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Convergence de la méthode ET pour ’estimation de
quantiles extrémes

Abstract: Nous étudions la consistance de la méthode non-paramétrique ET (Exponential
Tail) pour estimer les quantiles extrémes de distributions inconnues. Nous montrons que,
en général, la consistance de ET impose de fortes limitations sur les taux de convergence
vers zéro des ordres des quantiles estimés.

Key-words: Queues exponentielles de distributions, Quantiles extrémes, Non-
paramétrique.



1 Introduction

We examine the consistency of a basic nonparametric method for estimating extreme quan-
tiles of an unkown distribution. Given a n-sample, an extreme quantile is a (1 — ay)-th
quantile g,,, of F, larger than the maximal observation, i.e. a;, < n~ 1. We say that an esti-
mate sequence §q, Of go, is consistent if the relative error &, = (§a,, — da,,)/qa, cORvVErges
to 0 in distribution.

Let x1,...,x, be observations of i.i.d. random variables from a distribution F in the Gum-
bel attraction domain, and denote z(;) < ... < z(,) the corresponding ordered sample. The
Exponential Tail (ET) method (Breiman, Stone and Kooperberg 1990) computes an esti-
mate §,, of the (1 — ay,)-th quantile q,,, 0 < @, < n~!, of F. ET relies on an exponential
approximation exp (—y/o,) of the tail distribution 1— F,_(y) of Y = X — u,, conditional on
X > up, X ~ F, where u, = (1 — F)~!(my/n). In practice, 4, = T(n—m,), and we estimate

My
op by the empirical mean of the m,, excesses y(j) = T(j) —ln, 1 < j < mp: 65 = myt Zy(j)
j=1
with m, — 400 and lim m,/n = 0. The ET estimate is then §,, = @, — 6, 1n(an/cn)
n—aoo

where ¢, = my, /n.

We investigate conditions on F' and the rates of convergence to 0 of «,, and ¢, under which

En 4, 0. We focus on the most usual distributions in the Gumbel attraction domain. For
simplicity, we only consider standardized forms of these distributions. To obtain reasonably
general results, we write them as 1 — F(z) = p(z)exp (—H(z)) with p and H € C?(IR),

lirf p(z) = 1, and H(z) ultimately increasing to +oc. For the considered standardized
r—100

usual distributions, p and H take the following forms:

Weibull distribution: H(z) = 2°, p(z) = 1,

Normal distribution: H(z) = 2%/2 4+ Inz 4+ (27)'/2, p(z) =1 — 22 + O(z*),

Lognormal distribution: H(z) = (In2)?/24+1Inlnz+1n (27)/2, p(z) = 1+In 2 24+ O(In"* ),
Gamma distribution: H(z) =z + (1 —p)lnz +InT(p), p(z) = 1+ (p — Dzt + O(z~2).

Furthermore, we limit ourselves to sequences a, = n~(P*™) and ¢, = n~ (' +m) where
lim 7, = lim 5, = 0 and 0 < p’ < 1 < p. Roughly speaking, our results show that, in
n—od

n—od

general, €, 0 implies that p = p’ = 1, and the converse is true in most cases. This sets a
strong limitation on the order of the quantiles which can be consistently estimated through
ET.
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2 Assumptions and preliminary results.

We will need the following assumptions throughout the paper:

(A1) lim H"(z)/H'(x)? = 0.

(A2) p'(z) = O(z71) as z — +o0.
(A3) There exists a constant C such that |[H(¢(1+¢)) — H(t) — £tH'(t)] < C£2tH'(t) for all
t large enough and |¢| < £y for some 43 > 0.

These assumptions hold for the distributions considered in Section 1. We will also need the
following properties (Pg) and (Qg).

(Pg) 0 < lim inf A, /B, < lim sup 4,/B, < +o0
= 0< lim infg(A,)/g(By) < lim supg(A4,)/g(Bn) < +00.

The properties (PH™!), (PH), (PH'), (PH"), (QH™'), (QH), (QH') and (QH") are
true for the Normal, Weibull, Exponential and Gamma distributions. For the Lognormal
distribution, (PH~!) and (QH ') are not true.

The proofs of the following results are straightforward.

