N

N

An Interpretation of Typed Objects Into Typed
m-calculus
Davide Sangiorgi

» To cite this version:

Davide Sangiorgi. An Interpretation of Typed Objects Into Typed w-calculus. RR-3000, INRIA. 1996.
inria-00073696

HAL Id: inria-00073696
https://inria.hal.science/inria-00073696
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00073696
https://hal.archives-ouvertes.fr

ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

An interpretation of Typed Objects
into Typed m-calculus

Davide Sangiorgi

N° 3000
Octobre 1996

THEME 1

apport
derecherche

%I INRIA

SOPHIA ANTIPOLIS

An interpretation of Typed Objects
into Typed m-calculus

Davide Sangiorgi

Theme 1 — Réseaux et systéemes
Projet MEIJE

Rapport de recherche n°3000 — Octobre 1996 — 40 pages

Abstract: An interpretation of Abadi and Cardelli’s first-order functional Object Calculus
[AC94D] into a typed w-calculus is presented. The interpretation validates the subtyping
relation and the typing judgements of the Object Calculus, and is computationally adequate.

The type language for the w-calculus is that in [PS93] — a development of Milner’s
sorting discipline [Mil91] with I/O annotations to separate the capabilities of reading and
writing on a channel — but with wariants in place of tuples. Types are necessary to justify
certain algebraic laws for the 7-calculus which are important in the proof of computational
adequacy of the translation.

The study intends to offer a contribution to understanding, on the one hand, the rela-
tionship between m-calculus types and conventional types of programming languages and,
on the other hand, the usefulness of the w-calculus as a metalanguage for the semantics of
typed Object-Oriented languages.

Key-words: Object-Oriented languages, types, n-calculus.

(Résumé : tsup)

Unité de recherche INRIA Sophia-Antipolis
2004 route des L ucioles, BP 93, 06902 SOPHIA-ANTIPOL IS Cedex (France)
Téléphone: (33) 9365 77 77 — Télécopie: (33) 9365 77 65

Une interprétation des Objets Typés
dans le n-calcul

Résumé : Nous présentons une interprétation de I’Object Calculus fonctionnel de premier
ordre d’Abadi et Cardelli [AC94b] en 7-calcul typé. Cette interprétation valide le sous-
typage et le typage de ’Object Calculus, et est adéquat (“computational adequacy”).

Le langage des types pour le m-calcul est celui décrit dans [PS93] — un développement
de la discipline de sorting de Milner [Mil91] avec annotations I/O pour séparer les capacités
de lire et d’écrire sur un canal — mais avec des variantes au lieu de tuples. Les types sont
nécessaires pour justifier certaines lois algébriques du m-calcul qui sont importantes dans la
preuve de correction opérationnelle de la traduction.

Cette étude a pour objet de contribuer & la compréhension, d’une part, de la relation
entre les types de m-calcul et les types conventionnels des langages de programmation et,
d’autre part, de ’utilité du m-calcul comme métalangage pour la sémantique des langages a
objet typés.

Mots-clé : Langages a objet, types, m-calcul

An wnterpretation of Lypea Uojects wnto 1ypea m-CatCulus

1 Introduction

The 7-calculus [MPW92, Mil91] is a calculus of mobile processes, i.e., processes with a
dynamically changing linkage structure. Central to the m-calculus is the notion of name.
Two processes with acquaintance of a given name can use it to interact with each other.
In the interaction, names may be exchanged and, in this way, a process can acquire the
ability to communicate with other processes. A major strength of the m-calculus is the rich
algebraic theory.

The notions of name and of mobility are common in many areas of computer science. A
relevant example is Object-Oriented programming: Objects refer to each other using names
and, during computation, object acquaintances may change and new objects may be created.

Notions of types and subtypes for the m-calculus have been put forward. Milner’s sorting
[Mil91] can be considered the first of such type systems. A development of this, and the
first one to propose subtyping, is Pierce and Sangiorgi’s system [PS93|, which we briefly
recall. Types are assigned to names and force a discipline on what they can carry. A type
shows the arity and the directionality of a name and, recursively, of the names carried by
that name. For instance, a type p : (S",T")® (for appropriate type expressions S and T')
says that name p can be used both to read and to write and that any message at p carries a
pair of names; moreover, the first component of the pair can be used by the recipient only
to read, the second only to write (we use “read” and “write” as synonymous for “input” and
“output”, respectively). Thus, process D{g,7).0 | p(z,y).(z(2).0 | F{v).0) is well-typed
under the type assignment

p: (S, 8P q:8,r:8" v:8S.

(We recall that p{(ry..r,). P is the output at p of names ry..r,, with continuation P, that
p(r1..r) . P is an input at p with r;..7r, placeholders for the names received in the input,
and that “|” is parallel composition.) In this system, subtyping originates from the r and w
tags, which yield, respectively, covariance and contravariance.

Type systems for the 7-calculus are useful both in revealing program errors due to the
misuse of names, and in refining the algebraic theory of the w-calculus [PS93, KPT96|.
They have been the subject of several recent works. Generalisations and extension of Pierce
and Sangiorgi’s type system include [Ode95, KPT96, Bor96, Yos96]; in particular, [KPT96]
extends it with linear capabilities. Higher-order extensions are also possible, see [Tur96] for
the case of parametric polymorphism. Related ideas of types, but without directionality
information, can be found, for instance, in [VH93, VT93|. A general framework for these
and other type systems is proposed in [Hon96]|.

RR n~ 3000

4 Daviae Sangiorgr

The syntactic presentation of these w-calculus type systems is normally easy, following
that of familiar type systems for sequential languages, like those for subtyping, linearity
and polymorphism. But, in contrast with the latter systems, where types are assigned to
terms and provides us with an abstract view of their behaviour, in the w-calculus types
are assigned to names (i.e., to channels) and hence reveal very little about behavioural
properties of the processes. Because of this difference, the semantic relationship between
the two forms of types is not obvious. For instance, what happens to the type structure
of programming languages when these are translated into the w-calculus? This issue, first
addressed in Turner’s thesis [Tur96], is especially important on Object-Oriented languages,
since certain aspects of the w-calculus, like its stress on naming and mobility and its rich
algebraic theory, make it promising for the semantics of these languages. But the 7-calculus
will remain of little use without solid and well-understood types, because most of modern
Object-Oriented languages incorporate non-trivial notions of types (and of subtypes).

In short, this paper has two main motivations: (1) We wish to test the usefulness of
the above-mentioned 7-calculus types and investigate their relationship to familiar types of
programming languages; (2) we wish to experiment with the 7-calculus as a metalanguage
for the semantics of typed Object-Oriented languages.

Following [PS93], our type system for the m-calculus has directionality information. This
seems necessary in order to have meaningful forms of subtyping. But, in contrast with
[PS93], our type language has a variant construct in place of tupling. Our process operators
are those of the untyped monadic 7-calculus [MPW92], but with a case construct in place of
matching. These modifications yield a rich subtype relation while keeping the calculus small
and the rules for static detection of run-time errors in communications simple. Enriching the
subtype relation was important because that in [PS93] is not powerful enough to describe,
for instance, heterogeneous lists as by Milner’s encoding of lists [Mil91]. Intuitively, in
[PS93] types in the subtype relation may differ on the directionality information but are
structurally the same. Our typing and subtyping rules for variants are completely standard.
Similar rules on w-calculus-like languages have been used by Vasconcelos and Tokoro [VT93],
who have record types but no subtyping, and by Pierce and Turner in PICT [PT96], who
have record types with the standard subtyping rule.

We shall use this typed w-calculus to give semantics to a small but challenging typed
Object-Oriented language. The 7w-calculus semantics validates the subtyping relation and
the typing judgements of the Object-Oriented language and is computationally adequate.
More precisely, we shall exhibit a translation [] of types (A, B), type environments (E) and
terms (a, b) of the Object-Oriented language into types, type environments and terms of the
m-calculus s.t. (the translation of terms take a name as a parameter!):

1. AL Biff [A]V < [B]Y (correctness of subtyping);
2. Eta: A iff [E],p: [A]"" F [a], (correctness of typing judgements);

3. a | iff [a], U (computational adequacy);

1The translation in Section 12 will actually have another parameter, a typing environment, but this could
be omitted by having, for instance, more type annotations in the syntax of the Object-Oriented language.

INRIA

An wnterpretation of Lypea Uojects wnto 1ypea m-CatCulus

where < is the subtype relation and |} is the convergence predicate, which on a 7-calculus pro-
cess indicates the possibility of performing a visible action with the environment. From these
results and the compositionality of the encoding, as an easy corollary we get the soundness
of the translation w.r.t. behavioural equivalences like Morris-style contextual equivalence
[Bar84] or barbed congruence [MS92].

The proofs of computational adequacy and soundness of the translation rely on algebraic
laws whose operational justification depend on types — the laws are not valid in the untyped
m-calculus. These proofs are therefore significant examples of the usefulness of types for
reasoning on w-calculus processes.

The source Object-Oriented language is Abadi-Cardelli’s first-order functional Object
Calculus (OC, [AC94b]). OC has a minimal number of constructs, which can express, as
primitive or derived forms, various major Object-Oriented idioms; and it has simple but
interesting typing and subtyping rules. OC has built-in objects, as a collection of methods
parametrised on self, and operators for method selection and method update. The latter
allows us to replace the method of an object, and it implicitly yields a form of inheritance.
Self is used within the methods of an object to refer to the object itself. When the object is
modified, the value of self changes accordingly.

OC was first presented with direct typing and reduction rules [AC94b|. Finding an in-
terpretation of OC into some form of typed A-calculus has revealed hard. The difficulties
are entirely due to types. Interpreting the untyped OC into the untyped A-calculus — as
well as into the untyped w-calculus — is straightforward following Kamin’s self-application
semantics [Kama88|, where objects are viewed as records and methods as functions. This ap-
proach does not work for the typed calculi because the self parameter of methods, occurring
in contravariant position, blocks any form of subtyping.

