N

N
N

HAL

open science

On-line Scheduling in Assembly Processes
Fabrice Chauvet, Jean-Marie Proth

» To cite this version:

Fabrice Chauvet, Jean-Marie Proth. On-line Scheduling in Assembly Processes. [Research Report]
RR-3395, INRIA. 1998, pp.14. inria-00073294

HAL 1d: inria-00073294
https://inria.hal.science/inria-00073294
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00073294
https://hal.archives-ouvertes.fr

o/,

INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

On-line Scheduling in Assembly Processes

Fabrice Chauvet - Jean-Marie Proth

N° 3395
Mars 1998

THEME 4

$i

5

335248

Les rapports de recherche de I'INRIA
sont disponibles en format postscript sous
ftp.inria.fr (192.93.2.54)

si vous n'avez pas d'acces ftp

la forme papier peut étre commandée par mail :
e-mail : dif.gesdif@inria.fr

(n'oubliez pas de mentionner votre adresse postale).

par courrier :

Centre de Diffusion

INRIA

BP 105 - 78153 Le Chesnay Cedex (FRANCE)

INRIA research reports

are available in postscript format
ftp.inria.fr (192.93.2.54)

if you haven't access by ftp .
we recommend ordering them by e-mail :
e-mail : dif.gesdif@inria.fr

(don't forget to mention your postal address).

by mail :

Centre de Diffusion

INRIA

BP 105 - 78153 Le Chesnay Cedex (FRANCE)

«

On-line Scheduling in Assembly Processes
Fabrice CHAUVET* and Jean-Marie PROTH* al
ABSTRACT

The assembly system under consideration is composed with several machines, and some of
these machines may be identical or able to perform the same operations. The manufacturing
system is fully automated and, semi-finished products or components are not stored during the
process. A himited flexibility exist since the manutacturing times can be extended within certain
limits at the expense of the unavailability of the resource. There are no conflicts between the
res_ourcés;"in other words, the same machine cannot be used to perform different operations for
a same product. Due to the intenSily of the flow of products to be manufactured, it is not
allowed to reschedule products which have been previously scheduled. Thus, when a new
product requirement arrives in the system, we have (o take advantage of the idle time windows.
The goal is to complete the product as soon as possible. We give a real-time scheduling
algorithm which guarantees an optimal makespan to any product which arrives in the assembly

system. A numerical example is provided to illustrate this approach.
KEYWORDS _
Makespan optimization, Real-time scheduling, On-line scheduling, Assembly system.

* INRIA Lorraine, Technopdle Metz 200X, 4 rue Marconi, 57070 Metz, France
** Institute for Systems Research, University of Maryland, College Park, MD 20742, USA

Processus d’assemblage en temps réel
Fabrice CHAUVET* and Jean-Marie PROTH* and *x
RESUME

Le systetme d’assemblage considéré est composé de plusicurs machines. Certaines de ces
machines peuvent €uwe identiques ou différentes mais en mesure d’exécuter les mémes
opérations. Le systéme est automatisé, et il n’est pas possible de stocker des composants ou des
produits semi-finis au cours de la fabrication. Une flexibilité limitge du systéme existe : il est
possible d’étendre les temps opératoires dans certaines limites, mais dans ce cas la ressource
concernée n’est pas disponible pour exécuter une autre opération. Il n’y a pas de contlit entre les
ressources ; en d’autres termes, une méme machine n’est jamais utilisée pour exécuter plus
d’une opération sur le méme produit. Du fait de la fréquence d’arrivée des produits 4 fabriquer,
il n’est pas possible de remettre en question I'ordonnancement des produits déja ordonnancés.
Par conséquent, lorsqu’une nouvelle commande arrive dans le systéme, il faut tirer avantage au
mieux des périodes de vacuité des ressources. L'objectif est d’exéeuter la commande au plus
tot. Nous proposons un algorithme qui garantit 'obtention d’un temps de fin de fabrication

(makespan) aussi court que possible. Cet algorithme est illustré par un exemle numérique.
MOTS CLES
Ordonnancement temps réel, makespan, systéme d’assemblage.

