N

N

Some Congruence Properties for pi-calculus
Bisimilarities
Michele Boreale, Davide Sangiorgi

» To cite this version:

Michele Boreale, Davide Sangiorgi. Some Congruence Properties for pi-calculus Bisimilarities. RR-
2870, INRIA. 1996. inria-00073821

HAL 1d: inria-00073821
https://inria.hal.science/inria-00073821
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00073821
https://hal.archives-ouvertes.fr

ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Some Congruence Properties for w-calculus
Bisimilarities
Michele Boreale , Davide Sangiorgi
N° 2870
April 1996

THEME 1

apport
derecherche

%I INRIA

SOPHIA ANTIPOLIS

Some Congruence Properties for n-calculus Bisimilarities

Michele Boreale , Davide Sangiorgi

Theme 1 — Réseaux et systémes
Projet MELJE

Rapport de recherche n° 2870 — April 1996 — 18 pages

Abstract: Both for interleaving and for non-interleaving semantics, several variants of
a m-calculus bisimilarity can be given which differ on the requirements imposed on name
instantiations. Examples are the late, early, open and ground variants. The ground variant
is the simplest because it places no requirements on name instantiations. With the exception
of open bisimilarities, none of the bisimilarity considered in the literature is a congruence
relation on the full 7-calculus language.

We show that in the case of (certain forms of) causal bisimulation the late, early,
open and ground variants coincide and are congruence relations in the sublanguage of the
m-calculus without matching. We also show that to obtain the same results in the case of
the interleaving bisimilarity, in addition to forbidding matching it is necessary to constrain
the output prefix.

Key-words: Bisimulation, w-calculus, congruence, interleaving and non-interleaving
semantics

(Résumé : tsup)

Universita di Roma “La Sapienza”
INRIA, Sophia-Antipolis

Unité de recherche INRIA Sophia-Antipolis
2004 route des L ucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex (France)
Téléphone: (33) 9365 77 77 — Télécopie: (33) 9365 77 65

Quelques propriétés de congruence des bisimulations
pour le m-calcul

Résumé :

On peut définir plusieurs variantes de la bisimulation pour le 7w-calcul, aussi bien pour des
sémantiques & entrelacement que pour des sémantiques sans entrelacement. Ces variantes
different pour les conditions qu’elles imposent sur I'instantiation des noms. On a par exemple
les variantes late, early, open et ground. La bisimulation ground est la plus simple parce
qu’elle ne pose aucune condition sur 'instantiation des noms. A part la bisimulation open,
aucune des bisimulations considérées dans la littérature n’est une relation de congruence sur
I’ensemble du 7-calcul.

Nous montrons que pour certaines formes de bisimulation causale - une équivalence basée
sur une sémantique sans entrelacement - les variantes late, early, open et ground coincident
et sont des congruences sur le sous-langage du m-calcul ne contenant pas l'opérateur de
matching. On montre aussi que pour obtenir les mémes résultats dans le cas de sémantiques
a entrelacement, il faut non seulement exclure le matching, mais aussi restreindre ’opérateur
de préfixage par un output.

Mots-clé : Bisimulation, 7-calculus, congruence, sémantiques & entrelacement, séman-
tique sans entrelacement

oome Congruence Froperities jor mw-calCuius bisimuarities

1 Motivations

One of the most studied and important issues in process algebra is to individuate beha-
vioural equivalences which be pragmatically satisfactory (i.e., the identifications made on
processes be sensible) and mathematically tractable (i.e., above all, process equivalences be
easy to verify). For the latter point, an important property of the behavioural equivalence
is congruence, which allows us the replacement of “equal”’ terms in any context.

In CCS-like process algebras, bisimulation has achieved wide consensus and popularity as
a mathematical tool for defining behavioural equivalences. The simplest form of bisimulation
is that of the interleaving approach. It requires that if P and @ are bisimilar, then

P £ P’ implies Q % @', for some Q' bisimilar to P’ (%)

and the vice versa, on the possible transitions by Q. In a CCS transition P -~ P’, action
1 can be thought as the offer from P of a synchronisation with an external process.

In this paper, we deal with bisimulation-based equivalences for the 7-calculus [9]. Intense
research over the past six years has made the m-calculus the paradigmatic example of process
algebra for mobile systems. Formally, w-calculus represents a development of CCS in which

communication of names is allowed. Input and output prefixes take the form a(b). P and
6(5).P, respectively; the former process waits for a tuple of names ¢ to be sent along a
and then behaves like P{ch}, whereas the latter process is willing to send names b along a
and then continues like P. Definition () is the same in w-calculus and in CCS, up to the
different syntax of actions and the fact that, in the m-calculus, identity of actions is taken

modulo alpha conversion.

The noticeable feature of () is that it requires no name instantiation. We call ground
bisimulation a bisimulation with this property. Due to its simplicity, the definition itself of
ground bisimulation provides us with a relatively efficient tool for checking process bisimila-
rities.

