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Abstract:  The asynchronous mw-calculus is a variant of the w-calculus where message
emission is non-blocking. Honda and Tokoro have studied a semantics for this calculus
based on bisimulation. Their bisimulation relies on a modified transition system where, at
any moment, a process can perform any input action.

In this paper we propose a new notion of bisimulation for the asynchronous w-calculus,
defined on top of the standard labelled transition system. We give several characterizations of
this equivalence including one in terms of Honda and Tokoro’s bisimulation, and one in terms
of barbed equivalence. We show that this bisimulation is preserved by name substitutions,
hence by input prefix. Finally, we give a complete axiomatization of the (strong) bisimulation
for finite terms.
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Bisimulations pour le pi-calcul asynchrone

Résumé: Le m-calcul asynchrone est une variante du w-calcul de Milner, Parrow et Walker
oll ’émission de message n’est pas bloquante. Honda et Tokoro ont donné une sémantique
fondée sur la notion de bisimulation pour ce calcul. Leur bisimulation est définie sur un
systeme de transitions étiquetées non standard.

Nous proposons ici une nouvelle notion de bisimulation pour le m-calcul asynchrone, qui
se base sur le systeme de transitions étiquetées habituel du m-calcul. Nous donnons plusieurs
caractérisations de cette équivalence, en particulier une par équivalence & barbes. D’autre
part nous montrons que notre bisimulation coincide avec celle de Honda et Tokoro, et qu’elle
est préservée par substitution et donc qu’il s’agit d’une congruence. Enfin, nous donnons
une caractérisation axiomatique de la bisimulation (forte) pour les processus finis.

Mots-clé :  calculs de processus, pi-calcul, communication asynchrone, bisimulation



Un bistmuiations jor the ASYynchronous m-calCutus

1 Introduction

Process interaction in a distributed system without global clock is usually modelled by mes-
sage passing. In this context, one often distinguishes between synchronous and asynchronous
message passing. In the former, the send and receive events can be regarded as happening
at the same time. In the latter, one can imagine that messages are sent and travel in the
ether till they reach their destination, while the sending process accomplishes other tasks.

In the distributed algorithms community the distinction synchronous vs. asynchronous
communication is not considered a very important issue. For instance [Tel95], pp 44 says:

Messages in distributed systems can be passed either synchronously or asynchronously.
(...) For many purposes synchronous message passing can be regarded as a special case
of asynchronous message passing (...)

Indeed one can simulate a synchronous communication with two asynchronous ones. On
the other hand in the language design community the distinction seems to be quite relevant.
Basically, asynchronous communication is easier to implement than the synchronous one
as it is closer to the communication primitives offered by available distributed systems.
In particular, asynchronous communication has become a popular choice in the design of
languages for the programming of distributed applications. An early proposal is Agha’s
actors model [Agh86], while more recent contributions based on the theory of the w-calculus
include Pict [PT96] and the join calculus [FG96].

A second community where the distinction synchronous vs. asynchronous is gaining mo-
mentum is that concerned with the semantics of programs. In this community one is often
interested in comparing calculi. Certain translations turn out to be fully abstract in an
asynchronous setting, where the observer has less power. Examples include the encoding
of input-guarded choice [NP96] into the asynchronous w-calculus and the encoding of the
asynchronous m-calculus into the join calculus [FG96].

A way to restrict a process calculus to asynchronous communications is to remove output
prefixing. In other terms, an asynchronous output @ followed by a process P is the same
as the parallel composition @ | P. If the calculus has a non-deterministic sum, then we
also disallow output guards. We can justify this decision as follows: (i) An output on a
choice point forces synchronizations at the implementation level, this seems to contradict
the very essence of asynchronous communication (we are not aware of any programming
language which allows this). (ii) At the semantic level a calculus with output guards is more
discriminating, in particular certain desirable equations such as (2) in section 4 fail to hold.
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The resulting calculus is still quite expressive when working in a framework where channel
names are transmissible values, e.g. the m-calculus [MPW92]. Indeed it is quite easy to
simulate the synchronous w-calculus in the asynchronous one: the sending process waits
for an acknowledgment from the receiving process on a private channel. Basic results on
the expressiveness of the asynchronous w-calculus can be found in the works by Honda and
Tokoro, and Boudol [HT91, Bou92], where the asynchronous w-calculus was first proposed.

When communications are asynchronous, the sender of an output message does not
know when the message is actually consumed. In other words, an asynchronous observer,
as opposed to a synchronous one, cannot directly detect the input actions of the observed
process. Consequently, the asynchronous calculus requires the development of an appropriate
semantic framework.

In this paper we develop a theory of bisimulation for the asynchronous w-calculus both
in the strong and in the weak case. OQur starting point is an original notion of asynchronous
bisimulation over the standard labelled transition system. As a first contribution, we provide
several characterizations of this bisimulation, and in particular we study under which condi-
tions it coincides with barbed equivalence. We also show that our asynchronous bisimulation
coincides with that proposed by Honda and Tokoro, which is based on a modified transition
system for the m-calculus, on the sublanguage that they consider. As a second result, we
observe that asynchronous bisimulation is preserved by the input prefix of the w-calculus (a
similar property is proved in [HT92]) and coincides with ground bisimulation (a bisimulation
where only one fresh name is considered in the input clause). Finally, we give a complete
axiomatization of asynchronous bisimulation in the strong case for finite terms.

Insensitivity to name instantiation (and hence the possibility of using ground forms of
bisimulation) appears to depend on having no output prefixing. It does not depend on having
asynchronous, rather than synchronous, bisimulation (see [BS96] for a study of insensitivity
to name instantiation for various forms of synchronous bisimulations).

Forms of asynchronous 7-calculus have also been studied in [HKH95], but the bisimilarity
used is the standard (synchronous) one. Part of our theory, in particular axioms and normal
forms, is related to that in [HKH95]. Our formulation of asynchronous bisimulation has
been recently used by Nestmann and Pierce [NP96] to prove the full abstraction of the
above-mentioned encoding of input-guarded choice.

The paper is organized as follows. In section 2 we provide the basic definitions. In
section 3 we present various characterizations and properties of strong asynchronous bisimu-
lation. In section 4 we study an equational theory which characterizes strong asynchronous
bisimulation for finite terms. In section 5 we adapt some of the results in section 3 to the
weak case. Appendix A provides a detailed comparison of our work with that of Honda and
Tokoro and appendix B contains longer proofs for sections 3-5.

2 Asynchronous m-calculus

The asynchronous w-calculus is defined as a subset of the 7-calculus where: (i) There is no
output prefixing, and (ii) outputs cannot be on a choice point (formally sums are allowed

INRIA
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P=P P3Q Q=Q

(cong) e ™ I
(in) o). P = [c/5P (out) a2 0

PiP'a;éb P3P ad¢na)
(outee) vb P ) P @) vaP = va P

ab oy ab ab) ., ab

(syne) PP QI—>Q, (synces) L P QZQ ,b §élfn(Q)

PIQ—=P|Q P1Q—vb(P Q)
(comp) r=r bn(g) ﬂlfn(Q) =0 (sum) __G=F _,) f

P|lQ—=P|Q G+G =P
(rep) —C—P
P IG = PG

Figure 1: Labelled transition system with early instantiation

only on input prefixes and 7’s). Our language differs from the one proposed in [HT91, Bou92]
for the presence of a form of choice. This will be important in the axiomatisation (section 4).

We assume a countable collection Ch of channel names, say a,b, ... We distinguish bet-
ween general processes P, @, ... and guards G, H, ... as specified in the following grammars:

Pu=ab|P|P|vaP|IG|GC G:=0|a®).P|r.P|G+G

In figure 1 we define a labelled transition system with early instantiation (rule (in)). The
actions « are specified as follows: « ::= 7 | ab | a(b) | ab. Conventionally we set n(a) =
fn(a) U bn(a) where:

fa(r) =0 fn(@®)) ={a} fn(ab)= fn(ab) = {a,b}

bn(r) =0 bn(a(db)) = {b} bn(ab)= bn(ab) =10

The rules (sync), (syncez), (comp), and (sum) have a symmetric version which is omitted.

Indeed, parallel composition and sum should be understood as commutative operators. We
denote with = syntactic identity modulo a-renaming and with fn(P) the names free in P.

The notion of weak transition is defined as usual:
P= P iff P(5)*P
P2pP iff P>.5.2 P (fora#T)

We write — and = as abbreviations for © and =, respectively. The relations — and =
are often called reduction relations.

The first important technical point arises in the definition of commitment. In the asyn-
chronous case it seems natural to restrict the observation to the output commitments. The
intuition is that an observer has no direct way of knowing if the message he has sent has
been received. All the sender can do is to introduce an output particle in the system, unless
there is an explicitly programmed acknowledgment mechanism there is no way for him to
know when the particle is actually consumed.

RR n~°2913
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Definition 2.1 (commitment) The strong commitment of a process on a channel ez-
presses the fact that the process is ready to send a message on that channel. Formally,
P | @ if P can make an output action whose subject is a, that is if there exist P',b such that

P2 P orPp < P'. The weak commitment is then defined as:

Pyaif P=>P and P' |a

From the definition of reduction and commitment the notion of barbed bisimulation is
derived in a canonical way.

Definition 2.2 (barbed bisimulation) A symmetric relation S on m-terms is a (strong)
barbed bisimulation if whenever PSQ the following holds:

1. If P | a then Q | @.
2. If P— P’ then Q — Q' and P'SQ’.

Let ~ be the largest barbed bisimulation. The notion of weak barbed simulation is obtained
by replacing everywhere the commitment | with || and the transition — with =. We denote
with ~ the largest weak barbed bisimulation.

A more refined notion of bisimulation can be obtained if we also allow observation of
output transitions.

Definition 2.3 (or-bisimulation) A symmetric relation S on w-terms is a (strong) or-bisi-
mulation if PSQ, P = P', a is not an input action, and bn(a) N fn(Q) = O implies
Q = Q' and P'SQ’. Let ~,, be the largest or-bisimulation. Again, the notion of weak
ot-bisimulation is obtained by replacing strong transitions with weak transitions. We denote
with =, the largest weak ot-bisimulation.