* INRIA Lorraine, Technopdle Metz 2000, 4 rue Marconi, 57070 Metz, France
** Institute for Systems Research, University of Maryland, College Park, MD 20)742, USA

1. INTRODUCTION

The assembly system considered in this paper is {ully automated. Customers’ requirements
stream in the system, and each new requirement should be scheduled as soon as it enters the
system, the goal being to reduce its completion time as much as possible. In other words, the
goal is to minimize the makespan of euach product considered individually. Due to the
importance of the production flow, it is impossible to reschedule a product previously
scheduled. In other words, when a customer’s requirement arrives in the system, and this can
happen at any time, the goal is to take advantage of the idle periods available on the resource to
complete the product as soon as possible.

Two types of operation have to he performed, that is the processing operations, which
transform the state of components, and the assembly operations, which assemble two or more
components, in order to obtain another component or the finished product.

We assume that a component is not allowed to wait in tront of a resource: the next operation
to be performed on the component should start as soon as the current ends. This constraint is
very strong, mainly since several component which have to be assembled should be completed
exactly at the same time. This constraint aims at reducing the work-in-process (WIP) as much
as possible.

Nevertheless, limited tlexibility exists: the processing time associated with a given operation
may be extented within certain limits, but the resource on which an operation is performed is
unavailable for another operation as long as the current operation is not completed. In
particular, we can tind this kind of limited tlexibility in chemical processes.

Numerous papers have heen dedicated to no-wait or blocking probiems. In these problems,
it is assumed that no intermediate butfers exist between the resources.

Callahan [1971] uses a gueuing model to study a no-wait processing in the steel industry.
Chu and all [to appear], and Chauvet and all [1997] consider the surface treament which 1s a no-
wait problem. McCormick and all [1989] study a cyclic flowshop with buffers which can be
transformed into a blocking problem by considering buffers as resources with totally tlexible
processing times, i.¢. processing times which can take any value between 0 and +eo. Hall and
Sriskandarajah [1996] make a survey on scheduling problems with blocking and no-wait, while
Rachamadugu and Stecke [1994] classily the FMS scheduling procedures. This paper should
he considered as an intermediate approach: some {lexibility exists in the model, but this

tlexibility can be limited.

2. NOTATIONS

Each operation of the assembly process is defined by its minimal and maximal processing
times. For instance, operation i is characterized by 6,, minimal processing time, and 6, +§i,
maximal processing time. Two kinds of operations can be found in an assembly process, that

1s:

3

(1) The processing operations, which transform the state of a component or 4 semi-tinished
product. A processing operation has at most one predecessor and one successor.

(ii) The assembly operations, which assemble several components. The last operations
performed on these components are the predecessors of the assembly operation. In an
assembly process, an assembly operation has at most one successor. It has no successor when
the result of the assembly operation is the finished product.

Each operation 1 is characterized by the set of its predecessors denoted by T and the set of
its successor denoted by 7", Note that, in an assembly process, I may contain several
elements or may be empty. T contains at most one element.

Thus, an assembly process A is characterized by the list {1, 2. ..., n} of its operations, cach
operation i€ {1, 2, ..., n} being characterized by four elements: {6, 8, T, T'}. We
denote by v, the starting time of operation i, ie {1, 2, ..., n}. Since operation j where je I
and I" # @, should start as soon as the current operation i ends, v; is the completion time of

operation 1.

3. PROBLEM FORMULATION

The manufacturing system is composed with several machines, and some of these machines
may be identical or able to perform the same operations. Since other products have been
scheduled previously, the machines are partially busy. The manufacturing system being tully
automated, semi-finished products or components are not stored during the process. The only
tlexibility available in the system is given by the §,° values, which express the fact that
manufacturing times can be extented. This is in some way equivalent to the storage of semi-
tinished products or components, but makes the machines unavailable for other operations.