Only very recently a solution has been found by Abadi, Cardelli and Viswanathan
[ACV96], using as target language an extension of System F with subtyping and recur-
sive types. The translation explicitly uses bounded existentials and record types, which
are encodable in the polymorphic A-calculus used. The main features of this interpretation
are: The separation between the select and update capabilities in the translation of object
methods; the use of type abstraction; the presence of an explicit component for self in the
translation of object types. Our interpretation of OC into typed w-calculus follows [ACV96]
in maintaining the first of these ideas, but it does not require the second and the third one.
Therefore, our type system for the w-calculus is first order; this is an important difference
with that needed in [ACV96] (for instance, in our case type checking is decidable, likely
polynomial [Pal96], whereas it is undecidable in [ACV96]).? We should also stress that our
variant values are name values, in the sense that they are built out of variant tags and names
only, and cannot contain, for instance, process expressions.

Our encoding of OC, and the proofs of operational correspondence and computatio-
nal adequacy much owe to the studies of encodings of various forms of A-calculi into the
w-calculus, in particular [Mil92, San95]. The only previous formal study on the relation-
ship between m-calculus types and conventional types of programming languages has been

2By the time this paper had been written, Ramesh Viswanathan has found an interpretation of OC
into a typed lambda-calculus with records and recursive types through which — we strongly believe — our
interpretation of OC into 7w-calculus can be factorised.

RR n° 3000

0 Daviae Sangiorgl

conducted by Turner [Tur96]. He takes (variants of) Milner’s encodings of the A-calculus
into the m-calculus and proves that for some of these encodings there is a correspondence
between principal types of the A-terms and principal types of the encoding m-calculus terms;
the m-calculus type system used is (the structural version of) Milner’s sorting plus polymor-
phism.

Jones [Jon93] and Walker [Wal95, LW96] have already used the m-calculus as a target
language for translating parallel Object-Oriented languages derived from the POOL family
[Ame89] and for proving the validity of certain program transformations on the source
languages. Their works show that the m-calculus captures certain Object-Oriented features
and that it offers a basis for reasoning on them. The main limitation of these works is that
they do not show show to handle typed Object-Oriented languages — the source languages
have rather simple type systems and the translations do not act on types. Dealing with types
is important when the type system of the Object-Oriented language contains non-trivial
features like subtyping, otherwise many useful program equalities are lost and the semantics
cannot be used to validate the typing rules of the language. (Further, a translation which
is correct on untyped calculi may not remain correct when types are taken into account; we
shall see an example of this in Section 3.) Other object-oriented features not present in the
languages translated by Jones and Walker are inheritance and self.

Structure of the paper. We review the syntax, type system and operational semantics of
OC in Section 2. In Section 3 we present a (naive) translation of the untyped OC into the
polyadic 7-calculus. The translation is correct on the untyped OC, but it is not when types
are considered. Showing this translation helps us to motivate the replacement of 7-calculus
original matching with the case construct — we can present the latter as a more disciplined
form of conditional; it also helps to understand the final translation in Section 12. In
Section 4 to 7 we present the syntax, the reduction, subtyping and typing rules of the typed
m-calculus. In Section 8 we prove some basic properties of typing and subtyping, including
subject-reduction and narrowing. In Section 9 we define a behavioural equivalence on the
typed m-calculus (barbed congruence) and in Section 10 we show some algebraic laws for
it. In Section 11 we report some derived type and process constructs. In Section 12 we
define the translation of the typed OC. We prove its correctness w.r.t. subtyping and typing
judgements in Section 13, and its operational correctness in Section 14. Finally, in Section 15
some conclusions and directions for future research.

2 The Object Calculus

Omitting type annotations, an object a with method names ¢; (j € 1..n), and method
bodies ((z;). b; is written

{iet.n €5 =((x;). b5}

where z,’s are the self parameters. The selection of method ¢;, written a.¢;, gives b;{%z;}.
The update of method £; with a new body ((z). b, written a. £; <= {(2)b, gives {jcf1.n1—{i} & =
¢(z4)- b5, ¢; = ((x).b}. In the derivative of the select, the self parameter z; is replaced by the
whole object. In the derivative of the update, the self parameter of non-updated methods
¢;, j # i, which before the update referred to the object a, at the end refers to a (possibly)

INRIA

An wnterpretation of Lypea Uojects wnto 1ypea m-CatCulus

different object. This dynamic behaviour of self, caused by the interplay between self and
updates, gives rise to subtle typing issues.

In a method body ((z).b, letter ¢ binds all free occurrences of variable z in b. Alpha
conversion, substitutions, free variables are defined in the usual way. A term is closed if it
does not contain free variables. We use = for syntactic equality up to a-conversion between
expressions.

The one-step reduction relation (—) is defined on the closed terms. As a strategy, it
is deterministic and “weak” (reductions underneath binders are forbidden). We write —*
for the reflexive and transitive closure of —, and a |} to mean that there is a value b s.t.
a —* b.

Subtyping allows an object to be replaced by another with additional methods, but the
common methods must have the same type. This invariance is necessary for the soundness
of the reduction rules, i.e. avoiding requests on methods which do not exist. The variables
bound by a type environment E are always taken to be pairwise distinct. We write E(x)
for the type assigned to x in E. The order of assignments in E is ignored.

We refer to [AC94D] for more discussions on the syntax, subtyping, typing, and reduction
rules of OC.

Syntax
Type Environments E == 0 | Euz:A
Types A,B = {jc1.n {;: B}
Method names {,h
Values {jerm €5 =C(z; : A).bs}
Variables T, Y,z
Terms a,b == {jern l; =C((x;:A).b;} | a.l
| al<{l(z:A).b | =z

Reduction relation

az{jel_,n Ej :C(CL']‘ :A).b]‘} 1€1..n
(R-sEL)
a= {jel..n Kj = C(.%'J : A).bj} 1€1l..n (R—UPD)
a.ly <= ((z; : B).b = {jeqr.ni—g3 & =C(x; : A).bj, £; = ((z; : A). b}
a—a
PN G Sdd (R-EvAL1)
a—a (R 2)
0.0; < C(2::B).b—d'.4; < ((z:: B).b JEVAL

RR n° 3000

S Daviae Sangiorgr

Subtyping rules

0-suBOB
{ietntm &2 Bj} < {jer.n 45t By} (:
Typing rules
Eta:A A<B
o (OT-suss)
a:
for each j, E,x;: AFb;: B, A={jer.n {;:B;} (OT-087)
-0B

B (ern =0 A) 05} A o
a {Jelé |—; - 'J; ¢ " (OT-sEL)
Eta:A Ez;:AFb:B; A={jec1n 4;:B;} i€l.n (OT-uPD)

EFal,<C(a::A).b:A

E(z)=A

Frz 4 (OT-var)

2.1 Some simple properties of types
We report some simple facts about typing of OC terms, which we will need later.
Lemma 2.1 If A< B and B < A then A = B.

Lemma 2.2 Suppose that a f {jer.n €; = ((z; : A;).b;} and that EF a : A. Then for
all 31,72 € 1..n it holds that A;;, = A;, < A.

Lemma 2.3 Leta % {jer.m €; =C((z; : A).b;}.
1. IfEta.l;:B; then E-a: A and A has an {;-th component, say A;, with A; < B;.

2. IfEtatl; <= ({(x:B).b:B then E-a: A and A< B < B' and B has a {;-th
component.

Lemma 2.4 Suppose that
e Eta:A,
e Ex:AFb:B.
Then E+ b{%z} : B

Lemma 2.5 IfE,v: Ata:B and A < Athenalso E,x: A" +a:B.

INRIA

An wnterpretation of Lypea Uojects wnto 1ypea m-CatCulus

3 A translation of the untyped OC into the polyadic 7-
calculus

To motivate the presence of variant types in the w-calculus, we first show a naive and (in our
opinion) most natural encoding of the untyped OC into the polyadic 7-calculus, and explain
why the translation does not work at the level of types. (A translation of the untyped OC
similar to that in this section has been given by Hiittel and Kleist [HK96].)

We briefly recall the operators of the polyadic w-calculus. We use P, () to range over
processes and p,q,7,..,%,y,2 to range over names. With some abuse of notation we let
symbols z,y, z.. be both OC variables and 7-calculus names, and ¢ be both a method name
and a w-calculus name. By convention, we assume that p,q,r, ¢ are not OC variables. 0 is
the inactive process; P | @ is the parallel composition of processes P and Q; the restriction
(vz)P makes name z local to process P; x(y1..yn).P is an input at x with y;..y, as
placeholders for the names received, and P as continuation; Z(y;..y,) . P is the output of
names yi..y, at x with continuation P; the matching and mismatching constructs [z = y]P
and [z #y] P release process P if z and y are the same (matching) or different (mismatching)
names; ! P is the replication of P, therefore it represents infinite many copies of P in parallel.
We abbreviate a term T(y1..y,) .0 as T(y1. .yn); a term T(y) . P as Ty . P; a term (vy)Ty . P
as Z(y). P; a term Py | .. | P, as [[¢; ,, Pj. We assign parallel composition the lowest
syntactic precedence among the operators. Input and restriction are binding constructs and
give rise to the expected definitions of alpha conversion, name substitutions, free and bound
names of a process.

The translation of the untyped OC is defined structurally using the rules below:

[ern & =C)b}l % B(@) 10(6r,y) . ([Ter.all = G1lb1-)
a6l ¥ wo) (el | a@) .5t p.2))
la-6; = Pl = () (lals | 4(@) - P(Tnen) - o (7).
(it = 610, | £ 63t y)))
[, = po
where, in the translation of a value, z is not free in b;..b, and, in the translation of update,

x is not free in b. As usual, by convention we assume that in each clause of the translation
different name symbols stand for different names.

The translation of an object value at p — the location of the object — is a process which
signals its valuehood by emitting a pointer z to the value-core of the object. The value-core
is a process which accepts requests for method selection, each request consisting of three
parameters: The name ¢ of the method, the location r to be used for the next interaction,
and a pointer y to the value-core of the actual self parameter. In the translation of the
update of a method ¢; of an object a, upon receiving a pointer x to the value-core of a,
a new object is created which locally processes every request for method ¢; using the new
method body, and which forwards any other request along z.