Unfortunately, in the m-calculus ground bisimulation is not a congruence relation. The
failure is inevitable in presence of the matching operator, written [a = b] and used to test for
equalities between two names a and b. For instance, if a and b are different then processes

P L a = bb(b).0 Q%o
are the same since they exhibit no behaviour, but can be distinguished in the context
C[] ef (c(a).[])|e(b) since C[P] has a derivative which can perform an output action —

the interaction between input ¢(a) and output ¢{b) sets the matching in P to true — which
C[Q] has not.

RR n~ 2870

4 Machele boreate , aviae Sangiorgr

However, processes P and @ can be distinguished under the instantiation {b/a}, which
removes the difference between names a and b. Indeed, the natural way of modifying ground
bisimulation, so to get closer to a congruence relation, is to take name instantiation into
account. But then, at least two serious drawbacks emerge:

1. Checking bisimilarities can become expensive, for name instantiation can cause a state
explosion problem in the verification.

2. Different variants of bisimilarity are possible, in correspondence with different ways of
using name instantiation. Examples are the late, early and open variants [9, 12].

It can be perhaps questioned whether (2) should be considered a drawback, but it is at least
a source of confusion in applications. Further, the late and early variants still fail to be
congruence relations, because not preserved by input prefix.

The above discussion suggests that it is important to isolate subcalculi of the 7-calculus
with a non-trivial expressiveness and forms of ground bisimulation for them which be
congruence relations. The research conducted has evidenced that, as far as expressivenesss
is concerned, the operators of matching, sum and the full output prefixes play a secondary
role w.r.t. the other operators (restriction, parallel composition, replication and input prefix)
[6, 5, 11]. Restricted forms of output prefix, in which the continuation is null (asynchronous
output) [6] or where all names emitted are private (bound output) [15], have been proposed.
We are therefore interested in congruence properties for forms of ground bisimulation on
subcalculi which have some syntactic limitations on matching, sum or output prefix.

We are only aware of two congruence results for ground bisimulation: (interleaving)
ground bisimulation has been proved to be a congruence relation

1. in the subcalculus without matching and with only asynchronous outputs [4, 14];

2. in 71, a subcalculus of the 7-calculus without matching and with only bound outputs
[15].

Both results are obtained by restraining the output construct. They do not show, however,
the necessity of these limitations. For instance, one might hope to achieve the same results
by forbidding summation but retaining the full output prefix. This paper contains two main
contributions:

1. We show that if the w-calculus language includes the full output prefix and has a
non-trivial expressiveness (i.e., it includes constructs for parallelism, replication and
restriction) then ground bisimulation is not a congruence relation, neither in the strong
nor in the weak case.

2. We show that the full output prefix is tolerated if ground bisimulation is strengthened
so to reveal certain causal dependencies among actions, namely those which originate
from the nesting of prefixes and which are propagated through interactions [7, 3].
Both strong and weak forms of ground causal bisimulation are congruence relations
in absence of matching.

INRIA

oome Congruence Froperities jor mw-calCuius bisimuarities

The two points are developed in Sections 3 and 4. In Section 2 the w-calculus and some
basic notions on interleaving semantics are presented.

2 Background

2.1 The m-calculus

The countable set N of names is ranged over by a,b,...,x,y,.... Processes are ranged
over by P, and R. The w-calculus syntax we shall work with is built from the operators
of guarded summation, restriction, parallel composition and replication:

P =%.,0.P | vaP | P|P | !P
o =al®) | al) | 7.

The prefixes a(b) and @(b) are called, respectively, input and output prefix; in the input
prefix a(b), the components of b are pairwise distinct. In summations, the index-set I is
finite; for),y ai.F; the symbol O is also used, while binary summation } ¢ oy P; is
often written as P, + P,. We will write a. P and @. P when no name is carried by a. We
abbreviate a.0 as a and vavbP as (va,b)P.

W.r.t. the syntax in [9] we have omitted the matching construct, for the reasons explained
in the introduction, and we only admitd guarded summation since, by contrast with full
summation, it preserves bisimilarity even in the weak case, that is when silent actions are
partially ignored in the bisimilarity clauses.

Input prefix a(g) and restriction v a act as binders for names b and a, respectively. Free
names, bound names of a process P, written fn(P) and bn(P) respectively, arise as expected;
the names of P, written n(P) are fn(P)Ubn(P). Substitutions, ranged over by o,0’ ... are
functions from A to A for any expression E, we write Eo for the expression obtained from
applying o to E. Composition of two substitutions ¢ and ¢’ is written oo’. We assume
the following decreasing order of precedence when writing process expressions: substitution,
prefix, replication, restriction, parallel composition, binary summation.

The transition rules for the m-calculus operators are given in Table 1. Actions, ranged
over by u, can be of three forms: 7 (interaction), a(b) (input), or v b’ @(b) (output). Functions

bn(), fn() and n() are extended to actions as expected, once we set bn(a(b)) = b and
bu(w ' ab)) =

Throughout the paper, we work up to a-conversion on names — that is, we implicitly
take an underlying representation of names based on de Bruijn indices [2] — so to avoid
tediouos side conditions in transition rules and bisimulation clauses. Therefore, for instance,
in a process bound names are assumed different from each other and from the free names,
and a-equivalent processes are assumed to have the same transitions. All our notations are
extended to tuples componentwise.