Both barbed bisimulation and or-bisimulation are too rough to distinguish processes
such as a(b).cb and a(b).db. Clearly these processes exhibit different behaviours when they
are put in parallel with a process ab. It is then natural to refine barbed bisimulation to an
equivalence which is preserved by parallel composition. Following [MS92], we call it barbed
equivalence.

Definition 2.4 (barbed equivalence) The relations of strong and weak barbed equiva-
lence are defined as follows:

P~y Q if VR(P|R~Q|R)

P, Q if VR(P|R=Q|R)

Another approach consists in looking for a variant of the input clause. This leads to the
following notion of asynchronous bisimulation. We will see later (definition 3.6) that several
other equivalent definitions are possible.

Definition 2.5 (asynchronous bisimulation) A relation S is an asynchronous bisimu-

lation if it is an or-bisimulation and whenever PSQ and P 2 P the following holds:

INRIA
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o cither Q 2 Q' and P'SQ'
e or Q= Q' and P'S(Q' | ab).

Let ~, be the largest asynchronous bisimulation. The definition of weak asynchronous
bisimulation is obtained by replacing the strong labelled transitions with the weak labelled
transitions everywhere. We denote with =, the largest weak asynchronous bisimulation.

Since asynchronous bisimulation is the basic bisimulation considered in this paper, we will
call it simply bisimulation in what follows.

Remark 2.6 (comparison with [HT91]) Definition 2.5 relies on a standard labelled tran-
sition system. Honda and Tokoro [HT91] take a different approach. They modify the labelled
transition system by replacing the input rule with the following rule for the O process (which
to some extent allows one to observe the behaviour of a process after an input):

1
0%ab (1)

Since rules in [HT91] are applied modulo a structural equivalence =g, and P =g P | 0,
this implies that any process P can perform any input ab.

We think that rule 1 is not so appealing because: (i) it introduces an infinite branching,
(i) it is not obviously compatible with a calculus including choice or other dynamic operators
(in particular O fails to be a unit for the choice operator, at least with the usual rule for
choice), and (iii) it does not reflect the computational content of processes.

Honda and Tokoro’s bisimulation coincides with ours; the proof is easy, using the cha-
racterisation of our asynchronous bisimulation as 1-bisimulation (definition 3.6). A detailed
analysis is given in appendiz A.

The following properties are specific to the asynchronous 7-calculus (properties 1 and 2
also depend on the absence of outputs on choice points):

Lemma 2.7 1. IfP 2 P! then P ~q P'| ab.
2. If P ™Y P then P ~, vb(P' | ab).
3. FPZ . %P thenP S . B P
4P . 2 P andb ¢ n(a) then P % "% pr.
5. If P 3. % P and c is fresh, then P 5 [b/c] P'.

6. If P . % proand ¢ is fresh, then P = vb([b/c] P').

3 Asynchronous bisimulation, strong case

In this section we study some properties of strong asynchronous bisimulation (definition
2.5). In section 5 we will discuss how these results can be lifted to the weak case. Since
most proofs for the weak case can be trivially adapted to the strong case we delay all proofs
to that section. The contributions of the present section can be summarized as follows:

RR n~°2913
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1. We show that bisimulation is preserved by name substitution.
2. We provide several equivalent definitions of bisimulation.

3. We prove that bisimulation and barbed equivalence coincide.

The definition of bisimulation has been given in an early style, and thus contemplates
the substitution of the bound name of an input with all possible names. In the ground '
style [San95], on the other hand, no name instantiation is needed in the input clause.

Definition 3.1 (ground bisimulation) A relation S is a ground bisimulation if it is an
or-bisimulation and whenever PSQ, P L P and b ¢ fn(P | Q) the following holds:

o cither Q 2 Q' and P'SQ’
o or Q5 Q' and P'S(Q' | ab).

We denote with ~4 the largest ground bisimulation. Weak ground bisimulation is obtained
by replacing transitions with weak transitions. We denote with =, the largest weak ground
bisimulation.

Theorem 3.2 Strong ground bisimulation is preserved by name substitutions.

An important corollary of theorem 3.2 is that bisimulation and ground bisimulation
coincide.

Corollary 3.3 Strong bisimulation and strong ground bisimulation coincide: ~q=n~.

A second corollary is that bisimulation is preserved by input prefix (a property which
fails in the synchronous calculus). We can then easily conclude as follows.

Corollary 3.4 Strong bisimulation is a congruence.

Besides early and ground, other variants of bisimulation which have been studied in
the literature are late and open. The difference among all these variants is in the require-
ments on closure under name instantiations. Late bisimulation requires that matching input
transitions should be adequate for all instantiations of the bound name. In open [San93]
bisimulation the only constraints on equalities among names are those imposed by name
extrusion and are recorded as a distinction in the bisimulation clauses. Moreover, in the
synchronous 7-calculus strong late and early bisimulations are not congruences because they
are not preserved by input prefixes, hence the induced congruences, called late and early
congruences, have been introduced. In the asynchronous 7w-calculus, bisimulation is preser-
ved by name instantiations, and therefore all the above forms of bisimulation coincide. We
omit the definitions of late and open (which are best defined on a late transition system)
and we simply state the result.

1We use the adjective ground to emphasize the fact that in this bisimulation the formal parameter of
an input prefix is treated as a fresh constant. Note that the terminology ground equivalence was used in
[MPW92], pp 28, with quite a different meaning.

INRIA
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Corollary 3.5 Late and open variants of strong (asynchronous) bisimulation coincide with
the early strong (asynchronous) bisimulation.

We have thus demonstrated some interesting mathematical properties of our notion of
bisimulation. Our next task will be to give an intuitive justification of this notion. First,
we introduce three further definitions of bisimulation, which differ in the formulation of the
input clause, and we show them all equivalent to definition 2.5. Roughly, 1-bisimulation
requires preservation under parallel composition with an output, while 2,3-bisimulations
propose variants of the diagram chasing in the input clause (cf. definition 2.5).

Definition 3.6 (variants of bisimulation) An i-bisimulation (i = 1,2,3) is an or-bisimulation
S such that:

o (1-bisimulation) PSQ implies (P | ab) S (Q | ab), for all ab.
e (2-bisimulation) PSQ and P = pr implies
— either Q 8 Q' and P'SQ’
— or Q5 Q' and there is P s.t. P’ B proand P"SQ'.
o (3-bisimulation) PSQ and P 2 P’ implies
— either Q 33 Q' and P'SQ’'
— or there are P",P" s.t. P' & P, P L P" qnd P"SP".

We denote with ~; the largest i-bisimulation, for i =1,2,3.

Theorem 3.7 (characterization) All definitions of bisimulation are equivalent. That is:

Ny = N1 =~y = Avg.

Our last result connects bisimulation with barbed equivalence. It should be noted that
our definition of barbed equivalence follows [MS92|. Honda and Yoshida [HY95] rely on a
stronger notion of barbed equivalence, where the preservation under parallel composition
with outputs is required at each step.

Theorem 3.8 Let P,Q be processes. Then P ~y Q iff P ~, Q.

4 Equational theory, strong case

We present now an equational theory which characterizes strong asynchronous bisimulation
on finite terms. In the rest of this section we shall concentrate on the restricted language
without replication. In this case the following equation summarizes the differences between
the synchronous and the asynchronous bisimulations:

a(b).(ab| P)+1.P=71.P b¢ fn(P) (2)

RR n~°2913
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The reader should pause to formally verify this equation according to definition 2.5. A
particular instance of equation 2 is a(b).ab + 7 = 7 which intuitively says that the process
that emits what it has just received can be “absorbed” in an internal action.

Our axiom system is reported in figure 2. The proof of completeness relies on a non-standard
notion of normal form. Let us first observe that, due to the absence of output prefix in the
syntax, the parallel operator cannot be completely eliminated via an expansion theorem.
Unrestricted outputs will continue to be present as parallel components in normal forms,
and their possible communications with the rest of the process will remain potential (that
is, they will not give rise to an explicit 7-action in the normal form). A related notion of
normal form is introduced in [HKH95]. In this work the equational theory captures strong
synchronous, rather than asynchronous, bisimulation; the axiom system is essentially the
same as that in figure 2 but without equation 2.

We introduce some notation. Let [],.;@b; denote a product of outputs, defined up to
the laws (P1)-(P3) in figure 2 (monoid laws for | ). We shall use ¢ to denote a sequence
of names ¢1,...,¢m. If €= c1,...,Cm, we let v&P stand for vey ...ve,, P. If = ¢ (the
empty sequence), we let by convention ve P = P. With a slight abuse of notation, we will
sometimes use ¢ also to represent the set {ci,..., ¢y} (this is justified by axiom (R3)). We
define now the set Fire (vé[],.;a:b;) of indices of firable outputs of ]
names in ¢ are restricted.

el se1 @ib; when all

Definition 4.1 Let P = v€ [[;c; @;b;. Then Fire(P) = UFirenew (P), where Fire, (P)
is the set of indices of outputs that can be fired after exactly n steps, given by:

Fireg(P) = {i|a; ¢}
Fire,41(P) = {i|3k€ Fire,(P) by =a;} \ |J Firen (P)

m<n

Example 4.2 Let P = vbvcllcrazb; with I = {1,2,3,4} and aiby = ab, azby = ac
@3bs = be, and Gzby = ¢b. Then Fireg(P) = {1,2}, Fire;(P) = {3,4}, and Fire, (P

for n > 2. Hence Fire(P) = I. Note that by construction Fire,(P) N Fire,(P)
n #m.

Let =gp be the congruence induced by the laws (S1)-(S4), (P1)-(P3) in figure 2 (commu-
tative monoid laws and idempotence for 4+, and commutative monoid laws for | ).

Definition 4.3 A normal form is a term defined up to (S1)-(S3) and (P1)-(P3) of the
form:

v | [[@bi | (O 7P+ > an(b)-Pr)

iel jeJ keEK

where the sets I, J, K are patrwise disjoint, each P;, Py is a normal form, and supposing
c=c1,...,Cm, the following conditions are satisfied:

1. (All restricted names are emitted) V€€ {l,...,m} Ji el b;=c

2. (All outputs are firable) Fire (ve[[;c;@ibi) = I

INRIA



Un bistmuiations jor the ASYynchronous m-calCutus 11

3. (Non-redundancy) YkVj P, #gsp (agb| P;).