Lemma 2.1
Under (A1), there exists an increasing function A € C*(IR) such that H(z) = A(z)Inz.

Lemma 2.2 Under (A1), we have that:

(i) zH'(x) —» +o0 as © — +0o0,
(i) lim_exp(~H(@)/H'(z) = 0.

Proposition 2.1
400

Under (A1) and (A2), (1 - F(z))™! / (1—F(y))dy = 1/H'(z)(1 + o(1)) as z — +oo.

T

A result of Pickands (1975), shows that the exponential approximation to 1 — F,, (y) is valid
when F'is in the Gumbel attraction domain for extreme values (e.g. Galambos, 1987).

Proposition 2.2 Under (A1)-(A3),
(i) the probability distributions are in the Gumbel attraction domain,

(ii) for all constant D >0, lim sup |1 — Fy(y) —exp (—yH'(uw))| = 0.
U=+ 0<y<D/H! (u)

INRIA



3 Main results.

We split the relative error into €, = €est,, + €app, + EestnEappn = Eest, + Eappn, Where
Eappn = (Gan, —Gan )/ Ga, is the relative approximation error of ga,, by Ga, = un+op1In(ayn/cy)
due to the exponential tail approximation, and €cst, = (§a, — G, )/Ga, is the relative
estimation error due to the estimation of the parameters u and o.

3.1 Approximation error

Theorem 1
Assume that 0 < ap, < n7Y, ¢, = my/n with {m,} an increasing integer-valued sequence

such that 1 < m, <n, m, — +o0 and lim ¢, =0, —lna, = (p+n,)Inn and —Ine¢, =
n—oo

(p' +nL) Inn for some sequences {n,} and {n.,} such that lim n, = lim 7/, = 0.

(1) Convergence to 0 of eqpp, -

— Normal, Lognormal and Weibull distributions (8 # 1):

lim eqpp, =0=>p=p' =1 (1)

n—oo

The converse is true for the Normal and Weibull distributions, and under
the condition lim (n, —n),) In*/2n =0 for the Lognormal distribution.

- Gamma distribution:
lim e4pp, =0 for all0<p' <1< p. (2)
(1) If in additionn, = ¢lnlnn/Inn—Ink/Inn andn), = ¢'Inlnn/Inn—Ink'/Inn

for some ¢ >0,q¢ <0, k>0 and k' >0, then the rates of convergence of €qpp,,
are asymptotic to

Distribution | 1st-order asympt. to €4pp, | Condition

-1 Inl 2
Weiball | 2 (q—q')Q(nn"> p=p =1

232 Inn
Normal 1( 2 Inknn)* =p' =1
8 q—4q Inn b=p =
1 Inl 2
Lognormal —(¢g—-4q')? (nlnn)” p=p =1
4 Inn
_ /
Camma (p—=1)In (p/p") Py
plan
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This result highlights the asymptotic limitations of the ET method. We conjecture that the
methods based on the generalized extreme-value or Pareto distributions suffer from similar
limitations.

We give here the outline of the proof. Proofs of Lemmas can be found in appendices.

Sketch of the proof.

Step 1. We first assume that p(z) = 1 for all x large enough. We denote g,,, = H™'(=Inay),
Up, = H '(—Incy), @, = tin+H'(@n) ' In(an/cy) (the corresponding approximation), and
hnpn = (day — Gan)/ o, - We define K(z) = H(2)H"(2)/(zH"(2)).

Lemma 3.1
1. Suppose (PH 1) is true.
(i) If 0 < lir_l{l inf K(z) < lim sup K(z) < +oo then
r—1T00

r——+00
lim e2) =0=>p=p =1. (3)
(i) If lim K(z) =0 then
z—+00
nlirr;o Effp)pn =0 for all p and p' such that 0 <p' <1 < p. (4)

2. If F is the Lognormal distribution, then (3) is still true.
3. If PH 1Y), (QH ') and (QK) are true then

. 1 2 -
ifp=p = 1,5%)1,1! ~3 (n —mp)” K (H *(Inn)) asn — +oo. (5)

4. If F is the Lognormal distribution, p=1p' =1 and lim (n, — n;)lnl/z n =0 then

n—o0

1
Efzzp)pn ~ Z (77n —77;)2 Inn -0 asn — +o0. (6)

Step 2. We now examine the contributions to the approximation error related to p(x). We

split €qpp, into €qpp, = 51(111))19n + 51(121J)1)n + 51(1:;9)1)1” where 51(111J)I)n = (Gan — 6a")/Qan> 8‘(131))Pn =

(Tan — 9an )/ 4, » and Eg,)pn has been introduced in Step 1.