Following Milner [8], we only admit well-sorted processes, that is processes which obey
a predefined sorting discipline in their manipulation of names. The sorting prevents arity
mismatching in communications, like in @(b,c). P | a(x). Q. Moreover, substitutions must

RR n~° 2870

0 Machele boreate , aviae Sangiorgr

o P|!'P £ P
Sum: Y, ;B —- P, je€l Rep: ———
'\p & p
P P p “EE® pr p, 2@ p
Par: Com : — =
PPy 2 PPy Pi| P, = v (P]| P3{bC})
p L p p I p
Res: —————— c¢n(p) Open: ,c#a,ceb—1b

b e)a(b,

I ! v
vcP — vcP VCP(—>)VCP’

Table 1: Interleaving operational semantics for P.

map names onto names of the same sort. We do not present the sorting system because it
is not essential to understand the contents of this paper.

We call:

e P the above set of 7-calculus processes;

e P2 the subset of P in which an output prefix has no continuation, i.e., outputs are of
the form @(b). 0; we call this form of prefixing asynchronous output.

e P~ the subset of P without summation.

2.2 Bisimulations

A few forms of (interleaving) bisimilarity have been proposed for the w-calculus, notably the
late, early and open bisimilarities [9, 12]. We only recall the definition of early bisimilarity.

Definition 2.1 (strong early bisimilarity) A symmetric relation RC P x P is a strong
early bisimulation if PR Q implies:

1. whenever P 2%} P’ for all names € there ezists Q' s.t. Q O\ Q' and P'{h} R Q'{h};

2. whenever P 5 P’ and p is not an input action, there ezists Q' s.t. Q —— Q' and

P'RQ.

Two processes P and @ are strongly early bisimilar, written P ~¢ Q, if PR Q for some
strong early bisimulation R.

Late bisimilarity, written ~,, inverts the order of the existential and universal quantifiers
in the input clause thus:

it p “® P’, then there exists Q' s.t. Q =0 Q' and for all ¢, P'{h} R Q'{%}.

Late bisimilarity is strictly included in early bisimilarity. Open bisimilarity is a stronger
equality than the late and early ones. In open bisimilarity, substitutions are used in a
global fashion, requiring that the bisimilarity relation itself be closed under substitutions.

INRIA

oome Congruence Froperities jor mw-calCuius bisimuarities

Moreover, the mechanism of distinction is used to record the fact that a restricted name
cannot be identified with other names. In the language P, open bisimulation is a congruence
relation whereas late and early bisimulation are not because they are not preserved by input
prefix [9].

The simplest form of bisimulation is the one where no name instantiation at all appears,
apart from a-conversion. We call it ground bisimulation.

Definition 2.2 (strong ground bisimilarity) A symmetric relation RC PXP is a strong
ground bisimulation if PR Q and P - P’ imply that there exists Q' s.t. Q - Q' and
P'RQ'". Two processes P and Q are strongly ground bisimilar, written P ~; Q, if PR Q
for some strong bisimulation R.

The weak versions of the bisimulations, where one ignores silent steps in matching tran-
sitions, are obtained in the standard way. Let = be the reflexive and transitive closure of
I let £ be == andlet P == Qbe P =& Q,if p # 7, and P = Q, if
4 = 7. Then weak ground bisimilarity is defined by replacing in Definition 2.2 the transition
Q % Q' with Q = Q'. Similarly one defines weak open bisimulation. In the definitions
of weak late and early bisimulation the input clause is a little different because the name
instantiation must occur immediately after the input is performed. The input clause for
weak early bisimulation is:

a b ~ . a 5
irp 2 P’', then for all ¢ there exists Q' s.t. Q = =) Q' and,
for some Q", Q'{%h} = Q" and P'{h} R Q".
The input clause for weak late bisimulation is:
a(b a(b -
rp “® P’, then there exists Q' s.t. Q = =) Q@' and for all ¢
there is Q" s.t. Q'{%h} = Q" and P'{h} R Q".

We use the symbols ~g, ~1a, Xe and =, for the weak versions of ground, late, early and open
bisimulation, respectively.

It was proved, independently in [4] and [14], developing an earlier result by Honda [5],
that in absence of matching and of continuation underneath the output prefix, ground bisi-
mulation is a congruence.! A key lemma, for proving the congruence of ground bisimulation
is its closure under substitutions.

Lemma 2.3 Relations ~; and =, are preserved by name instantiations in the language P*.
Theorem 2.4 ~; and ~; are congruence relations in the language P?.

Corollary 2.5

1. Relations ~g, ~1a,~e,~o coincide in the language P?;

1The language in [14] does not have summation; it is straightoforward to accommodate guarded summa-
tions in the proof.

