N
N

N

HAL

open science

pi-calculus, internal mobility, and agent-passing calculi

Davide Sangiorgi

» To cite this version:

Davide Sangiorgi. pi-calculus, internal mobility, and agent-passing calculi. RR-2539, INRIA. 1995.

inria-00074139

HAL 1d: inria-00074139
https://inria.hal.science/inria-00074139
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00074139
https://hal.archives-ouvertes.fr

ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

r-calculus, internal mobility,
and agent-passing calculi

Davide Sangiorgi

N° 2539
April 1995

PROGRAMME 2
Calcul symbolique,
programmation

et génielogiciel

apport
derecherche

Zd I N RIA

SOPHIA ANTIPOLIS

m-calculus, internal mobility,
and agent-passing calculi

Davide Sangiorgi

Programme 2 — Calcul symbolique, programmation et génie logiciel
Projet MEIJE

Rapport de recherche n 2539 — April 1995 — 40 pages

Abstract:

The 7-calculus is a process algebra which originates from CCS and permits a natural
modelling of mobility (i.e., dynamic reconfigurations of the process linkage) using communi-
cation of names. Previous research has shown that the m-calculus has much greater expres-
siveness than CCS, but also a much more complex mathematical theory. The primary goal
of this work is to understand the reasons of this gap. Another goal is to compare the expres-
siveness of name-passing calculi, i.e., calculi like 7m-calculus where mobility is achieved via
exchange of names, and that of agent-passing calculi, i.e., calculi where mobility is achieved
via exchange of agents.

We separate the mobility mechanisms of the w-calculus into two, respectively called in-
ternal mobility and external mobility. The study of the subcalculus which only uses internal
mobility, called 7l, suggests that internal mobility is responsible for much of the expres-
siveness of the w-calculus, whereas external mobility is responsible for much of the semantic
complications. A pleasant property of «l is the full symmetry between input and output
constructs.

Internal mobility is strongly related to agent-passing mobility. By imposing bounds on
the order of the types of 71 and of the Higher-Order 7-calculus [San92] we define a hierarchy
of name-passing calculi based on internal mobility and one of agent-passing calculi. We
show that there is an exact correspondence, in terms of expressiveness, between the two
hierarchies.

Key-words: w-calculus, name-passing calculi, agent-passing calculi, internal mobility, ex-
ternal mobility

(Résumé : tsup)

Extracts of parts of the material contained in this paper can be found in the Proceedings of TAPSOFT’95
and ICALP’95.
This work has been supported by the ESPRIT BRA Project 6454 “CONFER”.

Unité de recherche INRIA Sophia-Antipolis
2004 route des L ucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex (France)
Téléphone: (33) 9365 77 77 — Télécopie: (33) 93 65 77 65

m-calculus, mobilité interne et calculs agent-passing

Résumé : Le m-calculus est une algebre de processus dont 'origine remonte & CCS et qui
permet d’obtenir un modele naturel de mobilité (c-a-d, des reconfigurations dynamiques de
la structure de communication des processus) en utilisant la communication par noms. Des
recherches précédentes ont montré que le 7w-calculus a une expressivité plus grande que CCS,
mais aussi une théorie mathématique plus complexe. L'un des objectifs de ce travail est de
comprendre les raisons de cette différence. Un autre objectif est de comparer I’expressivité
de calculs name-passing, c-a-d de calculs comme le w-calculus ol la mobilité est obtenue
par I’échange de noms, et celle de calculs agent-passing, c-a-d de calculs ol la mobilité est
obtenue par 1’échange d’agents.

Nous séparons les mécanismes de mobilité du m-calculus en deux, et parlons de mobilité
interne et de mobilité externe. L’étude du sous-calcul qui utilise seulement la mobilité interne,
appelé 71, suggere que la mobilité interne est responsable de la plupart des complications
sémantiques. Une propriété intéressante de 7l est la symétrie totale entre les constructions
en entrée et en sortie.

La mobilité interne est étroitement liée & la mobilité de ’agent-passing. En imposant
des limites & ’ordre des types de 7l et de Higher-Order m-calculus [San92], nous définissons
une hiérarchie de calculs name-passing basée sur la mobilité interne et une hiérarchie de
calculs agent-passing. Nous démontrons qu’il y a une correspondance exacte, en termes
d’expressivité, entre les deux hiérarchies.

Mots-clé : m-calculus, name-passing calculi, agent-passing calculi, mobilité interne, mobilité
externe

T-catcutus, miernal moowity, ana agent-passing CaiCult

1 Motivations

The m-calculus is a development of CCS where names (a synonymous for “channels”) can
be passed around. This permits the description of mobile systems, i.e., systems whose com-
munication topology can change dynamically.

Name communication gives m-calculus a much greater expressiveness than CCS. Although
there is no theorem to formally support this statement, the evidence is compelling. For
instance, in the w-calculus we can encode:

e Data values [MPW92, Mil91];

e agent-passing process calculi [Tho90, San92, Ama93];

the A-calculus [Mil92];

e certain concurrent object-oriented languages [Jon93, Wal95];

the locality and causality relations among the activities of a system, typical of true-
concurrent behavioural equivalences [San95b, BS94].

The encodings are simple and intuitive and, notably, their correctness is supported by full
abstraction results. In CCS, the modelling of such objects is possible, at best, in a clumsy
and unnatural way — for instance making heavy use of infinite summations.

But research has also showed that the m-calculus has a much more complex mathematical
theory than CCS. This shows up in:

e The operational semantics. Certain transition rules of the 7-calculus are hard to assi-

milate.

e The definition of bisimulation. Various definitions of bisimilarity have been proposed
for the m-calculus, and it remains unclear which form should be preferred. Moreover,
most of these bisimilarities are not congruence relations.

e The azriomatisations. The axiomatisations of behavioural equivalences for the 7w-calculus
— and in particular the proof of the completeness of the axiomatisations — is at least
one order of magnitude more complicated than the corresponding axiomatisations for
CCS.

o The construction of canonical normal forms. In general we do not know how to trans-
form a m-calculus process P into a normal form which is unique for the equivalence
class of P determined by the behavioural equivalence adopted.

RR n° 2539

4 raviae sangiorgr

In CCS, these problems are well-understood and have simple solutions [Mil89, BK85, DKV91].

There is, therefore, a deep gap between CCS and m-calculus, in terms of expressiveness
and mathematical theory. The main goal of the paper is to explain this gap and to examine
whether there are interesting intermediate calculi. For instance, can we describe the dramatic
jump from CCS to w-calculus as a sequence of smaller jumps? Are the complications of the
theory of the m-calculus w.r.t. that of CCS an inevitable price to pay for the increase in
expressiveness?

We shall isolate and analyse one such intermediate calculus, called 7I. This calculus
appears to have considerable expressiveness: Data values, the lambda calculus, agent-passing
calculi, the locality and causality relations of true-concurrent behavioural equivalences can
be modelled in 7] much in the same way as they are in the m-calculus. But, nevertheless,
the theory of 7l remains very close to the theory of CCS: Alpha conversion is, essentially,
the new ingredient. To obtain 7I, we separate the mobility mechanisms of the w-calculus
into two, namely internal mobility and external mobility. The former arises when an input
meets a bound output, i.e., the output of a private name; the latter arises when an input
meets a free output, i.e., the output of a known name. In 71 only internal mobility is retained
— the free output construct is disallowed. A pleasant property of #l is the full symmetry
between input and output constructs. The operators of matching and mismatching, that
in the m-calculus implement a form of case analysis on names and are important in the
algebraic reasoning, are not needed in the theory of «1.

Using the typing system of «l, as inherited from the m-calculus, and imposing some
constraint on it, we define the calculi {7I"},<.. A calculus 7I" includes those 7I processes
which can be typed using types of order n or less than n, and 7I“ is the union of the
7I™’s. Informally speaking, the calculi 71, 71?,...,7I",...,7I¥, xI are distinguished by the
“degree” of mobility allowed; indeed, if the mobility exhibited is taken into account, then
they can be proved to form a hierarchy of calculi of strictly increasing expressiveness. I
does not allow mobility at all and is the core of CCS. This hierarchy gives us a classification
of mobility and an incremental view of the transition from CCS to w-calculus. (A more
comprehensive discussion on external, internal and bounded mobility is deferred to Sections
2 and 6.)

We shall use the above hierarchy also to understand the expressiveness of agent-passing
process calculi (they are sometimes called higher-order process calculi in the literature). In
these calculi, agents, i.e., terms of the language, can be passed as values in communications.
The agent-passing paradigm is often presented in opposition to the name-passing paradigm,
followed by the m-calculus and related calculi, where mobility is modelled using communi-
cation of names rather than of agents. An important criterion for assessing the value of the
two paradigms is the expressiveness which can be achieved. Agent-passing developments of
CCS are the calculi Plain CHOCS [Tho90], and Strictly-Higher-Order 7-calculus; the latter,
abbreviated HO7n*, is the fragment of the Higher-Order w-calculus [San92] which is purely
higher order, i.e., no name-passing feature is present. In Plain CHOCS processes only can
be exchanged. In HO#* besides processes also abstractions (i.e., functions from agents to
agents) of arbitrary high order can be exchanged. Roughly, HO#* is as an extension of CCS
with the constructs of the simply-typed A-calculus. As in 71, so in HO7“ we can discriminate
processes according to the order of the types needed in the typing. This yields a hierarchy

INRIA

T-catcutus, miernal moowity, ana agent-passing CaiCult

of agent-passing calculi {HO7"}, <., where HOn! coincides with 7' — hence with the core
of CCS — and HO#? is the core of Plain CHOCS. For each n < w, we compare the agent-
passing calculus HO7™ with the name-passing calculus 71"~ ; the latter is a subcalculus of
wI™ whose processes respect a discipline on the input and output usage of names similar to
those studied in [PS93]. We show that HO#x™ and 7I™~ have the same expressiveness, by
exhibiting faithful encodings of HO7™ into #I”~ and of #I™~ into HO#™. The encodings are
fully abstract w.r.t. the reduction relations of the two calculi.

These results establish an exact connection between agent-passing calculi and name-
passing calculi based on internal mobility, and strengthen the relevance of the latter calculi.

We introduce the finite part of #I in Section 2 and we study its theory in Section 3.
In Section 4 we consider extensions of the signature of the finite 71, intended to capture
infinite behaviours and polyadicity. As in the 7-calculus, so in 7] the extension to polyadicity
is smooth. However, the typing system of 7l enjoys a few properties not true in the 7-
calculus; for instance, in 7l the by-name and by-structure definitions of equality between
types coincide. To have infinite behaviours in 71, we use recursive agent definitions. We also
consider the replication operator; we define 7l as the calculus with replication in place
of recursion. The typability of processes in 7l requires recursive types; that of processes
in 7I¥ does not. In Section 5 we examine the encoding of the lambda calculus into «l.
It is challenging because all known encodings of the A-calculus into w-calculus exploit, in
an important way, the free-output construct, disallowed in 7I; hence the encoding gives us
some indications about how the effect of free outputs might be achieved in 7I. As reduction
strategy for lambda terms we chose the lazy one [Abr89]. We obtain an encoding into «1 as
a refinment of Milner’s encoding into w-calculus; we show that a further similar refinment
leads to an encoding of a more parallel reduction strategy, which allows reductions inside
abstractions. We argue that the A-calculus cannot be encoded into 7I¥. In Section 6 we
define the calculi {7I"},,<.; we then study the expressiveness of the name-passing calculi
introduced. In Section 7 we present the agent-passing calculus HO#n* and its type system,
and we define the calculi {HO#"},,«,. In Section 8 we compare the expressiveness of the
agent-passing calculi with that of the name-passing calculi. In Section 9 we report some
conclusions and possible directions for future work.

Related work. We are not aware of other work on isolating or classifying different forms of
mobility for name-passing calculi.

