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Abstract: We define a notion of cut and a proof reduction process for a class of theories,
including all equational theories and a first-order formulation of higher-order logic. Proofs
normalize for all equational theories. We show that the proof of the normalization theorem
for the usual formulation of higher-order logic can be adapted to prove normalization for its
first-order formulation. The “hard part” of the proof, that cannot be carried out in higher-
order logic itself (the normalization of the system F-omega) is left unchanged. Thus, from
the point of view of proof normalization, defining higher-order logic as a different logic or
as a first-order theory does not matter. This result also explains a relation between the
normalization of propositions and the normalization of proofs in equational theories and in
higher-order logic: normalizing propositions does not eliminate cuts, but it transforms them.
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Normalisation des démonstrations pour une présentation
au premier ordre de la logique d’ordre supérieur

Résumé : On définit une notion de coupure et un processus de réduction des démonstra-
tions pour un ensemble de théories comprenant toutes les théories équationnelles et une
présentation au premier ordre de la logique d’ordre supérieur. Les démonstrations sont
normalisables dans toutes les théories équationnelles. On montre que la démonstration du
théoréme de normalisation pour la formulation traditionnelle de la logique d’ordre supérieur
peut étre adaptée pour montrer la normalisation de sa formulation au premier ordre. La
“partie difficile” de la démonstration qui ne peut pas s’exprimer dans la logique d’ordre
supérieur elle-méme (la normalisation du systéme F-oméga) reste identique. Du point de
vue de la normalisation des démonstrations, définir la logique d’ordre supérieur comme une
logique & part ou comme une théorie du premier ordre est donc indifférent. Ce résultat
explique aussi une relation entre la normalisation des propositions et la normalisation des
démonstrations dans les théories équationnelles et dans la logique d’ordre supérieur : nor-
maliser les propositions n’élimine pas les coupures, mais les transforme.

Mots-clé : coupure, normalisation des démonstrations, logique d’ordre supérieur, théorie
équationnelle.



Proof normalization for a first-order formulation of higher-order logic 3

It is well-known that higher-order logic can be formulated as a (many-sorted) first-order
theory. Such a formulation permits to separate in a clear way the logic that describes the
general rules of reasoning and a theory that describes the rules specific to the objects of the
discourse (in this case, the sets and the functions).

From a more technical point of view, such a reduction permits to deduce Henkin’s higher-
order completeness theorem from Godel’s first-order completeness theorem (see for instance
[4, 5]). It permits also to use well-known first-order proof search methods for higher-order
logic. In particular, as this theory is some kind of extended equational theory, the powerful
methods designed for equational theories can be used for higher-order logic. However most
efficient first-order proof search methods rely on the proof normalization theorem and the
fact that searching for normal proofs (or proofs containing a very restricted form of cuts) is
complete. In this paper, we are concerned with proof normalization in the sense of Prawitz
[12], i.e. in natural deduction.

The proof normalization theorem for higher-order logic cannot be deduced from the first-
order one. Indeed, unlike completeness that is proved once for all the first-order theories,
the proof normalization theorem needs a specific proof for each theory. The so called proof
normalization theorem for first-order logic is only a proof normalization theorem for the
empty theory in first-order logic. Other theories, such as equality or arithmetic, have their
own notion of cut and their own proof normalization theorem.

We define in this paper a notion of cut for the first-order formulation of higher-order
logic and we show that the proof of the normalization theorem for higher-order logic can be
adapted to prove normalization for this theory. The “hard part” of the proof, that cannot
be carried out in higher-order logic itself (the normalization of the system F,, [9]) is left
unchanged.

1 A first-order formulation of higher-order logic

Higher-order logic is an extension of first-order logic with function variables, predicate vari-
ables, function terms to be substituted to function variables and predicate terms to be
substituted to predicate variables.

In its first-order formulation, if ¢ is a function term and u, ..., u, are terms we cannot
write the application of ¢ to w1, ..., u, as t(u1, ..., u,), but we need to introduce a function
symbol a, (for apply) and write this term o, (t, u1, ..., u,). In the same way, if ¢ is a predicate
term and w1, ..., u, are terms we cannot write the application of ¢ to u1, ..., up as t(uy, ..., un),
but we need to introduce a predicate symbol €,, and write this proposition €, (t,u1, ..., up).
When n = 1 we usually write a € A instead of €1 (A,a). When n = 0, ¢t is a zero-ary
predicate term (i.e. a proposition term) and € (¢) is the corresponding proposition.