For each operation i, we have a series of available windows denoted by: [Oti, 1]
[ociz, B'z] [di“ , Bi“] These windows may be available on different machines. They are
ordered, for each operation i, in the increasing order of the o, k = 1, 2, ..., g. When two
o are equal, the order is the increasing order of the B.. There are no conflicts between the
resources; in.other words, the same machine cannot be used to perforin ditferent operations tor
a same product. The last window ¢; associated with each operation i, is such that Biu = 4o,

i
5

A feasible solution to the problem associated with a set [Oci,_ . B] of idle windows (where

i=1,2,nand r, = 1, 2, ..., g) is a set of operation starting times {vi}

i=12 ...n

which verify, for i=1,2,..., n:

al <v, - W
v, +6 SBL’ it I"=0 ‘ (2)
v, <B,. Viel", if T 20 3)
vi+8, <v,, Viel", it 720 (4)
v,Sv,+6,+06, Viel", il T 20 (5)

4

Note that inequalities (4) and (5) allowed to assign to operation i a processing time
w, [0, 8, +8] such thatv, + w, = v, jel". Notealso that it I[[" =&, then w; = 8,
since the goal consists in minimizing the makespan. A feasible solution is optimal if
sfrll,?:ga(v‘ +0,) is minimal.

The goal is to schedule the operations required o manutacture a product P whose assembly
process is A, in order to minimise the makespan, i.c. to complete the product as soon as
possible. This scheduling has to be performed as soon as the product arrives in the system.
Due to the intensity of the flow of products, it is not allowed to reschedule products which have
been previously scheduled.

NB. The scheduling problems with no-wait and blocking are two particular cases of the
problem presented in this paper. In the first case (no-wait problem) 8, =0 while 0, =+oco in the

blocking problem.

4. COMPUTATION OF AN OPTIMAL SOLUTION: ALGORITHM 1
The idea hehind the algorithm is guite simple and can be explained considering figure 1. Let

us assume that the window assigned to cach operation 18 known.

5) 3 7 ————— 8

Figure 1. An assembly process composed by 9 operations

In this assembly process, there are two assembly operations: operation 4 and operation 9, the
other ones being processing operations. We call "branch” a serics of operations which are
succesors or predecessors from cach other, cach operation of a branch having at most one
predecessor if its predecessor helong o the same branch. The process represented in figure 1
has five branches: B,={1, 2}, B,={3}, B,={4, 5}, B,={6, 7, 8} and B;={9}. B, and B,
are called "predecessor branchs” of B,

To schedule this process. we start considering branchs which are predecessors of the same
branch and which cither have no predecessor, or whose predecessors are already been
considered. In this case, we first consider B, and B, and we compute, for each of them, the
minimal completion time. The maximal value of these times is the minimal starting tme of B

1 1

Assume that the window where operation i should he located 1s [or.r, Br] for

ie{l1,2,....9}.

1)

5

We compute successively u,, lower bound of the minimal starting time of operation i, for
ie{l,2, ..., 9}
e operation l:u, = o
* operation 2: u, = mux(oc,3 .U +81),
. operzition 3iu, = o
e operation 4: u, = mux(ai, u, +6,, u, +63>,
e operation 5: u; = mux(afj, u, +64),
e operation 6:u, = o ‘
Z u, + 6,,),
e operation 8: u, = max(ot’: u, + 87),
r) us +65, uy +9h.).

Thus, the minimal completion time of operation 9 is u, +6,. The optimal makespan if the

e operation 7: u, = max(oc
e operation 9: u, = max(oc

set of windows under consideration can lead o a feasible solution is z = u, +0,. We then
apply a backward process starting from u,. The goal of this backward process is to define the
starting times of the operations, keeping in mind that the completion time of one operation is the
starting time of its succecessors. So. we obtain successively v,,-the minimal starting time of
operation i, for ie{l,2,...,9}:

® operation 9: v, = u,,

e operation 5: v, = max(ug, v, -6, —38;),
e opération 4: v, = max(u,, v —64 -3,).
e operation 2: v, = max(u,, v, -6, - 57),
e operation 1: v, = max(u,, v, —8, -9,),

(
(
(u,
(u;,
e operation 3: v, = max(u,, v, -8,-8,),
e operation 8: v, = max(ux, v, 6'\ 8y).
(-3,)

e operation 7: v; = max(u,, v, -6, -0,

® operation 6: v, = max(u,, v -3,).

It the operation 1 cannot be complelcd hetore B'r we replace window [Ot;i, B;] by
[OtiHl, ﬁim], and we restart the process. Better, we can replace the window [ocii , B‘r] by the
tirst window [OLr+k , Bin } (i.e. k; is as low as possible and k; = 1) such that the operation i
can be completed before B, ,, . '

Otherwise the v, values are the solution of the pro‘blcm.‘ This simple example illustrate the

general algorithm proposed hereafter.