One can prove results of operational correspondence for this encoding similar to those for
Milner’s encoding of call-by-value A-calculus [Mil92, San92]. The above translation actually

RR n° 3000

10 Daviae Sangiorgl

allows method extension, in case of updates of methods which do not exist. Method extension
is reasonable on untyped calculi; it can be prevented by further elaborating the translation
of update. In either cases, writing P =~) to mean that processes P and () are behaviourally
undistinguishable (formally, ~ is weak barbed congruence, see Section 9), we have, for all
closed terms a, b:

1. If @ — b then [a], —= [b]p;

2. conversely, if [a], — P then there is b s.t. a — b and P = [b],.

The proofs are similar to those we shall give in Section 14.

The point we wish to get to is why the translation does not work on the typed calculi,
assuming the type system in [PS93] for the m-calculus. In a target process [a],, name p
would have type (S,T,U)"", for appropriate types S,T, and U. The outermost tag is w
because p may be used only in output position by [a],; then (S,T,U)" is the type of a
pointer emitted at p, which may be used by its recipient only in output; and U is the type of
(a pointer to) the actual self parameter. In (S, T,U)Y, type U is underneath an odd number
of w tags, hence it is in contravariant position. Moreover, since the value of self may be
the object a itself, U must be a subtype of (S,T,U)". These two facts — U occurring in
contravariant position and having to be a subtype of (S,T,UY"¥ — prevent any possibility
of subtyping between the types of the locations of different objects.

The failure is similar to that of the self-application interpretation of objects into the
A-calculus [Kam88]: The self parameter is completely exposed in a contravariant position.
Indeed, the translation can read as a (functional) encoding of records whose fields are func-
tions with the same argument and where record update is achieved by creating a new record
which shares the non-updated components with the old one.

It is worth noticing, in the above translation, the use of matching and mismatching
for operations of selection and update. This suggests that one might hope to recover the
subtyping rule for objects — whereby object types with different sets of methods are related
— by allowing forms of subtyping on the conditional constructs, absent in the type system
in [PS93]. In the next sections, we shall develop this idea, introducing a more refined form
of conditional. Then we shall refine the translation in this section so to obtain one which is
correct also on the typed OC.

4 The syntax of the typed n-calculus

The table below gives the syntax for types and processes of the typed m-calculus. The
underlying process constructs are those of the monadic w-calculus [MPW92], with matching
replaced by a case construct. The latter can be thought of as a more disciplined form of
matching, in which all tests on a given name are localised to a single place. The syntax
chosen for case is reminiscent of an analogous construct in [MPW92]. In the untyped
calculus, matching and case are interderivable, but in the typed calculus case allows us
simple but powerful typing and subtyping rules with which, moreover, any misuse of variant
values in communications is easy to detect (rule R-CASE-WRONG, Section 5). We have
omitted summation, since we will not need it in the interpretation of OC. Restriction is

INRIA

An wnterpretation of Lypea Uojects wnto 1ypea m-CatCulus

11

explicitly typed to facilitate certain proofs involving the type system (we are not interested
in type inference in this paper). Substitutions, ranged over by o, are functions from names to
values; for an expression e, which could be a process or a value, ec is the result of applying
o onto e, with the usual renaming to avoid captures of bound names. Substitutions have
tighter syntactic precedence than the process operators. In a prefix p(x).P or pw.P we
call p the subject of the prefix.

The most important difference w.r.t. the monadic m-calculus is the addition of variant
values. This introduces a vertical dimension on values, as opposite to the tupling construct
of the polyadic 7-calculus, which introduces an horizontal dimension. We should stress that
the variant values are rather simple, in that they are constructed out of names and variant
tags only and therefore do not contain terms of the language.

The construct wrong stands for a process in which a run-time type error has occurred —
i.e., a communication in which the variant tag of the transmitted value was unexpected
by its recipient or a violation of an I/O restriction. The soundness theorem in Section 13
guarantees that a well-typed process expression cannot reduce to an expression containing

wrong.

The requirement that, in a case statement, tags ¢; be pairwise distinct can be removed
at the price of allowing non-deterministic choices on the continuation branches. In a case
branch ¢;_(x;) > P;, name z; is bound in P;. We sometimes abbreviate an expression
[6i(y1) > Pis..; ln(yn) > Pn] as [je1.n ¢-(y;) > P;], and similarly for variant types
[0 :Ty; .5 00Ty).

We have chosen different syntactic categories for names and variant tags. This is a matter
of taste: Another possibility would be to have a single syntactic category and then to use
distinctions [MPW92] to make variant tags constants.

RR n~° 3000

12 Daviae Sangiorgl

Syntax
Names
p,q,r..7,Y,%2
Variant Tags
,h
Types
T = puX.T recursive type
| X type variable
| [61.Ty..8, T, variant type
| T! channel type
I/0 Togs
I = r input only
| w output only
| b either
Values
v n= name
| Lo variant value
Processes
P = 0 nil process
| P|P parallel
| (vz:T)P restriction
| p(z). P input
| pv.P output
| P replication
| case v of [l1-(x1) > Pi;..;lh(zp) > P,] case
| wrong error
where:
e In a recursive type uX.T, variable X must be guarded in 7, i.e., occur underneath a
I/O-tag or underneath a variant tag;
e in the case statement, the tags ¢; (¢ € 1..n) are pairwise distinct.

5 Reduction semantics

Following Milner [Mil91], the one-step reduction relation — of the calculus exploits the
auxiliary relation = of structural congruence to bring the participants of a potential com-
munication into contiguous positions. W.r.t. Milner [Mil91], the new rules are R-CASE,
which acts as a destructor for variant values, and R-CASE-WRONG, which signals a run-
time error on the manipulation of variant values.

INRIA

An wnterpretation of Lypea Uojects wnto 1ypea m-CatCulus

15

Structural congruence

The structural congruence relation = is the least congruence on processes which is closed
under the following rules:

LP[Q=Q[P, PI(Q|R)=(P|Q)|R, P|0O=P;
2. (wp:T)0=0, (wp:T)(vq:S5)P=(vq:S5)(wp:T)P;
3. (wp:T)P)| Q= (wp:T)(P|Q), if p not free in Q;

4. '\P=P|'P;

5. Clwrong] = wrong, for any context C.

Rule 5 can be split into smaller local rules like P | wrong = wrong and (vp : S) wrong =

wrong.

Reduction relation

R-C
70.P | p(2).Q — P | Q{Ux} (R-Comm)
Ej € {El. fn}
R-C
case l; v of [{1(x1) > Pr;..;lh(xn) > P,] — Pj{Vz;} (Ase)
& {0}
case {; v of [{1(21) > Pi;..; {n(xn) > P,] — wrong
(R-CASE-WRONG)
P— P
PIQ—P[Q (R-Par)
P— P RR
(vp:S)P — (wp:S)P' (R-ResTr)
P=P I'=
— =@ (R-Eqv)

P—Q

For any name p, the observation predicate |, detects the possibility for a process of
performing a communication with the external environment along p. Thus, P |, holds if P
has a prefix p(z) or pv which is not underneath another prefix or in a case construct, and
not in the scope of a restriction on p. For example, if P = (vr : T) (Tv.| p(z).q(y)), then
P |,, but not P |,, or P |,. We write P | if there is p s.t. P |,. We write P —4 P’ if
P — P’ is the only reduction that P can perform; i.e., P — P” implies P’ = P", and
there is no p s.t. P |,. That is, in any context P — P’ is necessarily the first action which
P can participate in. We write —* and —} for the reflexive and transitive closures of
— and —yq, respectively. Finally, we write P |}, if there is P’ s.t. P —* P’ |,, and P |}
if there is p s.t. P {,.

RR n~° 3000

14 Daviae Sangiorgl

6 Subtyping

Subtyping judgements are of the form ¥ F S < T, where ¥ represents the subtyping
assumptions. We often write S < 7 when the subtyping assumptions are empty. The
subtyping rule for variant is standard. The remaining rules follow [PS93]. We recall from
[PS93] that type annotation r (an input capability) gives covariance, w (an output capability)
gives contravariance, and b (both capabilities) gives invariance. Moreover, since a tag b gives
more freedom in the use of a name, for each type T we have T® < T" and T® < T™.

Subtyping assumptions

Subtyping rules

SFSKT SFTKS (A-BB)
T Sb LT)
Iefbr) SFSKT
SESILTr (A-X1)
Ie{bw} SFTKS
THSILTY (A-XO)
A-C
SF 6151 tn8n] < [01T1- LosmTongom] (A-Case)
S, S<T, S ST (A-Ass)
S, uX.S < TF S{HX-S/x} < T
A-REec-L
SFuX.S<T (A-Rec-L)
S, 8 < pX.TF S < T{rX-T/x}
A-REc-R
SFS<pX.T (A-RpC-R)

6.1 Properties of subtyping

The proofs of the results below are similar to analogous results in [PS93], and exploit a
notion of tree simulation between unfolded types, along the lines of that introduced by
Amadio and Cardelli on A-calculus with subtyping and recursive types [AC93].

Proposition 6.1 The relation < is transitive.

Lemma 6.2 If S<U" and S<T%, then T < U.

INRIA

An wnterpretation of Lypea Uojects wnto 1ypea m-CatCulus

1o

Lemma 6.3 X+ S < T implies 3,5+ S < T for any X'.
Proof: By inspection of the rules. a

Lemma 6.4 1. Suppose uX.S <T and uX.S <T & X. Then

YouX.S<THU <Us implies ¥+ Uy < Us.

2. Suppose S < uX.T and S < uX.T ¢ X. Then

E,SguXTl—Ul <U2 zmplzesEl—Ul <U2

Corollary 6.5 uX.S < S{#X-S/x} <puX.S

7 Typing

A type environment is a finite assignment of types to names. We follow the same convention
of type environments for OC, and therefore write I'(x) for the type assigned to z in T

Type Environments

AT == 0 | T,p:T

A typing judgement I' - P asserts that process P is well-typed in ', and I' - v : T that
value v has type T" in I'. There is one typing rule for each process construct except wrong.
The interesting rules are those for input and output prefixes and for case. In the rules for
input and output prefixes, the subject of the prefix is checked to possess the appropriate
input or output capability in the type environment. TV-SUB is the only rule which explicitly
uses subtyping. Prr is the class of processes well-typed in T'.