If we curry the functions and define the predicates as functions mapping objects to
proposition terms, we only need a binary function symbols a;, from now on written a, and
a unary predicate €g, from now on written £. The term a,(t,u1,...,u,) is now written
a(...,a(t,uy)...,u,) and the proposition €, (t,u1,...,uy) e(a(...,a(t,u1)...,u,)). As usual,
we write (¢t u) for a(t,u) and (t uy .. up) for (...(¢ uy)...uy).

RR n~° 3383



4 Gilles Dowek

In higher-order logic, base objects, predicates on base objects, predicates on predicates
on base objects, ... are distinguished, and if P is, for instance, a predicate on base objects,
we can apply it only to base objects: terms such as (P P) are forbidden by the syntax.
Thus, higher-order logic is a many-sorted first-order theory.

Definition 1.1 (Many-sorted first-order logic)
(See, for instance, [6, 7] for a detailed presentation) A many-sorted first-order language
is given by

e a denumerable collection S of sorts,

e for each sort T of S, a denumerably infinite collection V of variables, such that Vp
and Vy are disjoint when T and U are distinct,

e a denumerable collection of function symbols, to each function symbol f is associated
an element of S™*1 (n > 0) called its rank (when n = 0, such a symbol is also called
an individual symbol ),

o o denumerable collection of predicate symbols, to each predicate symbol P is associated
an element of S™ (n > 0) called its rank.

Terms of sort T are inductively defined by
e variables of Vi are terms of sort T,

e if f is a function symbol of rank (T, ...,Tn, Th+1) and t1, ..., t, are terms of sort
T, ...,T,, then f(t1,...,t,) is a term of sort Tp41.

Propositions are inductively defined by

e if P is a predicate symbol of rank (Ty,...,T,) and ty, ..., t, are terms of sort Ty, ..., T,
then P(ty,...,t,) is a proposition,

e | (falsehood) is a proposition,

e if A is a proposition then —A is a proposition,

e if A and B are propositions then ANB, AV B, A= B, A& B are propositions,
e if A is a proposition and x a variable then Vx A and Iz A are propositions.

Deduction rules are the usual ones, with the restriction that a variable of sort T can only
be substituted by a term of sort T'.

Definition 1.2 (Many-sorted first-order logic with equality)

A theory T in a language L in many-sorted first-order logic with equality is the theory
in many-sorted first-order logic in the langage L extended by predicate symbols =1 of rank
(T,T) for each sort T and formed with the axioms of T and the azioms

Ve ¢ =1 x (Identity)

INRIA



Proof normalization for a first-order formulation of higher-order logic 5

V(z=7y= (Plz + 2] = Plz +y])) (Leibniz’ scheme)

where Y P is the universal closure of the proposition P.

Higher-order logic is a theory in many-sorted first-order logic with equality whose sorts
are called simple types.

Definition 1.3 Simple types are inductively defined by
e 1 and o are simple types,

o if T and U are simple types then T — U is a simple type.

As usual we write Ty — ... = T, > U for Ty — (... = (T, = U)...).
The symbol a is generalized to ar,y.
To construct functional terms and predicate terms we have the comprehension schemes.

Af Vor ..V, (f 21 ..o ) = 1)

and
3E Vzy ... Vx, (e(E z1 ... T,) & P)

In fact, it is well-known that the first scheme is equivalent to the instances
sV Vy Vz (szy 2) = ((z 2) (y 2))
Ve Vy (kzy)=2
and the second is equivalent to the instances
AEVz Vy (e(Ezy) Sz =179)
IB (e(B) & 1)
AN Vz (e(N z) & —e(x))

3AC Vz Yy (e(C z y) < (e(z) Ae(y)))
AD Vx Yy (e(D z y) & (e(z) Ve(y)))
AIVz Yy (e z y) & (e(z) = €(y)))

AEVz Yy (e(E z y) & (e(z) © €(y)))
JAVz (e(A z) & Vy e(z )
IE Vz (e(E z) < y e(z v))

To have a genulne notation for objects we skolemize these axioms, and introduce symbols
Stuv, Kru, =1, 1,5, A, V, =, &, Yy, 3. Together with the symbols ar, and €, these
symbols form the language L.