Algorithm 1- Assembly
L. Setr, =1, for ie{l,2,....n}
2. Foreward process
2.1. Set E={1, 2, ..., n}

2.2. While Ez @ ,
2.2.1. SelectieE such that T, "nE=(

222 IfI7 =@ thenscty = o, elsesety, = mux(ocir_ . max(ui +Oi))
! ! jely ’ ’

2.2.3. Set E=E\{i} -
23, Setz= max (u, +6,), zis the optimal makespan if there exists a feasible

solution for the selected windows
3. Backward process Y
3.1. Set E={I, 2, ..., n}
3.2. While Ez O
3.2.1. SelectieE such that I "E=O
322 I =Q thensety, = u,clsesety, = max(ui, riré?_x(vj)—(-)i —5i)
3.2.3. Set E=E\{i}
4. Test
4.1. Set E={1, 2, ..., n}
4.2. Forany i€ E such that I =9,
42.1. Whilev, + 6, > B, .setr; =1, + |
4.3. For any ieE such that I # @,
4.3.1. Setj, such that {j} =T .
432. Whilev; > Bi,setr, = 1 + | ' |

4.4. 1If none of the 1, has been modified, then z is the minimal makespan and v; are the

earliest starting time of the operations corresponding to z, else return to step 2.0).

Results 1 and 2 presented hercalter guarantee that the solution obtained by applying this

algoritm is optimal.

Result 1

Algorithm 1 leads to a feasible solution.

Proof:
a. We prove that o, <v,, Vie{l, 2, ..., n}.

+ According to step 2.2.2 in algorithm |, o, <u;, Vie {1, 2, ..., n}. Furthermore, with
considering step 3.2.2, u; <v,, Vie{l, 2. n}. (6)
Finally: o, < v,: this proves incqualitics ().
b. We p;'ove that v, +6, <v,, Vie{l, 2, .., n} VjeI.
According to step 3.2.2 in ulgon'lhin |, tor any i = 1, 2, ..., n such that I #J,

v, +6, = mux(ui +6,, max(vi)—ﬁi) Thus, v, +6, < max(ui +9,, mgx(v)) (7)

el 1

A¥

v
But according to step 2.2.2, whatever je I'', u; +6, <u,. : (&)

Using inequality (8) in (7), we obtain: v, +6, < max(mux(uj) mux(vj)) and using (6),

jely jely
v, +0, <v,, VjeT": this proves inequalities (2).
c.. We prove that v.<v,+0,+3, Vie{l, 2, .., n} Vjel.

From step 3.2.2 in algorithm 1, we derive: v, +86, %Si = mux(ui +6,+96,, m‘rlx(v')) As
: A v

a consequence: v; < v, +6, +38,, Vje I this proves inequalities (3).

d. We prove that v, +>6i SBL, Vie{l, 2, ..., n} such that I =.

Since we setr; = 1, + 1, when v, + 8, > B'r (see step 4.2.1 1in algorithm 1), and since the
last'window q, associated with each operation i, is such that ’3; = +oo, then the first solution
obtained verifies: v, + 0, < B'r : this proves inequalities (4). -

e. We prove that v, SBirI,.Vie{l, 2, ..., n} Vjel7.

Since we setr; = 1+ 1, when v, > B (see step 4.3.2 in algorithm 1), and since the last
window ¢, associated with each operation i, is such that Bj“ =+oo, then the first solution
obtained verifies: v, < Biri: this proves inequalities (5).

QED

Result 2
In the first feasible solution obtained by applying algorithm 1, all the completion times, and
thus the starting times of the operations are minimal. As a consequence, this solution is

optimal.

Proof:

a. For a given set of idle windows, we prove that, if it exits a feasible
solution, the solution obtained by applying steps 2 and 3 in algorithm 1 is such
that no other solution leads to a set of completion times which are lower.