RR n~° 2870

S Machele boreate , aviae Sangiorgr

2. Relations =g, Ria, Re, X coincide in the language P?.

Proof: For (1), the inclusions ~,C~1,C~eC~; follow directly from the definitions. Using
the fact that ~; is closed under substitutions one can prove ~;C~,.

Assertion (2) is proved similarly. O

3 Non-congruence results

We show that in Theorem 2.4 and Corollary 2.5 the limitation to asynchronous outputs is
important. The results fail if the language includes, in addition to full output prefix, at least
the operators of parallelism, replication, restriction and input prefix.

It was known [9] that ground bisimulation is not preserved by name substitutions in
presence of the matching construct (see introductory section), or in the language P, with
both full output prefix and summation, as the following counterexample shows.

Counterexample 3.1 (from [9], language P) Let P e |y and Q def Z.y+y.z. Then
P ~; Q, but P{Zfy} +, Q{Zfy}, since P{T/y} can terminate without performing visible
actions.

The same pair of processes show that, in P, neither =4 is preserved by substitutions. O

The problem is more interesting in the language P~, where summation is forbidden.
Indeed, Counterexample 3.1 is based on the expansion law, which makes no sense without
summation. We show that even in P~ ground bisimulation is not preserved by name sub-
stitutions, neither in the strong nor in the weak case. First, some simple laws.

Lemma 3.2

1. vb(2(d).b. P| 2(e).b.Q) ~1a Z{d). z(e). T.v b (P | Q) + 2(e). Z{d). T.v b (P | Q),
if e tn(Z(d).b. P), b ¢ {z,d,r,e} and z # x.

2. Wd(P+Q) ~u'vdP|'vdQ

3. a.17.P =~y a. P.

Proof: (1) is a simple form of the expansion law; (2) is taken from [13]; (3) is one of the
ordinary 7-laws. |

Counterexample 3.3 (language P, strong case) The following counterezample shows
that ~4 1is not preserved by name substitutions in P~. Take

p & Zz.ry|lz.z.1.y Q « 'wb(Z.b|z.b.y)
Using the law (1) in Lemma 3.2 and some garbage collection of restrictions, we get

vh(Z.b|2.b.y) ~Ma 22Ty +2.2.T.y

INRIA

oome Congruence Froperities jor mw-calCuius bisimuarities

Therefore, since ~1, is preserved by replication and is contained in ~g4, and using law (2) of
Lemma 8.2, we obtain:

Q ~z !'Fzry+zz.Ty)
~e 1Zz.ry|lez.zry = P

However, P{¥/z} 4, Q{%z}, since Q{Z/x} can perform a move at y after two steps, whereas
P{z/z} only after three steps. O

Counterexample 3.4 (language P—, weak case) The following counterexample shows
that ~g is not preserved by name substitutions in P—. We write @(h). R as abbreviation for
(v h)a(h).R.

Take

p & !ud<E(d).x(e).a(h).ﬁ(d).ﬁ(e))|!ud(:c(e).E(d).ﬁ(h).ﬁ(d).ﬁ(e))

Q & 1(wd,b)(2(d). 5| a(e).b.a(h). h{d). hie))

Proceeding as in the previous example and, in addition, using law (8) of Lemma 3.2, we

;"I

obtain:
Q ~ 'Vd< (d). z(e). . a(h). h(d). h{e) + z(e). z(d). T.a(h). h{d). h
(E(d).x(e).a(). Bi{d). (e). z(d).a(h). k d).ﬁ(e))

Bd). 7

} and

R, lvd)+ (

~g lvd(z(d). z(e).a(h). M) | 'vd(z(e).z{d).a(h). k(d). hle)) = P
which proves P =g Q. But P{%x
sequence of actions from Q{%x}:

{7} — (vb,d)(B] b.a(h). h(d). h(d).) | Q{7/x}
— vd(a(h). ”(d). h(d).) | Q{=}

a(h) h(d) h(d)

hie
(e
Q{#=z} are not in the relation ~z;. Consider the

Q{#/x}.

There are two consecutive actions at h which carry the same name. This behaviour is not
possible for P{?/x} since, in any subcomponent a(h). h{d). h{e) of P{#x} name e cannot be
instantiated with name d. Therefore P{?/x} cannot match the above sequence of transitions

from Q{Z/x} and hence P{?/z} %, Q{%x}. O

4 Causal bisimulations

To obtain a form of ground bisimulation which is a congruence relation on the language
‘P, we have to abandon interleaving bisimilarity and move to non-interleaving bisimilarities,
more precisely to those which take causality into account.

Causal dependencies induced by action prefix (e.g. the fact that in «.3 the execution of 8
is enabled by the execution of «) and propagated through communications are not revealed
by the interleaving transition system. In order to take such dependencies into account, we
adopt a form of operational semantics with explicit causes, following Kiehn’s approach for
CCS [7], adapted to the m-calculus in [1].