RR n~° 3383



6 Gilles Dowek

Definition 1.4 The language L is the language in many-sorted first-order logic with equality
sorted by simple types containing the individual symbols

o Stuyv ofsort (T -U—->V)>(T—->U)->T -V,
o Kry of sortT -U = T,
o =7 of sortT - T — o,

1 of sort o,

= of sort o — o,

A, V, =, & of sort o = 0 — o,

Y and Ip of sort (T — 0) — o,

the function symbols
e ary of rank (T — U,T,U),
the predicate symbol
e ¢ of rank (0).
At last, we take the following instances of the skolemized comprehension scheme.

Definition 1.5 The theory H is the theory in many-sorted logic with equality in the language
L containing the axioms

Vz Yy Vz (Stuv 2y 2) = ((z 2) (y 2))

Ve Vy (Krw zy) =2
Ve Vy (e(=r z y) © (z =1 y))

e(l)e L
Vz (e(= 2) & (me(2)))

Vz Yy (e(A = y) & (e(z) Ne(y)))
Vz Yy (e(V 2 y) & (e(z) Ve(y)))
vz Vy (e(= 2 y) & (e(z) = £(y)))
Vo Vy (e(& 7 y) & (e(z) & (y)))
Vo (e(Vr @) & (Vy ez y)))
vz (e(3r ) & Gy ez v)))

INRIA



Proof normalization for a first-order formulation of higher-order logic 7

Remark In the classical case, many symbols in this language are redundant. The situation
is less clear in the intuitionistic case.

Remark There are two notions of function that must not be confused. The individual
symbol S, for instance, is a term and thus it has a sort. This term expresses an object of
the theory that happens to be a function, thus its sort is a functional type. In contrast,
the function symbol a7y, for instance, is not a term and does not express an object of the
theory, but a function mapping objects of the theory to objects of the theory. The sorts of
the mapped objects are indicated by the rank of this symbol.

This distinction can be compared to that of set theory, where we are used to distinguish
sets as objects of the theory and sets of objects of the theory.

Now we want to define a notion of cut and a proof reduction process associated to the
theory H.

2 Proof normalization for equational theories

2.1 First-order logic with equality
Definition 2.1 An equality cut is a proof of the form

V(:17=y=>(P[z<—ac]=>P[z(—y]))V y Vm;[;:xv ’
t=t=> (Pleetl=>Plzet) o0 t=t ';’m
Pz f]= P'[z « 4] T P
Pl 1 =-elim
where P' is an instance of P.
It reduces to the proof
™
P'[z + 1]

Proposition 2.1 Proofs normalize in first-order logic with equality.

2.2 Equational theories

Definition 2.2 An equational theory is a theory whose axioms are universal closures of
propositions of the form t = u.

Definition 2.3 Let T be an equational theory. An elementary conversion step in T relating
a proposition P'[z < t] and P'[z + u] is a part of a proof of the form

RR n~° 3383



8 Gilles Dowek

V(a:zy#(P[z(—m]#P[z(—y]))v i p
t=u= (Plzet]=>Plzeu) ' " t=u_ .
Pl t]= Pz « 4 T Pl
i =-elim
Pz « u]
Where p is either a proof of the form
Vo =uoy .o
t=u
or a proof of the form
VeVy (z=y=> (z=2=>y=u1)) Vg =up )
— — — V-elim ——— V-elim T
t=u=>u=u=>u=t) t=u ] Ver==x )
=-elim ——V-elim
u=u=>u=t U="u .
P =-elim

A conversion step is a sequence of elementary conversion steps. We write such a con-
version step relating two propositions P and Q)

p
1
Q

Proposition 2.2 From a proof in the theory T, we can build a proof where axioms of T
are used in conversion steps only.

Proof We replace the axioms

by

Proposition 2.3

INRIA



Proof normalization for a first-order formulation of higher-order logic 9

o There is a conversion step from P to P.
e From a conversion step from P to @), we can build a conversion step from @ to P.

e From a conversion step from P to Q and a conversion step from Q to R, we can build
a conversion step from P to R.