Encodings of agent-passing calculi into a name-passing calculus have been studied by
Thomsen [Tho90], Sangiorgi [San92] and Amadio [Ama93]. Thomsen and Amadio deal with
Plain CHOCS and w-calculus; Sangiorgi with Higher-Order w-calculus and w-calculus. The
encoding from HO#™ to wI™ used in this paper is a special case of the encoding in [San92]
and, when restricted to HOn?, it is the same as the encodings in [Tho90] and [Ama93]. The
works [Tho90, San92, Ama93] show that agent-passing can be mimicked using name-passing.
In this paper, we push the analysis further, in that: (1) we isolate the specific features of
name-passing calculi which make the encodings possible, and (2) we investigate the opposite
direction, namely the modelling of name-passing using agent-passing.

The only attempt that we know at encoding a name-passing calculus into an agent-
passing calculus is by Thomsen [Tho90], who gives a translation of the w-calculus into

RR n~°2539

0 raviae sangiorgr

Plain CHOCS. However, the translation makes heavy use of a relabelling operator of Plain
CHOCS which behaves as a dynamic binder — occurrences of names not bound can later
become bound. Since we only accept static binders, our translation of #I”~ into HOz™ is
quite different from Thomsen’s. The absence of relabeling is indeed what distinguishes HO7?2
from Plain CHOCS.

Important studies of higher-order calculi have been conducted by Astesiano et al. [AGR92],
in the framework of generalised algebraic specifications, and by Hennessy [Hen93], who has
considered the model theory. However, in their languages the restriction operator, when
present, is not a static binder — a significant difference w.r.t. the languages treated in this

paper.

Acknowledgements. I have benefited from discussions with Gerard Boudol, Claudio Calvelli,
Robin Milner, David N. Turner and David Walker.

2 nl: A Symmetric calculus based on internal mobility

In this section we introduce (the finite part of) 7#I. We examine the move from w-calculus
to wl from three different angles: First, our guiding criterion is symmetry; then we take
into account the mobility mechanisms; finally, we focus on the algebraic theory. There are
not compelling reasons for wanting symmetry: Our major motivation is elegance, which will
show up in the presentation of the calculus and of its properties.

Notation: If R and S are relation, then R S is their composition (i.e., (a,c) € R S if
there is b s.t. (a,b) € R and (b,c) € §). Throughout the paper we use a tilde (7) to denote
a finite and possibly empty tuple. All notations are extended to tuples componentwise.

2.1 Looking for symmetry: From m-calculus to 7l

We shall derive the grammar for 71 from the one below, which collects the principal operators
of the m-calculus. Symbols z,¥, z, . .. will range over the infinite set of names; P, and R
will be metavariables over processes:

P

P|P | vaP

2ier % B

z(y)

o =T zy

The guarded-sum construct >.. ;. P; is used to make a choice among the summands

ierl
a;. P;: The first process «;. P; th:t succeeds at performing the action «; continues, whereas
the other summands are discarded. I is a finite indexing set; if I is empty, we abbreviate
the sum as 0. As usual, + is binary sum. Sometimes, we shall write a;. Py + ... + a,. P,
for >, .., ci. P;. Parallel composition is to run two processes in parallel; restriction v
makes name z in vz P local, i.e., private, to P. Prefixes, ranged over by «, can be of the
form 7 (silent prefiz), z(y) (input prefix), or Ty (output prefir). Symbol T represents internal
activity: 7. P can evolve to P without interacting with other processes. A process z(y). P
can perform an input at z, and y is the placeholder for the name so received. Process Ty. P

can perform the output at = of y, and then continues as P.

INRIA

T-catcutus, miernal moowity, ana agent-passing CaiCult

An input prefix 2(y). P and a restriction vy P bind all free occurrences of name y in
P. Free and bound names of processes and of prefixes, and alpha conversion are defined as
expected. P{Z/y} denotes the substitution of z for y in P, with renaming possibly involved to
avoid capture of free names. In a visible prefix, the first name is the subject, and the second
name is the object. In examples, the object part of prefixes will be omitted if not important.
A process «a.0 will often be abbreviated as «, and vy ...vx, P as vzy,...,z, P. Sum
and parallel composition will have the lowest syntactic precedence; substitution the highest.

The grammar above does not mention the match and mismatch operators, written [z =
y]P and [z # y]P, respectively. The former means: “if x equal to y, then P”; the latter
means “if z different from y, then P”. Match and mismatch are often included in the 7-
calculus, mainly because very useful in the algebraic theory. But they will not be needed in
the algebraic theory of 7I, as shown in Section 3.

We wish to make two remarks about the 7-calculus language above presented. The first
regards the asymmetry between the input and output constructs, namely z(y). — and ZTy. —.
The asymmetry is both syntactic — the input is a binder whereas the output is not — and
semantic — in an input any name can be received, whereas in an output a fized name is
emitted. The second remark regards a derived form of prefix, called bound output, written
Z(y) as an abbreviation for v y Ty. Bound output plays a central role in 7-calculus theory, for
instance in the operational semantics and in the axiomatisation. In the operational semantics,
bound output is introduced in the OpPEN rule, one of the of the two rules for restriction:

P p
OPEN: —————— T #.

z(y)

vyP — P’

This rule says that if P can perform the output of the free name y at z, then vy P can
perform the output of the private name y at z. (We can make an analogy between bound
output and silent prefix: Both can be viewed as derived operators — 7.P as abbreviation
for vz (z. P |T), for some z not free in P; and both are needed in the operational semantics
and axiomatisations.)

Having noticed the importance of bound output, we can reasonably add it to the grammar

of prefixes:
Q=T | z(y) | Ty | Z(y) .

The new syntax still contains asymmetries: First, the free-output construct has no input
counterpart. Second, input and bound output, although syntactically similar — both are
binders — are semantically very far apart, as revealed by the interactions they can participate
in: Any name can be received through an input, whereas only a fresh name can be emitted
through a bound output.

We move to #l by eliminating the free output construct.

Definition 2.1 (finite 7I) The class of finite wI processes is described by the following
grammar:

P = Y, ,0.P | P|P | veP

[0}

T | 2(y) | Z(y)-

RR n°2539

e} raviae sangiorgr

In #1, the input and output constructs are truly symmetric: Since only outputs of private
names are possible, an input z(y). P means “receive a fresh name at x”, which is precisely
the dual of the output Z(y). P. Indeed, we can define an operation “dual” which transforms
every output into an input and vice versa: The symmetry of the calculus is then manifested
by the fact that dual commutes with the transition relation (Lemma 3.1).

2.2 Internal and external mobility

In the previous section, the motivation to the introduction of 7l was symmetry. A more
pragmatic motivation is given in this section.

What distinguishes w-calculus from CCS is mobility, that is, the possibility that the
communication linkage among processes changes at run-time. In the w-calculus there are
two mechanisms to achieve mobility, which are embodied in the two communication rules of
the calculus (usually called com and croskg). Accordingly, we can distinguish between two
forms of mobility, internal mobility and external mobility. Internal mobility shows up when
a bound output meets an input, for instance thus:

7(y).Pl2(y).Q — vy(P|Q).

Two separate local (i.e., internal) names are identified and become a single local name. The
two participants in the interaction, Z(y). P and z(y). @, agree on the bound name; for this,
some alpha conversion might have to be used. The interaction consumes the two prefixes
but leave unchanged the derivatives underneath. With internal mobility, alpha conversion is
the only form of name substitution involved.

External mobility shows up when a free output meets an input, for instance thus:
7y.P|x(2).Q —— P|Q{y-}.

Here, a local name gets identified with a free (i.e., external) name. In this case, alpha
conversion is not enough: Name y is free, and might occur in @; hence in general z cannot
be alpha converted to y. Instead, a substitution must be imposed on the derivatives so to
force the equality between 4 and z.

In 71, only internal mobility is present. Studying 7l means examining internal mobility
in isolation, and investigating its impact on expressiveness and mathematical theory. From
the experimentation that we have conducted so far, it appears that internal mobility is
responsible for much of the expressiveness of the w-calculus, whereas external mobility is
responsible for much of the semantic complications. Some evidence to this will be given in
the remaining sections.

2.3 Some advantages of the theory of 7l

Through examples, we show a few weaknesses of the theory of the m-calculus, and we show
why they do not arise in 7l.

Below, ~, denotes w-calculus original bisimilarity, as in [MPW92]; it is sometimes called
late bisimilarity. (The examples we use are rather simple, so we do not need to recall the

INRIA

T-catcutus, miernal moowity, ana agent-passing CaiCult

definition of ~.) Consider the w-calculus process z |7, where = and y are different names.
We can rewrite it as follows, using expansion:

T|Yr~r 2. G+Y. 2. (1)
However, this equality can break down underneath an input prefix:

2(x)- (¢ |Y) #x 2(2). (2.7 +7.2) - (2)

The process on the left-hand side can receive y in the input and become ¥ |7, which then can
terminate after a silent step. This behaviour is not matched by the process z(z). (z.7+7. z),
which, upon receiving ¥, can only terminate after two visible actions.

To have a fully-substitutive equality, some case analysis has to be added to the expansion
(1), by means of the match operator:

2|~r . Gg+y.x+ [z =y]T.

The third summand allows a 7 if z and y are the same name. This equality can now be used
underneath a prefix:

2(x). (2| 7) ~r 2(2). (2.T+7. 2+ [z =y]7T).

The above discussion outlines two important points: First, w-calculus bisimilarity is not
preserved by input prefix; second, to get congruence equalities some case analysis on names
might be needed. In the above example, one level of case analysis was enough, but for more
complex processes it can be heavier; the mismatch operator might be needed too. In general,
if in the m-calculus we wish to manipulate a subcomponent P of a given process algebraically,
then we cannot assume that the free names of P will always be different with each other:
By the time the computation point has reached P, some of these names might have become
equal. Therefore we have to take into account all possible equalities and inequalities among
these names; if they are n, then there are 2™ cases to consider.

These inconvenients do not arise in wI. Bisimilarity is naturally a full congruence, and
no case analysis on names is required. For instance, consider processes z | 7§ and z.7 + 7.2
in (1), and let ~ be «I bisimilarity. As in the m-calculus, so in 7l the two processes are
bisimilar; but, unlike the w-calculus, their bisimilarity is preserved by input prefix:

z2(z). (x| 7) ~ 2(z). (2.7 +7.2).

This because in 71 only fresh names are communicated, hence the free name y can never
be received in an input at z. The absence of case analysis explains why match has not
been included among the 71 operators. (Note that, moreover, some form of matching among
names is already given by parallel composition: The term z. P |7. @ can evolve to P |Q only
if x and y are equal.)

Besides late bisimilarity, other formulations of bisimilarity for the m-calculus have appea-
red in the literature (see [FMQ94]), and it is far from clear which one should be preferred.
(Some of these relations are full congruences, but all require the case analysis on names
mentioned before.) The differences among these bisimilarities are due to the different inter-
pretation of name substitution in an input action. The choice is about when should such

RR n°2539

10 raviae sangiorgr

— 1 r < 1"
ALPHA: P=.P — Pr—=7r PRE: a.P - P
P = pr
p = P p = p
PAR: 7 if bn(a) NIn(Q) =0 RES: T if z ¢ n(a)
P|Q — P'|Q veP — va P
PSP Q-%Q P, Plicl
comM: — fora #7,z=bn(a) sum -
PIQ — va(P'|Q) 2iet B — P

Table 1: The transition system for 7l

a substitution be made: For instance immediately, in the input rule, or later, in the com-
munication rule, or only when the name received is needed. The choice affects the resulting
behavioural equivalence, since a substitution can change the relationships of equality among
names. In 7, alpha conversion is the only form of name substitution needed. Alpha conver-
sion is semantically harmless, because it does not change the equalities and inequalities
among names; hence in 7l the bisimilarity relation is unique.