By convention [ [, @:bi = 0 if I =0 (and similarly for the sums 3°,c ; 7.P; and 3y re ar(b).Pr).
Thus 0 is a normal form, when @ =¢ and I = J = K = (). A guarded normal form is a

normal form such that = and I = (.

We will show that each term P can be reduced to a normal form using axioms A in figure 2.
Most axioms are standard: (EXP) is an instance of the expansion theorem applied to guards,
(OABS) is a form of expansion in which the output particles which are not firable are forced
to synchronize or to be postponed. Let =4 denote the congruence induced by these axioms.
The proof of normalisation uses nested induction on the depth and on the structure of P.

Definition 4.4 The depth of a process P, d(P), is defined inductively by:

Remark 4.5 d(P) is an upper bound on the length of the transition sequences of P. It is
easy to see that if P' is a subterm of P then d(P') < d(P).

Lemma 4.6 (normalisation lemma) For any process P there exists a normal form:

[Pl =ve | [[abi | (O 7P+ > ax(b).P

i€l JjeJ keK

such that P =4 [P] and d([P]) < d(P). In particular, every guarded sum G can be
reduced to a guarded normal form [G] =3 ,c;7-Pj + Y e ar(d). Pe.

In the proof of our completeness result, we shall use also the following:

Lemma 4.7 (separation) Let P and Q be two normal forms:

= ﬁHaH|PE and QEVU(Hﬁdh|QE)

el heH

where Py = ( ZTP—!—Z% ).P.) and Qs = ZTQ4+ Zcm Qm)-

J€J keK Lel meM

If P ~, Q then there exists an injective substitution o that renames the set ¥ into 4 and
acts as the identity otherwise, such that:

[I@t: = o [[edn  and P ~. 0Qx

i€l heH

RR n~°2913
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(S1) G+0 = G (P1) P|O0 = P

(S2) G+G' = G +G (P2) P|Q = Q|P

(83) G+(G"+G") = (G+G")+G" P3) PI(QIR) = (P|Q)]
(84) G+G = G

(R1) va (Y ;o i P) =) {ci.vaPi|i€1, ag fn(as)} Vi a ¢ bn(a)
(R2) va(P|Q)=P|va@ if a ¢ fn(P)

(R3) vavb P=vbra P

(EXP) (Ezpansion Theorem) Let JNK =0=LNM,b¢ fn(Q), d ¢ fn(P).

P = ZTP +Zak ).Pr) and Q = ZT Q¢ + Zcm ®@m). Then:

jEJ kEK LeLl meM
PIQ =Y rFlQ+ > ax®)-(P|Q) + D .7 (P1Q) + Y cm(d)-(P|Qum)
JjeJ kEK Lel meM

(OABS) (Output Absorption) Let I,J,K be disjoint, h € I\Fire(uﬁHa_ibi) and

iel
b ¢ i. Then:

vil (Ha_ibi | O P+ Zak(b).Pk)> =

i€l jE€J keEK

vi | ] @b | O @b | ) + D an®).@ibn | P) + > 7.[bn/b] )

ieI\{h} jeJ kEK kEK

ap=ap
(IABS) (Input Absorption) a().(ab| P)+71.P = 17.P b ¢ fn(P)

Figure 2: Axioms A

INRIA
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Theorem 4.8 On finite terms, the equivalence ~, is the congruence generated by the axioms

A.

PROOF. Soundness: P=4@Q = P ~, Q. Thisis the easy part: it is proved by exhibiting
appropriate bisimulations for each axiom.

Completeness: P ~, Q = P =4 Q. Given the normalisation lemma and the soundness
of the axioms, it is enough to prove the statement for normal forms. This point relies on
lemma 4.7 and is developed in appendix B. O

5 Asynchronous bisimulation, weak case

In an asynchronous world a process can make an input and then emit it again on the same
channel without changing the overall behaviour of the system. Some interesting equations
that hold in the weak semantics and that further motivate its study are the following:

(a(b).abd) =0

a(b).(@b | a(b).P) = a(b).P

a(b).@ | G)+ G =a(h).G

We present the weak versions of theorems 3.2 and 3.7. Our first task is to show that (weak)
bisimulation is preserved by substitutions and coincides with ground bisimulation. To this
end we first establish some elementary properties whose proof is not completely standard,
in particular some work needs to be done to prove transitivity of ~, (cf. section B). In the
following P, @, R ... denote processes.

Lemma 5.1 Bisimulation is preserved by parallel composition, restriction, replication and
guarded sum, and it is included in ground bisimulation:

1. If P, Q then P|R~, Q| R, vaP ~,vaQ, a.P + R ~, a.Q + R, and |P =,!Q.

2. If Pr, Q then P =, Q.

Let o denote a name substitution which is almost everywhere the identity. Whenever we
apply a substitution to a process or an action we suppose that the bound names have been
renamed so that no conflict can arise, in particular o acts as an identity on bound names
and if o(c) # ¢ then o(c) is not a bound name either.

Lemma 5.2 The transitions of P and oP can be related as follows:
1. If P % P' then oP 33 oP'.
2. IfoP 2P and o # 7 then for some P', P % P', P’ = P", and oo =a'.
3. IfoP 5 P" then:

(a) either P = P' and oP' = P".
(b) or ca =od, P 2. %P and [b/cloP" ~, P" (c fresh).
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(¢) or ga = ad, P& progng vb([b/cloP") ~, P" (c fresh).
We are now ready to prove the crucial lemma.
Lemma 5.3 If P =, () then P =, 0Q).

PROOF. We show that the following relation is a bisimulation up to ~, and restriction:
S ={(¢P,0Q) | P =, Q,0 substitution } (3)

Suppose oP = P'. If a is a 7 or output action then the “up to” means that there are J:
P".Q",Q' such that ¢Q = Q' and

P ~a Vd"P// P”SQ” Vd"Q// ~a Q/ (4)
If o = ab is an input action then the “up to” means that there are d: P" Q",Q'" such that:

e cither oQ) 2 Q' and condition 4 holds.

e or 0@ = Q' and
P~ vdP" P"SQ" vdQ" ~, (Q'|ab) (5)

The various cases are considered in appendix B. O

Theorem 5.4 Weak ground bisimulation and weak bisimulation coincide and they are pre-
served by substitution.

PRrOOF. From lemma 5.1(2) and lemma 5.3 applied with the identity substitution we know
that P =, Q iff P =, (). From lemma 5.3 we can conclude that both bisimulations are
preserved by substitution. |

It follows that weak bisimulation is preserved by all operators but sum (as usual) and that
late and open variants of the weak bisimulation coincide with the early bisimulation studied
here.

Corollary 5.5 If P =, Q then a(b).P =, a(b).Q.

We can generalise the characterization of asynchronous bisimulation in terms of 1-bisimulation
to the weak case.

Definition 5.6 Let S be a weak or-bisimulation. We say that S is a weak 1-bisimulation
if PSQ implies (P | ab) S (Q | ab). We denote with =1 the largest weak I1-bisimulation.

Theorem 5.7 (characterization) The 1-bisimulation coincides with (asynchronous) bisi-
mulation. That is: =, = =~1.
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1o

We now relate barbed equivalence and bisimulation. In the weak case our results rely
crucially on the matching operator which we introduce next (in the strong case matching
is not needed). We suppose that the grammar of the calculus is extended by the clause:

Pu=... | [a = b]P. The rule associated to matching in the labelled transition system is:
@ !
(match) P;]Z,
[c=cP—P

We will concentrate on the weak case first. In appendix B we indicate how to eliminate
matching in the strong case (hence providing a proof for theorem 3.8).

Proposition 5.8 Let P,Q, R be processes. Then:

1. If o is an injective substitution on fn(P | Q) then P =, Q iff oP =, 0Q.
2. If P=, Q then P | R =, Q | R, for any process R.

3 If P=, Q then P = Q.

PROOF. The proof of (1) is standard. The proof of (2) is shaped upon the one for lemma 5.1

(we cannot use directly this lemma because we have extended the calculus with matching).
The proof of (3) follows by:

Pr,Q =VR(P|R~,Q|R)
=>VR(P|R~, Q| R)
=PxQ

O

We recall that a lts (Pr, Act,—) is image finite if for any process P and action « the
set {P' | P+ P'} is finite. We say that a process P is image finite if the lts generated by
P is image finite. Image finite processes form an interesting class: w.r.t. strong reduction
all processes are image finite (up to renaming of bound names), and w.r.t. weak reduction
all finite control processes (cf. [Dam93]) are image finite modulo the equation va P = P for

a ¢ fn(P).
Theorem 5.9 If P and @) are image finite processes, and P =, @ then P =, Q.

PRrROOF. Let F be the monotone operator over P(Pr x Pr) associated with the definition
of asynchronous bisimulation. Suppose ~0= Pr x Pr, k= F(xF), and mv=,_, ~".
It is well-known that on an image finite lts the operator F preserves co-directed sets. In
particular, F(~%) ==¢. It follows that on image finite processes ~,=~*. We show that
~p @ implies P =% Q. From the previous remark the theorem follows.
More precisely, we define a collection of tests R(n, L) depending on n € w and L finite

set of channel names, and show by induction on n that:

AL, L' (LD (P | Q),L' C L and vL' (P | R(n, L)) ~ vl (Q | R(n,L))))
implies P =7 Q.
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Strong case (without matching):

[} ’:‘DNOTDNa:Ng:N1:N2:~3:Nb-

® ~, is a congruence.

e Axiom which distinguishes asynchronous from synchronous bisimulation: a(b).(ab | P)+7.P =
T.P, ifb¢ fn(P).

Weak case:

L]
XD Ror DR = R.
o Without matching: ~; = =, is a congruence and ~, C .

e With matching on image finite processes: <, = ~.