Proof
e Take the empty conversion step.

e Take the reverse conversion step built by induction over the structure of the conversion
step from P to Q).

e Take the concatenation of the conversion steps.

Proposition 2.4

e If P and () have the same toplevel connective or quantifier, then from a conversion step
relating P and (Q we can build a conversion step relating their toplevel subformulas.

o From a conversion step from P to Q, we can build a conversion step from Pz + t] to

Qlz « t].

e From a conversion step relating t = u and t' = u' we can build a conversion step
relating P[x < t] and Plx < t'] and another relating P[x < u] and Pz «+ u'].

Proof By induction on the length of the conversion step.

Definition 2.4 A cut, in natural deduction, in the theory T is an introduction rule followed
by a conversion step and an elimination rule.

Definition 2.5 (Proof reduction)

o The cut
mo T2

P Q
PAQ
—
P'AQ
Pl

N-intro

A-elim

is transformed into the proof
Uy

Pl

RR n~° 3383



10 Gilles Dowek

The conversion step from P to P' is given by the first point of proposition 2.4. The
case of the cuts using the right elimination rule is similar.

o The cut
L
P .
PVQ V-1ntro D o
l:l 7{'2 7{'3
P'v@Q R .
R V-elim
is transformed into the proof
1
P
1
PI
ﬂ
R

The conversion step from P to P' is given by the first point of proposition 2.4. The
case of the cuts using the right introduction rule is similar.

o The cut
P

1

% =-intro

— ™

P =qQ P
QI

=-elim

is transformed into the proof
U]

PI

1
P

_m
Q
1
QI
The conversion step from P' to P and from Q to Q' are given by the first point
of proposition 2.4 and proposition 2.3. The cases of the cuts on negation (—) and
equivalence (&) are similar.

INRIA



Proof normalization for a first-order formulation of higher-order logic 11

o The cut
™
L Vintro (z not free in the hypotheses)
Vo P wp
L1
Vz P’ Vel
Pz« ™

is transformed into the proof

|z + ]

Plz « ]

1

Pz + {]
The conversion step from Plz  t] to P'[xz < t] is given by the first and second point
of proposition 2.4.

e The cut

1
d-intro
—1 o
Jz P’

@ 3-elim (z not free in Q)
is transformed into the proof

Plz « ]
L1
Pz + t]
To|T

Q

The conversion step from Pz < t] to P'[x + t] is given by the first and second point
of proposition 2.4.

o The cut
tha:_f:tm V-elim
1
u=1u'= Plz +u] = Pz + u] u=u ” s
Pz + u] = Pz «+ /] = -elm Pz + u] :
Pl « u'] =-elim

RR n~° 3383



12 Gilles Dowek

is transformed into the proof
™

Pz <
1

Plz + 4]

where the conversion step from Plz < u] to Pz < u'] is built using the third point of
proposition 2.4 and proposition 2.3.

Proposition 2.5 If there is a conversion step from P to @) then P and () have the same
toplevel connective or quantifier (and if one is atomic, the other also).

Proof By induction on the length of the conversion step.

Proposition 2.6 Proofs normalize in the theory T.

Proof Let 71,7, ... be a proof reduction sequence in the theory 7. By proposition 2.4 and
2.5, the sequence 7,75, ... obtained by removing the conversion steps and replacing all the
atomic propositions by the proposition ¢ = ¢, where ¢ is a constant, is a proof reduction
sequence in first-order logic with equality. Thus it is finite.

2.3 Equivalence axioms

We may also include, in the theory 7T, axioms of the form V (P < @) where P and Q are
atomic propositions. For instance Peano’s fourth axiom

Vz Yy (S(z) = S(y) &z =1v)

We restrict however to theories 7 such that if t =t & u = v oru =4 & t = tis an
instance of an axiom of 7 then either v and ' are the same term, or v = u' is an instance
of an axiom of T or u' = u is.