3 Basic theory of 7l

We consider the basic theory of #l:

e operational semantics,
o bisimilarity,
e axiomatisation,

e construction of canonical normal forms.

In all these cases, a clause for alpha conversion represents the main difference w.r.t. the
theory of CCS. An exception to this is the appearance of a restriction in the communication
rule for «l.

3.1 Operational semantics and duality

We write @ for the complementary of «; that is, if @ = z(y) then @ = Z(y), if @« = Z(y) then
a = z(y), and if @ = 7, then @ = a. We write P =, Q if P and @ are alpha convertible.
We write fn(P),bn(P) (resp. fn(a),bn(a)) for the free names and the bound names of P
(resp.). The names of P or «, written n(P) and n(«), are the union of their free and bound
names. Table 1 contains the set of the transition rules for 71. We have omitted the symmetric
of rule par. The only formal difference w.r.t. the set of rules for CCS is the presence of the
alpha conversion rule and the generation of a restriction in the communication rule. Unlike

INRIA

T-catcutus, miernal moowity, ana agent-passing CaiCult

11

the m-calculus, there is only one rule for communication and one rule for the restriction
operator. Note that the alphabet of actions is the same as the alphabet of prefixes. We call
a transition P — P’ a reduction.

We define an operation dual which complements all visible prefixes of a 7l process:
If P € 71, then P is obtained from P by transforming every prefix a into the prefix @.
Operation dual can be defined on #l because of its syntactic symmetry. The following
lemma shows that the symmetry is also semantic.

Lemma 3.1 IfP = P/, then P =, P a

Note that since P = P, the converse of Lemma 3.1 holds too.

3.2 Strong and weak bisimilarity

Definition 3.2 (71 strong bisimilarity) A symmetric relation R on 7wl processes is a
strong bisimulation if P R Q implies:

o whenever P =5 P', with bn(a)Nfn(Q) =0, there is Q' s.t. Q —— Q' and P' R Q'.

We say that two w1 processes P and @) are strongly bisimilar, written P ~ Q if P R Q, for
some strong bisimulation R .

By contrast with 7 bisimilarity, in w-calculus bisimilarity [MPW92] the clauses for input
and output must be distinguished, the reason being that input and output are not symmetric.

Remark 3.3 The side conditions on the freshness of names, in the transition system and
the bisimilarity of 7I, can be avoided by adopting a convention for bound names based on
de-Bruijn indices. O

Lemmas 3.4-3.6 are technical results useful to deal with the alpha convertibility clause
on processes and transitions. Lemma 3.5 shows that bisimilarity is preserved by injective
substitutions on names.

Lemma 3.4 If P =, Q, then P ~ Q. a
Lemma 3.5 Suppose y & fn(P). Then for all x, P ~ Q implies P{Yz} ~ Q{Y/=}.

PROOF: Similar to the analogous result for the m-calculus: One can show that if y is not
free in a process R, then R and R{¥/z} can perform the same actions, up to the substitution
{Y/z} and alpha conversion. O
Lemma 3.6 If P ") prand 2 ¢ fn(P), then also P #2) P" | for some P" with P"{Y/z} =,
P'. |

Remark 3.7 Lemmas 3.4-3.6 show that alpha conversion and injective substitutions are
harmless. Hence when examining the derivatives of a process P (for instance, if we compare

RR n°2539

12 raviae sangiorgr

the behaviour of P with that of another process @), it is safe to pick some fresh name x
and force = to be the bound name of any action which appears in the derivation proof of a
transition of P: Any other choice of bound names leads to the same derivative, up to alpha
conversion and an injective substitution on names. a

Definition 3.8 (bisimulation up to alpha conversion) A symmetric relation R is a
bisimulation up to alpha conversion if P R Q implies:

o whenever P -5 P', with bn(a) N f(Q) = 0, there is Q' s.t. Q - Q' and
P=,R=,Q".

Lemma 3.9 If R is a bisimulation up to alpha conversion, then R C ~. a
Bisimilarity is preserved by all 71 operators:

Proposition 3.10 (congruence for ~) If P ~ Q, then

1. a.P ~a.Q;
2.P+R~Q+R;
S, veP~rvzQ;

4. PIR~Q|R.
PRrOOF: Each case is simple. For instance, for (1), one can show that

{(0-P,a.Q)}U ~

is a strong bisimulation. The move a. P - P is matched by a.Q —= Q; this is enough

even if « is an input prefix, since no instantiation of the bound name is required.

For (4), one can prove that the set of all pairs of the form (v Z (P | R),vZ (Q | R)), with
P ~ Q, is a strong bisimulation up to alpha conversion. a

Weak transitions and weak bisimilarity are defined in the expected way. Relation = is
the reflexive and transitive closure of — , and relation = is = —— =—.

Definition 3.11 (7l weak bisimilarity) A symmetric relation R on wl processes is a
weak bisimulation if P R Q implies:

e whenever P = P', there is Q' s.t. Q = Q' and P' R Q’;

o whenever P == P!, with a # T and bn(a) N fn(Q) =0, there is Q' s.t. Q = Q'
and P' R Q'.

We say that two w1 processes P and @) are weakly bisimilar, written P ~ @, if PR Q, for
some weak bisimulation R .

As strong bisimilarity, so weak bisimilarity is preserved by all operators of the language.’

1The congruence is not broken by sum because of the guarded form of our sums.

INRIA

T-catcutus, miernal moowity, ana agent-passing CaiCult

Alpha-conv. A If P and @ alpha-convertible then P = @
Summation S1 M+0 = M
S2 M+N = N+M
S3 M+(N+L) = (M+N)+L
S4 M+M = M
Restriction R1 If,Viel, z¢n(a) then va(},c;0iP) = Y. c;a.vaP
R2 If z is the subject of a then ve(M+a.P) = vaM
Expansion

Assume that P =3, a;. P, and Q = 3°; 8;.Q;, and that for all ¢ and j with s, 3; # 7,
it holds that bn(a;) = bn(8;) = = ¢ fn(P, Q). Then infer

P|Q=Zai-(Pi|Q)+Zﬁj-(P|Qj)+ Y rvz(P|Qy)

a; opp B

where a; opp 3; holds if a; = 3; # 7.

Table 2: The axiom system for finite 7] processes

Remark 3.12 7l is a subcalculus of the m-calculus: A 7 process can also be interpreted as
a m-calculus process and then the transition for a 7l processes can be viewed as the transition
of a w-calculus process. It follows that any bisimilarity result between 7l processes which is
valid in the w-calculus is also valid in «l. |

3.3 Axiomatisation

This section shows a sound and complete axiomatisation for strong bisimilarity over finite
7l processes.

To have more readable axioms, it is convenient to decompose sums). ;a;. P; into
binary sums. Thus we assume that sums are generated by the grammar

M:=M+N | a. P | 0.

We let M, N, L range over such terms. The axiom system is reported in Table 2; we call it
A. We write A F P =Q if P = Q@ can be inferred from the axioms in .4 using equational
reasoning. Note that a special case of R1 (for I =0) is

R3 vz2z0 = 0.

Definition 3.13

o A process P is in head normal form, briefly hnf, if P is of the form

ZO[ZR

RR n”2539

14 raviae sangiorgr

e The depth of P, written d(P), is inductively defined as follows:

o)y = 0
d(a.P) = 1+d(P)
dvzP) = d(P)
d(P1 | P») d(Py) + d(P2)
d(P,+ P,) = maz{d(P,),d(P)}
Proposition 3.14 (soundness of A) If A+ P=Q, then P~ Q. d

Lemma 3.15 For any process P there is a hnf H with d(H) < d(P) s.t. A+ P=H.

PRroOF: By induction on the structure of P. The transformations we consider do not increase
the depth of a process. If P =0 or P = a. P;, then P is already in hnf. If P = v x P, then
by induction, A + P, = Hi, for some hnf H;; hence A + vx P, = vz H;,. Now, the
summands of H; whose initial action is at « can be removed using S1-S3 and R2; then
the remaining term can be rewritten into a hnf H using R3 or R1. If P = P, | P», then by
induction A - P, = Hy, A F P, = Hy, for hnf Hy; and Hy; hence A + P = Hy | Hy. Now
H; | Hy can be put into hnf by means of alpha conversion and the expansion law. Finally,
the case P = P; + P, can be accommodated using induction and S1. O

Theorem 3.16 (completeness of A) If P~ (Q then A+ P=Q.

PRrOOF: Induction on d = maz{d(P),d(Q)}. By Lemma 3.15 and Proposition 3.14 we can
assume that P and @ are in hnf. Moreover, by alpha conversion we can assume that the
bound names of all outermost prefixes in P and () are the same. If d = 0, then P = Q = 0,
hence A F P = Q. Suppose d > 0. We show that each summand of P is provable equal to
a summand of @). Then the result follows using the axioms for commutativity, associativity
and absorption of sum. If a. P’ is a summand of P, then P —— P’. Since P ~ Q, there
is a summand a.Q’ of Q s.t. Q — Q' ~ P'. But d(Q') < d and d(P') < d: Hence, by
induction, A F P’ = @Q’, from which we get A F a. P’ = . Q. O

Omitting the axiom for alpha conversion and the bound name z in the expansion scheme,
the axioms of Table 2 form a standard axiom system for strong bisimilarity of CCS. Also
the proofs of soundness and completeness for the 7l axiomatisation are very similar to those
for CCS [Mil89]. For instance, as in CCS, so in the completeness proof for 7l a restriction
is pushed down into the tree structure of a process until either a 0 process is reached, or a
0 process is introduced by cutting branches of the tree, and then the restriction disappears.

The transformation to head normal form (Lemma 3.15) can be completed to a trans-
formation to normal forms if process underneath prefixes are manipulated too. Then the
axioms for commutativity, associativity and idempotence of sum, and alpha conversion can
be used to obtain canonical and minimal representatives for the equivalence classes of ~.
Again, this mimics a well-known procedure for CCS.

INRIA

T-catcutus, miernal moowity, ana agent-passing CaiCult

1o

4 Extending the signature of the finite and monadic 7l

4.1 Infinite processes

To express processes with an infinite behaviour, we add recursive agent definitions to the
language of finite 7l processes. We assume a set of constants, ranged over by D. Each
constant has a non-negative arity.

Definition 4.1 (full 7I) The class of w1 processes is defined by adding the production
P == D)

to the grammar of Definition 2.1. It is assumed that each constant D has a unique defining
equation of the form D 4 (Z) P. Both in a constant definition D =4 (Z) P and in a constant
application D{(Z), the parameter T is a tuple of all distinct names whose length equals the
arity of D.

The constraint that the actual parameters z in a constant application should be distinct

— normally not required in the m-calculus — ensures that alpha conversion remains the

only relevant form of name substitution in 7I. In a constant definition D def (Z) P, all free

occurrences of names 7 in P are bound; moreover, we require that fn(P) C Z. The transition
rule for constants is:

P = P

pe = piPEMQmd @@= @P.

Some presentations of the 7-calculus have the replication operator in place of recursion.
A replication ! P stands for an infinite number of copies of P in parallel. The comparison
between replication and recursion is interesting. These operators are notational devices to
represent syntactically-infinite objects. Replication yields infinity in width (for instance,
!a. P stands for a. P | a. P| ...). Recursion, by contrast, can also capture infinity in depth:
For instance, if D % (a)@(b), then D{ay) stands for a;(az).a2(as). ...@n(@nt1) ... In this
sense, comparing replication and recursion means comparing infinity in width with infinity
in depth.

Milner [Mil91] has showed that in the m-calculus replication and recursion yield the same
expressive power, provided that the number of recursive definitions is finite. We shall prove
in Section 6.2 that in 7 recursion is strictly more powerful than replication. We call ¢
the language with replication.

Definition 4.2 (7I¥) The class of mI¥ processes is defined by adding the production
P == 1P
to the grammar of Definition 2.1.

