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Abstract: This paper continues the study of Milner’s encoding of the lazy A-calculus
into the w-calculus [Mil90]. The encoding is shown to give rise to a A-model in which, in
accordance with the theory of the lazy A-calculus, conditional extensionality holds. However,
the model is not fully abstract. To obtain full abstraction, the operational equivalence
on A-terms (applicative bisimulation) is refined. The new relation, called open applicative
bisimulation, allows us to observe some internal structure of A-terms, and coincides with the
Lévy-Longo Tree equality.

Milner’s encoding is presented on a sublanguage of the m-calculus similar to those pro-
posed by Boudol [Bou92], Honda and Tokoro [HT92]. Some properties of bisimulation on this
sublanguage are demonstrated and used to simplify a few proofs in the paper. For instance,
ground bisimulation, a form of bisimulation where no name instantiation on input actions is
required, is proved to be a congruence relation; as a corollary, various m-calculus bisimilarity
equivalences (ground, late, early, open) are shown to coincide on this sublanguage.
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Fonctions lazy et processus mobiles

Résumé : Cet article reprend 1’étude de Milner sur ’encobdage du lazy A-calculus en -
calculus [Mil90]. Il démontre que ’encodage détermine un A-modeéle pour lequel, conformé-
ment & la théorie de lazy A-calculus D'extensionalité conditionelle vaut. Toutefois, le modele
n’est pas “fully abstract”. Pour obtenir une “fully abstraction”, 1’équivalence opérationelle
sur les A-termes (bisimulation applicative) est affinée. La nouvelle relation, appelée bisimu-
lation applicative ouverte, permet d’observer certaines structures internes de A-termes, et
coincide avec 1’égalité des arbres de Lévy-Longo.

L’encodage de Milner est présenté sur un sous-langage de mw-calculus, similaire & ceux
proposés par Boudol [Bou92], Honda et Tokoro [HT92]. Certaines propriétés de la bisimula-
tion sur ce sous-langage sont démontrées et utilisées pour simplifier quelques démonstrations
dans cet article. Par exemple, nous démontrons que la ground bisimulation, une forme de
bisimulation pour laquelle aucune instantiation de nom sur les actions d’input n’est requise,
est une relation de congruence ; comme corollaire, diverses équivalences de bisimilarité de
m-calculus (ground, late, early, open) coincident également sur ce sous-langage.

Mots-clé : Bisimulation, w-calculus, A-calculus, lazy A-calculus, A-modele, full abstraction,
arbres de Lévy-Longo.
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1 Introduction

In [Mil90] Milner examines the encoding of the A-calculus into the m-calculus [MPW92]; the
former is the universally accepted basis for computations with functions, the latter aims at
being its counterpart for computations with processes. More precisely, Milner shows how
the evaluation strategies of the lazy A-calculus and of (a weak form of) call-by-value A-
calculus [Abr89, Plo75] can be faithfully mimicked. The characterisation of the equivalence
induced on A-terms by the encodings is left as an open problem. It also remains to be studied
which kind of A-calculus model — if any — can be constructed from the process terms. These
are the main questions tackled in this paper.

A deep comparison between a process calculus and the A-calculus is interesting for several
reasons; indeed, virtually all proposals for process calculi with the capability of treating
— directly or indirectly — processes as first class objects have incorporated attempts at
embedding the A-calculus [Bou89, Tho90]. From the process calculus point of view, it is a
significant test of expressiveness, and helps in getting deeper insight into its theory. From the
A-calculus point of view, it provides the means to study A-terms in contexts other than purely
sequential ones, and with the instruments available in the process calculus. For example, an
important behavioural equivalence upon process terms gives rise to an interesting equivalence
upon A-terms. Moreover, the relevance of those A-calculus evaluation strategies which can
be efficiently encoded is strengthened. More practical motivations for describing functions as
processes are to provide a semantic foundation for languages which combine concurrent and
functional programming and to develop parallel implementations of functional languages.