The notion of conversion step is a bit more difficult to define, because we do not have an
equivalent of Leibniz’ scheme for equivalence. Thus, we inductively define a set L of proofs
containing the proofs of the form

V(P&Q)
P e Q

and closed by the following constructions: if

V-elim

s

P& Q@

INRIA



Proof normalization for a first-order formulation of higher-order logic 13

is an element of L then

m QAR T PAR
P&Q Q GAR Psq@ P £PAR
P R Q R
PAR QAR

PAR) & QAR

is an element of L, and similar rules for the other connectives and quantifiers.
We extend the definition of elementary conversion steps to consider also parts of proofs
of the form

T
P P
(:>(52 &-elim
and
T
PeQ @ .
—p &-elim

where 7 is a proof of L.
Proposition 2.2 that every proof can be transformed into a proof where axioms are used
in conversion steps only still holds, replacing the axioms

V(P&Q)

+ €
1 1
Q P .
&-intro
V-intro

V(P&Q)

Propositions 2.3 and 2.4 still hold. Thus, the cuts and the proof reduction process can be
defined as in definition 2.4 and 2.5. Proposition 2.5 still holds, thus proof normalization can
be proved as in proposition 2.6.

2.4 Plotkin-Andrews quotient

In this section, we give another characterization of the cuts associated to the equational
theory 7.

Call R the equivalence relation on propositions defined by P R @ if and only if there is
a conversion step from P to Q.

Proposition 2.7 If PR Q and T+ P then T F Q.

RR n° 3383



14 Gilles Dowek

From proposition 2.3, R is an equivalence relation. Thus, we can consider the quotient
P /R of classes of propositions modulo R (Plotkin-Andrews quotient [1, 11]). We define the
same deduction rules on classes of P/R as on propositions of P.

Remark Proof checking is decidable if R is decidable and provided we indicate the substi-
tuted term in the elimination rule of the universal quantifier and the introduction rule of
the existential quantifier.

We have the following equivalence result.

Proposition 2.8 Let P be the class of P in the quotient. We have T + P if and only if
F P.
Proof By induction over proof structure we have 7 + P if and only if 7 F P. Then in the

quotient the axioms of 7 either have the form ¢ = ¢t or P < P. Hence they are provable
and 7 F P if and only if - P.

Remark In the quotient, there are fewer axioms and proofs are simpler, thus proof search
is more efficient. Unification must however be replaced by equational unification. Indeed,
a unifier of two propositions P and ) is a substitution € such that 8P and 6Q are equal in
the quotient, i.e. such that P R 6Q).

Remark In the quotient, conversion steps relate identical propositions and they can be
removed: a cut in the quotient is just an introduction rule followed by an elimination rule.
Thus, the notion of cut of definition 2.4 corresponds to the standard notion of cut (i.e. an
introduction rule followed by an elimination rule) in the quotient.

Example Consider [11] the associativity axiom (A)
VeVyVz (z+y)+z=a+ (y+2)

Two propositions P and ) are related by the relation R if one can be obtained from the
other by a rearranging of brackets.
The associativity axiom is equivalent to

VeVyVzae+ (y+2)=z+ (y+=2)
and thus, in the quotient, it is subsumed by the identity axiom
Ve x==x

We have T + P if and only if - P.
Callt=(a+b)+candu=a+ (b+c).
In the quotient, the proof

Vie=y= (Pleeal=>Pley)), . ‘
t=ums (Phed=Pleed) 00 F=avom .
P'lz + t] = P'lz « 4] =M B ]

P« 4 =-elim

INRIA



Proof normalization for a first-order formulation of higher-order logic 15

can be simplified to
™

P'[z + u]

Remark In some cases, there is a confluent and normalizing rewrite system rewriting propo-
sitions to equivalent propositions and such that P R @ if P and ) have the same normal
form. For instance, in the example above, we have the rewrite system

(z+y)+z>z+(y+2)

n thi norm rm n n as representativ ir . rmalizin
In this case, normal forms can be chosen as representative of their classes. Normal
propositions does not eliminate cuts, but it transforms them removing conversion steps.

3 Proof normalization for the first-order formulation of
higher-order logic

3.1 Normalizing propositions

We first define a rewrite system for terms and propositions of higher-order logic that will be
useful in the following.

Definition 3.1 Let > be the following rewrite system on terms and propositions of the
theory H (actually, since the language of propositions contains binders (quantifiers), it is
rather a combinatory reduction system [10]).