The transition rule for replication is

P|!'P % P
'p 2, pr

RR n°2539

10 raviae Sangiorgr

4.2 Polyadicity

The calculi seen so far are monadic, in that precisely one name is exchanged in any commu-
nication. We extend these calculi with polyadic communications following existing polyadic
formulations of the m-calculus [Mil91, PS93, VH93, Tur94]. We shall see that, however, the
polyadic 7l enjoys a few properties, for instance on the typing, which do not hold in the
polyadic w-calculus.

The operational semantics and the algebraic theory of the polyadic 71 are straightforward
generalisations of those of the monadic #I, and will be omitted.

4.2.1 The polyadic 7l

The syntax of the polyadic 7l only differs from that of the monadic calculus because the
object part of prefixes is a tuple of names:

a == 7| 2@ | 2@.
Names in 7 are all pairwise different. When ¥ is empty, we omit the surrounding parenthesis.

As in the 7-calculus [Mil91, section 3.1], so in 7] the move to polyadicity does not increase
expressiveness: A polyadic interaction

z(y1,92)- P Z(y1,942). Q@ — (vy1,%2)(P | Q)

can be simulated using monadic interactions and an auxiliary fresh name w:

w(w).w(yr). w(y2). PIE(w). w(y). w(y2). @ —————— (v w,y1,92) (P|Q) ~ (v y1,42)(P|Q) -

4.2.2 The typing system

Having polyadicity, we need to impose some discipline on names so to avoid run-time arity
mismatchings in interactions, as for z(y). P | Z(y,). Q. In the m-calculus, this discipline is
achieved by means of a typing system (in the literature it is sometimes called sorting system;
in this paper we shall prefer the word “type” to “sort”). In its basic form, a typing allows
us to specify the arity of a name and, recursively, of the names carried by that name. Each
name is assigned a type. And each type, say S, is assigned a tuple of types: These are the
types of a tuple of names which can be carried by a name of type S. A process which respects
a typing will never give rise to run-time errors on the usage of names.

Names of “equal” type can be replaced for one another in a well-typed process, and the
resulting process will still be well-typed. There are two main approaches to defining equality
between types. In the by-name typing [Mil91], each type is given a unique name (i.e., an
identification); two types are equal if they have the same name. In the by-structure approach
[PS93, VHI3, Tur94], two types are equal if they are structurally so; in other words, types are
viewed as abbreviations for regular trees and equality between types means equality between
the underlying regular trees. (There is a close analogy with the by-name and by-structure
approaches to the treatment of equality between data types in programming languages.)

In the m-calculus, a by-structure typing represents a special case of a by-name typing,
namely the one which makes fewest distinctions among names. The difference between the

INRIA

T-catcutus, miernal moowity, ana agent-passing CaiCult

17/

two systems has semantic consequences. In a by-name typing, distinctions among names
can be imposed so to confine the set of free names which can be received in an input. For
instance, assigning names x and y different types validates the equation

2(2)- (2| 7) ~x 2(2). (2.7 +7.2) 3)

(only names of the same type as x can be received at z, which excludes y — compare (3)
with (2) of Section 2.3). By contrast, in a by-structure typing and y cannot be separated —
both are used just for pure synchronisation hence have the same structural type: Therefore
equality (3) fails (for the same reason that (2) fails).

In 71, due to the different interpretation of an input — no free name can be received —
the by-name and by-structure typing are semantically the same. We shall therefore follow
the by-structure approach, because mathematically more appealing.

Definition 4.3 The following is our language for types:
S u= (§)|X|NX:S’.

We use S and T to range over types. X is a type-variable; uX : S is a recursive type. Since
we want to view type expressions as abbreviations for regular trees, we require that the body
of a recursive type puX : S be contractive in the recursion variable X: Either X does not
appear at all in S, or else it appears inside at least one set of brackets. 7{5/X} denotes the
capture-avoiding substitution of S for X in T'.

Results by Courcelle [Cou83] guarantee that the unfolding of a type generates a unique
tree and that the tree is regular, i.e., it only has finitely many different subtrees. We use ()
to denote the tree whose root has no son; and (73, .. .,7,) for the tree whose root has n sons
and the i-th son (from left to right) is the root of the tree 7,. We define equality between
trees following [Cou83, PS93, VH93|.

Definition 4.4 To each type S we associate a tree called T[S], which is the unique tree
satisfying the following equations:

1. if S=(S1,...,8,), n >0, then T[S] = (T[S1],---,T[Sn]);
2. if § = uX.S" then T[S] = T[S"{rX-S'/x}].
Two types S and T are equal, written S < T, if T[S] and T[T] are syntactically equal.

We write z : S and D : S if name z and constant D have type S, respectively. Intuitively,
x:(S1,...,S,) means that x carries n-uples of names whose i-th component has type S;;
similarly, D : (S1,...,S,) means that D accepts n-uples of names as parameters, and the
i-th name has type 5.

Definition 4.5 A typing is finite set of assignments of types to names and constants:

I @== ¢ |T,e:5 | ,D:5s.

RR n”2539

135 raviae Sangiorgr

Iz]<(S) I,7:SFP Ck-P
T+a(y).P,TFz(). P Thr.P
P TI'HQ F,z:SHP, forsomeS TFP, iel
THP|Q ThvzP TFY . P
PO < (L[z]) y:TE]FP . det TP
T F D(@) #D=®mP TFIP

Table 3: The typing rules for the operators of 7l and 7I¥

Names and constants appearing in a typing I' are always taken to be pairwise distinct; this
justifies an abuse of notation whereby I' is regarded as a finite function from names and
constants to types: ['[z] (resp. I'[D]) is the type assigned to z (resp. D) by . The ordering
of assignments in I" is ignored.

Definition 4.6 A process P in wl or in wlI* is well-typed for T 4f I' - P can be inferred
from the rules of Table 3. P is well-typed if there is I" s.t. P is well-typed for T.

Note that if P is well-typed for I', then all free names and constants in P are nominated
inT.

Lemma 4.7 IfT'+ P and y & fn(P), then for all S, we have T,y : S+ P. O

Lemma 4.8 Let P be a wl or ¥ process.

1. ITFP and P 2™ P or P 2% P!, then there is § s.t., T[z] = (5) and T,5: S F P

2. IfTFPand P — P', thenT + P'.

PROOF: By transition induction. For rule par, Lemma 4.7 is needed. |

5 The encoding of the A-calculus

Values and data structures can be modelled in 71 in the same way as they are in w-calculus:
The 7w-calculus representations given by Milner [Mil91, Sections 3.3., 6.2 and 6.3] only utilise
the 71 operators. Also, the encodings of locality and causality into 7-calculus in [San95b,
BS94] can be easily adapted to wI. More interesting is the encoding of the A-calculus and
of agent-passing calculi into 7l or related calculi. We look at the A-calculus here, and at
agent-passing calculi in Sections 7 and 8.

In this section, M, N, ... are A-calculus terms, whose syntax is given by
M=z | \eM | MM

where z and y range over A-calculus variables. In Abramsky’s lazy lambda calculus [Abr89],
the redex is always at the extreme left of a term. There are two reduction rules:

INRIA

T-catcutus, miernal moowity, ana agent-passing CaiCult

The encoding into m-calculus; 7(x)p. — is an output prefix at r in which the private name x
and the free name p are emitted.

ClAz.M], = p(z,q).C[M],
Clzl, = 7p
CIMN], ¥ wvr(C[M],|F(z)p.2(q).C[N],) = fresh
e
PlzM], = Bw).w(z,q). P[M],
Plel, ¥ #(r).r—p
PIMN], ¥ vr(P[M], |r(w).®(z,¢). (¢ — p|z(q).P[N],) « fresh

Table 4: The encodings of the linear lazy A-calculus

M= M’

beta: (Az.M)N = M{N/z}, PP YN — N

We first encode the linear lazy A-calculus, in which no subterm of a term may contain more
than one free occurrence of z, for any variable . We begin by recalling Milner’s encoding C
into the m-calculus. Then we describe the changings to be made to obtain an encoding P into
7l. The two encodings are presented in Table 4. The core of any encoding of the A-calculus
into a process calculus is the translation of function application. This normally becomes
a particular form of parallel combination of two agents, the function and its argument;
beta-reduction is then modeled as process reduction.

Let us examine C. In the pure A-calculus, every term denotes a function. When supplied
with an argument, it yields another function. Analogously, the translation of a A-term M is
a process with a location p. It rests dormant until it receives along p two names: The first is
a trigger z for its argument and the second is the location to be used for the next interaction.
The location of a term M is the unique port along which M interacts with its environment.
Two types of names are used in the encoding: Location names, ranged over by p,q and r,
and trigger names, ranger over by z,y and z. For simplicity, we have assumed that the set
of trigger names is the same as the set of A-variables. More details on this encoding and a
study of its correctness can be found in [Mil91, San95a].

Encoding C is not an encoding into w1 because there are outputs of free names, one in
the rule for variables, and one in the rule for applications. Indeed, the free output construct
plays an important role in C: It is used to redirect location names which, in this way, can
bounce an unbounded number of times before arresting as subject of a prefix.

Encoding P is obtained from C with two modifications. First, the output of a free name
b is replaced by the output of a bound name ¢ plus a link from ¢ to b, written ¢ — b. Names
b and c are “connected” by the link, in the sense that a process performing an output at ¢
and a process performing an input at b can interact, asynchronously, through the link. In

RR n°2539

raviae Sangiorgr

other words, a link behaves a little like a name buffer: It receives names at one end-point
and transmit names at the other end-point. However, the latter names are not the same as
the former names — as it would be in a real buffer — but, instead, are linked to them: This

accounts for the recursion in the definition of links below. For tuples of names @ = w1, ..., U,
and ¥ =vy,...,v, we write & — ¥ to abbreviate u; — vy | ... |un — V.
If a and b are names of the same type, then we define: a — b ef a(@).b(0).7 — U

(for convenience, we have left the parameters a and b of the link on the left-hand side of
the definition). Note that the link is ephemeral for a and b — they can only be used once
— and that it inverts its direction at each cycle — the recursive call creates links from the
objects of b to the objects of a. Both these features are tailored to the specific application
in exam, namely the encoding of the lazy A-calculus.

The other difference between encodings C and P is that the latter has a level of indi-
rection in the rule for abstraction. A term signals to be an abstraction before receiving the
actual arguments. This is implemented using a new type of names, ranged over by w. This
modification could be avoided using more sophisticated links, but they would complicate
the proofs in Lemma 5.1 below.

When reasoning about encoding P, one does not have to remember the definition of
links; the algebraic properties of links in Lemma 5.1 are enough. Assertion (1) of this lemma
shows that two links with a common hidden end-point behave like a single link; assertions
(2) and (3) show that a link with a hidden end-point acts as a substitution on the encoding
of a A-term.

Lemma 5.1 Let M be a linear \-term.

1. If a,b and c are distinct names of the same type, then vb(a — b|b—¢) =~ a — c.

2. If x andy are distinct trigger names and y is not free in M, thenv x (x — y|P[M],) ~
PIMA{Y/z}]5-

3. If p and r are distinct location names, then vr(r — p | P[M],) =~ P[M],.
PRrOOF: (Sketch)

1. By exhibiting the appropriate bisimulation.

2. By induction on the structure of M. In the basic case, when M = z, assertion (1) is
needed. The other cases only require the use of the inductive assumption and a few
simple algebraic laws.

3. By induction on the structure of M. In the basic case, M is variable, say M = z, and

we have
vr(r —p|Plz]r)
vr(r—p|Z(q).q—r1) ~
Z(q).vr(g—r|r—p =
z(q).q —p = P[M],

where the last transformation uses assertion (1).

INRIA

T-catcutus, miernal moowity, ana agent-passing CaiCult

<1

The case when M is an application can be accommodated using simple algebraic laws
and assertion (1).