Lemma 3.2 Suppose that (A1)—(A3) hold, and either F satisfies (PH') and (PH™!) or
F is Lognormal. Let y,, — +00 asn — +oo and define z,, = (H+1n p) Y (yn), Zn = H *(yn)
and d(z,) = (xn, — Tpn)/2n. Then d(z,) = O(ln p(xy,) /(2o H' (2y))) and lim d(z,) = 0.

INRIA



Lemma 3.3 Assume (A1)—(A3) and (PH).

(i) We have, for some v,, between u,, and tr,:

e, =0 (dw) [1 = H*(@)H" () (anfen)] ). )
(ii)) We have
esp, = A(da,) = 0 as n — +oo. (8)

(i11) If in addition either lir_lr_l |H”(x)|H(x)H'_2(:1:) < 400 or F is the Lognor-
r— 100

mal distribution then lim a,%)p =0.
n—-+oo n

Step 3. Next, we investigate the important special case where 0 < a;, = kn PIn"%n < n~!
(k>0,p>1,¢>0),and1<m, =kn' P In"n<n, (>00<p <1, ¢ <0). We

need to compare the orders of magnitude of 5((11,,),,", sg,)pn and a‘(l?;,)pn.

Lemma 3.4 Assume (A1)—(A3).
Define L(z) = H*(z)H" " (z)In "2 H(z) and M(z) = H”(2)H" ' (2)H ().

1. If (PH'"), (PH™!) are true and lirf_l |H" (z)|H(z)H' " (z) < +00, then
T—>1T0Q0
(i) if p=1p' =1 then, with x, = H™'(rp1nn) for some r, € [1 + 7}, 1+ 0],

1 2 _ 3 2 _ .
gt(zp)pn /gg,p)pn - 0(111 p(un)L(xn)) and Egp)pn /Egp)pn - O(ln p(qan)L(xn))7(9)

(i) if p# p' then, with x, = H 1(r,1nn) for some r, € [p' + 0, + 0,

(1)
gappn

/e = O(n p(un)M(z,)) and e8), /e2) = O(In p(qan>M(xn23.0)

2. If F is Lognormal, then if p=p' = 1, we have

Jim b 125, = Jim 5 25, =0

Step 4. End of the proof of Theorem 1.

(i) According to Lemma 3.3, the convergence of the ET method reduces to the

2
convergence of Efw)pn to 0.

— Normal and Weibull (8 # 1) distributions: their functions H verify condi-
tion 1.(i) of Lemma 3.1 and K(x) converges to a finite limit as £ — +o0,
hence (3). The converse follows from (5) in Lemma 3.1.

— Lognormal distribution: see Lemma 3.1-2. and 3.1-4.

— Gamma distribution: see Lemma 3.1-1.(ii) since K(z) = O(z™1).
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(ii) We first establish that the order of effp)pn is larger than the order of 621,,),," and
(3)

Eappn -

— Weibull distribution: 5((11,,),," = 653,)“ =0.

— Normal distribution: (PH~!), (PH) and (PH') are true, In p(z) = O(z~?)
and L(z) = O(z?In"?z). Therefore (9) in Lemma 3.4-1.(i) implies that
Jdim e, /elop, = Hm e, /660y, = 0.

— Gamma distribution: the proof is similar with In p(z) = O(z~1),

M(z) = O(1) and (10).

— Lognormal distribution. See Lemma, 3.4-2.

Finally, since eqpp, = 6221,)1,"(1 + 0(1)) in all cases, it suffices to find first-order

asymptotics to 6,%),% as n — +00. For the Normal and Weibull cases, see (5) in
Lemma 3.1-3. For the Lognormal case, see (6) in Lemma 3.1-4. The Gamma case
requires a direct computation.