(Sruv zy 2) > ((z 2) (y 2))
(Kruzy) >z
e=Erzy)>r=ry
e(lL)> L
e(+ z) > —e(z)
e(Azy)>e(x)Aely
) >e(x) Vely
e(=zy) >e(@) =>e(y)
) > e(z) < e(y)

>Vye(z y

)
e(Vay )
eSSy

e(Vr ) )
e(@r z) > Iy e(z y)

RR n~° 3383



16 Gilles Dowek

Proposition 3.1 This rewrite system is confluent and strongly normalizing.

Proof As this system is orthogonal, it is confluent [10].

To prove that it is strongly normalizing we define a translation of the terms and the
propositions of the theory A into the typed combinatory language S, K. In each type T,
we chose a variable z7.

o |2l = 2,

[[ST,uv|l = Stuv, |[Krull = Kr,u,

o ||=7|| = Ir57>0 27-5T—0), Where It = (St 77 K177 KT1,1),
o |1l = (o 20),

o |5l = (To=o 20-0),

o [[All= IVl =12l = €]l = Tomo—o Zo—ro—0),

o [IV2ll = 11371 = (ST=0,70 IT—0 (K770 27)),

o (It wll = [l [ull),

o [le@®Il = [Itll,

o ||t =1 ul| = (zrmr0 [[t]] [[ul]),

o lLll =2

* [|=P]] = (zo-0||P|]),

IPAQI=PVRI =[P = Q=P Q= (200 1P|l |QI),
Ve P|| = [[3z P|| =[|P]].

We check that if P rewrites in one step to @, then ||P|| rewrites in at least one step to ||Q||-
Let Py, Ps, ... be a reduction sequence in the system above, the sequence ||Py||, || P2]], ... is a
reduction sequence in the typed combinatory language S, K, thus it is finite [14].

3.2 Proof reduction

The axioms of the theory H of definition 1.5 have the form V ¢ = u or V (P < @), but P and
@ are not always atomic propositions. Conversion steps and the theory R can be defined as
above. Notice that we have P R @ if and only if P and ) have the same normal form for
the rewrite system above.

Proposition 2.2 that from a proof in the theory H, we can build a proof where axioms
of H are used in conversion steps only still holds and proposition 2.3 and 2.4 also, although
the proof of the first point of proposition 2.4 is different.

INRIA



Proof normalization for a first-order formulation of higher-order logic 17

Proposition 3.2 If P and (Q have the same toplevel connective or quantifier, then from
a conversion step relating P and Q) we can build a conversion step relating their toplevel
subformulas.

Proof From a conversion step relating the propositions P and ) we can build a conversion
sequence from P to @ for the rewrite system of definition 3.1. Since this system is confluent,
we can build reduction sequences from P and @) to a proposition R. This proposition R
has the same toplevel connective or quantifier as P and ) and we can build a reduction
sequence from the toplevel subformulas of P and () to the toplevel subformulas of R. From
these reduction sequences, we can build a conversion step relating the toplevel subformulas
of P and Q.

Thus, the cuts and the proof reduction process can be defined as in definition 2.4 and
2.5. But as we shall see the proposition 2.5 does not hold and thus, the normalization proof
of proposition 2.6 does not go through.

3.3 Normalization

In the usual formulation of higher-order logic, the substitution of a predicate or a proposition
variable may increase the complexity of the proposition. For instance, substituting P = P
for X in

X=X

yields
(P=P)=(P=>P)

Thus, proof normalization cannot be proved like in the empty theory of first-order logic, by
using the fact that the complexity of cut propositions decreases.

This is also the case in the quotient, if we chose normal forms as representative of their
classes, as substituting (= p p) for z in the proposition

e(z) = e(x)

yields
(e(p) = (p)) = (e(p) = £(p))

In the first-order formulation, predicate and proposition variables are just variables of
sort Ty — ... = T,, = o and substituting such a variable does not change the complexity of
a proposition. For instance, substituting (= p p) for z in the proposition

e(z) = e(x)

yields
e(=pp) =>¢e(=pp)

which has the same complexity as e(z) = &(z).
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But, this complexity may be increased by a conversion step, for instance the proposition
above can be transformed into

((p) = e(p)) = (e(p) = &(p)

Thus, because some axioms permit to transform atomic propositions into non-atomic
ones, the proposition 2.5 does not hold for the theory H and the normalization proof of
proposition 2.6 does not go through. However, we have the following normalization proof
which is an adaptation of the proof of [9].