If M is an abstraction, say M = Az.N, we have

vr(r—p|P[.N],) =
vr(r—p|T(w) w(z,q). P[N],)

and, unfolding the definition of r — p,
=vr (r(w).ﬁ(w').w' — W |7(w).w(x7q).’P[[N]]q) .
Using one reduction and the definition of links we get
~ pw).vw (w’ — w | w(w,q).P[N]]q)
(w).vw (w'(y,4). 9,0 (@ = y|a— ¢) | w(e,)-PIN],)

Similar algebraic transformations give

=l

~ pw).w'(y.q)ve,q(e—yla—q | PIN],)
~ P).w'(y,¢)ve(z—ylvelg— ¢ |PINI,)).
Finally, from the inductive assumption on P[N],,
~ B(w).w'(y,d)-ve (¢ -y | PIN]y)
and, from assertion (2) on P[N],,
~ pw').w'(y,q). PIN{Ye=}]y
=, P[Iz.N],.
O
The main result needed to convince ourselves of the correctness of P is the validity of

beta-reduction. The proof is conceptually the same as the proof of validity of beta-reduction
for Milner’s encoding into 7-calculus; in addition, one has to use Lemma 5.1(3).

Theorem 5.2 For all M and N and p it holds that P[(\.xM)N], ~ P[M{N/z}],.

PROOF: (Sketch) First, using some reductions, one can show that
Pl(AzM)N], ~ vq,z (P[M],|q¢— p|z(r). P[N],) .

The right-hand side is weakly bisimilar with v z (P[M], | z(r). P[N].) using Lemma 5.1(3).
Finally,
va (P[M], | z(r). P[N].) ~ P[M{Nf}],

can be proved by induction on the structure of M and, again, using Lemma 5.1(3).]

To encode the full lazy A-calculus, where a variable may occur free in a term more than
once, the argument of an application must be made persistent. This is achieved by adding, in
both encodings C and P, a replication in front of the prefix z(g). —, in the rule for application
(recall that replication is a derived operator in a calculus with recursion). In addition, for
‘P also the link for trigger names must be made persistent, so that it can serve the possible
multiple occurrences of a trigger in a term. Thus

RR n°2539

raviae Sangiorgr

if and ¥ are trigger names, then we define: 2z —y defy z(w).g(0).v — u.

In this way, Lemma 5.1 and Theorem 5.2 remain true for the full lazy A-calculus.

Encoding P uses the following recursive types S;, S; and S, for location names, trigger
names and auxiliary names like w:

S = (Sa)
S £ (5)
S, ¥ (s, 8).

We shall see in Section 4 that processes in wI“ (the calculus with replication in place of
recursive agent definition) can be typed with non-recursive types. Since recursive types
appear to be necessary to encode the A-calculus, at least if we require that the encoding is
compositional and that each A-terms has a single port to input its argument, we think that
there are no encodings of the A-calculus into 7I¥ with these same properties.

Links — as defined here, or variants of them — can be used to increase the parallelism
of processes. For instance, adding links in the encoding of A-abstractions, as below, gives an
encoding of a strong lazy strategy, where reductions can also occur underneath an abstraction
(i-e., the Xi rule, saying that if M — M’ then \x. M — Az. M’ is now allowed):

PReM], & vg,z (Bw). wly,r). (¢ = 7|z —y) | P[M],).

In the lazy A-calculus encoding, there is a rigid sequentialisation between the behaviour of
(the encodings of) the head Az.— and of the body M of the abstraction: The latter cannot
do anything until the former has supplied it with its arguments xz and g. In the strong-lazy
encoding, the only dependencies of the body from the head are given by the actions in
which these arguments appear; any other activity of the body can proceed independently
from the activity of the head.

6 A hierarchy of calculi based on internal mobility

6.1 Non-recursive and order-bounded types
Dropping recursion, the language of types (Definition 4.3) simply becomes:
5§ u= (9).

We call them non-recursive types, and we call a typing that only uses non-recursive types
a non-recursive typing. Note that equality < between non-recursive types coincides with
syntactic equality.

Definition 6.1 The order of a non-recursive type S is the mazimal level of bracket nesting
in the definition of S.

Example 6.2 Type () has order 1 and type ((), (())) has order 3. Typingx : (),y: (()),z:
() has order 2.

INRIA

T-catcutus, miernal moowity, ana agent-passing CaiCult

If only non-recursive types are used, it makes sense to concentrate on the processes of
the language 7I“ (i.e., the recursion-free processes, Definition 4.2): As we shall see in Section
6.2, the confinement to non-recursive types does not affect the typability of processes in 71+,
whereas it affects that of processes in wI. We can discriminate processes according to the
order of the types needed in the typing; we thus obtain a hierarchy of calculi. We use w
to denote the first ordinal limit; n < w means that n is a positive integers. A non-recursive
typing which does not include assignments to constants is a 7I* typing.

Definition 6.3 (calculi {7I"},«,) A process P € nI¥ is in 7", n < w, if, for some wI¥
typing T, there is a derivation proof of Tt P in which all types used (including those in T')
have order n or less than n.

That is, the typability of processes in 7I™ can be established utilising types of order at
most n.

Lemma 6.4 If P € nI*, then also P € wI™ for all m > n. |

Thus 7' represents the core of CCS, for in 7I! names can only be used for pure syn-
chronisation. w12 includes processes like

z(y,2).(@|2) and y.2(2).7.z

where if a name carries another name, then the latter can only be used for pure synchroni-
sation. Informally, let us say that a name depends on another name if the latter carries the
former; for instance, in z(y).7(z). z. 0, name y depends on z and z depends on y. Thus the
processes in wI™ are those which have dependency chains among names of length at most n;
for instance, process x(y).7(z). z.0 is in 7#I™, for all m > 3.

Dependency chains are important w.r.t. mobility. If a process has dependency chains of
length n at most, then also its traces (i.e., the sequences of actions that the process can
perform) have dependency chains of length n at most. In a trace, a dependency between
names indicates the creation of a link — hence the creation of mobility. (For instance, if P
can perform the action Z(z), then an interaction in which this action is consumed creates
a new link, called z in P.) Similarly, in a trace a dependency chain of length n indicates
n — 1 nested creations of links. Therefore, if a process P, simulating a process @, has to
reproduce the mobility that @ creates, then the dependency chains in traces of P should be
at least as long as those in traces of @ (they could be longer, since the creation of a new
link by @ might be simulated in more than one step by P, as in the encoding of polyadic
communications with monadic communications in Section 4.2).

Following this criterion, in Theorems 6.7 and 6.8 below we show that the calculi {71"},,
form a strict hierarchy of expressiveness classes: Processes in 71"t exhibit a “higher degree”
of mobility than processes in 71™.

For future investigations, we would like to see if there are stronger formulations of the
non-expressiveness results in this and in the following subsection which did not require to
explicitly take into account link creation (i.e., the dependency chains among names).

RR n”2539

raviae Sangiorgr

Definition 6.5

o A trace is a sequence of actions aq, ..., S.t. for all i # j, bnfo;)N bn(a;)=10.

o Letl=aqy,...,a, be atrace. We say that £ has a dependency chain of length 1 from
x if there is 1 < 1 < m s.t. x is the subject of a;. We say that ¢ has a dependency
chain of length n from z, for n > 1, if there is 1 <1 < m s.t. x is the subject of a; and
there is a name y in the object part of a; s.t. the trace ait1 - ..am has a dependency
chain of length n — 1 from y.

o We say that a trace £ has a dependency chain of order n if there is a name x s.t. £ has
a dependency chain of length n from x.

For instance, trace x(y1,¥2), ¥1, y2(w), W has various dependency chains of length 2
(among which, the one determined by names z and y;) and a maximal dependency chain of
length 3 (determined by names z, yo and w).

Definition 6.6 A traceaa,...,a, is atrace of the process Py if there are processes Py, ..., Ppi1
s.t. P, =5 Piyq, foralll1 <i<n.

Theorem 6.7 There is a trace of a process in wI™*, n < w, with a dependency chain of length
n.

PROOF: Take process x1(x2). -« . Zn—1(Tn)-Tn-0, and its trace x1(x2), ..., Tn-1(Tn), Tn. O

Theorem 6.8 No trace of a process in wI", n < w, has a dependency chain of length n + 1
or greater than n+ 1.

PROOF: In this proof, we write order[S] for the order a type S. Let ', P and z be any 7I*
typing, process and name, respectively, and suppose that I' - P and that order[I'[z]] < n.
We show that any trace a1, ..., a., of P has dependency chains of length at most n from z.
The theorem follows immediately from this claim because if P € 71" then I' + P, for some
I' which only contains types of order at most n: Therefore, by the claim, a trace of P has
dependency chains of length at most n from any name nominated in I' (which is enough,
because, by Lemma 4.8, P can only perform visible actions at names nominated in T').

We prove the above claim by induction on n. For the case n = 1 just consider that
order[I'[z]] = 1 means that I'[z] = (): By Lemma 4.8(1), all actions at x have empty object
part.

For the case n > 1, we use induction on the length m of the trace ay,...,a,. The case
m =1 is trivial: By definition, a trace of length 1 has dependency chains of length at most
1. Now, the case m > 1. We suppose that a; is an action at z; the case in which a; is not

an action at z is simpler. Since aq,...,a,, is a trace of P there is P; s.t. P 2, P, and
s, ..., Qny is a trace of P. By Lemma 4.8, if oy = x(¥) or an = ZT(¥), then for some S,

[[z] =< (S) and
L,j:SkP. (4)

INRIA

T-catcutus, miernal moowity, ana agent-passing CaiCult

Moreover, since order[(S)] < n, for all S € § we have

order[S] <n —1. (5)
A dependency chain from z for the trace ag, ..., ., is either all contained in as, ..., Q;y,, Or
it is split between the traces a; and as, ..., an. In both cases, the chain must have length

at most n: In the former case, because of (4) and of the inductive assumption on the length
of the trace; in the latter case because, from (4) and (5) and the induction on the order n,
trace aw, ..., a, has dependency chains of length at most n — 1 from any y € 7. |

6.2 Recursion versus replication

Since replication is a special case of recursion, every process in 7l can be simulated by a
process in 7I. We show that the converse is not possible.

According to the definition of 71 (Definition 4.2), recursive types are allowed in the
typing of 7I¥ processes; the lemma below shows that recursive types are in fact not needed.

Lemma 6.9 If P € 7I¥ and well-typed, then also P € nI*, for some n < w.

PRroOOF: By induction on the structure of P. If P = 0, then for any n, P € 7I*. If P =
> ics Pi with I non-empty, and P; € 7I™, then for m = maxz{n; : i € I} we have
P € 7I™ (the maximum exists because I is finite). Parallel composition is handled similarly.
If P = 2(y). P' or P =%(y). P' and P’ € 71", then P € wI"*!. Finally, if P € nI", then also
! P and 7.P are in 7l". O

Theorem 6.10 Suppose P € nI¥. Then there isn < w s.t. no traces of P have a dependency
chain of length n + 1 or greater than n + 1.

PROOF: By Lemma 6.9, if P € n1¢, then P € «nI", for some n. Then the result follows from
Theorem 6.8. |

On the other hand, using recursion we can define a process like D{x1), for D ef (2) Z(y). D{y),
which has traces with dependency chains of unbounded length. For instance, we have

Diay) 28 PG prgy Pl (6)

Theorem 6.10 and (6) show that recursion cannot be encoded in terms of replication.

The typability of process D{z;) in (6) requires recursive types. We expect that recursion
and replication become interdefinable if only non-recursive types are allowed, and even if a
bound on the order of types is imposed.

7 Agent-passing calculi

In an agent-passing process calculus, agents, i.e., terms of language, can be passed around.
(Sometimes, agent-passing process calculi are called higher-order process calculi in the litera-
ture.) The agent-passing paradigm inherits from the A-calculus the idea that a computation
step involves instantiation of variables with terms.