We shall focus on Milner’s lazy A-calculus encoding. This is the simplest encoding of the
A-calculus into the 7-calculus we are aware of. It also seems “canonical” in the sense of being
the “natural” encoding of the lazy strategy. (By contrast, a few variants of the call-by-value
strategy have been considered — two of them in Milner’s original paper [Mil90] — and it is
not clear which one should be preferred.) Below, Milner’s encoding of the lazy A-calculus is
simply called “Milner’s encoding”.

The lazy A-calculus was proposed by Abramsky ! and motivated by the practice of func-
tional programming implementations; thus, for instance, reductions inside abstractions are
forbidden. Abramsky also equipped the lazy A-terms with a notion of operational equiva-
lence, called applicative bisimulation, which follows the bisimulation idea originally formu-
lated by Park and Milner [Par81, Mil89] in concurrency theory.

1On closed A-terms, Abramsky’s lazy strategy coincides with Plotkin’s call-by-name strategy [Plo75].
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Briefly, our programme is the following. We begin by examining the operational corres-
pondence between source and target terms of Milner’s encoding. We then use the encoding
to construct a A-model from the w-calculus processes. The equality on A-terms induced
by the model is the same as that induced, via the encoding, by the behavioural equality
adopted on the w-calculus. In accordance with the theory of the lazy A-calculus, the model
validates conditional extensionality. However, the model is not fully abstract. Not surpri-
singly so: m-calculus is richer — and hence more discriminanting — than the A-calculus;
the latter is purely sequential, whereas the former can, for instance, express parallelism and
non-determinism. To obtain full abstraction, we strengthen the operational equivalence on \-
terms. This is achieved using a refinment of applicative bisimulation, called open applicative
bisimulation, which allows us to observe some internal structure of A-terms.

Open applicative bisimulation is perhaps the simplest extension of applicative bisimula-
tion to open terms, and it can be easily shown to coincide with the equality determined by
Lévy-Longo Trees, the lazy variant of Bohm Trees. Open applicative bisimulation has also
been studied in [San94a]; the results in [San94a] show how to achieve the same discrimi-
nation by remaining with closed terms but enriching the A-calculus with operators, that is
symbols equipped with reduction rules describing their behaviour.

A remark about behavioural equivalences for 7-calculus: In this paper, we use (weak?)
bisimulation. However, the main results presented (construction of the A-model, full abs-
traction) should be largely independent of this choice. Bisimulation is widely accepted as
the finest extensional behavioural equivalence one would like to impose on processes; on the
opposite extreme, as the coarsest equivalence, there is trace equivalence. We believe that, on
processes encoding A-terms, bisimulation and trace equivalence coincide. This is suggested
by the determinism of the encoded lazy A-terms. It also confirmed by our results and re-
sults by Boudol and Laneve [BL94].3 We have related bisimulation on these processes to the
Lévy-Longo Tree equality; Boudol and Laneve have related the Lévy-Longo Tree equality to
the Morris’s context-equivalence of the lambda calculus with multiplicities, a form of enriched
lazy A-calculus. Roughly, Morris’s context-equivalence equates two terms if they have the
same convergence properties in all contexts; in familiar process algebras, it coincides with
trace equivalence.

This paper is an improved version of part of the author’s PhD thesis [San92] (from which
we extracted the extended abstract [San93]). The proofs are different: In [San92], Milner’s
encoding was factorised through an encoding into the Higher-Order m-calculus, an extension
of the m-calculus with higher-order features like term-passing, and then all work was carried
out from within the Higher-Order w-calculus. In this paper, by contrast, we work within
the m-calculus, mainly to take advantage of recent results about its theory which allow us
to drastically simplify a few key proofs. Some of this theory is further developed in this
paper: For instance, we prove that ground bisimulation, a form of bisimulation where no
name instantiation on input actions is required, is a congruence relation on a w-calculus
sublanguage similar to those proposed by Boudol [Bou92], Honda and Tokoro [HT92]. An
immediate consequence is that various w-calculus bisimilarity equivalences (ground, late,

2In the concurrency terminology, an equivalence is weak if it ignores possible internal moves of processes.
3By the time we have decided to make a technical report out of this paper, Boudol and Laneve have
indeed proved this result (“The A-calculus, multiplicities and the w-calculus”, draft, March 1995.).
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early, open) coincide on this sublanguage. Similar results have been independently obtained
by Martin Hansen and Josva Kleist [HaK194].