Proposition 3.3 Proofs normalize in the theory H.

Proof We associate to each sort of the theory H a sort of the system F,, [9] (see also [8]).
o ol = il = %,
o T > U|=|T|-|U|

To each term of sort T' we associate a type constructor of sort |T'| in F,,
o [Stuwl=Xa: [T My [U] Az [V] (& 2) (y 2),

|Kru| = Az : |T| Ay - |U] z,

=r| =X :x Ay :x VP :|T| - x (P z) = (Py)),

|| =Vz:*z,

5] = Aa:* (a = (Vz: x z)),

[Al=Xa:* Ab:xVz:x ((a—=b—zx) > ).

VI=Xa:x Ab:xVz:x ((a—>2z)—> (b—2) > 2),

[=]=Xa:x AXb:* (a—b),

[&l=Xa:xAb:x Vz:x (((a = b) = (b= a) > ) = x),

V| =Xz : |T| =« Vy : |T| (z y),
|3T| =Xx:|T| >+ Vz:x (Vy:|T|((z y) = 2)) = 2),
o |(tw)|=(It] |u])-

To each proposition we associate a type in F,. Propositions of the form e(t) are translated
like their arguments.

o le()] = ltl;

and the translation follows that of [9] for the other propositions, i.e.
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|t =7 ul =VP:|T| = (P [t]) = (P |u])),

|L] = VX : % X,

|=P| = |P] = (VX : x X),

[PAQ|=VX :x ((|P| = |Q| = X) = X).

IPVQI=VX:x ((|P| = X) = (1@ = X) = X),
|P = Q| =|P|=Ql,
[P & Q=VX:x ((IP| = 1Q) = (IQ] = [P]) = X) = X)),

Vo P|=Vz: |T| |P|,
e |3z P| =VX : % ((Vz : |T|(|P| = X)) = X),

To each proof of a proposition P, we associate a term in F,, of type |P|. To a proof of the
form

s
P
[
Pl
we associate the term |7, and the translation follows that of [9] for the other proofs, e.g. to

a proof of the form
T Up)

P P
LEX I

we associate the term (|m| |m2]).

If a proof 7 contains a cut then the term |7| contains a redex and eliminating the cut in
7 corresponds to reducing the redex in |7|.

Let 71,72, ... be a proof reduction sequence in the theory H. The sequence |7y, |ma], ...
is a reduction sequence in F,. Thus, by the strong normalization theorem of F, [9], it is
finite.

Remark Instead of mapping both ¢ and o to *, we could follow the closer the proof of [9] and
drop the first-order terms, i.e. take |o| = * and |¢| to be undefined then |T' — U| = |T| — |U]|
when both |T'| and |U| are defined, is equal to |U| when |U| is defined but |T| is not and is
undefined otherwise.

RR n~° 3383



20 Gilles Dowek

Conclusion

We have defined a notion of cut (an introduction rule followed by a conversion step and
an elimination rule) and a proof reduction process for a large class of theories, including all
equational theories and a first-order formulation of higher-order logic H. Although the proof
reduction process is the same, the normalization proof is different for equational theories
and the theory 7. The normalization for equational theories is proved by an elementary
reduction to first-order logic with equality. By Go6del’s second incompleteness theorem, there
is no such reduction for the theory H.

Plotkin-Andrews quotient permits to remove the conversion steps and gives another
characterization of cuts. The notion of cut introduced here corresponds to the standard
notion of cut (i.e. an introduction rule followed by an elimination rule) in the quotient.
This explains a relation between the normalization of propositions and the normalization
of proofs: normalizing of propositions does not eliminate cuts, but it transforms them by
removing the conversion steps.

From the point of view of proof normalization, defining higher-order logic as a different
logic or as a first-order theory does not matter because the “hard part” that cannot be
carried out in higher-order logic itself (the normalization of F,,) is the same in both cases.
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