RR n°2539

raviae Sangiorgr

For our study of agent-passing process calculi we use the Higher-Order w-calculus, a
development of the 7-calculus introduced in [San92]. Since we want to compare purely-agent-
passing calculi with purely-name-passing calculi, we disallow the name-passing features of
the Higher-Order 7-calculus, namely communication of names and abstraction on names.
We call the resulting calculus the Strictly-Higher-Order m-calculus, briefly HOn*.

7.1 The Strictly-Higher-Order 7-calculus

The following is the grammar of untyped HO7* agents. It combines the familiar CCS-like
process constructs — sum, prefixing, parallel composition, restriction and replication — with
the A-calculus constructs — abstraction, application and variable. X,Y, Z and W range over
the set of variables.

A = YA | AJA | ved | 1A | (XA | A4 | x

2(X) | z(A)

a = T

The abstraction construct (X) A allows us to define parametrised behaviours, that is, func-
tions from agents to agents. The application construct A;{As) allows us to assign an argu-
ment As to an abstraction A;.

Agents only are exchanged in communications; through an output prefix Z(A), the tuple
of agents A is emitted; through an input prefix x()?), a tuple of agents is received and
instantiates variables X. The angle brackets in an output prefix (as opposed to round bra-
ckets) are to emphasise that this is not a binding construct. The definite asymmetry between
input and output constructs and, consequently, that of the communication rule of HO#*,
is a heritage of the A-calculus, whose basic computational step, beta reduction, is strongly

asymmetric.

We abbreviate (X1)...(X,)A as (X1,...,X,)A, and A(A;)...(A,) as A(A1,...,4,).
An abstraction (f) A and an input prefix x()?). A bind all free occurrences of variables X
in A. An agent is open if it may have free variables in it; closed otherwise. Abstraction
has the highest precedence among the operators, application the lowest; thus (X) A(B)
means (X) (A(B)), and v z A(B) means v z (A{B}). The notations introduced for 7-calculus,
regarding substitutions, tuples, brackets, etc., extend to HO7“in the expected way.

Remark 7.1 The HO7“ language without replication is enough to write processes with
an infinite behaviour (even if well-typedness of the expressions is required) for the same
reason why the paradoxical operator Y can be written within the A-calculus. We incorporated
replication in the syntax because it will facilitate the comparison with the name-passing
calculi {nI"},,, whose operators include replication, in Section 8. O

We shall only consider well-typed HO#“ terms. We ascribe types to HO7n“ expressions
following the type assignment of the simply-typed A-calculus. The process-type () is our
only first-order (i.e., basic) type. We adopt a bracket-nesting notation for functional types
— rather than an arrow notation — mainly to have the same language for types used in
Section 4.2, namely:

INRIA

T-catcutus, miernal moowity, ana agent-passing CaiCult

<!

rNX]=S LLX:SEA:(S)
TFX:S Tk (X)A:(S,85)
ThHA :(55) TrA:S THA:(

Tk Ai{A4s) : (5) IFEr.A:()
Ta]=(8) TFA:S TFA:() Ial=() T,X:SFA:(
T+ z(A). 4; : () Tkaz(X).A:()
PFA:() TFAy:() D,x:SEA:(), for some S
TFA | Ay : () FFvzA:()

Vi, T A;:() F-A:()
TFS e A () TFIA:()

Table 5: Typing rules for HO7n*

A term of type S = (Si1,...,S,) takes a sequence of terms of type Si,...,S, as arguments
before becoming a process. Using an arrow-notation, type S would be written as

S — ... — 8, — ()

or, “uncurrying” it, as 3\1 X ... X S”; — (), where 5‘; is the arrow-translation of S;.
A term of type () is a process; a term of type (§), for S non-empty, is an abstraction;

processes and abstractions are agents. P,Q, R and T range over processes; F' and G over
abstractions; A and B over agents.

Example 7.2 F =4

from processes to processes, where the process-argument is run in parallel with P in the

(X)(P | X) is an abstraction of type (()). F represents a function

process-result.

cY¥ (X)(P| X(Q)) has type ((())), and takes abstractions of the same type as F as

argument.

Definition 7.3 A HO#* typing is a finite sequence of assignments of types to names and
variables:
I == ¢ |Tbe:S|T,X:8

Definition 7.4 Let A be o HOn* agent and T' o HOr* typing. Then A has type S in I' if
'k A:S can be inferred from the rules in Table 5; A is well-typed for T' if there is a type
S st.T'FA:S holds.

A HOn* agent A is well-typed if there is T' s.t. A is well-typed for T.
On the rules in Table 5, note that only the abstraction and application operators take

a generic agent as argument; all remaining operators (prefixing, sum, parallel composition,
restriction and replication) take processes.

RR n”2539

raviae Sangiorgr

Following the A-calculus terminology, we call an expression ((X) A1)<A2) a beta-reder;
normalisation is the operation of consumption of beta redexes, by which the meaning of an
expression is disclosed.

Definition 7.5 Beta-conversion, written =, is the least precongruence on HOm“ agents
generated by the rule

((X) A1) (Az) = Ay {A2/x}.
An agent Ay is in normal form if there is no As s.t. Ay = As. The reflexive and transitive
closure of »= is =*.

Remark 7.6 The word “normal form” is used in this section and in Section 3.3 (for the
proof of completeness of the axiomatisation of 7I) for rather different purposes: They reflect
the different uses of the word in the process algebra and in the A-calculus communities. O

The lemmas below are proved using standard techniques from the typed A-calculus
[Bar84].

Lemma 7.7 (subject reduction) IfI'F A:S and A > B, then alsoT+B : S. O

Lemma 7.8 (uniqueness of normal forms) For every well-typed HOn“ agent A there
is a unique normal form A’ s.t. A =* A'. O

Lemma 7.9 (termination) FEvery sequence of beta conversions starting from a well-typed
term A eventually leads to the normal form of A. d

Definition 7.10 The unique normal form to which an agent A; can be beta converted to is
called the normal form of A;; we write Ay >g Ag if Ay is the normal form of A;.

Example 7.11 (continues Example 7.2) let F and G be defined as in Example 7.2; then
for any process R, the normal form of F(R) is P | R; the normal form of G(F) is P | P| Q.

Since normalisation holds, in the following we often restrict our attention to agents in
normal form. It is therefore useful to see how normal forms look like. The grammar below
describes their syntax.

(processes) P == 3 ., o;. P | P|P | vz P | 'P | X (4)
(prefixes) a == 1 | z(X) | T(A)
(agents) A == P | F
(abstractions) F == (X)P | (X) X (A)

where in the last production, namely F ::= (X) X (A), expression X (A) represents a partial
application — i.e., A does not include all arguments that X requires (this production shows
that any variable X is a normal form). Note that in a normal form the operator of an
application is always a variable.

Remark 7.12 The presentation of the HO7“ in this paper is slightly different from that of
the Higher-Order m-calculus in [San92]. There, the grammar for normal forms is taken to be
the basic syntax of the calculus. Here, we arrive at normal forms through normalisation. O

INRIA

T-catcutus, miernal moowity, ana agent-passing CaiCult

P=,P P 5qQ Ppg P P 5Q

ALP: BETA:

PLQ P-£Q

o P p
PRE: . P — P PAR: T— bn(p) Nfn(Q) =0

PlQ-PQ
CNTA) 5 (X))
com: -2 — NP Q=9 Q) =0
PlQ —vy(P'|Q{4x})

B o (v V)EA) 5, B

RES: _P=P x & n(u) OPEN: p =7 x#z,x €fm(A) -7y

m ———

veP—vzP umP(Vz’y)Z(A> pr

PP el P|!'P- L P
REP: —Mm —

SUM: m m
Yier i — P 'P— P

Table 6: The transition system for HO#¥

7.2 Operational semantics

The transition system defining the operational semantics of closed well-typed HO7“ pro-
cesses is presented in Table 6; we have omitted the symmetric of rules par and com. OQutput

transitions are of the form P (v y)z(4) @, where A is the tuple of agents which are emitted,
and ¥ are private names which occur free in A and which are carried out from their current
scope. We use p to range over actions (not to be confused with «, which ranges over pre-
fixes). We denote by bn(u) and n(u) the bound names and names of p. If p is a silent or an
input action, then bn(p) = 0 ; if y is an output, say u = (v 7)Z(A), then bn(u) = 7. The
names of u are the set of all names which appear in p.

7.3 A hierarchy of agent-passing process calculi

Similarly to what we did for 7I*, so from HO7* we define a hierarchy of calculi using the
order of their typings. We recall that the order of a type is the maximal level of bracket
nesting in its syntactic form.

Definition 7.13 (calculi {HO7"},«,) An agent A € HOn* is in HOn", n < w 1if, for
some typing I' and type S, there is a derivation proof for I' = A : S in which all types used
(including S and the types in T') have order n or less than n.

In HO7! no value is exchanged in communications. Calculus HO7! coincides with 7I*
and is the core of CCS. In HO7? only processes can be passed as values in communications;
HO~? is the core of Thomsen’s Plain CHOCS [Tho90]. The difference between HO7! (resp.
HO#?) and CCS (resp. Plain CHOCS) is that the latter also has a relabeling operator, and
it uses recursion in place of replication. In HOx3, processes and process abstractions can be

RR n”2539

raviae sangiorgr

communicated as values (a process abstraction takes a process as argument and yields back
another process; an example is the agent F' in Example 7.2).

Lemma 7.14 If P € HOxn™, then also P € HOx™ for all m > n. O

8 Comparison between agent-passing calculi and name-
passing calculi

In this section, we let n range over {1,2,...,n...,} U {w}. We compare the expressiveness
of the calculi {HO7n™},, with that of the calculi {#I"},. It turns out that «I" is slightly
more powerful than HO#™. To obtain an exact correspondence, we cut down the class 7I™,
by imposing a few syntactic conditions on the usage of names in processes. The resulting
calculus is called 7I"~. We shall show that 71"~ and HO7™ have, operationally, the same
expressiveness: We exhibit encodings {J} and [], from HO#™ to #I"~, and from 7I"~ to
HO=™, in which actions of a source process are mimicked by the corresponding target process,
and vice versa.

Encodings {{J} and [] are presented in Sections 8.1 and 8.2. First, we introduce the calculi
{7I" }n.

Definition 8.1 Let P be a process in wI¥. An occurrence of a name in P is a name-variable
if such occurrence is bound by an input prefiz of P.

Example 8.2 The name-variables have been underlined in the process

a(b). (b(c). c(d) | (). e(f)- f)-

Definition 8.3 (calculi {7I"" },<.) We call 71", n < w, the class of processes in wI*

which satisfy the following syntactic constraint: For any subterm @ of a process in wI™~ it
holds that

1. if @ = x(y). R, then any y € ¥ appears free in R only in output position;
2. if @ =Z(Y). R, then any y € Y appears free in R only in input position;

3. if @ =Z.R and x is a name-variable, then R = 0.

Conditions 1 and 2 say that a name activated in a prefix can be used underneath it only
with the polarity opposed to that of the prefix. (From condition 1, since name-variables are
bound by input prefixes, it follows that they can be used in output position only.) Condition
3 forces all name-variables used for pure synchronisation to have a trivial continuation.
Conditions 1 and 2 could also be described using a typing system similar to that proposed
in [PS93], where types also carry informations about the input/output usage of names.

The results for {7I"},, in Section 6 can be easily adapted to {#I"~},, to prove that also
these calculi form a hierarchy in expressiveness. (Note that 71"~ is a subcalculus of 7I";
we do not know more about the relative expressiveness between the hierarchies {7I1"},, and

{r1"" }n.)

INRIA

T-catcutus, miernal moowity, ana agent-passing CaiCult

Il

We suppose that y and z are fresh names. We also assume that Trig 4 is the process

Tyiglm) def {1y A} if m =1
g4 = !y(m)(z(m—l))_ Q) ifm>1and A=, (Z(m—l))Q.