RR n° 3000

10 Daviae Sangiorgl

Process typing

o (T-NiL)
TP TFQ
TFPQ (T-PAR)
TP
TE 1P (T-RePL)
Iz:STHP (TR)
TF (vz:8)P TSR
I'kFp:S" 'z:SkHP (T-n)
-IN
TF p(x).P
'kp:S% 'kFw:S r-rpP
TFpw.P (T-Ouz)
T'Fo: [él_Tl..fn_Tn] for each i,].—‘7.1',' : TZ F R
(T-Cask)
Tk casevof [l1(z1) D> Pr;..; ln(xy) D> Pp
Value typing
T'(p)=T
I‘(f)iT (Tv-BASE)
p:
Tko:S S<T
A (Tv-suB)
''ov:T (T)
TF (o :[(T] VovAR

8 Properties of the typing system

We establish some basic fundamental properties of the typing relation, including weakening,
contraction, substitution and narrowing. We also show that the type relation is sound w.r.t.
the reduction relation of the calculus: Typing is preserved under reductions and a well-typed
program can never originate a run-time error.

Lemma 8.1 (Weakening) IfT + P then T,z :S + P for any type S and any name x
on which T is not defined.

INRIA

An wnterpretation of Lypea Uojects wnto 1ypea m-CatCulus

Lemma 8.2 (Contraction) IfT,z:S F P and x is not free in P, then T + P .

Lemma 8.3 (Substitution) Suppose
eTFP,
e '(z)=T
e kFw:T.
Then T v+ P{v/z}.
Lemma 8.4 IfT + P and P=P’, then + P'.
Lemma 8.5 IfT' + P then P # wrong.
Theorem 8.6 (subject reduction) IfT' + P and P — P’ thenT' + P'.
Proof: (Sketch) By induction on the depth of the proof of P — P’. For the cases of
R-CoMM and R-CASE, Lemma, 8.3 is needed. For the case of R-EQV, Lemma, 8.4 is needed.
O
Corollary 8.7 (no run-time errors) IfT' - P and P —* P’ then P’ # wrong.

Proof: Follows from Theorem 8.6 and Lemmas 8.4 and 8.5. O

Lemma 8.8 (narrowing on values) IfT,p: S+ w :U and T < S then alsoT,p: T F
w:U.

Proof: TUse definition of typing on values. O

Theorem 8.9 (narrowing on processes) IfI',p: S + P and T < S, then also I',p :
TFP.

Proof: (Sketch) Structural induction on P. For output and input prefixes, and for case,
use Lemma 8.8. O

Lemma 8.10 IfT' p(z).P | pv.Q , then T'(p) = T®, for some T, T + v : T and
T,z:TF+P.

Lemma 8.11 IfTFpz. P and T'(p) =TV, then T'(z) < T

Lemma 8.12 IfT',p: T° - p(y). P, thenT,p: T°,y : T F P.

RR n~° 3000

1o Daviae Sangiorgl

9 Barbed bisimulation and congruence

We define behavioural equality using the notion of barbed bisimulation [MS92]. The main
advantage of barbed bisimulation is that it can be defined uniformly on different calculi,
which is useful when studying a new calculus or a refinment of an existing one as we are
doing here. Moreover, as a bisimulation, barbed bisimulation comes equipped with the
co-induction proof technique.

The definition of barbed bisimulation uses the reduction relation of the calculus along
with the observation predicate |, (Section 5), for each port p. By itself, barbed bisimulation
is a rather coarse relation. Better discriminating power is achieved by considering the indu-
ced congruence, called barbed congruence. It can be shown [San92] that barbed congruence
coincides in both CCS and the w-calculus with the standard bisimilarity congruences.

In a typed calculus, the processes being compared must obey the same typing and the
contexts employed must be compatible with this typing. We call a (I'/A)-context a context
which, when filled in with a processes obeying typing A, becomes a process obeying typing
T'. Typing I' might contain names not in A; the converse might be true too, because of
binders in the context which embrace the hole.

First, a few technical definitions and lemmas.

Definition 9.1 We write I’ <g A if, for each x on which A is defined, also T is defined
and I'(z) < A(x).

Definition 9.2 A substitution o is legal in a type environment ' if for all z on which T is
defined, it holds that T + zo : T'(z) .

Lemma 9.3 IfT" <g A, o is legal for T and A - R, then T I Ro .
Proof: By narrowing and substitution lemmas. d
Lemma 9.4 IfT F v :T and o islegal for T, thenT + vo : T .
Proof: Induction on the depth of the proof of ' F v : T'. (]
Definition 9.5 ((I'/A)-context) Given type environments I' and A and a process context
C, we say that C is a (I'/A)-context if ' = C assuming the following typing rule for the
hole [-] of C:

I’ <g A

" F[]

(where A is one of the given type environments and T" is a metavariable over type environ-
ments).

Lemma 9.6 If C is a (I'/A)-context and I <g T then C is a (I'/A)-context.

Proof: Induction on the structure of C' and narrowing. O

INRIA

An wnterpretation of Lypea Uojects wnto 1ypea m-CatCulus

19

Definition 9.7 (barbed bisimulation) A relation R C Pra X Pra is a barbed A-bisimulation
if (P,Q) € R implies:

1. if P — P’ then there exists Q' such that Q@ — Q' and (P',Q’) € R;
2. if @ — Q' then there exists P' such that P — P' and (P',Q') € R;

3. for each name p, P |, iff Q |p.

Two processes P and @ are barbed A-bisimilar, written P ~ A Q, if (P,Q) € R, for some
barbed A-bisimulation R.

Definition 9.8 (barbed congruence) Two processes P,Q € Pra are barbed A-congruent,
written P ~a Q, if, for each type environment T and (T/A)-context C, we have C[P] ~1 C[Q].

In the remainder of the paper, we write P ~r @) without recalling the assumption that
P and @ are well-typed in T".

Barbed bisimulation requires a quantification over all contexts. The Context Lemma
below shows how to lighten this requirement: It is enough to test processes using parallel
composition and legal substitutions.

Definition 9.9 Two processes P,() € Pra are barbed A-equivalent, written P ~% Q, if
for each environment T, substitution o, and process Q € Prr such that

1. T <g A,

2. o islegal in T,
it holds that Q | Pio ~1r Q | Pxo.
Lemma 9.10 If P~ Q and I' <g A, then P ~} Q.
Lemma 9.11 If P ~% Q and S < A(p), then (vp: S)P ~% _, (vp:5)Q.

Lemma 9.12 (Context Lemma for barbed congruence) Relations ~% and ~a coin-
cide.

Proof: One proves, by induction on the structure of C, that:
P ~% @ implies C[P]~f C[Q]

for all (T'/A)-context C. The basic case, and the cases of restriction and parallel composition,
are immediate using Lemma 9.10 and Lemma 9.11. For the remaining cases one defines
appropriate bisimulations. a

The weak version of the equivalences, where one abstracts away from the length of
reductions, is obtained in the standard way. Weak barbed A-bisimulation, written =, is
defined by replacing in Definition 9.7 the transition @ — Q' with @ —* Q' and the
predicate |, with {},. Similarly, weak barbed A-congruence, written ~a, and weak barbed A-
equivalence are defined by replacing ~t with =r in Definition 9.8 and 9.9. The counterpart
of Lemma 9.12 for the weak case is true.

RR n~° 3000

Daviae Sangiorgl

10 Some useful algebraic laws

We report some laws for barbed congruence. Some of the laws crucially rely on the type
information, like law L3 of Lemma 10.2 and the replication theorems 10.5 and 10.6. They
show the importance of types for reasoning on processes. We recall that when we write a
typed equality like P ~p () we assume that P and) are well-typed in T'.

Lemma 10.1 If P=Q then P ~p Q.

Lemma 10.2 L1 (vr:T)(pr |r(z).R) ~r (vr:T) (pr.!r(z).R).
L2 (vry:Ty.r : T)(P | Yra(x) . Ry | .. | Irn(2) . Ry) ~r P, if r1..rp, are not free in P.
L3 casewv of [jel..n t;(y;) > Pj] ~r casev of [jel..n+m ti(y;) > Pj.
L4 (wx:T)P ~r (vz:S)P.

L5 (vr:T)(a.P|r(z).Q) ~r a.(vr : T)(P | Ir(z).Q), if r does not appear in o and
any name bound in a does not appear free in r(x).Q

Proof: For law L3: for both processes to be well-typed in T it must be T' F v

[je1.n €;-T;], for some type T;’s. Now, consider a substitution which is legal for I'. By
Lemma 9.4, T F vo : [je1..n ¢;-T;]. The only closed values of type [jci..n {;-T;] have the
form ¢;_v; (j € 1..n). Then the thesis follows from the reduction relation of case and the
Context Lemma 9.12. O

Law L3 shows that in a case construct we can always add (well-typed) branches.

Next, we report some distributivity laws for private replications, i.e., systems of the form
(vp:T)(P|!p(x).R)

in which process P possesses only the output capability on name p. One should think of R
as a private resource of P, for P is the only process who can access R; indeed P can activate
as many copies of R as needed.

We have omitted the proofs of Lemma 10.3 and 10.4, which are not immediate but along
the lines of the proofs of similar results in [San92] and [PS93].

Lemma 10.3 Suppose that
e THQ|(wm:T*) (P | Py | im(x).R),
eI'm: TV F P | Py,
e I'm: TV, x:TF+R,
e m:T /mm.O0.

Then Q | (vm : T%) (P, | Py | !m(z).R) <1
Q| (m:T° (P |'m(z).R) | (vm :T®) (P | 'm(z).R).

INRIA

An wnterpretation of Lypea Uojects wnto 1ypea m-CatCulus

2zl

Lemma 10.4 Suppose that

THQ|(vm:T?) (IP|'m(x).R),

T,m:T" + P,

''m: TV, 2. T+R,

m:T° Y mm.0.

Then Q | (wm : T°) (P | Im(z).R) ~1 Q| !((Vm:Tb)(P|!m(x).R)).

Theorem 10.5 (distribution of a private replication over parallel composition) Suppose
that

e Tk (vm:T° (P | P |'m(z).R),
o T,m:T" + P, | Py,
eT,m:T"2:TFR,
em:T°Hmm.O0.