Another difference with [San92] is that, there, the A-calculus had to be enriched with
symbols called constants in order to prove full abstraction for the A-model. In this paper,
we shall be able to avoid constants; thus the statement of the results is simpler and the
correspondence with the Lévy-Longo Tree equality more direct. We also hope that the proofs
in the m-calculus — as opposed to the Higher-Order m-calculus — will provide a guideline
for the study of the encoding of other A-calculus evaluation strategies, like call-by-value,
where intermediate encodings into the Higher-Order w-calculus might not be so helpful.

The paper is self-contained, but some familiarity with the 7-calculus would be useful. We
introduce the part of m-calculus sufficient for the encoding of the lazy A-calculus in Section
2. The theory of this calculus we shall need is introduced in Section 3. In Section 4 we
review the lazy A-calculus and Milner’s encoding. In Section 5 we examine the operational
correspondence between source and target terms of the encoding. In Section 6 we define
the A-model and present some properties of it. In Section 7 we study full abstraction of the
model.

2 The mini m-calculus

Throughout the paper, R ranges over relations. The composition of two relations R
and R’ is written R R’. We often use infix notation for relations; thus P R ) means
(P,Q) € R . A tilde represents a tuple. The i-th elements of a tuple E is referred to as E;.
Our notations are extended to tuples componentwise. Thus PR Q means P, R Q; for all
components.

2.1. Syntax Small letters a,b,...,z,y,... range over the infinite set of names, and
P,Q, R, ... over the set Pr of processes. The part of the polyadic 7-calculus [Mil91] we shall
use, which we shall refer to as the mini w-calculus, is built from the operators of inaction,
input prefix, output, parallel composition, restriction, and replication:

P = 0|a®).P|a@) | P|P | vaP | 1P.

When the tilde is empty, the surrounding brackets () and () will be omitted. 0 is the inactive
process. An input-prefixed process a(g). P, where b has pairwise distinct components, waits
for a tuple of names ¢ to be sent along a and then behaves like P{¢/b}, where {¢/b} is the
simultaneous substitution of names b with names . An output particle 6(1;) emits names b
at a. Parallel composition is to run two processes in parallel. The restriction v a P makes
name a local, or private, to P. A replication ! P stands for a countable infinite number of
copies of P in parallel. If I = {i4,...,4,}, then II,c; P, abbreviates P, | ... | P;,. We assign
parallel composition the lowest precedence among the operators.

The most notable features of this language w.r.t. other formulations of the polyadic =-
calculus are the absence of the sum and of the match operators (usually written P + @ and
[a = D] P, respectively), and the limited form of output guarding available, with a null conti-
nuation. We chose this language because it has some useful algebraic properties, some of
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which are reported in Section 3. Similar languages have been studied by Honda and Tokoro
[HT92], who call the language v-calculus, and Boudol [Bou92], who calls it asynchronous
w-calculus — appropriately so, since the emission of a message does not impose any se-
quencing constraints. The languages in [HT92] and [Bou92], however, only allow monadic
communications.

2.2. Terminologies and notations In prefixes a(b) and a(b), we call a the subject
and b the object. We use « to range over prefixes. We often abbreviate «.0 as o, and vav b P
as va,bP. An input prefix a(g).P and a restriction v b P are binders for names b and b,
respectively, and give rise in the expected way to the definition of free names of a term,
and alpha conversion. We identify processes or actions which only differ on the choice of the
bound names. The symbol = will mean “syntactic identity modulo alpha conversion”. In
a statement, we say that a name is fresh to mean that it is different from any other name
which occurs in the statement or in objects of the statement like processes and substitutions.

Substitutions are of the form {Z/E}, and are finite assignments of names to names. We
use ¢ and p to range over substitutions. If o = {6/}, then o(a) is b; if a = ¢;, and a if
a € ¢; moreover, P{0/¢} is the process obtained from P by replacing the c;’s with the b;’s
in parallel. The application of a substitution to a prefix or an action is defined similarly.
As usual, bound names of expressions are assumed not to be affected by the application of
a substitution. Thus, for all substitutions o, we have (v b P)o = vb(Po) and, if o(a) = ¢,

(a(b). P)o = ¢(b). (Po). Substitutions have precedence over the operators of the language;
op is the composition of substitutions where o is performed first, therefore Pop is (Po)p.