Then {]} is defined structurally as follows:

EmAC-0).Q) £z (D). (@) | igy) {zM.) = ™. {Q]

(
(

o™ (z1).Q) = al(). Q) {e.Q) = M. Q]
[z (A-Dyp g(”)(y(”—l))_’I‘rigEA"_l) {ZzO]p € 200

Q1 1Qa} = {Qu] | {Q2] i Q) € i Qi

{va™ Q) = va™ Q] {'Q} = Q) {r.Q} = r{QN}

Table 7: The encoding {[]} from HO7" to 71", n < w.

8.1 From HO#" to 71"~

Since every HOm* agent effectively normalises, it suffices to give the compilation {[},
from HO#™ to wI™~, on processes that are in normal form. That is, formally we assume the
rule

Q) QT i Q>s Q'

The compilation of a HO7* process P which is well-typed for a typing I' is defined struc-
turally on P with the rules in Table 7. In these rules, names and agents occurring in P are
annotated with the order of the type which is assigned to them in a correct derivation of
'k P : (); these orders are used in the definition of the agent Trig 4. Similarly, we annotated
the names of {{PJ}; this will make straightforward to check that {{P[} is well-typed (Pro-
position 8.6). (In the table, metavariables @, Q;, ... stand for a process and hence have no
order annotation). Compilation {]} is only defined on the subclass of HO7™ agents in which
abstractions have arity one (i.e., they take exactly one argument) and names have arity at
most one (i.e., they carry at most one agent). This is purely to make the compilation and
the operational correspondence for it more readable; the generalisation to the calculus with
arbitrary arities does not give any problem. In the definition of Trig, in Table 7, =, is a
form of eta-conversion used to make all possible arguments of an abstraction explicit. Rela-
tion Fy =, F5, between unary abstractions in normal form, is defined as follows: A unary
abstraction of order m > 1 in normal form, and with annotated type orders, is either of the
form (Z(m=1D)Q or is a variable X(™); if F; = (Z(m~1)Q, then I, < Fy; if F, = X(™)

then Fy def (Z(m—l)) X(m)<Z(m—1)).

In the compilation, the communication of an agent A is translated as the communication
of a private name which acts as a pointer to (the translation of) A and which the recipient
can use to trigger a copy of (the translation of) A. When restricted to HO#x™ agents, the
compilation coincides with that used in [San92] to translate the full Higher-Order w-calculus
down to the w-calculus.

RR n”2539

raviae sangiorgr

Example 8.4 (from HO7? to nI27) Let R 5.0 and P ¥ w(R).0 | w(X).X. It holds
that P —— R (we garbage-collect O processes). The translation of P is

{PT} =w(y). 'y.R| w(zx). T

and we have

{ry — vy(ly.R[7) (7)
~ T.vy(R|!'y.R) (8)
~ TR 9)
~ R

where (7) is derived form the law vz (1z(Z). P |%(2).Q) ~ r.vz,z (P | 'z(2). P| Q), (8)
from the law vz (P|!12(2).Q) ~ P if ¢ & fn(P), and (9) from the law 7.P = P.

We recall that > (Definition 7.10) indicates the occurrence of some beta conversion.

Example 8.5 (from HO73 to nI3~) Suppose that R def 0.0, that F = (X)(X | X), and
that P % W(F).0 | w(Y).Y(R). We have P —— F(R) >s R| R (we garbage-collect O

processes). Compiling P, we get

{Pl} =w(y). ly(z). (| T) | w(y). y(z). 'z.R.

Using algebraic laws similar to those in the previous example, we infer

Py = vy(ly@@). @2 7). '=.R)
~ r(wy)(z|Z|y@). @ D) 2.R)
~ T.I/.’E(T|T| !x.R)
~ T.T.T.I/.’L‘(R|R| !x.R)
~ T.T.T. (R|R)
~ R|R.

Note that P € HOm® and that {{P]} € 7P~ (intuitively, the latter because the longest depen-
dency chain in {{P]} has length 3, involving names w, y, and x).

In the above examples, the occurrences of ~ show that the computation by a process
{{P]} may require more steps (i.e., more reductions) than the corresponding computation by
P. But if we do not weight internal work, then P and {{P]} have the “same” behaviour.

We extend {[]} to typings as follows: If I" is a HO7* typing , then {[I']} is the 7I* typing
obtained from T" by replacing all variable assignments X : S in I with the name assignments
x:S.

Proposition 8.6

1. If P is in HOw* and is well-typed for T, then {{P]} is in 7I*~ and is well-typed for
T}
2. If P € HOr™, then {{P]} € nI"~.

INRIA

T-catcutus, miernal moowity, ana agent-passing CaiCult

PROOF: Assertions (1) and (2) are evident from the order annotations used in the rules of
Table 7. These annotations show that names and agents are mapped onto names of the same
order. Thus, if there is a derivation I' - P : () in which only types of order at most n are
used, then there is a derivation of {I'T} - {{P]} with the same property.

Moreover, process {{P]} is in w#I“~ because the three conditions in Definition 8.3, on
input/output usage of names, are met. As for condition 3, note that name-variables used
for pure synchronisation are only introduced in the translation of variables of order 1 (rule

{1z &of z.0); hence they always prefix the 0 process. O

Since our compilation is a special case of that in [San92] from Higher-order w-calculus
to m-calculus, the correctness of the latter imply the correctness of the former. Below, some
proofs are only sketched.

Lemma 8.7 (operational correspondence for {{]} on first-order visible actions) For
all P € HOm":

1. If P =5 P' (resp. P =, P'), then {P} = {P']} (resp. {P]} =, {P'}).

2. the converse, i.e., if {P]} —— P" (resp. {{P]} N P"), then there is P' s.t. P -~ P’
(resp. P =5 P') and P" = {{P']}. O

Lemma 8.8 (operational correspondence for {{J} on higher-order input actions)
For all P € HOr™:

1. 1P 0 P then [P} ¥ (P1];

2. the converse, i.e., if {P]} =) P, then there is P’ s.t. P ") Pl and P = {{P']}.

PROOF: Straightforward transition induction. |

In the two lemmas below, Trig, is the process defined in Table 7; we omit however the
order annotations.

Lemma 8.9 (operational correspondence for {]} on higher-order output actions)
For all P € HOT™:

LI P Y pothen {P) T8~ w3 ({P'] | Trig,);

)

T ~ vz2T(A
2. the converse, i.e., if {P]} 28 P" | then there are Z, A and P’ s.t. P i P’ and
P" ~vZ({{P'}]| Trigs)-
PROOF: By transition induction. Details can be found in [San92, Lemma 5.2.2]. O

Lemma 8.10 Let P € HOn* and y & fn(P). Then for all HOr* agents A of the same type
as Y, it holds that vy ({P]} | Trig,) =~ vy {P{AN}]}.

RR n°2539

raviae sangiorgr

PROOF: The proof rely on a few non-trivial distributivity properties of replications. Details
can be found in [San92, see Lemmas 5.2.2, Theorem 4.4.7 and Theorem 5.2.1(3)]. O

We can now present the main result for {[[}, namely the full abstraction w.r.t. reductions.

Theorem 8.11 (full abstraction for {{J} on reductions) For all P € HOr™:
1. If P — P, then {P]} — =~ {{P']};

2. the converse, i.e., if {{P[} — P", then there is P' s.t. P - P' and P" ~ {{P'].

PROOF: Another transition induction. In the basic case (rule com) one needs Lemmas 8.7-
8.10. O

8.2 From 7I" to HO#"

The translation {]} from HO7™ to nI"~, in Section 8.1, used name-pointers to model the
communication of agents. The translation [] from 7I™~ to HO#™, in this section, uses
simple agent-continuations to model the communication of private names, in the following
way. Suppose that a process of 71"~ sends a name y, and that the recipient uses v to send
another name z and then becomes the process P. In the translation, the communication of y
is replaced by the communication of a continuation which has two parameters. The recipient
instantiates the first parameter with the continuation for z and the second parameter with
(the translation of) P. Continuations for names whose type has order 1, i.e., names used
for pure synchronisation, have one parameter only (since by condition 3 in the definition of
wI™~, such names can only prefix the 0 process — that is, the process called P above in this
case is always 0).

Example 8.12 (from 7I?~ to HO~=?) If P d:eff(y).y. 0|z(y).7.0, then we have

T _ de
P — vy(y.0]79.0) ' p

s wy(0]0) “p,.

If Cont, =4 y.0, then the translation of P is

[P] ief vyT(Cont,).y.0 | z(Y).Y

and we have
[Pl —— vy(y.0] Cont,)
= vy@oly0) =[]
— vy (0]0) =[P].
Note that [P] € HOx?, for in [P] only processes are exchanged.
Example 8.13 (from 7I3~ to HO~®3) If P ief Z(y).y(2).2.0 | (y).%(2). 2.0, then we
have

T = — de
P (sl 300) “r
— (vy,2)(z.0]2.0) i p,
T de
— (%,2)(0]0) ¥ p,.

INRIA

T-catcutus, miernal moowity, ana agent-passing CaiCult

If Cont, 1o (W, U)yg{W).U and Cont, =5 0, then the translation of P is
[P] ief vyZ{Cont,).y(Z).Z | z(Y).v 2Y {Cont,, 2.0) .
We have
[Pl — vylw(2@).Z|vz Conty(Contz,z.O))
>g vyl ly(2).Z| uzg(Contz).z.O) =[A]
- (vy,z)(Cont, | 2.0)
= (vy,2)(Z.0]2.0) = [Px]
— (vy,2)(0]0) = [Ps].

There is a one-to-one match between actions of P and of [P]: Therefore, the correspondence
is even stronger than that for compilation { J}, for {{J} may cause an expansion of the number
of reductions.

In the definition of the encoding [], the difference between names and name-variables
is important: 7I”~ names are mapped onto HO7™ names, whereas 71"~ name-variables are
mapped onto HO7™ variables. The encoding is presented in Table 8. As for compilation {[},
so in the definition of [] names and agents of source and target processes are annotated
with the order of their type, according to some typing proof of the source process. To ease
readability, [] is only defined on the subclass of 71"~ processes whose names have at most
arity one; the generalisation to the calculus with arbitrary arities is straightforward. The
encoding is parametrised over a finite set of names, ranged over by V. Occurrences of names
in this set have to be treated as name-variables in the translation. The set can be increased in
the rule for input prefix, and decreased in the rule for output prefix; the set is left unchanged
in the other rules. We abbreviate V U {y} as V Uy, V —{y} as V —y, [P]ty; as [P]y, and
[Plg as [P]- Note that the HO7“ agents returned by [] are in normal form .

We extend []v to typing as follows: If T" is a 7I“ typing, then [[']y is the HO#¥ typing
obtained from T' by adding the variable assignments X : S, for all name assignments z : S
in'st.zeV.

Proposition 8.14

1. If P is in wI’~ and is well-typed for T, then [P]v is in HOr* and is well-typed for
[ITv.

2. If P e wI"", then [P]y € HOr™.

PROOF: Similar argument to that for Proposition 8.6. |

To state in a precise way the results of operational correspondence on visible actions for
the encoding [], we extend it to actions as follows. Below, Cont, is the agent defined in
Table 8; we omit here the order annotations.

« fa=zora=T ora=r1,
[o] = { 2(v) if o = a(y),
vyZ(Cont,) if a =7Z(y).

RR n”2539

raviae Sangiorgr

Let Contgm) be the agent

Cont(™) %t 7.0 ifm =1
v (Wm=1), zW)gm)(w(m=1)) ZD)if m > 1

Then []Jv is defined structurally as follows:
vyl—b E(")(Contg”_1)>. Qlv-, ifzgV

vy X (Cont* ™V, [Q]v—,) ifzeV
W [Q]y fzgV

F).y =

0. Qlv o

x® if z € V()
[z (y*=1). Qv def 20 [Qlvey, [=V. Qv def 2. [Q]v
[Qlv = [Qilv |[Q:]v [T Qv & Y lQidv
[vz™ Qly £ va™[Q]y ['Qlv € ' [Qlv [~.Qlv < ~.[Qlv

(*) note that by condition 3 of definition of 71", if x € V' (i.e., = is a name-variable) then

Q=o.