Figure 3: Summary of results

If the property above holds then we can conclude the proof by observing:

P~ Q =VR(P|R~Q|R)
=>Vnew(P|Rn,L)~Q|R(n, L)) withL=fn(P|Q), L' =0
=>Vnew(Pa"Q)
=PrYQ

Full definitions of the tests R(n, L) are given in appendix B. |

Remark 5.10 (1) In the proof for the strong case one can achieve the effect of matching
with synchronization. Therefore theorem 5.9 holds also for a calculus without matching. In
the weak case matching plays an essential role, for instance the terms ab and ac cannot be
separated when put in parallel with the process (b(d).ed) |!(c(d).bd) (which is an equalizer in
Honda-Tokoro terminology).

(2) The definition of the tests R(n,L) does not involve the guarded sum. This implies
that the characterization theorem still holds for an asynchronous calculus without guarded
sum.

(3) In the asynchronous calculus with matching the various notions of bisimulation do
not collapse. For instance consider P = a(c).be + a(c).0 and Q = P + a(c).[c = d]be. The
processes P and Q are early equivalent but late distinct. Moreover asynchronous bisimulation
and barbed equivalence fail to be congruences. If we refine asynchronous bisimulation to an
asynchronous congruence (by asking invariance under substitution) and if we refine barbed
equivalence to barbed congruence (by considering contexts including the input prefiz) then we
can show that asynchronous congruence coincides with barbed congruence.

6 Conclusion

Our contributions are summarized in figure 3.  We leave open the problem of finding
an axiomatization of weak asynchronous bisimulation (with or without matching), and the
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e

problem of determining the counterpart in the weak case of the characterisations of strong
asynchronous bisimulation in terms of ~5 and ~3. In another direction, it would be worth
investigating the applications of theorem 5.4 (bisimulation equals ground bisimulation) to
automatic verification. For instance, one may wonder if it is possible to speed up current
verification techniques by compiling into the asynchronous 7-calculus and applying ground
bisimulation. For this, it would be useful to find syntactic conditions under which asynchro-
nous and synchronous bisimulations coincide.
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A Coincidence of ~, with Honda and Tokoro’s bisimula-
tion

In [HT91] Honda and Tokoro define a bisimulation based on a modified transition system for
the asynchronous 7-calculus without sum. We will show that on this restricted language their
bisimulation coincides with our asynchronous bisimulation. We first recall some facts about
Honda and Tokoro’s transition system. Note that since there is no sum in the language,
guarded sums G are reduced to guarded processes of the form 7.P or a(b).P, and replication
is limited to such processes (in practice this is no restriction, since replicated input guarded
processes are sufficient to simulate general replication).

In Honda and Tokoro’s transition system (HT-transition system, for short) the transition
relations, which we denote by = ,,,., are defined up to a structural equivalence =,,. This is
the smallest equivalence such that:?

P=Q = P=yur (= is syntactic identity modulo a-conversion)
P|0 =4 P

P|Q =ur Q|P

P|(Q|R) = (P|Q)|R

va(P|Q) =gr PlvaQ ifa¢ fn(P)

vavbP =4, vbvaP

IG =4 G|IG

P=,,Q = P|R=4 Q|R and vaP =y, va@

Then the transitions <, are inferred using the system of rules in figure 1 (without the rule
(sum)), with the following changes:

1. The congruence rule (cong) is replaced by the rule:

o

P=nurP P’—>HTQ’ QIEHT
Pg’HTQ

(congyr)

2. The input rule (in) is replaced by an input rule for the 0 process:

mn
) 0%,

3. The communication rule (sync) is replaced by the rule:

(synces) ac | a(b).P Sy [c/bP

4. The rule (synce;) is not needed anymore, since all restrictions can be brought outside

terms using =4 .

2We take here a slightly simpler equivalence than that used in [HT91], keeping only the clauses that are
necessary to infer transitions.
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The (strong) bisimulation equivalence® based on this transition system, noted <, is defined
as the largest HT'-bisimulation.

Definition A.1 (HT-bisimulation) A relation S is a HT-bisimulation if it is an or-bisi-
mulation and whenever PSQ and P L e P then Q 2 e Q' and P'SQ’, for any ab.

Note the rather special role played by input transitions in the HT-transition system: the
transitions a—b>HT are never consumed in communications; they are only used in the bisimula-
tion to create contexts [ ] | @b for testing processes. In fact, every process can perform any
input and it is easy to show the following.

LemmaA.2 P23,,P & P =, P|ab

PROOF. (<) Suppose P’ =y P |ab. Then, using (ingr), (comp) and (cong), we have
(P=ur P|0 2, P|Gb =yr P') = P2, P.

(=) By induction on the proof of the transition. If the only rule used for deducing P DB o
P’ is (ingr) then P = 0 and the result is immediate. If the last rule used is (comp), the result
is also immediate by induction. Suppose now the last rule is (v), that is, vc P L e veP'is
deduced from P a—b>HT P', a,b # ¢. By induction P’ =, P | @ab. Then vc P’ =, ve(P |
@b) =y vc P | @b. Let now the last rule be (rep). This means that |G =, Q |'G is deduced
from G =,, Q. By induction Q =4 G | @b. Then Q |!G =y, G | @b |!\G =4, 'G | @b.
Suppose finally that the last rule used is (cong), that is, P 2 e P is deduced from P =
rr Q a—b>HT Q' = wr P'. By induction Q' =gxr Q | @b. Then, since =y is preserved by
parallel composition, also P! =, Q' =ur Q|ab =y P |ab. O

This property will be the basis for an alternative definition of the HT-transition system,
where there is no recourse to a structural equivalence. This new transition system, which
we call direct HT-transition system, will be easier to compare with ours. It includes two
kinds of input transitions:

— Those generated by 0 processes, noted na—b>0, which are only used in the bisimulation to
create contexts [ | | @b.

— Those corresponding to input guards a(b).P, noted nﬂil, which are only used in com-
munications and never tested directly by the bisimulation.

We will use +% to denote a generic transition in the direct HT-transition system. The
transition relations ~ are defined by the system of rules in figure 4 (where we omit the
symmetric rules for (ing), (sync'), (syncl,) and (comp)) and in rules (cong), (v), (comp)
and (rep) we use 2 to denote either kind of input transition. Note that the communication
rules (sync’) and (syncl,) are based uniquely on the input transitions 2 corresponding
to input guards. The input transitions »a—b>0 satisfy a slightly weaker property than that
expressed by lemma, A.2.

3In fact Honda and Tokoro define directly the weak bisimulation.
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2zl

The transition relations ~ are the smallest relations such that:

P=P P %Q Q=Q

(cong)
P& Q
(mo) o o lw (ima) a(b).P &, [c/b]P
J— t —_—
) PSP (out) ab 20
(outer) P3P a#b ) PSP adn(e)
“ P pr vaP & va P!

PEp Q& ¢ PP QL Q b¢mQ)

(sync') T 5l - ' (sync;m) T - ! !
PlQwP|Q PlQ=vb(P'|Q)
PSP obn(e)nf(Q) =0 G P

(comp) —— (rep) —_——

PlQ~P|Q G~ P |G

Figure 4: Direct HT labelled transition system

Lemma A.3 The input transitions »a—bm satisfy the following:
e P8P = P =, P|ab

e P =,, Plab = 3P" (P"=,, P' and P, P")

We show next that the transitions — preserve the structural equivalence = .

Lemma A.4 The transitions v satisfy the property:

P=,Q%Q = 3P (PSP =4 Q)

We can now prove the correspondence between the two HT-transition systems.
Lemma A.5 The two HT -transition systems are related as follows:

1. If o is an output or T action, then:
(i) PS5, P = 3P" (PSP =4, P')
(i) PSP = P35, P
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@ a(b
2. Moreover, for output transitions P 2 P or P {8 P’ we have:

(i) PEP = P =u, vi(@|R), a,b¢ @ and P' =ur viR

(i) PP = P=, vi@|R), a¢d, bed and P =, v(@\b)R
3. Case of input transitions P »ﬂio P

(i) PS,. P = 3P" (P&, P =,, P')

(ii)) P3P = P%,, P
4. Case of input transitions P »ﬂil P

(i) Let a,b,c & @. Then vii(a(c).Q | R) 31 vii([b/c]Q | R).

(i) P&, P = P =, vi(a(c).Q|R), a,bc¢ @, P =urvi(b/c]Q|R)

PROOF. Lemma A.4 is used in all cases to care for the fact that the transitions -, are
defined up to the structural equivalence =,,. Then the proof for output transitions is
straightforward, since apart from the congruence rule all their defining rules are the same
in the two transition systems. Point 2 is an easy consequence of lemma, A.3. The proof of
3.(4) is immediate. Point 3.(i¢) is shown by induction on the proof of P 2, P'. We give
here the proof for T-transitions, which relies on 3.

e We show first that P 5,, P’ = 3P" (P& P" =, P').

— Basis: there are two cases to consider, 7.P <., P and ac | a(b).P ., [c/b] P.
The first case is immediate, since the defining rule is the same in the direct transition
system. For the communication case, using rules (out), (in1) and (sync’) we can
deduce @c | a(b).P ¥ 0 | [c/b] P =yr [c/b] P.

— Inductive step: the cases where the last rule used is one of (comp), (v), (rep) are
straightforward, since the rules are the same in the two transition systems. Suppose
now the last rule used is (cong)zr. This means that P 5, P' is inferred from
P=urQ 5,r Q = ur P'. By induction we have Q — @Q’. Then by lemma A.4 there
exists P" such that P+ P" = pr Q' = ur P'.

e We show now that P~ P’ = P 5, P
— Basis: there is only one case to consider, 7.P +» P, which is immediate.

— Inductive step: cases where the last rule used is one of (comp), (v), (rep), (sync'), (sync.,).
We examine the last two cases:

(sync') : Suppose P | Q +> P’ | Q' because P 2 P and Q &, Q’'. By point 2.(7)
we have P =y, vi(ab | R), a,b ¢ @ and P' =4, vi R. Similarly, by point 4.(i7)
Q =ur vi(a(c).S | S"), a,bc ¢ ¥, Q =ur vi([b/c]S | S'). Then, supposing
ZNT=0 and N fm(Q) =0 =7N fn(P), we have, by rule (syncgr):
P|Q =ur viv(R|ab|a(c).S|S") Sur viv (R|[b/dS|S")
=ur VvZR|vT([b/c]S|S") =ur P'|Q

whence, by rule (congur), P | Q Sur P'| Q'
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(sync.,) : Suppose P | Q ¥~ vb(P' | Q') because P ) P’ and Q na—bq Q', b¢ Q).