A context is a process expression with a hole in it. There can be an arbitrary, but finite,
number of different holes [-],...,[]» in a context, and each of these holes may appear more
than once. If C contains at most holes []1,...,[]», then we say that C is an n-ary context,
and if P is a vector of n processes, then C' [13] is the process obtained by replacing each
occurrence of the hole []; with the i-th component of P.

2.3. Sorting Following Milner [Mil91], we only admit well-sorted agents, that is agents
which obey a predefined sorting discipline in their manipulation of names. The sorting
prevents arity mismatching in communications, like in @(b, c) | a(z).Q. A sorting is an as-
signment of sorts to names, which specifies the arity of each name and, recursively, of the
names carried by that name. We write a : s if name a has sort s. We do not present the
formal system of sorting because it is not essential to understand the contents of this paper.

2.4. Transition system and bisimulation We use p to range over actions.
Bound names, free names and names of an action p are written bn(u), fn(x) and n(u),
respectively. The transition system of the calculus is presented in Table 1. We have omitted
the symmetric versions of rules par and coM. By our convention for alpha conversion, alpha
convertible processes have the same transitions. We often abbreviate P — Q with P — Q,

and write P -5 Q tomean P 25 Qifp#r,and P=Qor P - Qif p=r.

INRIA
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wve:  a(b). P ‘) p out:  a(b) =0

0
P|'P L P P P
REP: |—#—> PAR: 7 if bn(p) NI(Q) =0
'Pp — P’ P|Q = P'|Q
a(?) (vd)a(b)
P Pl ! -
coM: — — @ — @ ifdnfn(P)=10
PlQ — vd(P'{b/e}|Q)
(v ) a(b)
Pt P P P’ -~
RES: T a & n(w) OPEN: —L — ceb—d, a#ec.
vaP — valP (ved)ald) o,
vcP P

Table 1: The transition system for the mini-w-calculus

Definition 2.1 (strong ground bisimilarity) A symmetric relation R C Pr x Pr is
o strong ground bisimulation if P R Q and P - P’ imply that* there exists Q' s.t.
Q X Q' and P' R Q'. Two processes P and Q are strongly ground bisimilar, written
P~ Q, if PR Q for some strong bisimulation R .

Note that in the definition above, no name instantiation is required in the clause for
input actions. Therefore, for instance, to check whether two processes a(g).P and a(g). Q
are equivalent, we do not have to examine all possible instantiations of names bin P and Q,
but it suffices to check that P and @ alone are equivalent. Surprisingly enough, in the mini
m-calculus this form of bisimilarity is preserved by name instantiations and is a congruence

relation (Section 3).

We define the weak version of bisimilarity in the usual way. The ‘weak’ arrow = is the

~

reflexive and transitive closure of —, and == is =>-2>=—>. Moreover, P == () means
Pt Qifpu#r,andP=Qifp=r.

Definition 2.2 (weak ground bisimilarity) A symmetric relation R C Pr x Pr is a

weak ground bisimulation if P R Q and P -~ P’ imply that there ezists Q' s.t. Q = Q'
and P' R Q'. Two processes P and @ are weakly bisimilar (or observationally equivalent ),
written P = Q, if P R Q for some weak ground bisimulation R .

Relation = is the semantic equality on the m-calculus we are mainly interested in; other
relations, like strong bisimilarity and expansion, will serve as auxiliary to =.

3 Some properties of bisimilarity on the mini 7-calculus

3.1. Congruence In this section, ~1, denotes the original bisimilarity of the 7-calculus
[MPW92], defined as ground bisimilarity but with the following clause for input actions:

4We omit the requirement bn(u) N fn(Q) = @, since we work up-to alpha conversion.

RR n° 2515
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«p o) a(b)

P’ imply that there exists Q' s.t. Q == Q’ and for all &, P'{c/b} R Q'{c/b}.”

