 3 3 3 2 . 4
[, B[0, +ol [0,31 | 10,2) | 10,21 | [0.5] | 3.8 | 03]
[}, B;] (4,110 [(6,131 | [3,7] | [7,17] | 10, +e[| {5, 7]
[0, BY] [14, +oo[| [15, +oo[| [10, +oof | [20, oo [10, 15]
' R [17, +oo[

16

By applying- algorithm 2, we obtain the optimal solution in which the starting times of.

operations are minimal.

). B
m 20,
~Im \7 .
e M ‘v

| N 7

Operation
PN w

w

i i

]
L}

20

6 8 10 12 14 16

Time

-B.usy periods % Operations scheduled % Operations scheduled

(due to products previously . by applying algorithm 2 by applying algorithm 2
scheduled) (minimal processing time) (selected processing time)

~
‘-I
-I
b

o
N

Figure 2. Optimal schedule of the process

5.2. WIP REGULATION

In this section, we consider an assembly system which includes K+1 production stages.
Note that the approach could be applied to a more general type of automated production system.
Each production stage k (k=0, 1, ..., K) is composed with p* pools of machines, each pool
p =1, 2, ..., p* containing m; machines. s, storage entities are ready to store one unit of
product in front of the p-th pool of the k-th production stage. If the pool is composed with
assembly resources, €ach storage entity can store all the components required to assemble one
unit of the produét or semi-finished product resulting from the assembly operation. Figure 3
represents such a system. The production stages are numbered backward from O (final
production stage) to K. If several components concerning the same product are manufactured at
the same production stage, they are manufactured by different pools of machines.

P

4

TN

wy

17

Stage 2 | —Ip Stagel _ | Stage 0
P2 P! : _ pPo

|
v
A/

M2

: 1
1.1 M

0
11 M

11

TN
J

"‘\

S

,
@®
,

~J
@)
)

"o‘

Wy,

& -
M%.z Mll.z @ M?z
L J J o\ —i]] AN L3 J
P2 P) | PO
~
K@W,('M221 Ef@\ lel r" {7 Mgl
O\ G| &)
;@gL i \ q J

&
S
&
=

®
E

P* is the p-th pool at stage k
M;,, is the m-th machine of the p-th pool at stage k °
S;. is the s-th storage entity available in front of the p-th pool at stage k

- Figure 3. An automated assembly process

The assembly process represented in Figure 4 can be manufactured on the assembly system

.. represented in Figure 3. The pools P} associated with the operations are the pools of machines

requifed to perform the operations. ,

In such an assembly system, the processing time associated with each operation is fixed (i.e,‘
d; =0 for any manufacturing or assembly operation i). Each storage entity is considered as a
resource. The minimal processing time for such a resource is equal to zero (i.e. 0,=0 ifiisa

- "storage operation") and the maximal processing time is the same for each storage operation

(i.e. 8, = J for any storage opefétion i).

18

Figure 4. An assembly process and the required pools

The parameter & is used to control the WIP. It is expected that the lower §, the lower the
production cycle, but the lower the utilization ratio of the machmes The goal of the following

numerical examples is to test this assumptlon

To perform these tests, we generate at random and in sequence assembly processes, and we
schedule the operations as soon as the assembly processes are generated. This is done for
different values of 8. For each value 8, we compute the utilization ratio (URBP) of the
bottleneck pool of machines. This ratio reflects the productivity of the system. We also
compute the mean value of the production cycle time (MPCT), as well as the mean utilization
ratio of the storage facilities (URST). There are six operation stages in the example (K = 5).
Table 3 gives the number of pools for each stage.

Table 3 - Number of pools per stage

Stage] K =5 4 3 2 1 0

Number of pools 6 2 5 -9 5 2

~ Each pool is made with 3 identical machines, and 4 storage identities are associated with each
pool. For each manufacturing or assembly operation, the processing time is generated at
random between O and 10. The assembly process is also generated at random, starting from
level 0. The number of predecessors of each operation is bounded, as well as the total number
of operations in a manufacturing process. As a consequence, some of the manufacturing
processes have less than six operation stages. ' A

We generate 1000 manufacturing processes, launched in production in the order they have
been generated. For each value of 6, (8 =0, 1, ...,10), we provide: , .

® The mean value of the production cycle time (MPCT). This value indicates, on the
average, the tendency of the cycle times,

¢ The mean utilization ratio of the storagé facilities (URST),

* The utilization ratio of the bottleneck pool (URBP).

‘The results are given in Table 4. The conclusion is straight foreward : the greater §, the

greater the productivity (since the value of the URBP increases with &), but the greater the level
of the WIP (since the URST increases with §), and the greater the cycle time.

[

»

L2]

i3

19
Table 4- Control of the WIP

5 MPCT | URST | URBP
0. 2203 | 0000 | 0722
1. 2467 | 0050 | 0.776
2. 2734 | 0.104 | 0818
3. 3023 | 0162 | 0858
4. 33.03 | 0219 | 0884
5. 3596 | 0276 | 0.906
6. 38.80 | 0331 |. 0923
7. 4151 | 0379 | 0931
8. 4408 | 0422 | 0944
9, 4637 | 0460 | 0950
10. 4845 | 049 | 0953

6. CONCLUSION : ‘
The algorithms presented in thlS paper are real txme scheduhng algorithms which allow to _
schedule new assembly process as soon as possrble. Asa consequence, the first idle periods
used are the ones which are the closest to the current time. This guarantees a good use of the
resource. Furthermore, by controling the flexibility of the system (i.e. the 8, values), it is
possible to reduce the WIP at the expense of the use-of resources. In particular, as showed in

the example presented in sectron 5, it is possible to adjust the WIP according to the requrred
productivity.

REFERENCES |
CALLAHAN J.R., "The Nothing Hot Delay Problems in the Production of Steel", PhD.
Thesis, Department of Industrial Engineering, University of Toronto, Canada, 1971
CHAUVET F., LEVNER E., MEYZIN LK., PROTH J.M., "On-line Part Scheduling in a
Surface Treatment System", INRIA research reports 1997, N. 3318, INRIA, Le Chesnay,
France , ,
CHU C, PROTH J.M., WANG L., "Improving job-shoptv schedules through critical pairwise
exchanges", International Journal of Production Research, 1998, V. 36, N. 3, pp. 638-694
HALL N.G., SRISKANDARAJAH C., "A survey of machine scheduling problems with
blocking and no-wait in process", Operations Research, 1996, V. 44, pp. 510-525
MC CORMICK S.T., PINEDO M.L., SHENKER S., WOLF B., "Sequencing in an
Assembly Line with Blocking to Minimize Cycle Time", Operations Research 1989, V. 37,
pp. 925-935 _
RACHAMADUGU R. and STECKE K., Classzﬁcatzon and review of FMS schedultng
procedures Production Planning and Control, 1994, V. 5, N. 1, pp. 2-20

i

=

Unité de recherche INRIA Lorraine
Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botamque B.P. 101 - 54602 Villers 1&s Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu --35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I"Europé - 38330 Montbonnot St Martin-(France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - B.P. 93 - 06902 Sophia Antipolis Cedex (France)

&

" Editeur
INRIA - Domaine de Voluceau - Rocquencourt, B.P. 105 - 78153 Le Chesnay-Cedex (France)
http://www.inria.fr

ISSN 0249-6399 .

AR