By 2.(i1) P =y vi(ab | R), a ¢ 4, b € @, P' =4, v(i\b)R, and by 4.(i7)
Q =ur vi(a(z).S | S"), a,bc ¢ 0, Q =pr vi([b/c]S | S’). Then, supposing
ENT=0 and N f(Q) =0 =7N fn(P), we have, using rule (syncyr) again:

P|Q =Zur v@t(R|ab|a(c).S|S") Sur vt (R|[b/dS]|S")
=ur vb((@\b) R| v ([b/dS|S") Zur vb(P'| Q')

O

The bisimulation equivalence based on the direct transitions ~, noted ~y, is defined as
may be expected.

Definition A.6 (direct HT-bisimulation) A relation S is a direct HT-bisimulation if it

is an ot-bisimulation and whenever PSQ and P la—bm P’ then Q lﬂg Q' and P'SQ'.

Using lemma A.5 it is easy to show the following.

Proposition A.7 Xu; = ~yr.

We shall now prove the coincidence of ~,, with our asynchronous bisimulation ~,. The
correspondence between the direct HT-transition system and ours is very easy to establish
(note that there is no counterpart for the transitions 28 in our system):

Lemma A.8 The lts in figure 1 and the direct HT -transition system are related as follows:
. PRP o PRP
2. P3P o PAP
3. PSP & PLP

PRroOOF. Immediate, since the defining rules are the same in all cases. O

We are now ready to show that ~y, coincides with ~,. The proof is straightforward
if we take the characterization of ~, as ~;. In fact the coincidence of ~4, (in its origi-
nal formulation <g7) with ~; was already stated in [HT92| for the weak versions of the
bisimulations. The proof is based on the following observation.

Remark A.9 In the direct HT -transition system any two processes P and @ have the
same inputs »ﬂo, so checking the correspondence of the transitions lﬂo reduces to checking
the correspondence of the resulting processes; by lemma A.3 these are always of the form
Plab and Q| ab (modulo =y, but =pr C (~ur N e~1)).

Proposition A.10 ~,; = ~7.
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PROOF.

e ~y C ~yr. We show that ~q is a (direct) HT-bisimulation. Suppose P ~; Q. We
only have to check the input clause, so let P la—bm P'. By lemma A.3 P' =4, P |ab.
By rule (ing) we have @ 2 Q | @b. Since P ~; Q, by definition also P | ab ~; Q | @b,
and thus, since =4, C ~1, we conclude P’ ~; P |ab ~1 Q | ab.

e ~yuyr C ~q. Suppose P~y Q. We want to show that P | @b ~4r Q | @b. But this
is immediate because P la—b>0 P | @b, and since P ~y; @, there exists Q' such that
Q 2 Q" and P | @b ~yr Q. By lemma A.3 we have Q' =y, Q | @b. Thus, since
=ur C ~ur, P|@b ~pyr Q' ~pr Q| ab. O

B Proofs

B.1 Proofs of section 3

Preliminaries to the proof of theorem 3.7.
Lemma B.1 The relations ~g4,~1,~2,~3 are equivalence relations.

PROOF. The only nontrivial property to show is transitivity. The transitivity of ~q is
immediate. That of ~, is proved for the weak case, see proposition B.8. We prove here the
transitivity of ~o. The transitivity of ~3 is shown in a similar way.

Transitivity of ~o2. We show that the relation (~5 o ~3) is a 2-bisimulation. This will
imply (~9 0 ~3) C ~y and therefore the transitivity of ~2. Suppose that P ~y T ~5 Q.
The two interesting cases are:

e P2 P and T answers by T = T’ such that for some P” we have P’ % pr and
P" ~y T'. Then Q must have a transition Q = Q' such that T’ ~5 Q'. Therefore
P" (~3 0 ~3) Q" as required.

e P B P and T L T with P' ~o T'. T 2 T’ is matched by Q 2% Q' we have
finished. So suppose we are in the case where Q@ = Q' and for some T” we have

T % 7" and T ~y @'. Then P’ must have a transition P’ 2% P such that
P" ~y T". Therefore P" (~2 0 ~9) @’ and this concludes the proof. O

Let =47 be the structural equivalence defined in page 19. Clearly =4+ is included in all
the equivalences ~,, ~1, ~2, ~3. The following property holds (it should be noted that this
property depends on not having outputs on choice points).

Lemma B.2 If P 2 P' then P =,, P'|ab.

Lemma B.3 The relations ~, and ~2 are preserved by parallel composition with outputs.
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PRrROOF. The proof for ~, is given in lemma B.7 for the weak case. We give here the proof
for ~5. We show that the relation:

R = {(PlabQ|ab) | P~2Q}U ~

is a 2-bisimulation up to =,,. We check that the bisimulation condition is satisfied by the
pairs (P | @b, Q | ab).

Consider first the case of output or T actions:

e Case where P moves alone: P |ab— P'|ab is inferred from P = P’. Since P ~5 Q,
this implies Q = Q' with P’ ~5 Q'. Then Q | @b = Q' | @b is the required matching
move, since (P’ |ab, Q' | ab) € R.

e Case where @b moves alone: P | @b 2p | 0. Then Q | @b 29 | 0 is the matching
move, since (P |0, Q| 0) € (Egr o Ro =yyr).

e Communication case: P | @b — P' |0 is inferred from P 2 P’ and @b 2 0. There

are two possibilities for @ to answer to P a2 pr.

- Q L4 Q', with P’ ~5 Q'. Then Q | @ = Q' | 0 is the required move, since
(P'"10,Q"|0) € (=uroRo=gs).

— Q 5 Q and there exists P" such that P’ 2 P and P~y Q'. By lemma B.2
P' =4, P" | @b and then also P’ |0 =y, P"” | @b. Hence Q | @b = Q' | @b is the
matching move, since P’ | 0(Ro =4,) Q' | ab.

Case of input actions: here P | ab 4 pr | @b is inferred from P 2 P'. Then @ can answer
in two ways:

e Q <« Q' and P’ ~3 Q'. In this case we have Q | ab < Q' |ab and (P'|ab, Q' |ab) €
R.

e Q5 Q' and there exists P” such that P’ X pr and P~y Q'. Then Q |ab = Q' |
ab and P’ |ab <8 P" | @b, where (P |ab, Q' |ab) € R.

Proof of theorem 3.7: All the equivalences ~g, ~1,~2,~3 coincide.

PRrROOF. We show the three equalities: 1. ~, = ~1, 2. ~, = ~g, 3. ~y = ~3.

The proof of 1. is given in appendix B.3 for the weak case: let us just mention that the
direction ~, C ~; uses the fact that ~, is preserved by parallel composition with outputs,
and the direction ~; C ~, uses transitivity of ~y. The proof of 3. is straightforward:
the direction ~ C ~3 uses the transitivity of ~2, and the direction ~3 C ~2 uses the
transitivity of ~3. We give here the proof of 2, which relies on lemmas B.2 and B.3 and uses
the transitivity of ~s,.

Proof of 2. ~, = ~3. We first show that ~, is a 2-bisimulation. Let P ~, Q. Suppose
P2 P and Q answers by Q@ = Q' such that P’ ~, Q' | @b. Then P’ must be able to
simulate the move Q' | @b 2 Q' | 0 by a move P’ 2 P such that P ~, Q10 ~, Q.
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We show now that ~3 is an a-bisimulation. Let P ~2 Q. Suppose P 2 P and @ answers
by a transition @ = Q' such that for some P” we have P’ L Pl and P~y Q'. By
lemma B.2 P’ =,, P" | @b and thus also P’ ~5 P" |ab. By lemma B.3, P" ~5 Q' implies

P" | ab ~2 Q" | @b. Whence, by transitivity of ~3, also P’ ~2 Q' | @b. O

B.2 Proofs of section 4

Proof of lemma 4.6.

By lexicographic induction on the depth d(P) and on the structure of P. For a given depth,
we proceed by structural induction. Axioms S1, S2, S3 and P1, P2, P3 will be used implicitly
in the proof, in particular the relation = should be intended as syntactic identity modulo
a-renaming, and the axioms above.

e Case n = 0. If d(P) = 0, P is built with the operators 0, | and va. If we define
[P] = 0, then we have P =4 [P] by axioms (P1) and (R1).

e (Case n > 1. We proceed by induction on the structure of P.

1. P =ab. This is already a normal form.

2. P = a.Q, where a = a(b) or « = 7. By induction there exists a normal form
[@Q] such that @ =4 [Q] and d([Q]) < d(Q). Then [P] = a.[Q] is a guarded
normal form, and d([P]) =d([Q])+1<d(Q) +1=4d(P).

3. P = G + F. By induction there exist guarded normal forms [G], [F] such that
G =4 [G], F =a [F], d([G]) < d(G),d([F]) < d(F). Assume [G] =
DT B+ Dpex an(b). R and [F| =37, 7.5 + 3, cpr ¢m(d). Sm. Let
IIOWKII{]CEK|E|E€L Rk:sp(ﬁbl»ge)}, M’:{m€M|EIj €
J Sm=sp (md | RJ)} Define [P] = EjeJT‘Rj + ZkeK\K’ ak(b).Rk +
Yeer TSt + Ymem\mr €m(d). Sm. Then [P] is a guarded normal form and
we can deduce P =4 [G] + [F] = [P] by repeated use of the absorption law
(IABS). Also, we have d([P]) < maz {d([G]), d([F]) } < maz {d(G), d(F)} =
d(P).