Both strong and weak ground bisimilarity (Definitions 2.1 and 2.2) are preserved by all
operators of the language. We only show the argument for weak bisimilarity, whose case is
more delicate. Our proof refines, and is inspired by, an idea by Honda, who proved a similar
congruence result for the v-calculus [Hon92]. However, Honda’s definition of bisimilarity is
not purely ground, since name instantiation is contemplated in the input clause (technically
speaking, Honda allows free input actions); this makes the congruence w.r.t. parallel compo-
sition straightforward. Indeed, Honda’s bisimilarity is a variant of the standard bisimilarity
~1,. Moreover, Honda’s transition system incorporates certain structural laws, which can
then be applied in all contexts independently of the behavioural equivalence adopted.

The crux of the congruence argument is to show that ground bisimilarity is preserved by
name instantiation (Proposition 3.5).

Lemma 3.1 If P (Vd) =)

P', then P ~p vd (a(b)| P').
PROOF: By transition induction. One only needs simple algebraic laws for ~p, , like congruence
w.r.t. parallel composition. O

Lemma 3.2 IfP g Py, then P =~ Vd(P2{b/~})

a(b) a(b)

Proor: 1t P D2
Lemma 3.1,

Py, then there are P/ and P!’ st. P — P! *D%% pr — p gy

P~ vd(@b)| P). 1)

Since P =29 Py, we have v d (@(B)| Pl') => v d (P{b/}); hence, by (1), also P| =>~r,
vd (Py{/e}). From this and P => P|, we get P =>~1, vd (Py{b/¢}). O

Lemma 3.3

1. If P £ P, then Po £%5 Plo;

2. If P £ P, then Po £ P'o. O
Lemma 3.4

1. If Po P with W # 1, then P 25 P with i/ = po and P' = P"o.

2. If Po — P’ then either

(a) P — P" and P' = P"o, or

() P T2EO AL prith 0(a) = o(c) and P~y vd (P"{b/)}0).

~—
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PROOF: Another transition induction. We only show the details for assertion (2), in the case
when the last rule used is com . Then P = P, | P, and Po = Pjo | Pyo. Moreover, the last
step in the derivation of Po — P’ is of the form

P %9 pr Pyo P}

Pio| Bro — vd(Pl{?/e} | P})

wdz(

By assertion (1), there are a, e, b, P/ and PJ s.t.

P C(E) Plll and P2 (Vﬂ“) PQH

with o(a) = o(c) = z, 0(b) = %, P'c = P! and P{c = P}. If a = c, then we can infer
P | P, — vd(PI'{}/ey | P}) & P
and we have P"o = P’', as by assertion ( a). If o(a) # o(c), then we have

(v d) P! def

P | P, ' B Py 9 py Py pr

and vd (P"{b/5}0) = vd (P!'{b/e}o | PYo) = P'o, as by assertion (2.b). |
In the two proofs below, a symmetric relation R is a weak ground bisimulation up to

restriction and up to ~ if P R Q and P %5 P” imply that there exist d, P’ and Q' s.t.

P'"~vdP',Q = ~vdQ and P' R Q'. A standard argument shows that if R is a weak
ground bisimulation up to restriction and up to ~ then R C=.

Proposition 3.5 (insensitiveness of =~ to name instantiations) P = Q implies Po =

Qo.

PRrROOF: We show that
R ={(Po,Qo) : P = Q}

is a weak ground bisimulation up to restriction and up to ~. Suppose Po - P’. We have
to find d, P’ and Q' s.t.

P'~vdP, Qo2 ~vdQ and P RQ. (2)

We distinguish the case when p/ # 7and p/ = 7. If y/ # T, then, by Lemma 3.4(1), P % P,
with u/ = po and P = Pyo. Since P ~ @, we have Q == Q1 with P, =~ ;. Now, by
Lemma 3.3, we have Qo £ Qi0;ford=0, P' = 4f pr and Q’ Qm this proves (2).