3.2 Estimation error

Up to the first order, €est, = €5y, + €05, With

€ estn —

Up Unp

i Au ol In (apn/cn)
u — n A —_ o - " A = 7A ].].
estn % u and e Ep o o, (11)

where Au = 1, — u, and Ao = 6, — 0,,. Recall that the parameters u and o are estimated

by @, = T(n—mn) and 6, = m;l Z (:U(n_m"_H) - x(n_m")).
i=1

Theorem 2 Assume that (A1)—(A3) and (PH") are true. Then

1 1
Egs = —— /< " 2
n = fmy oH'(x) w:H—l(_mcn){ "
In (an/cn) 1 ,
. 13
Cestn Vmn  zH'(z) z:H—l(flﬂCn)éln "

where &, (resp. &) 4, E~N(0,1) (resp. £').

Since zH'(x) — +o0o0 as ¢ — +00, the variance of €%, converges to 0. If Ina, = —(p +

Nn)Inn and Inc, = —(p' +n,,) Inn, then the variance of €7,, converges to 0 whenever either

p'<lorp=p =1withn, =¢lnlnn/Inn+Ink/Inn and n,, =¢'Inlnn/Inn+Ink'/Inn.
Moreover, in such cases e¢,; = o(e7,;, ). The asymptotic forms of (12) and (13) for the

Weibull, Normal, Lognormal and Gamma distributions are given in Table 1.

INRIA



Distribution | Ist-order asympt. to ey, Ist-order asympt. to €7, Condition
1 q/2-1 —d\(In1 1 q'/2—-1
Weibull (onV ngz/p &n e =) ;\2—,( e
q/2-1 _ q/2—1
Normal (nn)? /271 (¢ = ¢)(Inlnn)(Inn) e | pep =1
2wk " 2VE "
q'/2—1/2 _ q/2-1/2
Lognormal %én (q 4 )(ln In ";)k(:}n n) 5;;, b= pl =1
p'/2-1/2 q'/2-1 — p\pP'/2-1/2 q/2
Gamma n (Inn) ¢ (p—p)n (Inn) , oAy
p/\/y n p’\/P n

TAB. 1 — Asymptotic forms of (12) and (13)

Here (13) is proved assuming that the excess random variables Yi(") = X(n—mn+i) — Un,
1 < i < my, are ii.d. Ezp(o,). However, this is only an approximation. Taking into ac-
count the possible effects of this approximation on the limiting distribution of £/, is beyond
the scope of the present paper. Contiguity theory (Le Cam and Yang, 1990) leads us to
conjecture that additional limitations on the growth of m,, (e.g. p =p' = 1 for Gamma and
limitations on |¢'| in all cases) can cancel those effects. This is the subject of our current
research.
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Appendices
Proof of Lemma 3.1

Writing the Taylor expansion of eg,)pn, first-order terms vanish and we get

2 In? (anfcn) H"
appn - 2H71(_1nan) H/3

(p—p'+17n—77;l)21n2n H" / '
=73 , T € +77mp+77 ’
2H_1((p + nn) In ”L) ITI—I3 H-'(r, Inn) " [p n]

1 (p—p’ + —%)2 H=l(r,lnn)
Tn H=Y((p+nn)1nn)

, —lIn7, € [-lncy, —Inay),
H-1(—InT,)

KH(rplnn)),ry € [p' + 05,0 + )

2
1. Using (PH~!) with A, = r,,Inn and B, = (p + n,) Inn, we obtain that:

a(p—p +nn—n,)°K (H ' (rp1lnn)) < eﬁ,)pn <blp—p' +n.—n,)°’K (H '(r,1nn)),
(14)
for some 0 < a < b < +00.
(i) f0< lim inf K(z) < lir_lr_l sup K(x) < 400, then
r—1T00

r—+o0
o (p—p'+nn—nj,)?* < Eg))pn <V(p—p'+nn—n,)? forsome 0 < a' < b < +o0.
Therefore, in this case (5,(12;),," —0asn—0)= (p=p' =1).
(ii) If lim K(z) =0 then lim ¢2) =0V(p,p') such that 0 < p' <1< p.
n—oo

z—-too appn

2. If F is Lognormal, we make use of the Taylor formula with integral remainder. We
obtain:

1 P+ n —

E((fp)pn =3 lnn/ PHin v exp (\/21n n(vv—p+ nn))dv. (15)
p'+m, v

A saddlepoint type method can then be used to show that 6221,)% is bounded below if

p#D.