4. P =R | S. By induction there exist normal forms [R], [S] such that R =4 [R],
S =4 [S] and d([R]) < d(R), d([S]) < d(S). Suppose that:

I-R-| = I/ﬁ(Ha_zb, | RE> |—S-| = V’U(Hﬁdh | Sg)

heH

where

REE(ZT-Rj+Zak(b)-Rk) SgE(ZT.S@-FZCm(d).Sm)
J k J4 m

are the guarded parts of [R] and [S]. By induction on the depth, all the terms
(R; | Sx), (Rk | Ss), (Rs | S¢) and (Rs | Sm) have normal forms (induction
can be applied because d([R]) < d(R), d([S]) < d(S)). For instance d(R;
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Sy) < (d(R) +d(S)) = d(P) follows from d(R;) < d([R]) < d(R) and d(Sx) <
d([S]) <d(S). Letnow K'={ke K |34€ LUJ [Ry | Ss]=sp (axb| [Rs |
Sﬂ)} and M' = {m eEM | 15 € LUJ [Ry | Sm] =sp (Gmd | |-Rj | Sg])}
We can assume that b ¢ fn([S]) and d ¢ fn([R]), and also €N T = @ and
N fm([S]) =0=7nf([R]). We now define:

[Pl = wvav ( [[a@b: | ] @dn | (D 7.[R;|Ss] + > 7.[Rs|Se] +

i€l heH JjEJ LeL
+ Y ax(d).[Re[Ss] + > cm(d).[Rn|Sm])
ke K\ K’ meM\M'

This is indeed a normal form. In particular, since 7N fn([[,ab:;) = 0 = @ N
fn(I1,, ¢rdn), we have:

Fire (vuv (H a;b; | H tndn)) = Fire (VﬁHa_ibi) U Fire (vv H Cndp)
i€l heH icl hEH
I U H

Using laws (R2), (EXP) and (IABS), we can easily deduce that:

P =a [R]|[S] =re viv (H @b | ] enda |R2|52>

i€l heH

=pxp VUV (Ha_zbz | Hadh |(ZT(RJ|SX3) + ZT(R2|SE)

el heH JjeJ Lel

+ Y a®) (Re | Ss) + Y en(d). (Rs | sm>>)
keK meM
=1ABS |—P—|

Moreover, we have (using maz; as an abbreviation for maz;cs):

d([P1)

IN

|+ [H| + 1+ maz;em { d(R;) +d(Sx), d(Ry)+d(Sx), d(Rs)+d(Se), d(Rs)+d(Sm)}
[ I| +|H| + 1+ maz {maz;i { d(R;), d(Rk) } + d(Sx), mazem {d(Se), d(Sm) } + d(Rx)}
| + [H| + maz {d(Sx) + d(Rs), d(Sx) + d(Rs) }

|+ [H|+d(Ss) +d(Rs) = d([R])+d([S]) < d(P)

5. P = va@. By induction @ =4 [Q] and d([Q]) < d(Q). Assume that:
[Q] = vt (Ha_ibi | (O rQ + Zak(b).Qk)>
i€l jeJ kCK

We consider separately the two cases where a ¢ fn(vil [[,c;@b:) and a €
fn(vii [1;c; @ibi). Note that we can assume a ¢ i, and in this case a € fn(vii [[,c; @ibi) <
a e fn(HieI a_zbz)
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[P]

-If a ¢ fn(]];c; @b:), we set:

[P = vi Ha_ibi | (ZT [vaQ;] + Z ar(b). [vaQr])
il jed ara
kEK\K'

where the normal forms [va Q;], [va Q]| exist by induction on the depth, and

K' ={keK|3j5€J [vaQi|=sp (@rb | [va®,;])}. This is by definition a
normal form. Suppose that both J # @ and K # @. Then we have:

=4 vail (Ha’ n (ZT.Q]' + Zak(b).Qk ))

iel jeJ kEK

= Vit (Ha_ib,- | va (D 7.Q; + > ar(b)-Qx ))

i€l jed kEK

= R1 Haz i (ZT (va@j) + Z ar(b). (vaQr) )

TABS iel jed an#a
keK\K'

=4 [P]

The cases where one or both of J, K are empty are simpler, since we do not need
to apply (IABS). We have thus shown that P =4 [P] using laws (R1)-(R3)
and (IABS). Moreover it is easy to see that:

d([P1) < II]+1+maz;i{d(Q,),d@Qu)} = d([Q) < d(Q) = d(P)

-1f a € fa([;c; @bi), define F = Fire (vai [[,c;@b; ), F = I\F, and let &, @
be the projections of ai on the names that bind, respectively do not bind, some
a;b; such that ¢ € F. Formally, if w = {ue | Ji€eF (a;=u¢ V b; =us)} and
u' = @\u', we define:
7 { qf;’ if 3i€F (a;=a V b;=a)
u'  otherwise

W

"
u"”  otherwise

_ { au’ if Ai€F (ai=a V b;=a)

Supposing b ¢ 7, let now:

= ui (Ha_ib” O o r v (JJab: Q)1 + D ax(d). [vi (] [@bi | Qi)

icF jeJ icF kEK\K' i€eF
ap¢o

+ Z T. [l/lE(Ha_ibi | [br/b]Qk)1)
kEK i€F
ap=ap,h€F i#h
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where all the required normal forms exist by induction on the depth, and K’ =
{k e K | 3 € J [wi(lier @b |  Qu)l=sr
@b | [ (Ter @b | @) or 3k € K [vi([Lep @b | Qu)l=sp
(@b | [uu’i(HieF anbn | [br/b)Qr))1}. Then, if [Q] =vi Q" and [P =vd P’

i#h
we have, by applying (OABS) until all unfirable outputs have been pushed under
the guards, and then using (R2), (R1) to push under the guards the restrictions

. —
m w:
_ - P2 A - pl
P =4 vai Q" =p3 viw Q = .. viP = [P]
R2, R1
TABS
Moreover:

d([P]) < |F|+1+maz{maz;{|F|+d([Q;])}, mazi{|F| +d([Qx])}}

= [I[+1+maz; {d([Q;1), d([Qx]) } < d(Q) = d(P)

Preliminaries to the proof of lemma 4.7.

Let us look back at the definition of Fire,(P) for P = v€[];c;a@:b;. Note that the sets
Fire,(P) partition Fire(P). Note also that, since I is finite, there exists a minimal r such
that Fire,y1(P) = 0. We then have Fire(P) =J, _, Fire,(P). We shall use @(b) to stand

for either @b or @(b), and P = P’ to denote a sequence of transitions P =% ... & p’
such that ay,...,ar = s. The following fact can be easily proved by induction on n.

Remark B.4 Let P = vi Hiela_ibi be a normal form such that I £ 0, and define I,, =
Fire,(P) and N, = |L,|. If r = min{n | Fire,y1(P) = 0}, then P has a transition
sequence

P=p2%P ... PP =0

such that for any j = 1,....r + 1, P; = v@ [[;cpy,, g,_, @bi where @ = @\bn(s;),

and, letting  @° = @, for any j = 1,...,r the sequence
sj = @(b1),....ay,(by,) is a sequentialisation of the outputs in Fire;(P) such that for

any k=1,...,N;:

2 (b7 ay(bl) if (bl €@ and YU<k b, #b])
kA Tk a b, otherwise

Remark B.5 If |I| = N, we can assume w.l.o.g. that I = {1,...,N}. Then we can
build a canonical transition sequence P = Py = p --- P2 P,11 = 0 where outputs
within the same sequence s; are sequentialised according to the ordering of I.
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Proof of lemma 4.7.

We apply remark B.4. Let the canonical transition sequence associated with P be:

p oy v(@\b1) ( H ab; | Px)- awn) I/E(Ha_ib”Pg) = Ps

iel\{1} €0
Since P ~, @, we can find a matching sequence for ), possibly using a-conversion. Let  be
a renaming on the names of ¥’ such that ¢ = @ and the process Q' = vi ( H Thdn | Qx))
heH

has the following matching sequence, deduced without using a-conversion:

Q" yo@dy) (o [ @wdn | Q) "= veo([] i | Q) = 0Qs

heH\{i1} hed

where for any k =1,...,in, 0, {di,) = @r{br). This shows that Px ~, o Qs.

Let now Py = [[,;c; @b; and Qu =[], Chdn- To obtain Py = 0 Q it is enough to show
that the two multisets of actions in Py and ¢ Qp are the same. But this is an immediate
consequence of the above and of the fact that Fire(v@ Py) = I and Fire(vioQu) = H
(because P and @ are normal forms).

Complement to the proof of theorem 4.8.

So assume P = H ab; | Ps) and Q v ( H Chdn | Qx ), where as usual Py

iel heH
and Qs are the guarded parts of P and Q:

=) P+ ) ad).P), Qe =(D 7Q+ Y cm(d).Qm

Jj€JS keK Lel meM

By the separation lemma we know that there exists a substitution o such that @ = @,
ow=w if w ¢ ¥, and:

Ha_ib,v = JHﬁdh Py ~,0Qx

We will show, by induction on the sum of depths of P and @, that Py =g 0 Qx. This will
imply the required result, namely:

P =g Vﬁ(oHﬁdh | 0Qx) = Q
heH

Note that, if P is a normal form and P = P’ (where « is any action), then P’ is a normal
form such that d(P') < d(P).* We will show that:

40n the other hand, P’ is not in general a subterm of P, so we could not use structural induction on
normal forms.
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ol

(*)

Py =g Pr +0Qx =s2 0Qx

To this end it is enough to prove:

(Z) Ps, =g9 Pg—f—T.JQg
(ZZ) Ps, =g5 Py, +0'Cm(d).Qm

Then (*) will follow by iteration and by symmetry.

(i)

Suppose Ps - P;. Since Py ~, 0 @)z, there exists £ € L such that o Qyx L oQ
and P; ~, 0 Q. By induction P; =so 0 Q¢ and thus also 7. P; =g2 7.0 Q. Then
Py =g3 P +71.0 Q.

arby

Let now Py —= [br/b]P,. We show first that o Qs is forced to match this move by
a transition of the form ¢ Qs LN [br/d] 0 Qm for some m such that o ¢mdy, = arby.
For suppose o Qs responds with a transition o Qs — o Q, for some @, such that
[bk /D] Pi ~q Gby | 0 Qe. Since d(Py) < d(P) and d(agb | 0 Q¢) < d(Q), we have by
induction that P, =s2 Grbx | 0 Q¢ But then, since Py ~, o Qy, there must be j € J
such that Ps = P; and P; ~, 0 Q. By induction this implies P; =g» 0@, and
hence P, =gy Gxby | P;, contradicting the hypothesis that Py is a normal form.