Now, suppose p' = 7. According to Lemma 3.4(2), there are two subcases to consider.
In the first, we have P — P; and P" = Pyo; this can be handled as the case uo#

7 above. In the other subcase, we have P v d)a<b> P i)» P, with o(a) = o(c) and
P" ~q, ud(PQ{b/“'}a) since ~p, C~, also P ~ ud(PQ{b/“'}o). Since P ~ @, we have

Q (Ud) Q g Q2 with P, ~ Q,. Let z = o(a) and Z = o(b); by Lemma 3.3, we

also have QO’ i d) & Q10 :;2 (20. Finally, by Lemmas 3.2 and the inclusion ~g, C~,

Qo =~ vd (Q20{Z/}) = v d(Q2{b/}0). For P' & Py{b/&Yo and Q' EF Q,{b/e)s, this
proves (2). O

RR n°2515
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Corollary 3.6 (congruence of ~) P =~ @ implies:

1. P|IR= Q|R; 3. IP=!Q;

2. a®).P =~ a()).Q; 4. vbP = vbQ.

Proor: By exhibiting the appropriate bisimulation relations. We only sketch the argument
for assertion (1). One shows that the the set of all pairs of the form (P | R,Q | R), with
P =~ (@, is a weak ground bisimulation up to restriction. The most interesting case to look at
is how @ | R can match an interaction between P and R where P performs the input. Thus,
suppose P | R — udv(P’{g/E} | R"), for some P’ and R' s.t. P ) prand R 2% R
Since P ~ @, there is Q' s.t. Q Q) Q' =~ P'.Hence Q| R =>53(Q’{E/E}J R'). Since,
by Proposition 3.5, = is preserved by substitutions, we have P'{¢/¢} ~ Q'{b/¢}. This is
enough, because R is a bisimulation up to restriction. |

~

Let =1, be the weak version of ~y, , defined using the weak arrow =£5 in the usual way.
This is the weak bisimilarity proposed in [MPW92].

Corollary 3.7 Relations =~ and = coincide.

PRrROOF: For the containment =, C =, one shows that = is a weak ground bisimulation;
the opposite containment can be established similarly, if one uses the fact that =~ is closed
under substitutions. O

In m-calculus literature, relations ~1, and =, are sometimes called late bisimilarities, to
distinguish them from other formulations of bisimilarity like the early and open ones (see
[FMQ94]); these differ from the former because name instantiation is used in a different
position in the bisimilarity clauses. An argument similar to that in Corollary 3.7 shows that
in the mini 7-calculus ground bisimilarity also coincides with early and open bisimilarities.
In view of these results, in the remainder of the paper ground bisimulation will be simply
called bisimulation.

3.2. Proof techniques For the proof of one of the main results in the paper, namely
Theorem 7.15, we shall use a proof technique for bisimulation in order to reduce the size of
the relation to exhibit. In the bisimilarity clause, this technique allows us to manipulate the
derivatives of two processes with the expansion relation and to cancel a common context. It
extends a technique in [San94b] where contexts can only be monadic and static (i.e., they
can only be of the form vb (P |[])). The expansion relation [AKH92, SM92], written <, is
an asymmetric variant of &~ which takes into account the number of T-actions performed
by processes. Thus, P < @ holds if P = @ but also @ has at least as many 7-moves as P.
The expansion relation provides us with better ‘control’ on 7-moves of processes than the
ordinary =.

Definition 3.8 (expansion) A relation R C Pr x Pr is an expansion if P R Q implies:

1. Whenever P %5 P’ there ezists Q' s.t. Q = Q' and P' R Q';

INRIA
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2. whenever Q -~ Q', there exists P' s.t. P 2 P’ and P’ R Q'.

We say that @ expands P, written P < Q, if PR Q, for some expansion R .

Relation < is a preorder and enjoys the same congruence properties as =, including the
closure w.r.t. substitutions.

Proposition 3.9 The following is a chain of strict inclusions: ~ C < C =. a

Definition 3.10 (weak bisimulation up-to context and up-to =) A symmetric rela-
tion R is a weak bisimulation up-to context and up-to > if PR Q and P £~ P" imply

that there are a context C and processes P’ and @ s.t. P" > C[F], Q = > C[@] and
PRQ.

Definition 3.11 A relation R s closed under substitutions if (P,Q) € R implies
(Po,Qo) € R, for all substitution o.