3. Assuming (PH 1), (QH !) and (QK) and p = p' = 1, (14) rewrites
@ Lo R (-
e~ (n—m,) K (H '(Inn)) as n — +oo.

appn 2

4. Applying a saddlepoint method as in 2 to (15) gives the result. O

INRIA
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Proof of Lemma 3.2

— Case when (PH’) and (PH~!) hold.

T, = H Y (H+1np)(z,)]
= H 'H(z,)] + (HY) [H(2s) + 0n1n p(z,)] In p(22), 0, € [0, 1].

Consequently,
o g In p(z,,)
T H'H Y (H(xn) + 0nnp(2,))]
and it follows that )
d(zy) = n p(n)

Tz, H' [H71 (@nH(wn))] .

with ©, =140, 1n p(z,)/H(zy).
Since lir_lr_l O, =1, there exist € > 0, N > 0 such that ©, € [l —¢,1+¢] for n > N.
n—1+0oo

Applying (PH') and (PH ') to A,, = H(z,) and B,, = ©,H(z,,) if follows that
d(zn) = O(lnp(zy,)/(xnH'(2,))), and with Lemma 2.2 (i) we obtain lir_lr_l d(zy) = 0.

— Lognormal case.
An asymptotic expansion of H~! yields d(z,) = Inp(z,)(1 + o(1))/Inx,, and the
conclusion follows as above.

O
Proof of Lemma 3.3

(i) We have

= (52) (0 (- s )

There exists v,, between u,, et %, such that

()

= (o) (- E )

= d(un)t—n (1 _ ;III';((q;n)) In (an/cn)) .

Then u,, < qq, implies

el =0 (d(un) (1 - I{II’I;((ZZ)) In (an/cn))> : (16)

(ii) By definition, e(azz,),,n = d(¢a,, )- Lemma 3.2 gives the result.

RR n° 3389
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(iii) Let us write

ln(an/cn) = (P—P'+77n—%)ln"
— n — ! HH—l ! Y1
_ pop A, HET(W tn)an) g
pl+77;L H(Un)
p—p +nn—mn, H(i,)
= n H(vy,).
v, Hw T
Applying (PH) with A,, = @, and B,, = vy, we get ln(a,/c,) = O(H (vy,)).
e H'(v,) H" (v,) H(vn)
v v v
" 10 (g fen) = O [ —nlZ0n) ) 17
B (o) n (an/cn) ( H2(0,) ) (17)

Two cases appear:
~If lim |H" (2)|H(z)H' *(z) < +00, then 4y, = O(d(u,)) and the result
follows from Lemma 3.2.
— Lognormal distribution: liril |H" ()| H(z)H'~*(z) = +00.
T—>1+00
Then, using (17), (16) rewrites:
3, =0 (i L)Y,

“pbn H"? (vn)
where d(uy,,) is given by Lemma 3.2. It results that

n — In p(u,) H"(vp)H(vy)
Eappn =0 <UnHI(Un) HIZ(’U") ) .

After simplifications, we get

e = O(lnv,/ 10 uy,).

appn

Lemma 3.2 shows that @, = u,(1 + 0(1)). Therefore, since v, € [uy, Uy),
we have ln v, ~ Inu,, and

eV = O@n"?u,). (18)

appn

i (1) —
Hence, n1—1>1:|I—100 Eappn = 0.

INRIA



Proof of Lemma 3.4

1. According to (14), 5%)“ is bounded as follows:

a(p—p + 1. — 1)K (H '(rplnn)) < Efj,)pn <bp—p +n,—n,)*K (H *(rn1nn)),

with 0 < a < b < +o00 and 7, € [p' + 7,,,p + 1s]. Besides, the proof of Lemma 3.3

(1) (3)

shows that in this case egpp, = O(d(un)) and eqpp, = d(qa, ). Applying (PH') and
(PH ') with, in a first time A,, = r,, B, = p' + 7}, and in a second time A, = r,,

B, = p+ n, it follows that

In p(uy,) In p(¢a.)
1y — npltn) (3) — NP\ )
Ellppn O (:L'nHI(-'En)> and Eappn O (an'(xn) ’

(1)

with z,, = H=(r,Inn). Consequently, the proof is similar for €4y, and Eappn. Let us

. 1
consider the 5((1,,),)” case.