Considering step 2.2.2 in algorithm I, and keeping in mind that 6, is the minimal processing
time tor operation i, we see that the v’ values cannot be reduced. As a consequence,
considering step 3.2.2, and keeping in mind that 8, + &, is the maximal processing time tor
operations 1, we claim that the v,” values cannot be reduced either. |

As a consequence if the solution obtained by applying step 2 and 3 of algorithm 1 to a given
set of windows {[(xiri, Bi.]}H , does not venty constraint (2), or (3) for at least one

T
N

ie {1, 2, ..., n}, no feasible solution exists for this set of windows. Furthermore, if the

solution obtained is feasible, it is composed with the lower possible starting times of the
operations. A consequence of this proof in that the completion times of the operations can not
be reduced since they are starting times of the next operation. The ones which do not have a
successor are also minimal since their pmcéssing time is set at this minimal value.

This completes the first part of the proof.

8

b. We prove that the first feasible solution obtained by applying algorithm 1
is optimal.

It the solution derived from the set of windows having the minimal lower bounds o is
feasible, it is optimal, and the starting time of the operations are minimal for this set of windows
(see a.). Furthermore, since the completion times increase with the o values, the solution is

i
i

optimal and the starting time are minimal for any set of idle windows {[ociri , Bil]}a=1, -

Moreover, if the operation i is such that T} 2@, {j} = I’ and v, > B, then any set of
windows containing [a;, B;] will lead to the sume inequality and thus will not lead to a
feasible solution. In the same way, if the operation i is such that I =@ and v; + 6, > [3',
then any set of windows containing [ozii , B'r] will not lead to a feasible solution.

This completes the proof.

QED
Note that step 4 in algorithm [is executed at most g times, where q = iqi is the number of
i=1

idle windows. Thus, the complexity of the algorithm 1 1s o(n.q).

5. REDUCTION OF THE CYCLE TIME: ALGORITHM 2

The optimal solution obtained using algorithm 1 does not lead to a minimal Lisc of the
resources. The goal of this section is to show how to proceed to reduce the cycle time and, as a
consequence, the global use of the resources.

We propose algorithm 2 and we prove that the cycle time obtained by applying this algorithm

1s minimal.

Algorithm 2 - Reduction of the cycle time
B!] for cach operation i, in the increasing order of the B,

We order the windows [Oh, ,
k =1, 2, ..., n,. Whentwo B} arccqual, the order is the decreasing order of the o, The
v, values are those computed in algorithm 1.
l. Sets,=n, for i1e{l,2,....,n}
2. Foreward process ‘
2.1. Set E={I, 2, ..., n}
2.2, While Ex O
2.2.1. SclectieEsuchthat T "E=0

222 It 7 =@ then setw, = +oo, clse sel w, = min(x,)
kel

223, U TV =D thensetx;, = min(vi +6;, B, w; +6, +8i),
else x; = min(B:‘, w, +0, +5i)
224, Set E=E\{i}
3. Backward process

3.1, Set E={I,2, ..., n}

AV

3.2. While Ez QO
3.2.1. SelectieEsuch that I' N"E=0
322, It T =O then set 'yi = min(xi -0, wi),
elsey, = min(mlip(yi)—ei, x; -8, wi)
1€l o .

3.2.3. Set E =E\{i}
4. Test
4.1. Set E={l1, 2, ..., n}
4.2. ForanyieE
42.1. Whiley, < o, sets = s - 1
4.3, If none of the s; has been modified, then y, are the latest starting time of the

operations corresponding to z, else return o step 2.0.

Result 3

Algorithm 2 transforms the optimal solution obtained by applying algorithm 1 into the
optimal one in which the 4stu'1'ting time of the operations are maximal. In other words, the

solution obtained by applying algorithm 2 is optimal and minimize the use of resources.

Proof: :
a. We prove that o, <y,, Vie{l, 2, ..., n}.
Since we sets; = s - 1, when y, < (x'\ (see step 4.2.1 in algorithm 72), and since the
window r; associated with each operation 1 in algorithm 1 is such that a feasible solutionbexists,
then the first solution obtained verifies: o, <y, : this proves inequalities (1).

b. We prove that y, +6, <f., Vie{l, 2, ..., n} such that T} = Q.