Thus a transition Py LIL/N [b/b)P: is always matched by a transition o Qx kb,

[br/d]o Qm such that ocmdn = arby and [br/blPr ~q [br/d]o @m. By induction
[bk/b] P =s2 [bx/d]o Q.. and therefore also ay(b). P, =s2 0 ¢m(d). Qm- Then Py =g
Py + 0 cm(d). Qm.- O

B.3 Proofs of section 5

Preliminaries to the proof of theorem 5.7.

Remark B.6 P=,Q < P =, (Q]|O0).

Lemma B.7 The relation =, is preserved by parallel composition with outputs:

Pr~,Q = Plab ~, Q|ab

PROOF. Let =p be the congruence induced by the commutativity and associativity laws for
| (laws (P2), (P3) of our axiom table). We show that the relation:

R = {(P|abQ|ab) | P, Q} U =,

is an a-bisimulation up to =p. We check that the bisimulation condition is satisfied by the
pairs (P | ab, Q | ab).

Consider first the case of output or T actions:
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e Case where P moves alone: P |ab= P’ |ab is inferred from P = P’. Since P =, Q,
this implies Q = Q' with P’ ~, Q'. Then Q | @b = Q' | @b is the required matching
move, since (P'|ab, Q' | ab) € R.

o Case where @b moves alone: P | @b Zp | 0. Then Q | @b 29 | 0 is the matching
move, since P |0 =, Q|0 by remark B.6, and ~, C R.

e Case where both P and ab move, independently. Similar to the previous case: P |
@b 2 P'| 0 is inferred from P = P’ and @b 2 0. Then Q = Q' with P' ~, @',
and thus Q | @b 2 Q' | 0 is the matching move.

e Communication case: P | @b = P' | 0 is inferred from P = P, % p,E P and

@b 2 0. There are two possibilities for () to answer:

— Q3 Q1 >Q BQ, S Q> Q, with P, ~, Q; and P’ ~, Q'. Hence
Q|ab = Q)| a = Qy,| 0= Q| 0, which is the required move since
P|0 =, Q]O.

— Q> Q' with P' =, Q' | @b. Hence Q | @b = Q' | @b is the matching move, since
P'|0 =, Q' |ab.

Consider now the case of input actions. There are two possibilities:

e Case where P moves alone: P |ab < pr | @b is inferred from P £ P'. Then @ can

answer in two ways:

— Q£ Q and P' ~, Q'. In this case we have Q |ab < Q' |ab and (P'|ab, Q' |
ab) € R.

- Q=Q" and P' =, Q' | ed. Then Q | @b = Q' | @b is the required move since
(P'|ab, (Q'|ab) | ed) € (Ro =p).

o Case where P communicates with @b, before or after doing the input.

— Suppose the communication occurs earlier, that is P g P % p'and P | ab > P |
0L pr | 0 = P". By the communication case above, we know that P |ab = P, | 0 is
matched either by Q | @b = @, | 0 such that P, |0 =, Q|0 orby Q |ab= Q; | ab
such that P; | 0 =, Q1 | ab.

— In the first case, P, | O % P’ can be matched by Q1] 0 “ Q" such that
P" =, Q", in which case P | ab % pr s matched by Q | ab « Q"; or
P |0 2 pr is matched by Q1 | 0 = Q" such that P" ~, Q" | @, in which
case P |ab £ P is matched by Q |ab = Q".

— The second case is similar. One can compose the move Q | @b = Q1 | @b with

either Qp | @b «“ Q" such that P" =, Q" or with Q; | ab = Q" such that
P ~, Q" | 7d.

— The case where the communication occurs later is slightly more involved. Suppose
PLp 2P and P | ab <p | @b = P’ | 0. By the case where P moves alone (first
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item of input case) we know that the input transition P | @b < p | @b is matched
either by @ | ab « Q1 | ab for some Q such that Py =, Q1 and (P; | @b, Q1 | ab) € R,
or by Q |ab= Q| ab for some Q; such that P, =, Q; | @d.

— In the first case, by the communication case above (fourth item of output and 7

case) we know that P; | @b = P’ |0 can be matched either by Q1 |@b= Q' |0
such that P’ | 0 ~, Q' | 0, in which case P | ab < P’ | 0 is matched by
Qlab Q' |0;orby Q|ab= Q' |ab such that P’ | 0 ~, Q' | ab, in which
case P |ab « pr | 0 is matched by Q | @b LQ | @b.

— In the second case, we have Py =, Q1 | €d. Then @, | ¢d can simulate the move

b o,
P, £ P’ in two ways:

1. @ |cd 2 Q' for some Q' such that P’ ~, Q'. Then there are again two

possibilities:

la. Q1 | ©d 2 Q' because Qi 2 Q" and Q' = Q" | ed. In this case
P, | @b = P'| 0 is matched by Q; |ab = Q" | 0, where P’ =, (Q" |
0) | ¢d because P’ | 0 ~, Q'. Thus P | ab < p | 0 is matched by
Qlab< Q" |o.

1b. The transition Q; | ¢d 2 Q@' consumes the output éd. This can be

because Q1 2 Q- «“ Q" or because Q1 «“ Q2 2 Q". In both cases we
have Q: | @b < Q" | 0 = Q' and thus Q | @b < Q' is the matching

move.

. Q1|2 = Q' for some Q' such that P’ =, Q' | ab. Again, there are two

subcases:

2a. Q1 | ed = Q' because @; = Q" and Q' = Q" | @d. Then Q, |
@b = Q" | @b and thus Q | @b = Q" | @b is the matching move, since
P'=~, Q' |ab ~, (Q" |ab)|cd.

2b. Qq |ed > Q' because Q; < Q" and Q' = Q" | 0. Then Q, | ab < Q" |
@b and thus Q | @b « Q" | @b is the matching move, since P’ =, Q' |
ab =, Q" | ab. O

Proposition B.8 The relation =, is an equivalence relation.

PRrOOF. The only nontrivial property is transitivity. We show that the relation (=, o =,)

is an a-bisimulation. This will imply (=, o ~,) C =2, and therefore the transitivity of ~,.

Suppose that P =, T =, Q. The two interesting cases are:

o P2 P and T answersby T = T' with P’ ~, T' | @b. Then @ must have a transition
Q = Q' such that 7' ~, Q'. By lemma B.7 we have then T’ | @b ~, Q' | @b and

thus P’ (

R, 0 R,) Q' | ab as required.

e PE P and T L T with P' ~, T'. Now if T 2 T’ is matched by Q@ 2 Q' we are
done. So suppose we are in the case where Q = Q' and T’ ~, Q' | @b. Then we have

P’ (~, 0=,) Q" | @b as required. O

RR n~°2913



rvoverto M. Amaaro, liaria Casteiant, Daviae Sangiorgi

Let ~! be the variant of ~, obtained by replacing = with — in the hypothesis of the
clauses. We show that it is an equivalent formulation for ~,. It will be used to show that
=, coincides with ~; and thus with Honda and Tokoro’s bisimulation.

1

a*

Lemma B.9 (simpler formulation of =,) =, ==

PROOF.

Q

N

. . . . . o . . (23
« C ~!. This is immediate, since — is a particular case of =.

o ~! Cw,. Let P ~! Q and suppose P = P’. We consider first the case where a is an
output action or a 7-action:

— The case P & P is trivial (just take Q = @ as the matching move). Suppose now
P=P 5 ..-P% Py, -5 P, = P'. Since P ! Q we have then Q = Q¢ =
Qi 2 Qiy1 -+ > Qn, where P, =L Qy for each k = 0,...,n. In particular
P, =l Q,.

Consider now the case where « is an input action:

~LetP=Py 5 - P, %Py - 5P, =P. Then Q=Qy = - Q; with P, ~! Q,
for each £ = 0,...,i. Now if P, L P; 11 is matched by @, g Qi+1 we proceed as
above. So suppose we are in the case where Q; = Qiy1 and Piyq ~! Q41 | @b. Then
there are two ways in which ;41 | @b can match the move Py = Pl

— Q41 moves alone: Q1 | @b = Q' | @b because Q;y1 = Q'. In this case we have
Q = Q' and P' =! Q' | @b as required.

— @;4+1 consumes the output @b in a communication step. In this case the sequence
T T

Piy1 = ---P; 5 Pjyy -+ = P, = P' is matched by Qiy1 | @b = --- Q; |
b= Qj41]0 --- = Q' | 0 where Q; 2 Qj+1 and Q41 = Q'. Then we have
Q 2 Q' and P’ =~! Q' |0 ~! @', which is the required matching transition. O

Lemma B.10 (simpler formulation of ~1) = = =1.

PROOF. The only difference between the two definitions is in the output and 7 clauses, and
the proof for this case goes exactly as for ~,. O

Remark B.11 P=;Q & P = (Q]0).

Proof of theorem 5.7: =~, = ~;.

PRroOF. We will use the characterisations of ~, and ~; as z}l and z% respectively. For the
sake of simplicity, we keep the notations =, and =;.

e =, C =y. It is immediate to see that =, is a 1-bisimulation, since the output and 7
clauses are the same and P=~, Q = P |ab =, Q|ab by lemma B.7.
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e =y C =,. We show that =~ is an a-bisimulation. Again, there is nothing to prove for the
output and 7-clauses. As for the input clause, suppose that P 2% P'. Then P |ab = P'|0.
Since P =; @, by definition of ~ also P | @b =; Q | @b. Therefore there exists Q' such
that Q | @b = @' and P' | 0 ~; Q'. By remark B.11 we have then P’ =; @Q'. Now there
are three possibilities for the transition Q | @b = Q':

— @ | @b does not move: Q' = Q | @ and P’ =~; Q | @b. In this case we just take
Q = Q and we are in the second case of the input clause of a-bisimulation.

~ @ consumes the output @b: @ | @b = Q' because Q = @ L4 Q2 = Q" and
Q"= Q" | 0. Then by remark B.11 we have P’ =; Q" as required.