Table 8: The encoding [] from 71"~ to HO7™, n < w.

Lemma 8.15 (operational correspondence for [] on visible actions) Forall P € nI"~:
o ! [«]] _
1. If P — P, for a # 1, then [P] — [P']v, where V = {y} if a is an input action
with bound name y, and V =0 otherwise;

2. the converse, i.e., if [P] = P" and p # 7, then there are o and P’ s.t. P > P’

and p = [of, P" =[P']v, where V = {y} if a is an input action with bound name y,
and V =0 otherwise.

PRrROOF: By transition induction. O

Lemma 8.16 Ify ¢ V, then [P]vu,{Comty/y} g [Plv, for any P € w1~

PROOF: We proceed by induction on the structure of P. The most interesting case is when
the outermost operator of P is an output prefix at y, say P = y(z). P’ (the case P =3.P’
is simpler). We have Cont, Lef (W, Z)y(W). Z and, supposing y # z:

[Plvuy{Contyy}y = (vzY(Cont.,[P)vuy)_-)){Conty/v}
bs vzg(Cont.). ([P](vuy)_-{Conty/v})
= vzg(Cont.). ([Pl(v_2uy{Contyy'}) .

On the other hand, we have [P]y = v z7(Cont,). [P']y .. From the inductive assumption,
[P'T(v=2yuy{Conty/y'} g [P']y—.; this concludes the case. O

INRIA

T-catcutus, miernal moowity, ana agent-passing CaiCult

3/

Theorem 8.17 (full abstraction for [] on reductions) For all P € 7" :

1. If P — P, then [P] — g [P'];

2. The converse, i.e., if [P] — P", then there is P' s.t. P — P' and P" > [P'].

PROOF: The proofs of the two assertions are similar, and proceed by transition induction.
The most interesting case is given by rule coM, when the interacting names have a type of
order greater than 1. We examine this case, for assertion (1). Thus suppose P = P; | P, and

P pop " py

PP, vy (P | B

We have [Py | P2] = [P1] | [P2] and, from Lemma 8.15,

v yz(Cont,) z(Y)
—

[P1] [A], [P2] — [Py -

From these, and the rule com of HO7*, we deduce

[ADIIP] — vy ([P] | [Py {Conts/y })

By Lemma 8.16, [Ps],{Conty/y'} >4 [P4]- Summarising, we have:
[P | B] =[P [[P] — s vy ([P [R]) = [P']

which concludes the case. O

9 Conclusions and future work

The work in this paper leads to a classification of name-passing process calculi according to
the “degree” of mobility permitted: m-calculus permits both internal and external mobility;
] permits internal mobility; 7I“ permits internal but not recursive mobility; 71", n < w,
permits internal mobility of order n at most; 7', which is the core of CCS, does not permit
mobility at all.

This scale can be used for comparative assessments of calculi as well as of processes. For
instance, the modelling of the locality relation in [San95b] only utilises internal mobility of
order 3, whereas the modelling of the causality relation in [BS94] requires at least internal
mobility of order 4; this reflects the fact that causality is a more sophisticated relation
than locality. Other examples of use of the scale come from Section 5 of this paper, where
we argued that the encoding of the untyped A-calculus requires at least recursive internal
mobility, and from Section 8, where we studied the expressiveness of agent-passing calculi.

We have also presented a hierarchy of agent-passing process calculi: In HO7“ agents
of arbitrary order can be communicated; in HO7™, n < w, agents of order n at most can
be communicated. Roughly, HO7! coincides with 7I' and CCS, and HOn? — where only
processes can be communicated — with Thomsen’s Plain CHOCS. We have proved that
there is a strong connection, in terms of expressiveness, between this hierarchy of agent-
passing calculi and the hierarchy of name-passing calculi 71!, 712, ..., 7I¥, i.e., the calculi

RR n°2539

raviae Sangiorgr

using internal and non-recursive mobility. Note in particular the correspondence between
HO~7? and 712~ : Process passing only gives little expressiveness more than CCS.

These are results of relative expressiveness. Further work is needed, both to complete the
comparison among the above-mentioned calculi, and to understand their absolute expres-
siveness. We are particularly interested in the expressiveness of 7I, which we expect to be
rather close to that of the m-calculus. We have showed that, besides agent-passing calculi,
also data values and the A-calculus can be modelled in 7I. The translation of the A-calculus
is obtained by refining Milner’s encoding into the w-calculus, which makes non-trivial use of
the free-output construct — disallowed in wI. Therefore, we hope that the encoding might
also give insights into the comparison between 7l and mw-calculus.

When discussing the calculi 71", we have proved non-expressiveness results among them
by explicitly taking into account the patterns of creation of mobility. A challenging problem
for future research will be to establish similar results using a more extensional criterion i.e.,
without looking at link creations.

For the translation of the A-calculus, we adopted Abramsky’s lazy reduction strategy.
Our encoding of it uses special 7l processes called links. We believe that understanding the
algebraic properties of links can be helpful to justify transformations of processes aimed at
augmenting their parallelism. For instance, by manipulating links we have modified the
encoding of the lazy strategy into an encoding of a strong-lazy strategy which is more
permissive (i.e., more parallel) because it also allows reductions inside abstractions (the
Xi rule). At present we are studying the properties of this encoding. We are not aware of
other encodings, into a process algebra, of A-calculus strategies encompassing the Xi rule.

We have showed that name-passing process calculi based on internal mobility have a
simple algebraic theory, in which the main difference from the theory of CCS is the use of
alpha conversion. These calculi also possess a pleasant symmetry in their communication
constructs. These features might become useful in the development of denotational models.

It would be interesting to see how to recast the calculi and the hierarchies of them pre-
sented in this paper in the framework of action calculi [Mil93]. These have been proposed
by Milner as a unifying framework for representing a variety of models of interaction, in-
cluding Petri nets and the w-calculus. Milner [Mil94] is investigating classifications of action
calculi according to their dynamics. This line of research is still in its early stages and it
is premature to draw precise comparisons, but we should at least observe that one of the
central classifying objects in [Mil94] bears some resemblance to 1.

Another topic for future research is how to increase the expressiveness of agent-passing
process calculi. The most powerful agent-passing process calculus considered in this paper is
HO=n“; we have seen that its expressiveness is not greater than that of 7I«. To increase the
expressiveness of HOm* — so as to get closer to that of 71 — one might add recursive types to
HO=“. This extension, however, could destroy properties of HO#*, like normalisation, which
are important when reasoning about behavioural equivalence between HO7m* processes.

References

[Abr89] S. Abramsky. The lazy lambda calculus. In D. Turner, editor, Research Topics

INRIA

T-catcutus, miernal moowity, ana agent-passing CaiCult

[AGR92]

[Ama93]

[Bar84)

[BKS85]

[BS94]

[Cou83]

[DKV91]

[FMQO4]

[Hen93]

[Jon93]

[Mils9]

[Mil91]

[Mil92]

[Mil93]

RR n°2539

in Functional Programming, pages 65-116. Addison-Wesley, 1989.

E. Astesiano, A. Giovini, and G. Reggio. Observational structures and their logic.
Theoretical Computer Science, 96:249-283, 1992.

R. Amadio. On the reduction of CHOCS bisimulation to w-calculus bisimulation.
In E. Best, editor, Proceedings of CONCUR ’93, volume 715 of Lecture Notes in
Computer Science. Springer Verlag, 1993.

H. Barendregt. The Lambda Calculus: Its Syntaz and Semantics, volume 103 of
Studies in Logic. North Holland, 1984. Revised edition.

J.A. Bergstra and J.W. Klop. Algebra for communicating processes with abstrac-
tion. Theoretical Computer Science, 37(1):77-121, 1985.

M. Boreale and D. Sangiorgi. A fully abstract semantics for causality in the
m-calculus. Technical Report ECS-LFCS-94-297, LFCS, Dept. of Comp. Sci.,
Edinburgh Univ., 1994. An extract has appeared in proc. STACS’95, LNCS 900,
Springer Verlag.

B. Courcelle. Fundamental properties of infinite trees. Theoretical Computer
Science, 25:95-169, 1983.

P. Degano, S. Kasangian, and S. Vigna. Applications of the calculus of trees to
process description languages. In Proc. of the CTCS ’91 Conference, volume 530
of Lecture Notes in Computer Science, pages 281-301. Springer Verlag, 1991.

G. Ferrari, U. Montanari, and P. Quaglia. A w-calculus with explicit substitu-
tions: the late semantics. In I. Privara, B. Rovan, and P. Ruzicka, editors, Proc.
MFCS’94, volume 841 of Lecture Notes in Computer Science. Springer Verlag,
1994.

M. Hennessy. A fully abstract denotational model for higher-order processes. In
8th LICS Conf. IEEE Computer Society Press, 1993.

C.B. Jones. A mw-calculus semantics for an object-based design notation. In
E. Best, editor, Proceedings of CONCUR ’93, volume 715 of Lecture Notes in
Computer Science, pages 158-172. Springer Verlag, 1993.

R. Milner. Communication and Concurrency. Prentice Hall, 1989.

R. Milner. The polyadic m-calculus: a tutorial. Technical Report ECS-LFCS-91—
180, LFCS, Dept. of Comp. Sci., Edinburgh Univ., October 1991. Also in Logic
and Algebra of Specification, ed. F.L. Bauer, W. Brauer and H. Schwichtenberg,
Springer Verlag, 1993.

R. Milner. Functions as processes. Journal of Mathematical Structures in Com-
puter Science, 2(2):119-141, 1992.

R.. Milner. Action calculi, or syntactic action structures. In Proc MFCS’93, vo-
lume 711 of Lecture Notes in Computer Science, pages 105—-121. Springer Verlag,
1993.

raviae sangiorgr

[Mil94] R. Milner. Dynamic classification of action calculi. Handwritten notes, Septem-
ber, 1994.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, (Parts I
and II). Information and Computation, 100:1-77, 1992.

[PS93] B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. In 8th
LICS Conf., pages 376-385. IEEE Computer Society Press, 1993.

[San92] D. Sangiorgi. Ezpressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms. PhD thesis CST-99-93, Department of Computer Science,
University of Edinburgh, 1992.

[San95a] D. Sangiorgi. Lazy functions and mobile processes. Technical Report RR-2515,
INRIA-Sophia Antipolis, 1995. available via anonymous ftp from cma.cma.fr as
pub/papers/davide/RR-2515.ps.

[San95b] D. Sangiorgi. Locality and non-interleaving semantics in calculi for mobile pro-
cesses. Theoretical Computer Science, 1995. To appear. An extract appeared in
Proc. TACS ’94, Lecture Notes in Computer Science 789, Springer Verlag.

[Tho90] B. Thomsen. Calculi for Higher Order Communicating Systems. PhD thesis,
Department of Computing, Imperial College, 1990.

[Tur94] N.D. Turner. Forthcoming PhD thesis, Department of Computer Science, Uni-
versity of Edinburgh, 1994.

[VH93] V.T. Vasconcelos and K. Honda. Principal typing schemes in a polyadic =-
calculus. In E. Best, editor, Proceedings of CONCUR ’93, volume 715 of Lecture
Notes in Computer Science. Springer Verlag, 1993.

[Wal95] D. Walker. Objects in the m-calculus. Information and Computation, 116(2):253—
271, 1995.

INRIA

% INRIA

Unité de recherche INRIA Lorraine, Technopole de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERSLES NANCY
Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhone-Alpes, 46 avenue Félix Vialet, 38031 GRENOBLE Cedex 1
Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocguencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des L ucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399