RR n° 2870

10 Machele boreate , aviae Sangiorgr

o AjrAa L A
um : Eiejai'Pi_]’k“Pja je€I Rep: — Kk
ook 1A 2 A
K,k
AL A A5 A
K,k K,k
Cau: Par :
KA 2 KA A1|A2L>A’1|Ag
KUK’ k
AL)AI A(ub')a b) AI
Res : L ,c & n(p) Open : Kok ,cFa,c€b—1"b
Iz ! ' oVa
VCAK—J:VCA A(Vb)(b) veA
Ay s A AT A
T-par : T-res: ———
A | A T Al | As vecA s veA
A (V;’)l(b) Al A, ;(")k A
Com : L 2 k ¢ K(A1, A2)
Ar|As = v (Aflk~ Kol | A {BEHk ~ Kn))
A A Alrta D A
T-cau : T-rep: ———
K:A L KA 1A - A

Table 2: Transition rules for visible and silent actions of causal processes.

We presuppose an infinite set IC of causes; k and h range over causes; K and H over finite
subsets of K. The sets K of causes and A of names are disjoint. The language of causal
processes, written P. and ranged over by A, B, ..., is given by the following grammar:

A=P | K=:A | A|A | vaA

where P is a standard P-process, as defined in Section 2. The above syntax does not allow the
presence of causes underneath dynamic operators (prefixes, sums and replications), because
we are only interested in derivatives of standard processes, for which these cases may never

arise.

A cause replacement [k ~ K] denotes the replacement of the cause k with the set K; e.g.,
({kl, ko} ().0)[kl ~ {ks,ka}] is {ks, ka,ka} = (b) . Union of causes is often denoted
by a comma; e.g. K U {k} is denoted by (K, k). We say that a cause k is fresh for a causal
process A if k does not appear in A.

The operational semantics of P, is given as a labelled transition system, with transitions
of the form A KL> A" or A 5 A’. The rule for operational semantics of P, are reported

in Table 2. ’

We are now set to introduce causal bisimilarity [3, 7, 1]. As we did in Section 2, we only
present the early and ground variants. Late and open variants are defined in the expected
way. Our main results will be that both in the strong and in the weak cases, in the language
‘P all variants of causal bisimilarity are congruence relations and coincide with each other.
We only report the proofs for the weak case, which is more difficult. As usual, the “weak
causal arrow” A ﬁ A’ stands for A = 5 — A,

,k

INRIA

oome Congruence Froperities jor mw-calCuius bisimuarities

11

Definition 4.1 (weak early causal bisimilarity) A binary symmetric relation R over
causal processes is an early causal bisimulation if, whenever A R B, then:

o whenever A —— A’ then B => B', for some B' s.t. A' R B, and

e whenever A %: A', with k fresh for A and B:

1. ifp= a(g) then for all € there exists B' s.t. B :>Lk> B’ and,
for some B", B'{¢h} => B" and A'{Sh} R B";

2. if u is not an input action then there exists B' s.t. B ;—”; B and A’ R B'.

A and B are early causal bisimilar, written A ~¢ B, if AR B for an early causal bisimulation
R.

Definition 4.2 (weak ground causal bisimilarity) A binary symmetric relation R over
causal processes is a ground causal bisimulation if, whenever A R B, then:

o whenever A — A’ then there exists B' s.t. B = B' and A’ R B, and
o whenever A ﬁ A’, with k fresh for A and B, then there exists B' s.t. B 7#13 B’ and
ARB. ’
A and B are ground causal bisimilar, written A ~; B, if A R B for an ground causal

bisimulation R.

4.1 Auxiliary lemmas

In this section we establish a few results on operational semantics and ground causal bisi-
mulation, which are used in subsection 4.2 to prove the main results. In some of our proofs,
it will be convenient to use a causal structural congruence relation. It is the natural exten-
sion to causal processes of Milner’s structural congruence for standard processes [8]. More
precisely, we let causal structural congruence be the least congruence over causal processes
generated by the following axioms:

1. A|[B=A|B, A|(B|C)=(A|B)|C, A|0=4;
2. va0=0, vavbA=vbraA;

3. (waA)|B=va(A|B),if a not free in B;

4. 1A = A|'4;

50 A=A, Ki:Ky: A=K UK, :: A;

6. K ::(A1]|A2) = (K A))|(K - Ay), Kuv?iA=vceK : A.

Lemma 4.3 = is a strong ground causal bisimulation and is preserved by substitutions.

RR n~° 2870

12 Machele boreate , aviae Sangiorgr

In the sequel, we will freely apply Lemma 4.3 without recalling it. The next lemma,
stating that both relations = and a7 are preserved by cause replacement, is proved in [1].
Lemma 4.4 Let A, B be causal processes, let K be a cause set and let p be a cause repla-
cement.

1. A = A implies Ap == A'p;

2. A ~g B implies Ap =g Bp.

When a transition A ﬁ A’, with k fresh, takes place, inside A’ name k acts as a “pointer”

to the location which originates the action. Lemma 4.5 reveals the structural relationship
between source and target terms of such a transition.