(i) f p=p' =1, then

Inlnn\’ , (Inlnn\?
2 2
a0 () Klon) <, <a=d) (o) Klea)s (20
with 7, € [1 +7},,1+ n,] and z,, = H~'(r, Inn).

Remark that Inn = H(z,)/r, and subsitute it in (20). For n large enough,
there exist 0 < a’ < b’ < +o0 such that

a H2(x,) 1 b H?(x,)
(-0 K@) = 3 ~a-¢) Ke)ui@,) O

Finally, (19) and (21) provide 5‘(1;,),," /egi)z,n = O(ln p(upn)L(zy)).

(ii) If p # p', then (21) takes a different form:

a' 1 < 1 < v 1
G—77 KeH @) -~ 0, ~ 0—p7 K@)Hz,)

As previously, we conclude with (19): aglp)p,, /&Efp)pn = O(ln p(un)M(z,)).
2. If F is Lognormal and p = p’ = 1, then (6) shows that

£(2) N(CI—KI')2 (Inlnn)?
Eapp 4 lnn

1
1 —
=0 (=)

Now, (18) can be rewritten as

RR n° 3389
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and Lemma 3.2 provides

1
3) _
El(lp)p" =0 (1n3/2n) '

It follows that nlgréo sglp)p" /5(%)1," = nh_)rrolo sgi)pn /sgi)pn =0.
O
Proof of Theorem 2 (12)
We first prove that
1 ml/2
by — Uy = ——— —1 22
n = tn = oS &ns (22)
where f = F'. By Rényi’s representation (Reiss, 1989),
d Tl Tn )
Unys e Uy 2 L
(U (m) (Tn+1 T

where the U;’s are i.i.d. uniform over [0,1], Uyy < ... < Uy, is the corresponding ordered
k

sample, and T} = Zej, 1 <k < n+1, the e;’s being i.i.d. Exzp(1l). Using the quantile
j=1
transformation, X(,_;y1) = (1 — F) "1 (U;)), 1 < i < n. Therefore,

Up —Un = X(n—mn)_un

L 1-F)! (Utmn+n) =1 =F)7" (%)
1 M

_m (U(mn+1) - 7) )

1B

where w,, is close to (1 — F)~1(m,/n) = u,. Then,

mp €mp+1
U, o 2 L Zmntl
(mat1) — p 2 e~ D+ =~
7j=1
ml/?
= - (§n+0P(1));
where
Mn
€n=m;"2Y (e; —1) =5 £ ~ N(0,1),
j=1

by the Central Limit Theorem. Now,

f(un)=H’(un)%(l - &)

INRIA
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Since lim p(z) =1 and by (A2), p'(un) = O(1/u,), it follows that

r—+00

A C R SR SR WU
p(w)H'(un)‘O(unH'(un)) 0asm = +oo,

in view of Lemma 2.2 (i). Hence,

Flug) ~ TEH (), (23)
and )
Up — Un én
Vi H' (un)
O

Proof of Theorem 2 (13)

In this proof, we make the following approximation. The excess random variable’s Y’i(") =
X(n—mp+i)—Un, 1 < i < my, are considered as i.i.d. following an Exp(1/H' (i, )) distribution.

The random variables Zg”) = H’(ﬁn)Yi(") are then i.i.d. Ezp(1). Therefore,

. 1 Q2
R ¢
_ 1 1 Q2 )
= T (1+mn ;(Z,. 1))
1 1 .
= 24
Ty T E =bn (24)
where o
& =m 23 (2" —1) S £~ N(O, 1)
i=1
Besides,
11 _ _H’(ﬁn)—H’(un)
H'(i,) H'(un) B H'(i,)H' (un)
(i, — un)H" (2n)
H'(i,)H' (un) ’

where z, is between u,, and i,. By (PH"), H"(2z,) = Op(H"(uy)). Then, using (22), we
obtain

R H" (uy,) 1 /M
i) H(uy) — OF (Hf(ﬁnm'(un)f(un) n )

RR n° 3389
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Il
Q
3
+

and the conclusion follows.
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