Then (vm : T?) (P, | Py | 'm(z).R) ~r
(vm : T?) (P1 | 'm(x).R) | (vm : T°) (P | 'm(z) . R)

Proof: By Lemma 10.3 and the Context Lemma 9.12. O

Theorem 10.6 (distribution of a private replication over replication) Suppose that
e Tk (vm:T° (P |'m(x).R),
e’'m:T" F P,
oeI'm: T x:THFR,

m:T°mm.0.

Then (vm : T°) (P | tm(z) . R) ~r !((Vm L T%) (P | Ym(z) .R)).

Proof: By Lemma 10.4 and the Context Lemma 9.12. O

11 Derived process and type expressions

The following expressions can be coded up in the basic calculus:

1. Process definitions. A defining equation has the form

K% (2, :Ty. 2, : T,)P,
where K belongs to some new alphabet of process identifiers, and can be thought of
as a procedure declaration with formal parameters z1..z,; to use the definition with
actual parameters p;..p, we write K (p;..p,). For our purposes it suffices to assume
that the parameters of constant definitions are names.

RR n° 3000

Daviae Sangiorgl

2. Binary inputs, like p(z1,z2) . P, and outputs, like 7 (v1,vs) . P and
ﬁg_upd_@)l, 1)2) .P.

3. Variant inputs like p[. ., €-[, . 0i;-(Ti;) > Pij]], where zij can be a single
name or a pair of names. This abbreviation allows us to go down two levels into the
structure of a variant value received in an input at p; in fact, this term interacts with
output particles of the form pé,_l, .- (with r € 1..n, s € 1..m, and tuple @ of the
same length as 7,) and, in doing so, it reduces to P, s{W/z}.

Each of these derived constructs has an associated derived typing rule, of the expected
shape. The reader who wants to see the “macro expansions” of these expressions, and the
associated derived rules for typing, subtyping and reduction can find them below; otherwise
the reader may safely move to Section 12.

Abbreviations for the case construct
e An expression z[{;_(y1) > Pi..0,(y,) > P,] expands to
z(z).casex of [l1(y1) > Pij .. ln(yn) > Py]
with z not free in P;..P,.
o An expression £_[¢1 (y1) > Pr;..; €n(yn) > Pp] expands to

0 (z) > <casex of [li-(y1) > Pis..; bn(yn) > Pn])

with z not free in P,;..P,,.

Passing of pairs

We shall need communication of pairs of values, of the form
ph_(vi,v2) (1)
where h represents a sequence of variant tags, like h;_.._h,. Symmetrically, and we shall
need a pair destructor
let (x1,22) = 2zin P (2)

These two expressions have the obvious meaning. We now explain how to code them. A
pair type (T1,T%) is translated into the type [¢1 11 ; €2 T>] where ¢; and ¢y are some tags
chosen by convention. (Note that this translation schema does not justify the subtyping
rule for tuples, because it does not force the same length of tuples. However, this can easily
be accommodated by adding a dummy final component in the variant target type; for our
purposes, the simple translation above will suffice because pair types will be compared with
pair types only.) The encoding of (1) and (2) is this:

ph_(v,v2). P qef
let (z1,22) = zin P

(VZ : T)ﬁfl_z Zli v . Zly vy . P

d=ef zl:gl_(.Zl) > z[él_*; EQ_(Z'Q) > P] ;EQ-*]

where

INRIA

An wnterpretation of Lypea Uojects wnto 1ypea m-CatCulus

o ifv; : Ty and vy : Ty then T X [0, Ty 5 £, Ty);
o (; » means that the expression at ¢; is unimportant.

In the same way, we can code polyadic communications of arbitrary length. This is
similar to the encoding of the polyadic m-calculus into the monadic one [Mil91]. Having
variants, allows us to have the translation correct on types (in the encoding in [Mil91] type
information is lost).

Abbreviations for the let construct

1. An expression p(z1, z2) . P expands to p(y) . let (x1,22) = vy in P, with y not free in P.
2. An expression {_(u1,us) > P expands to (_(y) > (let (u1,us) =y in P), with y not

free in P.

Recursion

Recursive definitions can be defined in terms of replication in the usual way (see Milner
[Mil91]).

Derived rules for typing, subtyping and reduction

We are now ready to show the derived typing and reduction rules for the process constructs
introduced at the beginning of this section and the derived subtyping rule for the type
construct of pairing. The derived subtyping rule is

ZH—Slng E|_52<T2
EF(S1,82) < (Th,T»)

(A-PAIR)

Now the derived typing rules. In rule T-INPCASE below, if Z is a single name, say z, then
Z :T means z : T. If 7 is a pair of names, say x; and z3, then Z : 7' means that T is a pair
type (Tl,T2> and that z; : T1, 29 : Ts.

F}_’UIZTI F}_UQZTQ
TF <1}1,1}2) I(Tl,Tg>

(Tv-PAIR)

F"pl(TI,T2> F,JZ]_ZT]_,.’EQZTQ P
T+ p(x1,22). P

(T-INPPAIR)

'+ D [jel..nzj_[iel.AmEi’j'Ti’j]] fOI‘ each 7 and j, F,.’/L‘:; . Ti,j F .Pi’j
Ik p[‘el..n gj_[iel..meiaj‘(a,;) > Pi,j]]

J

(T-INPCASE)

foreachd, T F p; : Ty K% (2 :Th..wn: Tp)P

(T-ConsT)

Each constant definition must be well-typed:

RR n° 3000

Daviae Sangiorgl

Definition 11.1 A constant K dzef(xl :Ty. . xp 2 Ty)P is well-typed if xy : Ty. .2y : Ty F P
(i.e., the body of its definition is well-typed according to the information specified in its
parameters).

Finally, the derived reduction rules:

= (R-PAIR)
plg,r).Plp(x,y).Q ——3% P| Q{2 7/x,y}
rel..n sel..m

Plrtls;.P| p[jEL.n 61-[iel..m€i,j—(m) > Qi,j]] ——i P Qs,r{g/ms,r}
(R-CO)

K (21 :T. 2, :Ty)P
K(py..pn) ——% P{P1- -Pnfry. .z, }

(R-REC)

12 The interpretation of the typed OC

The translations of types, type environments and terms are defined structurally using the
rules in the tables below. We assume that sel and upd are variant tags.

The translation of types

et & B} < pX. [jel_.nfj—[sel-[[Bj]]ww;
upd (X, (X, [B]"))]]

Only w tags appear in the translation of types because the translation of terms will respect
the discipline that every name received in an input may be used only in output position.
This, and the fact that every offer of an input is persistent, prevents non-deterministic
reductions in the target processes of the translation.

The patter of occurrences of w tags is determined by the protocol which implements select
and update operations. What is important, however, is the level of nesting of w tags: An even
number of nesting gives covariance, whereas an odd number of nesting gives contravariance.
Thus, the component [B;] is in covariant position on selection, and in contravariance position
on update: This explains the invariance of object types on the common components, in rule
O-suBOB (the interpretation of OC into the A-calculus [ACV96] does the same).

The location of the translation of an object of type A will actually have type [A]""; as
far as subtyping is concerned, the two outermost w tags are irrelevant because they cancel
one another.

The translation of type environments

1 = 0
[B,z:A] = [E],z:[A]"

INRIA

An wnterpretation of Lypea Uojects wnto 1ypea m-CatCulus

We can understand it as a rectification on the translation in Section 3. The main problem
in that translation was the exposure of the self parameter (which, for instance, appears as
an argument of select requests). To avoid this, in the new translation: (1) select and update
requests do not mention the self parameter; (2) translating object values, we separate the
method bodies and an object manager 0B“(s;..s,,); (3) object values handle both the
select and the update requests (in the previous translation, an update was handled at the
point where the request is made).

We explain in more details the new translation. As in the previous translation, the first
action of (the translation of) an object value is to signal its valuehood by providing an access
z to its value-core. This value-core is administred by process 0B (s;. .s,,z); this “owns” the
object methods, in the sense that it is the only process which can reach them, via names
s;’s. The manager OBA(sl. .8n,T) can receive a request of select or update on any method
¢;,1 < j < n. In the former case, the request is of the form T ¢;_sel_p, where p is the
location for the new object. Using channel s;, the manager activates a copy of the body
of method ¢;; in doing so, it also supplies the pointer x to itself, which represents the self
parameter. Thus the communication of the self parameter occurs in an internal action of
the object and, as such, it does not affect its typing. In the case of update at ¢;, a request
has the form Z¢;_upd_(p, s) where p is the location for the new object and s a pointer to
the new method body; in this case, the manager 0B4(s;..s,,z) spawns off the interface for
a new object, which will be located at p and will use channel s, in place of s;, to process any
request for method ¢;. The functional nature of OC is reflected into the functional nature of
the object manager 0B“ (s;. .s,,x) — it is a replicated process, hence it handles all requests
in the same way.

The translations of OC into A-calculus [ACV96] and into m-calculus have comparable
lengths: In a few places, the w-calculus gains by having only first-order types, in other
places it suffers by the lack of term substitutions in the synatx.

As for interpretation into the A-calculus, so our translation of terms has an environment
E as parameter in order to put the necessary type annotations in the translation of method
selection. This parameter could be avoided by having, for instance, more type information
on the syntax of method selection. We assume that p,q,r,s... are not OC variables.

RR n~° 3000

Daviae Sangiorgl

The translation of terms

[ern & =Clz; - A)0E = (va:[A]*)pe
(jel.AnVSj :Tg,j) (OBA< 3n717> |
Wer.nls;(@;,15) - 05157
[a.612 € (vq:[{4: B; ") ([a]? | a(x) .7 (;-selp)
la.6; < ((z; - A).0]2 <
(va: [A]**) (ol | a() - (vs : TR)T s upd (p, 5) Is(jmy) - I)
] € pa

where the process identifier 0B4 is

ogA & (s1:TY ;.80 : TR 2 [4]°)
137[. 6| sel(ry) > 55 (x,7j) ;
jel..n upd_(T,S) > (V:L'new : [[A]]b)
anew.UBA<S1. 8j—1,8,8j+1. 81, Tnew)]]
and where
[] Ad—ef {]61 n f : B; }

o Ta; = ([A]", [B;]"™);

¢ in the encoding of selection, B; is the unique type s.t. E F a : [...,¢; : Bj,...]
holds, if one such judgement exists (the unicity of this type if a consequence of the
minimum-type property of OC), B; can be any type otherwise;

e in the rule for value, x is not free in by..b,; in the rule for update, x is not free in b.