~ @ moves alone: Q | @b = Q' is inferred from Q = Q1 = Q2 = Q" and Q' = Q" | @b.
Then P' =; Q" | @b, and we are again in the second case of the input clause of
a-bisimulation. a

Complement to the proof of lemma 5.3.

e Suppose « is a 7 or output action, oP = P’ and P LN Py, where 0o/ = o and oP, = P'.
This is the simplest case (as given by lemma 5.2(2) or 5.2(3.a)). From the hypothesis P =, Q
we derive that @ = @ and P; =, Q;. From lemma 5.2(1) it follows that ¢Q = Q1.

e Suppose P = P’ and we are not in the previous case. According to lemma 5.2(3) we
have to consider two cases:

output: Suppose P %% Py, where P' ~, [b/c]o Py, c is fresh and oca = od. We have to
consider two subcases:

input : Suppose Q % | 4 @1 and P; =, Q1. This means that @ .25 % .3
Q1. By lemma 2.7(3) we have then Q = - 2 - % . 3 Qy, whence, by lemma

oab odc

52(1), 0Q = - % - ¥ . 2 0Q;. Then, by lemma 2.7(5) we conclude that
0Q = -~ [b/coQ:.

7: Let Q IREN Q1 and P; ~, (Q1 | dc). By lemma 2.7(3) we have Q = - z Q1, and
then by lemma 5.2(1) there exists S such that ¢@Q = S 2 7Q,. By lemma 2.7(1)
we know that S ~, (¢Q; | 0@b) = [b/c]o(Q; | dc). Then ¢Q = - ~, [b/clo(Q1 |
dc) is the matching move.

bound output: Suppose P A e Py, where P' ~, vb([b/c]oPy), ¢ is fresh and oa = od.
As before we have to consider two subcases:

input : Suppose @ a:(g) N Q1 and P, =; Q1. By the same reasoning as above, using
lemmas 2.7(4), 5.2(1) and 2.7(6) we deduce that 0@ = - ~, vb([b/c|ocQ1).

7 : Suppose @ E:@ - = Qi and P, ~, (Q1 | dc). Again, by the same reasoning
as above, using lemmas 2.7(4), 5.2(1) and 2.7(2) we deduce that 0Q = - ~,
vb([b/clo(Q1 | de)).

RR n~°2913



rvoverto M. Amaaro, liaria Casteiant, Daviae Sangiorgi

e The last case to consider is when o P @ pr, Then we have P 5 P, where c¢ is a fresh
name, oa’ = a and [b/c]JoP; = P’. Again there are two cases:

input : If Q o Q1 and Py =, Q¢ then 0@ g [b/clo@1-

7:Q = @ and P, =, (Q1 | a’c). Then the matching move is ¢Q = 0@, since
oQy | ab=[b/co(Q1 | a’c). |

Complement to the proof of theorem 5.9.

We define the tests R(n,L). To this end we introduce an internal choice operator &. This
is a derived operator defined as follows:

Po---®P,=va(a.P|---|a.P,|a) a¢f(P]| | P)

If X ={Pi,...,P,} is a set of processes then ®X is an abbreviation for P, @ --- @ P,.
We suppose that the collection of channel names Ch has been partitioned in two infinite
well-ordered sets Ch' and Ch”. In the following we have L' C L Cfinite Ch"”. We also
assume the following sequences of distinct names in Ch/':

{bn, b, | m € w}

{c?|n€wand B € {r,ad,a,aad',a| a,a’ € Ch"}}
{c? |n €wand B € {ad’,a|a,a’ € Ch"}}

{d? |n €wand B € {a|aeCh"}}

{en|n € w}

The test R(n, L) is defined by induction on n as follows, where we pick a” to be the first
name in the well-ordered set Ch"\L. When emitting or receiving a name which is not in L
we work up to injective substitution to show that P =7 Q.

R(0,L) = bo @ b'o

R(n,L) =b, ®b, ® (for n>0)
(€. ®R(n—1,L)) &
@ {cp* @ (aa' | R(n—1,L))|a,a’ € L} &
o{et ovad (@ | R(n—1,LU{d"})) |a€ L} @
& {& @a(a”).(;" @ (" =d'ld, ® R(n—1,1))) |a,d’ €L} &
@ {cs @ a(a").(dy @ (@{la" =d'|d, | €L} ®e, ®R(n—1,LU{da"})))|a€ L}

e We suppose n > 0, vL' (P | R(n, L)) ~ vl (Q | R(n,L)), and P = P'. We proceed by
case analysis on the action « to show that @ can match the action a (in the asynchronous
sense).

a =71 Then:
vL' (P | R(n,L)) S vl (P | (er & R(n—1,L)))

To match this reduction up to barbed bisimulation we have to have:

vL'(Q | R(n, L)) = vL'(Q1 | (¢;, ® R(n — 1, L)))
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We make a further reduction on the lhs:
vL' (P | (¢, ® R(n —1,L))) = vl (P | R(n —1,L))

Again this has to be matched by (note that we cannot run R(n, L) without losing a
commitment b,, or b',):

vL'(Q:| (el ® R(n —1,L))) = vL' (Q' | R(n — 1, L))
We observe Q = @1 = Q'. We can conclude by applying the inductive hypothesis.
a = aa’ We suppose a’ € L. Then:

vL' (P | R(n,L)) = vL' (P | (& & (ad' | R(n —1,L))))
This has to be matched by:

vI'(Q | R(n,L)) % vL/ (Q1 | (&% @ (@a' | R(n —1,L))))
We make a further reduction on the lhs:

vL' (P | (@ @ @d' | R(n—1,L)))) = vL' (P'| R(n —1,L))
This is matched by:
vL' (@] (@ @ (@a’ | R(n—1,L)))) % Q"

Now we have two possibilities:

e Q; = Q and Q" = vl (Q' | @ | R(n —1,L)). Then Q = Q; = Q' and
P’ ~"1 Q' | @a’ by inductive hypothesis.

¢ Q1% Q' and Q" =vL' (Q' | R(n—1,L)). Then Q = Q1 % Q' and P’ ~2~! Q'
by inductive hypothesis.

a = aa” We suppose ¢” ¢ L. Up to an injective substitution we may suppose a” is the first
name in Ch”\L. Then:

vL' (P | R(n,L)) = vl (P |2 @vd" (@' | R(n —1,LU{d"})))
This has to be matched by:
v (Q | R(n,1)) % vL' (@1 | &2 & va” @a” | R(n—1,LU{a"})))
We make a further reduction on the lhs:
vL' (P | @va” (@ | R(n—1,LU{a"}))) = vL' U{a"}(P' | R(n —1,L U {a"}))
This is matched by:
vL' (Q1 |2 @ va" (@a" | R(n—1,L U {a"}))) = Q"

As in the previous case we have two possibilities:
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e Q1 = Q and Q" =vL'U{d"}(Q' | @a" | R(n—1,LU{a"})). Then Q = Q; = Q'
and P’ ~"1 Q' | @a” by inductive hypothesis.

¢ Q1% Q and Q" =vL' U{a"}(Q'| R(n—1,LU{a"})). Then Q = Q; & Q'
and P’ ~"~! Q' by inductive hypothesis.

a =aa’ We may suppose ¢’ € L. Then:
vI' (P | R(n, L)) % vI' (P | ® a(a”).(@2" & ([a" = d]d" ® R(n—1,L))))
This has to be matched by:
vI' (Q | R(n, L)) % vI' (@1 |2 @ a(a”").(@2" & ([o" = o'|d" & R(n—1,1))))
We make a further move on the lhs:

vI (P e ®aa”)(@5" ® (0" = ad, © R(n—1,1)))) 5
v (P' | ([’ = a']d,, ® R(n—1,L)))

This has to be matched by (we have to lose the ?Za commitment while keeping the

I
— - )
d, ,bn_1,b',_1 commitments):

VI (Q1 |2 @ a(a").(@°" @ ([ = d|d" ® R(n—1,1)))) >

’

vL'(Q2 | ([0 = &/, ®R(n—1,L)))
We note Q1 E=>a’ Q2. We take a further step on the lhs:

vI/ (P'| ([ = )" ® R(n—1,1))) = vL' (P' | R(n — 1,L))
This has to be matched by:

VI (Qs | (jd' = a'[d" & R(n—1,1))) = vL' (Q' | R(n —1,L))

=1
aq

Now we observe Q@ = Q; & Q2 = Q' and we apply the inductive hypothesis to
conclude P' =7~1 Q'

a = a(a") We may suppose a” is the first element in Ch'\ L (otherwise we rename and use
an injective substitution). Then:

vL' (P | R(n,L)) =

vL' (P |2 @ a(a").(¢ @ (&f[a” = a']d, |a' € L} ® e, ® R(n—1,LU {d"}))))
This has to be matched by:

vL'(Q | R(n,L)) =

vL'(Q1 | & a(a").(c. ® (&{[a" = a’]EZ |a' € L} de, ®R(n—1,LU{d"}))))

We take a further step on the lhs:

7

vI/ (P |2 @ a(a").(7 @ (8{[a" = '], | @’ € L} @2, ® R(n - 1,LU{a"}))) %
vI' U{a"} (P' | &{[a" = d|d, |a’' € L} &, ® R(n—1,L U {a"}))
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This has to be matched by (we reason as in the previous case and note that the name
sent by @ cannot be in L):
vL' (Qq | ®a(a").(dr @ (&f[a" =d]d, |a' € L} ®e,® R(n—1,LU{a"})))) =
vL'U{a"} (Q2 | (&{[a" = a’]Ez |a' e L}y@e,® R(n—1,LU{a"})))

We note Q1 E(:a>) Q2. We take a last step on the lhs:

vI'U{a"} (P | ®{[a" = a'[d" | o' € L} ®&n @ R(n—1,LU{d"})) >
vL' U {a"} (P'| R(n —1,L U {a"}))

This has to be matched by:

vL'U{a"} (Qs | (@{[a" = a/d% | @' € L} ©7, & R(n—1,LU{a"}))) S
vL'U{a"}(Q"| R(n —1,LU {a"}))

We conclude by observing that Q@ = Q; oa’) Q2 = Q' and P’ ~*~! Q' by inductive

hypothesis.
e In the strong case we can simulate matching with synchronization by replacing [¢” = o/]d,,
with a”.f, | a’.d,, , where {f, | n € w} is yet another sequence of names in Ch'. o
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