According to step 3.2.2 1n algorithm 2, for any 1 = 1, 2, ..., n such that T‘f =,
y, £x,—0,. 9)

Furthermore, considering step 2.2.3, x, <, . ' |

Finally: y, +6; <, which proves incqualities (2).

c. We prove that y, SB;‘, Vie{l, 2, ..., n} VjeI}.

According to step 2.2.3 in algorithm 2, x, B, . Vie{l, 2. ..., n}.

Furthermore, considen’ng step 2.2.2, w, <x,, Vjel,. , : (10)

According to step 3.2.2, y;, Sw,, Vie{l, 2. ..., n}. (11)

Finally: y, <, ., Vje I : this proves inequalities (3).

d. We prove that y, +6, <y, Vie{l, 2, .., n} VjeI.

From step 3.2.2 i algorithm 2. we derive:r y, +6, < 1};}‘9(}’_0- As a consequence:
y, +6, <y,, VieTl": this proves inequalitics (4).

e. We prove that y, <y, +6,+3,, Vie{l, 2, ..., n} Vjel}.

10

According to step 3.2.2 in algorithm 2, for any i = 1, 2, ..., n such that I} #,

y, +6,+9, = min(mgp(yi)+8i, X, +8,, w,+6,+39,)
1€l,

Thus, min(rirelli_lp(yi), X, wi+85+6i)3y,+8i+6i. (12)
But according to step 2.2.3, x, Sw, +8, +9,. ' (13)
Using inequality (13) in (12), we obtain: min(?elriip(yj), xi)s y,+06,+9, and using

relations (10) and (11), 'yi <y, +06,+9,, Vjel", since the successor j is unique: this proves

inequalities (5).

At this point, since relations (1) - (5) are satisfied, we can claim that the solution

{yi}i o, Isteasible.

f. We prove that y, <v,, Vie{l, 2, ..., n} such that I =Q.
According to step 2.2.3 in algorithm 2, for any i = 1, 2, ..., n such that I =&,

X; =0, <v,. Butaccording to inequality (9), y, < v,.

We know hat the v,” values are minimal and optimal (see result 2). Since the y;” values lead

to a feasible solution, and since y, <v, tor any i = 1, 2, ..., n such that I =@, the

criterion associated with {yi}i _, ., is alleast as less as the criterion associated with
{vi}i -1. .- Thus {y\}‘ _, . _, isanoptimal solution.

g. For a given set of idle windows, we prove that the solution obtained by
applying steps 2 and 3 in algorithm 2 is such that no other solution leads to a
set of starting times which are greater.

Considering step 2.2.3 in algorithm 2, and keeping in mind thar 8, + &, is the maximal
processing time for operation i, we see that the x” values, which are upper bounds of the
tinishing times, cannot be increased. As a consequence, according to step 2.2.2, we see that
the w.’ values, which are upper bounds ol the starting times, cannot be increased. Thus,
considering step 3.2.2. and keeping in mind that 6, is the minimal processing time for operation
i, we claim that the starting times y, of operations i cannot be increased either.

h. We prove that the first feasible solution obtained by applying algorithm 2
is the optimal one in which the starting time of the operations are maximal.

If the solution derived trom the set of windows having the maximal upper bounds [3: 18
feasible, it is optimal, and the starting time of the operations are maximal for this set of
windows (see g.). Furthermore, since the starting umes decrease with the B:’ values, the
solution is optimal and the starting time arce muaximal for any set of idle windows

{[aii ’ B:*]}i=1. 2w

Moreover, if the operation i is such that y, < o , then any set of windows containing

[Oti. B!] will lead to the same inequality and thus will not lead to a feasible solution.

This completes the proof.
QED

[

11

. o .
Note that step 4 in algorithm 2 15 executed at most g times, where g = Zqi is the number of
: i=]

idle windows. Thus, the complexity of the algorithm 2 is o(n.g).

6. EXAMPLE 4

The assembly process represented in ‘Figure 1 is composed with 9 operations. Each
operation is defined by 6., its minimal processing time, and 8, +3;, its maximal processing
time. Since the system is fully automated, components cannot be stored in front of the
resources. In this example, operations (except operations 6 and 7, which are chemical
treatments) can be extented as much as necessary, but in this case, machines are unavailable for

other operations until the current operation stops.