For using the translation, it is useful to define the following abbreviation, for a value
def

0 & fern b= Cla; : A).b;):

[z := a]® def (jer.nV 85 Tg’j) (0BA(s1. .55, 7) |
MWjer.lsi(w5,75) - 0515774,
Then
[al; = (vz : [A]°) Pz [z := a]”.

Omitting type information, if € 1. .n, a select operation a. £; — b;{%x;} and an update
operation

a.l; <= ()b — {jeqrmy—giy & = C(;)-bj, L = ((z).b} B d!

are simulated thus:

[a.6], % (Vq)((u:v)ﬁa:‘[a: ::a]]|q(x).m_se1_p)

INRIA

An wnterpretation of Lypea Uojects wnto 1ypea m-CatCulus

—q (vz)([x :=a] | Tl;_selp)
—3i wa)([z:=a] | [b:{%e:}]p)
~ [bi{%ei}]s (3)

ot = oM, % wo)(wo)ge.lo=dl|
a(z) . (vs)T C;_upd_(p, s) . \s(y, 7). [[b]]T)
—a (va,s)([z:=a] | Tliupd(p,s).s(y, 7). [0])
—3i (vz,5)(jer.nv ;)
(0B(s1- 50,2} | yer.mts;(@s,m5) - sl
| (¥Znew)P Tnew - 0B(S1..8j—1, 8, Sj+1- -Sn; Tnew)
| !s(y.7) - 1]
~ (Us)(jeqt.n—{i} ¥ 55)
(Wyeqrmy—lsi@sm) - Bl | s(w.) - Bl

| (¥%new)P Tnew - OB(S1..8j—1, 8, Sj+1- -Sn, xnew))

(VZTpew)D Tnew - [Tnew = al]])
= [d]

Above, ~ stands for strong barbed congruence. All appearances of ~ except (3) represent
garbage collection steps where deadlocked processes and restrictions binding nothing are
removed. Equality (3) is proved in Lemma 14.1 and uses the algebraic laws of Section 10,
in particular the distribution theorems for private replications.

13 Type correctness

In this section, we establish the correctness of the translation at the level of types: The
translation validates the typing and subtyping rules of OC.

Lemma 13.1 If A< B and 2 : B+ a: B;, then [a]Z8 = [a]Z4.

Lemma 13.2 If EF a: A and x does not appear in E, then for all B we have
[o]f = [a]5*.

Theorem 13.3 (correctness for subtyping) For all A, B, it holds that
A < B iff [A]™ < [B]™.

Proof: By hypothesis A < B hence by rule O-SuBOB, it must be

A = {jel..n+m Kj : B]} and B = {jel..n Kj : B]}

RR n~° 3000

Daviae Sangiorgl

By rule A-XO, proving @ F [A]" < [B]" reduces to proving @ - [B] < [A] and then, by
the rules for recursive types, it reduces to proving

[BI<A] = [4 [sel[B]™;
upd ([B]"" ([B]", [B,]"")")]]
<
0;_[sel [B;]"";
apd ([A]"", ([A]", [B,]*)")] |

This, by rule A-CASE, gives rise to the following goals, for j € 1. .n:

[BI <[Al F [B;]™™ < [Bj]*"
[BI <TAl F (IBI"™(IBI", [B]"™ ™) < (TAT"™ ([AT", [B;1™™)™)

[jel..n+m

The first of these goals is validated by reflexivity. The second goal, by rule A-PAIR and
A-XO, gives rise to the subgoals:

[B] <[A] + [B]"™ < [A]"™

[B] <[A] + [Al"<[B]"

[B] <[A] F [Bi]*™ < [B;]™
which are simple to validate.

Now the opposite implication. We suppose @ - [A]" < [B]" and prove A < B by induction
on the (sum of the) lengths of A and B. Assume

A={jerm 4;: A;} and B ={jern hj:Bj}.

Then, if
Sa; & [sel [A4,]"";
upd (X, (X, [A; 1))]
and
Sp; = [sel [B;]"";
upd (X, (X, [B;]"")Y)]
we have
[A] = uX. [jel..mej_SAaj]
and
[B] = nX. [jEl..nhj_SBaj]

When started with the goal @ - [A]™ < [B]", the subtyping rules generate the goal @
[B] < [A], and then (omitting pairs equivalent to [B] < [A4] in the assumption) the goal:

[B] < [A] F [jey, b (SmAIBYXD)] < [y nlo-(Sas{14Yx})]
From this, by rule T-CASE, we infer
n<mandh; =¢; (j€1l..n) (4)
and we reduce ourselves to the goals, for j € 1. .n:

[B1<[A4] + S {IBYx} < Sa,;{l4)x}

INRIA

An wnterpretation of Lypea Uojects wnto 1ypea m-CatCulus

By T-CASE again, for each j we get the two goals

B
B

Al F o[BI < [A Y (5)

I
I<[Al F (IBI™ (BT, [B;1™")™) < (TAT™™, ([AD™, [4;1")") (6)

<
<
From (5), since @ - [B] < [A] holds, applying Lemma 6.4 we infer
0+ B <A™

from which we get
OF A" < [Bi]™

and then, by induction,

Continuing from (6), similarly we infer
Bj < A]‘

Summarising, we have proved that [A]" < [B]" implies n < m and, for all j € 1..n, h; = ¢;
and A; < B; < A, that is, by Lemma 2.1, A; = B;. Therefore we can use rule O-suBOB,
to infer A < B. O

Theorem 13.4 (completeness of the interpretation on type judgements)
IfEFa: A then, for all p, it holds that [E],p : [A]*" F [a]] .

Proof: By induction on the length of £+ a: A. We only report two cases; recall however
that in the case of rule OT-0BJ one has also to check the well-typedness of the definition of
0B4.

OT-upD The rule applied is

Era:A E z;: A+ b: B; A={c1.n ¥;: B;} 1€l.m
El—a&c((xlA)bA

By induction,
for all 7, [E],r: [A]"™ F [a]® (7)

for all v, [E],x; : [A]"Y,r : [BJ™" F [p]F=4 (8)
The thesis to prove is that
[E].p: [A]" F (9)
(vq: [A]") ([al] | q(@) . (vs : T3) T tiupd.(p,) ts(a,) - [
where T4 ; = ([A]Y, [B:]"").

By definition of typing, weakening and narrowing, we can prove (9) from the following
equations:
[E],q: [A]"° + [a]? (10)

p: [A]"Y, z : [A]Y, s : {[A]Y, [[Bi]]""w>b F Z ¢; upd_(p, s) (11)

RR n° 3000

Daviae Sangiorgl

[E]. s < ([A]Y, [Bi"™)" F s(zi, 7o) - D74 (12)
Now, equation (10) follows from (7) and narrowing; (12) follows from
[E], i : [A]Y,rs : [Bi]™™ F [B] 74
which is true by (8). Finally, (11) follows from
P [A]™,s: ([A]". [B]"™)° F timpa(p,s) : [4]
which is inferred using subsumption from
p:[A]™, s ([A]*, [BJ"™)° - £ upd (p, s) : [i [upd ([A]™", ([A]", [B.]"™)")]
and

[6i-[upd([A]™, ([A]", [B:"™)™) 1]

[[upd([A]*" ([A]*, [B]*™)*)]] <
< [4]

exploiting the definitions of A and of [A] and the rules of typing for values (including
Tv-suB), Corollary 6.5 and transitivity of <.

OT-suBs The rule applied is
Elra:A ALB

Etra:B

By induction,
for all v, [E],r : [A]"" F [a]Z . (13)

By Theorem 13.3, [A]™ < [B]", hence
[BI"™ < [A]™™. (14)

Now,
[E],p: [BI"™ F [al

follows from (13) and (14) by narrowing.

Lemma 13.5 If [E],p: [A]*® F [a]} , then also [E],p: [A]"™ F [a]}
Proof: Easy case inspection on the definition of the encoding. O

Theorem 13.6 (soundness of the translation on type judgements)
If[E],p: [A]"" + [a]? , then EFa: A.

P
Proof: By induction on the structure of a. First, suppose a is a variable . By hypothesis
[E],p: [A]"" F D

hence x must appear in E. This means that, for some B, [E](z) = [B]". By Lemma 8.11,
[B]"™ < [A]Y; hence by Theorem 13.3, B < A. Therefore E - x : A is derivable, using the
rules for variables and subsumption.

INRIA

An wnterpretation of Lypea Uojects wnto 1ypea m-CatCulus

ol

Suppose a is a value, say {;je1.n €; = ((z; : B).b;}, with B = {je1..n ¢; : B;}, and
[E]p: [A]"™ - [l . (15)
From this and the definition of the encoding, for some R,
[E]p: [A]*".«: [BI° - po. R

For this to hold, by Lemma 8.11 it must be [B]® < [A]Y, which implies [A] < [B]. By
Theorem 13.3, this implies
B < A (16)

From (15), by definition of the encoding and contraction, we infer, for all j € 1..n,

[EL, 55+ TB,s - 1ss(aoms) - [o] ™"

Tj

from which we get
|[E]]7.’L'] : [[B]]W77"j . [[B]']]WW = [[bj]]f]‘-,mj:B)

This, by the inductive hypothesis, gives us
Finally, (16) and (17) allow us to use rule OT-0BJ and subsumption to infer £+ a: A.

The case a = a'.¢; < ((x; : A).b is similar.

Finally, the case when a = a'.¢;. By hypothesis,
[ELp: [BI"™ F (vq: [{ & : B: 1*°) ([0']F | ¢(z) . T lssel p)
for some B;. From this, Lemma 13.5 and contraction, we infer
[E]q:[{ 6B "™ - [o']7

which by induction gives E - a' : {£; : B; } . From this, by rule OR-SEL we infer E F a'.¢; :
B, . 0

14 Operational correspondence and adequacy

We show that our interpretation preserves the computational content of terms. In the proofs
of this section, we omit type information when it is unimportant.