Lemma 4.5 (structural lemma) Let A be a causal process and suppose that A ﬁ A

)

with k fresh for A. Then there are Y ,a, P,Q and B with k fresh for B s.t.:
a) A =ve((K,k):: P|B).

b)) A= (v E,g’)(K = (Q + «.P) | B) and, if p is an input action then a = p and b =0 ;
if p is an output action, then pu = v b’ a(b) and a = a(b), for some a and b.

PROOF: A simple transition induction on A %g Al O

)

Lemma 4.6 relates the transitions of A to those of Ao, for any process A and substitution
o. Part 4 of the lemma shows that each 7-move from Ao either corresponds to a 7-move
from A or it can be decomposed into two independent complementary transitions from A.
The independence is given by the fact that the cause name associated to the first transition
(k1) does not occur in the set of causes of the second one (K5).

Lemma 4.6 (correspondence between Ao and A) Let o be a substitution and A be a
causal process.

1. A%JA’ (resp. A - A') implies AO’%AIU (resp. Ao — Ao).
2. AﬁA’ (resp. A = A’) implies Aa% Ao (resp. Ao = Alo).
3. Ao =5 A" implies A £ A", with p'o = 1/ and Ao = A'.

K,k K.k

4. Ao —— A’ implies either:

a) there exists s.t. — wit, o= or
(a) th ists Aq A I Ay with A; A,
b) there exist two transitions A albo) A ”b—aﬁ Ay with ky and ko fresh for A
K1,k Kok
1,R1 2,R2

and Ay, respectively, ki ¢ Ko, ac = co and A" = ul;;(Agpa{EU/zo}), where

szef (k1 ~ K, kg ~ K.

INRIA

oome Congruence Froperities jor mw-calCuius bisimuarities

15

PROOF: Items 1, 3 and 4 are proven by straightforward transition induction. Item 2 is a
consequence of item 1. |

Our next task is to prove a kind of “converse” of part (4.b) of the previous lemma
for weak transitions, whereby two independent transitions, possibly interleaved with some
silent transitions, are composed. This will be done in Lemma 4.8. In its proof, we shall use
Lemma 4.7, asserting that, given a sequence of silent transitions from K :: B | A, process
A can be decomposed into two subprocesses, one actually interacting with B, the other
evolving on its own.

Lemma 4.7 Let A and B be causal processes and suppose that K :: B|A = C. Then for
some €, Ay, Az, d, B', A} and A} we have:

b) K:B|A == wd)K :: (B'| 4});
c) Ay = = Al;

d) C=wd,&)(K :: (B'| A}) | 4}).

PROOF: It must be that K :: B|A i C, for some m > 0. The proof goes by induction on m.

m=1

The case m = 0 is trivial, thus suppose m > 0. Therefore we have K :: B|A — E — C,
for some E. We distinguish the possible ways in which the transition K :: B| A —— E
may arise. The cases when it arises from K :: B alone or from A alone are easily dealt with
by exploiting the induction hypothesis. We treat in detail only the case when the transition
arises as an interaction between K :: B and A. Applying the Structural Lemma 4.5 to the
interacting transitions, we can individuate the subcomponents of K :: B and A, respectively
F; and F5, from which these transitions arise. Formally, it must be:

K:B = K:vd (F |Dy) (1)
A = vdy(Fy| D) (2)
E = (vdi,d)(K = (F{| F3| D1)| D). 3)
where
K:F|FB —=K:(F|F) (4)

m—1
Define now B, &' K = (F{ | F3 | D1) and A, L' D,. Since E " C, from (3) we deduce

that it must be C' = (v dy,d2)C,, where
K:=B.|A ~5 0, (5)

Applying the induction hypothesis to (5), we obtain:

A, = vé (A | As), (6)
(K =B,)| A, == vd,K:(B.|A,), (7)
Ay == A, (8)
C. = (wd,e) (K (BLAL) | 4.). 9)

RR n~° 2870

14 Machele boreate , aviae Sangiorgr

We now define the following expressions:

def

def ~ def 77
A1 = F2 | Al* All = All* e = dze*

def def ~ def ~~
A, o4, A o4 d dvdy
B def ’

o

With these definitions, it is simple to prove assertions (a), (b), (¢) and (d) of the lemma.
As an example, we verify (b).

K :B|4 = wvdy(K:F,|F|K:Dy|A,) ((1), definition of 4; and rules for =)
= yc? (K = (F{ | F5| D1) | A1) ((4) and rules for =)
= wvdy (K : By | A1) (definition of B,)
== (vd, c?) = (BL] AL (assertion (7))
= vdK: (B | Al (definitions of B, A] and d).

We are now ready to prove the “converse” of item 4 of Lemma 4.6.

b Y a
Lemma 4.8 Let B be a causal process, and suppose that B (ﬁg B"" <)
Ki1,k1 K2,k2

k1 fresh for B, ko fresh for B" and k; ¢ Ks. Then B =—> = Vb’('pa), with o = {b/};o}
and p = [k ~ Ka, ky ~ Kj].