Lemma 3.12 Suppose that R is is closed under substitutions and is a weak bisimulation
up-to context and up-to 2. If (P,Q) € R and C[P] £, P', then there are a context C'

and processes P’ and Q' s.t. P' > C'[P'], C[Q] = > C'[Q'] and P' R Q'.
PROOF: Proceeding by induction on the structure of C. |

Theorem 3.13 If R is is closed under substitutions and is a weak bisimulation up-to
context and up-to 2, then R C=.

PRrOOF: Use the previous lemma to show that

R¢ ={(P,Q) : for some context C' and processes P,Q
it holds that P > C[P],Q 2 C[Q]l and PR Q }

is a weak bisimulation. O

3.3. Some laws for bisimilarity For ease of reference, in this section we have
collected some simple laws for bisimilarity which we shall apply several times in the paper.
First, two laws for restriction and parallel composition:

Ll: va(P|Q)~PlvaQ,if a ¢ fn(P);

L2: va(a(@).P|a).Q) 2 va (P} Q).
Next, we report some distributivity laws for private replications, i.e., systems of the form

vy (P|'y(9) Q)

in which y may occur free in P and @ only in output subject position. One should think
of () as a private resource of P, for P is the only process who can access ); indeed P can
activate as many copies of ) as needed.
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Lemma 3.14 Suppose a occurs free in P, R, a. P,Q only in output subject position. Then:

1. va(P|R|'a(b).Q) ~va(P|la(b).Q)|va(R]| ! a®).Q);

2. va((!P)| 'a(d).Q) ~'va(P| a(b).Q);

3. va(a.P|la®).Q) ~a.va(P|a().Q), if bn(e)N fna®).Q) =10 ;
4. va(weP)|a®).Q) ~veva(P|!a®).Q) if c & fr(a(b).Q);

5. va(P|1a().Q) ~ P, if a ¢ f(P);

6. va(@(d| la().Q) 2 Q{4/8}, if a & fn(Q{/5}).

PROOF: Assertions (3-6) are easy. Assertions (1) and (2) have been first proved by Milner
(see [Mil91]) by exhibiting appropriate strong bisimulations (Milner proved the result for
~1,, but the same proof works for ~). O

3.4. Abstractions In Milner’s encoding of the lazy A-calculus into the 7-calculus,
described in the next section, the encoding of a A-term is parametric on a name, that is, is
a function from names to m-calculus processes. We call such expressions abstractions. For
the purposes of this paper unary abstractions, i.e., with only one parameter, suffice. An
abstraction with parameter a and body P is written (a) P, and is a binder for a of the
L' (a) P, then F(b), called applica-
tion, abbreviates P{0/a} — the actual parameter b substitutes the formal parameter a in

same nature as the input prefix binder b(a). P. If F =

the body of F. Application has the same syntactic precedence as substitution (i.e., the hi-
ghest), whereas abstraction has the lowest precedence; thus (a) a;. (Fi{g)o|az. F>{(r)) means
(@) (1. (F(@)0)) | 2. (Fa(r))).

Processes and abstractions form the class Pr* of agents. F' and G range over abstractions;
A over agents. To distinguish logically different agents, we assign them a sort: A process takes
the sort (); and, if name a has sort s, then an abstraction (a) P takes sort (s). We extend
bisimulation to abstractions and set (a) P ~ (a) @ (resp. (a) P =~ (a)Q) if P ~ Q (resp.
P = @); note that, as for input prefixes, so for abstractions instantiations of the bound
name are not not needed. The congruence of ~ and = is preserved by the abstraction
and application constructs; the latter because both bisimulations are preserved by name
instantiation.

4 Milner’s encoding of the lazy lambda calculus

4.1. The lazy A-calculus We let 2 and y range over the set of A-calculus variables.
The set A° of A-terms is defined by the grammar

M=z | Axe.M | MyM,.

Free variables, closed terms, substitution, alpha-conversion etc. are defined as usual [Bar84,
HS86]. We identify alpha-convertible terms, and write M = N if M and N are alpha-
convertible. The set of free variables in the term M is fv(M), and the subclass of A° only
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E[rz.M] = (p)p(z,q)-E[M]{q)
£zl = ()3(p)
EIMN] = (p)vr,a (E[Mr) |7(z,p) | 12(a). EINT(g)), = fresh.