Lemma 14.1 Suppose
o 0¥ {cin b= (s 1 A).bs},
e Fla:A,
e Ex:AFb:B,

o T Y[E]p: [B]™™

RR n° 3000

Daviae Sangiorgl

Then (va : [A]P) ([B];*4 | [o = a]) ~r [b{%/z}]} -
Proof: Recall that [z := a]® = (v5)(0BA(3,z) | Hj!Sj(iCj,'rj).|ij]]f;‘-,zj:A). Moreover,
using £+ a: A and Theorem 13.4, we can infer

[E]),z: [A]° F [z :=a]®

Hence, using the laws for replication in Section 10 and expanding the definitions of the

abbreviations,
[o:= a]” ~pgpaqap 2(r) . Pa (18)
for some process P, with
[E],r:[A] + P, (19)
r:[A]° ¥ Tz.0 (20)

Moreover, by Theorem 13.4, it holds that

[E],= - [A]",p : [B]*™ F [b]," (21)

We prove the assertion of the lemma by induction on the structure of b. Facts (18-21) allow
us to apply the distributivity laws for replication.

1. b==x.
Use law L1 of Lemma 10.2.
2. b=y#=x

Use law L2 of Lemma 10.2.

3. b={ici.m hi=((y:: B').b}}
We have:
(wa) ([l | e = a]®) =
(vz) ((ux')(Pa' . (vs')(0BB (s, 2') | TL.s! (e,) - [E_,yi:B’,w:A)) |

from which, using the laws for replication and some garbage collection,
~r o (va')(pal . (v (085 (5 ') | TLtsi(wiam)
(va (15w =4 | [z = a]¥)))

By Lemma 13.2, [z := a]® = [z := a]®¥*F". Then the thesis follows by the inductive
assumption.
4. b=0.0; orb="0.0 < ((y:: B).b".

Similar to above.

We recall that, in a case statement, {_x means that the branch at £ is irrelevant.

INRIA

An wnterpretation of Lypea Uojects wnto 1ypea m-CatCulus

Lemma 14.2 Let
o 0 ¥ {ern 4 =Cla;: A).bj},
A fjern 41 4,
e OFa.l;:B;, for somei€ 1. .n.
o T Zp B
Then
1. a.t; — bi{%z:};
2. [a. 4% —5 ~r [bi{9/z:}10.
Proof: The first assertion is trivial, so we only look at the second. By Theorem 13.4,
I A (22)
and, using Lemmas 2.3 and 2.4 and Theorem 13.4,
T+ [bi{o/z:}]0. (23)

We have:
[a- 610 < (vq)([a]? | q(z) . T ¢; se1 p)
and
[a]® = (vz : [A])pa . [+ = a]°

We have the following reductions:

[a.6]2 —4 (va)(wz)([z:=a]’ |ZTliselp)
= (vz)([z:=d]" | Tliselp) (24)

Abbreviating § L g1 .5n and V; ef l;_[sel(r;) > 35 {z,r;) ; upd_* |, we have

[z :=a]’ = (Vg)(!x[jel.. Vil | Mer.nlsj(z;,m;) - [b; 7)

and then we can continue from (24) thus:

—% (vm,§)(sl (z,p) | x[Jel“an] |Hj!sj(xj,rj).|[bj]]fjf“4)

—% (va, §)([bl]]$‘4{m/mz} | !x[jelun Vi]| Tts(zg,m5) l[bj]]fj:A)

= o) (B e} | 03) (e, Vi] I tss(aory) - D55))
(v)([bi{%fei)]z | [z == a]?)

~ro (b e {0

= [bi{/z:318

where the use of ~r is due to Lemma, 14.1. We can use this lemma because terms (v)([bi{%/z: }]4 |
[z := a]®) and [b{a/mi}]]g are well-typed in I' (for this use (22) and (23) and subject reduc-
tion) and because

PFa:A (25)

RR n° 3000

Daviae Sangiorgl

and
.Z'iiA'_biIBi (26)

hold. Equation (25) comes from Lemma 2.3(1); equation (26) comes from (25), A; < B;
(which comes from Lemma 2.3(1)) and definition of typing.

O

Lemma 14.3 Let
de,
e Q Zf{jel._n Ej = C(.’IJ] ZA)‘bj},

o & D licqmy 1 b =C@s o A)by, = ((ai: A).0,
e Dtal; < ((x;:B).b:B
« T % p: B,
Then
1. a.l; = ((x; : B).b—d';

Proof: We prove the second assertion. Let A = {;c1... ¢; : B;}. By Lemma 2.3(2), we
have A < B and the /;-th component of B is B;. We have:

[a. 6 <= ((x: : B).B]2 % (vq) ([[a,]]g | q(x) . (vs : T ,) Tl upd_(p, s) .\s(x;,7:) . [[b]]f;”B)

where Ty ; Qof (BY,[B:]*"), and

[[a,]]g = (vz)pz.[z =]’
We have the following reductions, for P Lef 's(xs,7;) - [B] %5, First:

[a-€; < ((z; : B). b)Y — (27)
(vq)(wz)([x:=a]’ | (vs: T} ;) Tl; upd (p,s). P)

Since

[z :=a]" = Germvs; : TS ;) (1= Liern Vil I Tiernts;(zs,75) - [bi]5)
where for j € 1. .n,

def w ww
TA,]‘ = <|IA]] a|[Bj]])
V; def Ej_[sel_*; upd_(r,s") > Uj]
Uj = (V-Tnew : HA]]b)Fxnew -DBA<51' 'Sj*173l’83'+1"s"’xne“>

INRIA

An wnterpretation of Lypea Uojects wnto 1ypea m-CatCulus

we can continue from (27) thus:

= (vs: Tg’i) (jer.nV sj: Tg’j) (va)
(@[ey ., Vil I Tts5(25,m5) [b,05" | T¢; upd_(p, s). P)
—i (vs: T}E’,i) (jer.mv 85 : Tj;,j) (vx)
(UAP s s} 1 e[y V3] 1Tl (50m5) [, | P)
(vs: T}B,i) (je{t.m)—{i} ¥ 8j Tg,j)
(Ui{p’ s’} | P | Wjeqr.ny— i85 (25, 75) - [05157° |
(v, 5:)(w ey, Vi | sl i) - [oi154))
~ro (vs Tg,i) (je{t.m}—{iy ¥ S; Tg,j)
(UP 5.} | P | Wyeqnmy—giy155(2s0 1) - 0515274

where the use of ~r is due to law L2. Moreover, by Lemma 13.1, P is the same as P’ ef
Us(s,7;) . [B] 74

= (s:T3) Getrmy (¥ 55 : Th;) (28)
(AP sfr,s'} | P | Ty qnmy—qay ' (25, m5) - [0;15°4)

The process that we have obtained is well-typed under I'. From @ + o’ : B and Theorem 13.4,
it also holds that

T

T

[T
(vs:TR,) Gefrnj—r v s - Ta)
(Ui{p’ 3/1", s’} | P | Hje{l..n}—{i}!sj(xjvrj) . |ij fJJA)

Because of these facts, we can apply law L4; thus continuing from (28) we infer

~r [}
which proves the lemma. |
Lemma 14.4 If a is closed and [a] |, then a is a value.

Proof: Immediate by structural induction on a. a

Theorem 14.5 (operational correspondence) Suppose 0 F a: A, and let
T % p . [A]Y". It holds that:

1. If a — o, then [[a]]g —i~r [[a’]]g;

2. wvice versa, i.e. if |[a]]g — P, then there isa’ s.t.a — a', P —} ~r [[a’]]g and, moreover,
the reduction [[a]]g — P is deterministic.

Proof: Assertion (1) is proved by induction on the depth of the proof of @ — a’. The
most interesting cases are the basic ones; for these use Lemmas 14.2 and 14.3. In the case of
R-UPD, Lemma 2.3(2) might be needed so to transform A into some A’ < A before applying
Lemma 14.3. Then Lemmas 9.10 and 9.12 allow us to replace ~p.jaqww With ~spww. In

RR n° 3000

Daviae Sangiorgl

the cases of R-EvAL1-2, Lemmas 9.10, 9.11 and 9.12 are needed in order to manipulate
processes inside contexts.

Assertion (2) is proved similarly, proceeding by induction on the structure of a and using
Lemma 14.4. O

Note that the correctness of the interpretation on reductions (Theorem 14.5) and type
judgements (Theorem 13.4 and Theorem 13.6) imply the subject reduction property for OC.

The translation captures precisely convergence on the source language.
Corollary 14.6 (computational adequacy) If a is closed, then a | iff |[a]]g .

Proof: Consequence of Lemma 14.4 and of the operational correspondence Theorem 14.5.
O

We can define barbed bisimulation and congruence on OC terms as we did in the 7-
calculus. However, since the reduction relation of OC is confluent, clause (1) of the definition
of barbed bisimulation can be omitted. Therefore in OC barbed congruence coincides with
Morris-style contextual equivalence. A context C' in OC is a (A/B)-context if 0+ C : A
holds assuming that the hole of C' has type B.

Definition 14.7 For closed OC terms a and b of type B,we write a =p b if for all A and
(A/B)-context C, it holds that Cla] | iff C[b] J.

Using the compositionality of the encoding and adequacy, one can show the soundness
of the translation, which tells us that the equalities that can be proved via the translation
are valid.

Theorem 14.8 (soundness) Let a and b be closed terms of type B. If [[a]]g R p: [B]"™ [b]]g
then a =g b.

The converse of Theorem 14.8 does not hold. Consider objects a and b with type [¢; :
[h:[]]; €2 :[]] and definition

a d=ef {El =e1; 62=€(l‘).((x.el).hCeg).hCeg}
b Y (e =er; b =((2). (2.01).h < e3}

for some expressions e; and es. The only difference between a and b is that, in a, the same
update operation in the body of method ¢, is repeated. The two objects are equivalent
in OC. However, they are distinguishable in the 7-calculus, and we informally explain the
reason. An external observer can update method ¢, thus becoming the owner of the body
of this method and then can respond in a non-deterministic way to requests of access to
¢1’s body. In particular, the observer can decide to diverge after precisely two requests of
update on the submethod h. In this case, when method /> of object a or b is selected, the
system with a reaches divergence, whereas the system with b does not.

This counterexample is similar to the counterexamples to full abstraction for the enco-
dings of the A-calculus into the w-calculus, see [Mil91, San95]. Note that full abstraction
also fails for the translations of OC into the A-calculus in [ACV96].