B, with bo, 1 ,

a(b b a
PROOF: Transitions B g B"" (g B’ can be decomposed thus:
Kl,kl K2ak2

B— B “™p — """ Mg — p.

Kl,k)l K27k2
Applying the Structural Lemma 4.5 to transition By Ia((—b>(;c) Bj, we infer:
B = wvd(Ki:(S+alb).P)|A) (10)
B, = vd((Ki,ki):P|A). (11)

Applying Lemma 4.7 to transition Bs = Bs, due to the form of Bs, we have:

A = I/g(Al |A2) (12)

(K,k1) = P|4 == ud’(K k1) = (P'| AY) (13)

Ay == AIQ (14)

Bs = (vdd,e)((Ki,ki) = (P A}) | A4b). (15)

Let us consider now transition Bj V;—?’) Bjy: since ki ¢ Ks, from (15) we deduce that this
transition originates from AY. Formaliy, we have:

By = vfi((Kik):(P'|A})|AY) where {fi} = {d,d",&} — {¥'}, and (16)

4y URE 4y where {f2} = (W} — {d.d",e}. (17)

Ko,k2

INRIA

oome Congruence Froperities jor mw-calCuius bisimuarities 10

We now prove that By =>= v b’ (B'pc), as follows:

B = (vd, ~)EK1 0 (S + a(bo).P) | Ay | As (by (10) and (12))

== (wd, o)\ Ky (5+a(bo)P)| Ay | Ay (by (14))

D= (ud e f2) (K4) P{b/bo} | AY[ko ~ K1] | Al) (by (17) and rules for interaction)
= (ud €, f2 ((1, =P A |A”)cr)p (by def. of o and p)

== (vd,dg 2)(((K1,k1) (P'| A1) | AY)o)p (by (13) and lemmas 4.6.2 and 4.4)
= vV, ﬁ)(((fu,k)= (P 47) | 45)a) (since {d,d" & fa} = {V'. 1))
= vb ((u Fi (K1, k) = (P AY) | AY))o)p (definitions of f; and o)

vl (Bio)p (by (16))

== vV (Bo (by By = B’ and lemmas 4.6.2

= v (B'po) and 4.4).
Putting together B — B; and By — = vt (B'po) we get the thesis. O

A simple proof technique for bisimilarity:
Definition 4.9 A symmetric binary relation R over causal processes is a ground causal

bisimulation up to = and restriction if, whenever AR B and A ﬁ A’ (resp. A — A')

with k fresh for A and B, there exist 5, Ay, B' and By s.t.:

B K:”g B' (resp. B = B') and A’ = vbA, and B =vbB, and A, RB; .
Lemma 4.10 If R is a ground causal bisimulation up to = and restriction then R C

4.2 The congruence results

Theorem 4.11 (~j is preserved by substitutions) Let A, B be causal processes and o
be a substitution. Then A =g B implies Ao ~; Bo.

PRrROOF: We show that
R = {(Ao, Bo)|o is a substitution and A ~; B}

is a ground causal bisimulation up to = and restriction. We have to check that whenever
Ao R Bo and Ao ﬁ A’ (resp. Ao — A'), with k fresh, then we can find A”, ¢', B” and

I; s.t.:

Bo 7#15 B' (resp. Bo = B') and B' = v/ (B"0') and A’ = v/ (A”¢") and and A" ~g B".
| (18)

We only deal with the case when Ae — A’. The case Ac -~ A’ can be dealt with

&
using Lemma 4.6(1-3). Thus, suppose Ac —— A’. According to Lemma 4.6.4, the two
sub-cases (a) and (b) may arise. We consider the latter, which is more difficult. Therefore
a’(bo) A, vy ”(b) A,

H [N 7 P — ’ def
Kl,kl sz with a'cd = a0 = a and A’ = v b (A2ps’) and p = [k ~

we have A —3

RR n~° 2870

10 Machele boreate , aviae Sangiorgr

.[(2,]{,‘2 i K’l] and O'I d:ef

commutes:

0{30/50}. Since A ~; B, there are By and By s.t. the diagram below

4 Yy, v

Ao
Ki,k1 Ko ,ka
zc %C zc
g g g
a’ (bp) v ol (b)
B = B "=" B,.

Kl,kl K27k2

From these transitions of B and Lemma 4.6(2) we infer

Baa(zlmy) Blaubgm> Bso.
Ki1ky Kk o

Since k; € K5, we can apply Lemma 4.8 and infer:
Bo = B' = v (Bapo{boho}) = v ¥/ (Bapo') .

We prove that (A’, B') belongs to R, up to the restriction v ¥, by exhibiting A” and
B" such that (18) is fulfilled. Now, from A; = B and Lemma 4.4.2, it follows that
A e Aap ~g Bap def prr, Therefore, by definition of R, we have A”¢' R B"¢'. But
A'=vl (A"¢') and B' = v/ (B"¢”), thus (18) holds. O

As easy corollaries of the above theorem, we get:
Corollary 4.12 = is a congruence relation in the language P.