Table I- Processing times
i] 2 3 4 5 6 7 8 -l n=9
8. 3. 2. 2. 2 3 2. 3 2
| +e +00 +o0 +o00 +o0 0. 0. +00 +00

Each operation is assigned to a given machine. Since severals operations are previously
scheduled, these 9 operations must be performed in one of the idle periods [0('r , B!] available

L]

on the resource.

~Table 2 - Available windows
i| | 2 3 4 5 6 7 8 9
ql 2 2 2 2 I
[oed, BY]| (1,911 1o, 51| 10. 71|10, 113] [0, 137] 13, e 10, 31| [0, 57| [0, [
[y BA]|[12, ool [7, 170} [9, e[|[13, e[|[17, o[(5,9.5] [9, (|
[od, BY] [19, o] [12, |

12

By applying algorithm 1, we obtain the optimal solution in which the starting times of
operations are minimal.

Chart 1- Minimal starting times

N 77777
: 222220 |

a 7\
: W7

| —— 77
S~ W/N

\
7 B 77 R

\
e 777/

’ ;
Y Y T Y T T T T Y T T Y T T T T Al

o] 5 . 10 15 20

Busy periods -
Operations scheduled by applying algorithm | W////
7.

(minimal processing time)

Operations scheduled by applying algorithm | %//////ﬁ

(resulting processing time)

o

AV

G

13

By applying algorithm 2, we obtain the optimal solution in which the starting times of
operations are maximal.

Chart 2 - Maximal starting times

|| DN N
2 T YW I
E , - \\.\

) : _ | ~m\
_____)\

- DO \
| ___ Bl Y.,

: I . DI

9 ’ ' ’ m

Operation
(%]

T Y Y Y Y T T v T

(o] S 10 15 20

Time

Busy periods -
Operations scheduled by applying algorithm 2 N
N

(minimal processing time)

Operations sche'du]ed by applying algorithm 2 5\\\\\\\\\\\\

(resulting processing time)

As we can see in this example, algorithm 2 refine the schedule by pushing to the right, as

much as possible, the starting times of the operations. The consequence is an overall reduction

of the use of the resources.

7. CONCLUSION

The algorithms presented in this paper are real time scheduling algortihms which allow to
schedule new assembly process as soon as possible. As a conscqucncé, the first idle periods
used are the ones which are the closest o the current time. This guarantees a good use of the
resource. Furthermore, by controling the flexibility of the system {i.e. the 8, values), it is

possible to reduce the WIP at the expense of the use of resources.

14

REFERENCES

[Callahan, 1971] CALLAHAN J.R., "The Nothing Hot Delay Problems in the Production of
“Steel", PhD. Thesis, Department of Industrial Engineering, University of Toronto,
Canada, 1971 :

[Chauvet and all, 1997] CHAUVET F., LEVNER E., MEYZIN LK., PROTH J.M., "On-line
Part Schediiling in a Surface Treatment System", INRIA research reports, 1997, N. 3318,
INRIA, Le Chesnay, France

[Chu and all, to appear] CHU C., PROTH J.M., WANG L., "Improving job-shops schedules
through critical pairwise exchanges”, International Journal of Production Research, to
appear o

[Hall and Sriskandarajah, 1996] HALL N.G., SRISKANDARAIJAH C., "A survey of machine
scheduling problems with blocking and no-wait in process”, Operations Research, 1996,
V. 44, pp. 510-525

[McCormick and all, 19891 MCCORMICK S.T., PINEDO M.L., SHENKER S., WOLF B,
"Sequencing in an Assembly Line with Blocking to MinimizeCycle Time", Operations
Research, 1989, V. 37, pp. 925-935

[Rachamadugu and Stecke, 1994] RACHAMADUGU R. and STECKE K., "Classification
and review of FMS scheduling procedures”, Production Planning and Control, 1994, V. 5,
N. 1, pp. 2-20 | '

Unité de recherche INRIA Lorraine
Technopble de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - B.P. 101 - 54602 Villers les Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I'Europe - 38330 Montbonnot St Martin (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - B.P. 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, B.P. 105 - 78153 Le Chesnay Cedex (France)
http://www.inria.fr

ISSN 0249-6399

IR

v