INRIA

An wnterpretation of Lypea Uojects wnto 1ypea m-CatCulus

15 Conclusions and future work

We have showed that a typed w-calculus can capture the type and subtype structure and
the operational content of a core, but challenging, Object-Oriented calculus. The proofs
of operational correctness of the interpretation are indicative examples of the usefulness of
type information for reasoning on 7-calculus process.

The results of operational correspondence (Theorem 14.5) are stronger than the results
for the encodings of the A-calculus into the 7-calculus [Mil91, San95]: The statements of the
latter results make use of weak behavioural equivalences, whereas in Theorem 14.5 a strong
behavioural equivalence suffices.

The language we have interpreted is sequential. We have chosen a sequential language
because type systems for sequential Object-Oriented languages are better understood. We
hope that studying these type systems from within the 7-calculus will shed some light onto
type systems for parallel Object-Oriented languages.

Our translation uses only a subset of the w-calculus language where: All inputs are either
persistent or linear; a name appears in input subject position at most once; a name received
in an input can only be used in output position. The processes obeying this discipline are
“functional”, in that they have a confluent reduction relation. Some of these constraints
appear in 7-calculus-like languages studied by Amadio [Ama96], Boreale [Bor96|, Fournet
and Gonthier [CG96]. Identifying combinations of the 7-calculus operators which are useful
for the interpretation of objects might lead to the definition of a higher-level target calculus,
capable of yielding more succinct and readable interpretations of objects.

We would like to apply the interpretation and the theory of the w-calculus, in particular
its algebraic laws and its proof techniques, to proving behavioural properties on OC terms.
Indeed, a major reason for experimenting the 7-calculus in the semantics of Object-Oriented
languages is the wish to exploit its theory. We would also like to compare proofs of behaviou-
ral equalities between OC terms carried out via the w-calculus translation, against direct
proofs using applicative bisimulation as defined by Gordon and Rees [GR96]. Obviously,
since the 7w-calculus translation is not fully abstract, there will be proofs for which only
applicative bisimulation can be used.

We have interpreted OC, that is a core functional Object Calculus, because it already
contains most of the basic challenges to interpreting typed functional Object-Oriented lan-
guages into the m-calculus and because we wanted to keep our interpretation and proofs
shorter and easier to read. Abadi and Cardelli have studied an extension of the type sys-
tem for OC with variant annotations {4+, —, 0} on the method names so to have a richer
subtyping relation (see [AC95]). A tag ¢*,¢~ or (° says, respectively, that method ¢ can
only be selected, only updated, or both selected and updated. Tag + gives covariance, —
gives contravariance and o gives invariance. Conceptually, these tags yield the same form
of subtyping on OC types as that induced by the tags {r,w,b} on the m-calculus types. It
is simple to capture this extension of the OC type system in our translation. Abadi and
Cardelli have also investigated a second-order extension of OC [AC94a]. It should be pos-
sible to extend our encoding of the first-order OC to an encoding of the second-order OC,
by adding polymorphic types to the typed m-calculus following Turner [Tur96].

RR n~° 3000

Daviae Sangiorgl

By contrast, how to repeat out program onto the imperative version of OC [AC95] is less
predictable. We think that an encoding of the imperative calculus can be written which has
a similar structure to the encoding of the functional calculus presented in this paper. The
main modification should be in the object manager 0B#(s;..s,,): In our translation, this
is a functional process; translating the imperative OC, it should be made “imperative”, by
allowing updates of the names s;..s,, for accessing the methods. However, it would be good
to see the details worked out.

All Object Calculi are sequential. One hopes that studying their type systems from

within the m-calculus will help to develop concurrent or distributed versions of the Object
Calculi.

Acknowledgements

The core of this research was carried out while the author was visiting the Isaac Newton
Institute for Mathematical Sciences, Cambridge, U.K., for the programme on “Semantics of
Computation”, from September to December 1995.

I am most grateful to Ramesh Viswanathan for several discussions during the set up of
the encoding. T also benefited from comments by Martin Abadi, Gérard Boudol, Kim Bruce,
Luca Cardelli, Andy Gordon and Benjamin Pierce.

This research has been supported by the CNET project “Modélisation de Systemes Mo-
biles”.

References

[AC93] R. M. Amadio and L. Cardelli. Subtyping recursive type. ACM Transactions
on Programming Languages and Systems, 15(4):575-631, 1993. A preliminary
version appeared in POPL ’91 (pp. 104-118), and as DEC Systems Research
Center Research Report number 62, August 1990.

[AC94a] M. Abadi and L. Cardelli. A theory of primitive objects: Second-order systems.
In Proceedings of ESOP’9). Springer Verlag, 1994.

[AC94b] M. Abadi and L. Cardelli. A theory of primitive objects: Untyped and first-order
systems. In Proc. Theoretical Aspects of Computer Science, volume 789 of Lecture
Notes in Computer Science. Springer Verlag, 1994.

[AC95] M. Abadi and L. Cardelli. An imperative object calculus. In Mosses P. et al.
editor, Proceedings of TAPSOFT’95, volume 915 of Lecture Notes in Computer
Science. Springer Verlag, 1995.

[ACV96] M. Abadi, L. Cardelli, and R. Viswanathan. An interpretation of Objects and
Objects Types. In Proc. 23th POPL. ACM Press, 1996.

[Ama96] R. Amadio. Locality and failures II. To appear as Tec. Report, INRIA Sophia
Antipolis, 1996.

INRIA

An wnterpretation of Lypea Uojects wnto 1ypea m-CatCulus

[Ame89|

[Barg4]

[Bor96]

[CGY6]

[GRY6]

[HK96]

[Hon96|

[Jon93]

[Kam88|

[KPT6]

[LW96]

[Mil91]

[Mil92]

[MPW92]

[MS92]

[Ode95]

[Palo6]

RR n° 3000

P. America. Issues in the design of a parallel object-oriented language. Formal
Aspects of Computing, 1(4):366-411, 1989.

H. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of
Studies in Logic. North Holland, 1984. Revised edition.

M. Boreale. On the expresiveness of internal mobility in name-passing calculi. In
Proceedings of CONCUR 96, LNCS 1119. Springer-Verlag, 1996.

Fournet C. and Gonthier G. The Reflexive Chemical Abstract Machine and the
Join calculus. In Proc. 28th POPL. ACM Press, 1996.

A.D. Gordon and G.D. Rees. Bisimilarity for a first-order calculus of objects with
subtyping. In Proc. 25th POPL. ACM Press, 1996.

H. Hiittel and J. Kleist. Objects as mobile processes. Unpublished notes, August
1996.

K. Honda. Composing processes. In Proc. 28th POPL. ACM Press, 1996.

C.B. Jones. A w-calculus semantics for an object-based design notation. In
E. Best, editor, Proceedings of CONCUR ’98, volume 715 of Lecture Notes in
Computer Science, pages 158—172. Springer Verlag, 1993.

S. Kamin. Inheritance in Smalltalk-80: a denotational definition. In Proc. 15th
POPL. ACM Press, 1988.

N. Kobayashi, B.C. Pierce, and D.N. Turner. Linearity and the pi-calculus. In
Proc. 23th POPL. ACM Press, 1996.

X. Liu and D. Walker. Partial confluence of processes and systems of objects.
Submitted for publication, 1996.

R. Milner. The polyadic 7-calculus: a tutorial. Technical Report ECS-LFCS-91-
180, LFCS, Dept. of Comp. Sci., Edinburgh Univ., October 1991. Also in Logic
and Algebra of Specification, ed. F.L. Bauer, W. Brauer and H. Schwichtenberg,
Springer Verlag, 1993.

R. Milner. Functions as processes. Journal of Mathematical Structures in Com-
puter Science, 2(2):119-141, 1992.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, (Parts I
and IT). Information and Computation, 100:1-77, 1992.

R. Milner and D. Sangiorgi. Barbed bisimulation. In W. Kuich, editor, 19th
ICALP, volume 623 of Lecture Notes in Computer Science, pages 685—695. Sprin-
ger Verlag, 1992.

Martin Odersky. Polarized name passing. In Proc. FST & TCS, Lecture Notes
in Computer Science. Springer Verlag, 1995.

J. Palsberg. Personal communications on work in progress. 1996.

Daviae Sangiorgr

[PS93] B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. In Proc.
8th LICS Conf., pages 376-385. IEEE Computer Society Press, 1993. To appear
in Journal of Mathem. Structures in Computer Science .

[PT96] B. C. Pierce and D. N. Turner. Pict: A programming language based on the
pi-calculus. In preparation, 1996.

[San92] D. Sangiorgi. Ezpressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms. PhD thesis CST—99-93, Department of Computer Science,
University of Edinburgh, 1992.

[San95] D. Sangiorgi. Lazy functions and mobile processes. Technical Re-
port RR-2515, INRIA-Sophia Antipolis, 1995. available electronically as
ftp://ftp.dcs.ed.ac.uk/pub/sad/RR-2515.ps.Z.

[Tur96] N.D. Turner. The polymorphic pi-calculus: Theory and Implementation. PhD
thesis, Department of Computer Science, University of Edinburgh, 1996. PhD
thesis, University of Edinburgh, To appear.

[VH93] V.T. Vasconcelos and K. Honda. Principal typing schemes in a polyadic -
calculus. In E. Best, editor, Proceedings of CONCUR ’98, volume 715 of Lecture
Notes in Computer Science. Springer Verlag, 1993.

[VT93] V.T. Vasconcelos and M. Tokoro. A typing system for a calculus of objects. In
Proc. Object Technologies for Advanced Software ‘93, volume 742 of Lecture Notes
in Computer Science, pages 460—474. Springer Verlag, 1993.

[Wal95] D. Walker. Objects in the w-calculus. Information and Computation, 116(2):253—
9271, 1995.

[Yos96] Nobuko Yoshida. Graph types for monadic mobile processes. In Proc. FST &
TCS, Lecture Notes in Computer Science. Springer Verlag, 1996. to appear.

INRIA

/¢

Unité de recherche INRIA Lorraine, Technopodle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LESNANCY
Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhone-Alpes, 655, avenue de |’ Europe, 38330 MONTBONNOT ST MARTIN
Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des L ucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399