PROOF: One shows that = is preserved by each operator of the language P, by exhibiting
appropriate bisimulations. For input prefix and parallel composition, one exploits the fact
that 5 is preserved by name substitutions. |

Corollary 4.13 Ground, late, early and open forms of weak causal bisimilarity coincide in
the language P.

PROOF: As an example, we consider the proof that ~g and = coincide. The inclusion
~gCy; follows by definition (the requirements in the definition of ~§ are also in the definition
of =¢). For the converse, one shows that ~; is a causal bisimulation; to satisfy the input

clause of Definition 4.1 one uses the fact that zg is closed under substitutions. O

For strong causal bisimulation, the same results of the weak case hold. The proof schema
is similar but the proofs are simpler (for instance, Lemma 4.8 is not needed).

Corollary 4.14

1. Strong ground causal bisimilarity is a congruence relation in the language P;

2. ground, late, early and open forms of strong causal bisimilarity coincide in the language

P.

INRIA

oome Congruence Froperities jor mw-calCuius bisimuarities

17

The forms of causal bisimilarities considered in this paper explicitly reveal the causal
dependencies induced by the nesting of prefixes and propagated through communication,
and called subject dependencies in [1]. There exist another form of causal dependency in the
w-calculus, induced by the binding mechanism on names. As an example, in v b (a(b) | b(z))
the execution of the output at a opens the scope of the restriction v b, thus enabling the
execution of b(z), which was previously blocked. In [1], this form of causality is called
object causality. By contrast with subject dependencies, object dependencies are directly
revealed in the standard interleaving transition systems. Various ways of combining subject
and object dependencies are possible, and lead to different causal relations on processes
(see [10] for a survey). Our choice of handling subject dependencies in isolation is due to
two main reasons: First, the definitions of the bisimulations are simpler. Secondly, subject
dependencies are essential for the congruence results studied in this paper. We think that
the same results hold for other causal equivalences which take subject dependencies into

account.

References

[1] M. Boreale and D. Sangiorgi. A fully abstract semantics for causality in the
m-calculus. Technical Report ECS-LFCS-94-297, LFCS, Dept. of Comp. Sci.,
Edinburgh Univ., 1994. An extract appeared in Proc. STACS’95, LNCS 900,
Springer Verlag.

2] N. G. de Bruijn. Lambda-calculus notation with nameless dummies: a tool for
automatic formula manipulation with application to the Church-Rosser theorem.
Indag. Math., 34(5):381-392, 1972.

[3] P. Degano and P. Darondeau. Causal trees. In 15th ICALP, LNCS 372, pages
234-248. Springer Verlag, 1989.

[4] M. Hansen and J. Kleist and H. Hiittel. Bisimulations for asynchronous mobile
processes. in Proceedings of the Tbilisi Symposium on Language, Logic, and
Computation. Research paper HCRC/RP-72, Human Communication Research
Centre, University of Edinburgh. 1995.

[5] K. Honda. Two bisimilarities for the v-calculus. Technical Report 92-002, Keio
University, 1992.

[6] K. Honda and M. Tokoro. On asynchronous communication semantics. ECOOP
91, LNCS 612, Springer Verlag, 1992.

[7] A. Kiehn. Local and global causes. Technical Report Report 342/23/91, Tech-
nische Universitdt Miinchen, 1991.

8] R. Milner. The polyadic w-calculus: a tutorial. Technical Report
ECS-LFCS—91-180, LFCS, Dept. of Comp. Sci., Edinburgh Univ., October 1991.

[9] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, (Parts I

and IT). Information and Computation, 100:1-77, 1992.

RR n~° 2870

1o

Machele boreate , aviae Sangiorgr

[10]

[11]

[12]

[13]

[14]

[15]

C. Priami. Enhanced Operational Semantics for Concurrency. PhD thesis, De-
partment of Computer Science, Universita di Pisa, 1995.

B. C. Pierce, D. Rémy, and D. N. Turner. A typed higher-order programming lan-
guage based on the pi-calculus. In Workshop on Type Theory and its Application
to Computer Systems, Kyoto University, 1993.

D. Sangiorgi. A theory of bisimulation for the m-calculus. Acta Informatica,
33:69-97, 1996. Extended Abstract in Proc. CONCUR’93, LNCS 715, Springer
Verlag.

D. Sangiorgi. On the bisimulation proof method. Technical Report
ECS-LFCS-94-299, LFCS, Dept. of Comp. Sci., Edinburgh Univ., 1994.

D. Sangiorgi. Lazy functions and mobile processes. Technical Report RR-2515,
INRIA-Sophia Antipolis, 1995.

D. Sangiorgi. 7l: A symmetric calculus based on internal mobility. In Proceedings
of TAPSOFT‘95, LNCS 915, Springer Verlag, 1995.

INRIA

/¢

Unité de recherche INRIA Lorraine, Technopodle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LESNANCY
Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhone-Alpes, 46 avenue Félix Vialet, 38031 GRENOBLE Cedex 1
Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des L ucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399