Table 2: The encoding of the lazy A-calculus

containing the closed terms is A. We group brackets on the left; therefore M NL is (M N)L.
We abbreviate Ax;.--- . Ax,.M as Az - - - x,.M, or AZ.M if the length of # is not important.
Symbol  is the always-divergent term (A\z.zx)(A\x.zx).

In Abramsky’s lazy lambda calculus [Abr89], the redex is always at the extreme left of
a term. The reduction relation —C A°® x A° (for our purposes we need it defined on open
terms) is determined by the two rules:

M — M’

Beta: \z.M)N — M{N/z} Ape: MN — M'N "~
—

The reflexive and transitive closure of — is =. We write M | if M is convergent, i.e.,

it can reduce to an abstraction. In the remainder of the paper, unless otherwise specified,
M, N, L are from A°.

4.2. Milner’s encoding We informally explain Milner’s encoding £ of the lazy
A-calculus into the w-calculus. The core of any encoding of the A-calculus into a process
calculus is the translation of function application. This becomes a particular form of parallel
combination of two agents, the function and its argument; beta-reduction is then modeled
as process interaction. Since the syntax of the m-calculus only allows for the transmission of
names along channels, the communication of a term is simulated by the communication of
a trigger for it.

In the A-calculus, A is the only port; a A-terms receives its argument at A. In the 7-
calculus, there are infinitely-many ports, so the encoding of a A-term M is parametric over
a port p. This can be thought of as the location of M, for p represents the unique port
along which M interacts with its environment. M receives two names along p: The first is a
trigger for its argument and the second is the location to be used for the next interaction.
The encoding is presented in Table 2. It is slightly different from Milner’s original encoding
[Mil90] in the rule for application: In Milner’s encoding, the particle 7{x,q) guards the
process !x(q). E[N]{g). We could transform the guard into a parallel composition, so to
use only the operators of the mini 7-calculus, because z is restricted and hence 7(x,¢) is
blocking for !z(q). E[N]{q)-

Two sorts of names are used in the encoding: Location names like by p,q and r, and
trigger names like by z,y and z. For simplicity, we have assumed that the set of trigger
names is the same as the set of A-variables. If s;,. denotes the sort of the location names,
then the encoding of a A-term is an abstraction of sort (sj.c). In the remainder of the paper,
all abstractions we write have sort (sjoc), names p,q,r, ... are location names, and z, v, z, . ..
are trigger names.
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5 Operational correspondence for the encoding

In this section, we carefully examine the operational correspondence between source and
target terms of the encoding. This will also be the basis for the study of full abstraction in
Section 7. First, we introduce a process notation which allows us to give a simpler descrip-
tion of encodings of A-terms with a variable in head position. We recall that ~ is strong
bisimilarity and < is the expansion relation.

Definition 5.1 For n > 0, we define:

On<TO7Tn7F17"'7FTL) (i:ef
VTl a3 21, -y T (Fol@n,m1) | oo | Fact (B, 7a) | 1210(0)- Fi(@) | - | 120 (gn)- Fu(dn))
where names r1,...,Tn—1,%1---,Ln, q are fresh.

The i-th output of O, (r,, 70, F1, - .., Fy,), namely T;(x;,7;11), liberates the agent x;(q). F;{q)
and the successive output at r;41.

Lemma 5.2

1. If n>1 and O, (ro,7n, F1,..., F,) £, P, then u = (v x1,71)To{x1,71) and
P ~ On_1<T1,TTL,F2,...,Fn> | 'l‘l(q)F1<q>

2. If n >0, then E[xMy ... MLJ{rn) ~ v 1o (T(ro) | Onlro,™n, E[Mi], - .., E[ML])).
PROOF: Proceed by induction on n. a

Lemma 5.3

1. If M — N, then E[M](p) —2 E[N](p).

9. If M = \z. N, then E[M](p) "=Y €[N](q).

z({p)

3. If M = x then E[M](p) — 0.

4o If M =zM, ... My, n >0, then EMI(p) “2EY ~ 0, (¢, p, E[M], - .., E[M.]).

PROOF: Assertions (2) and (3) are immediate from the definition of the encoding. Assertion
(4) follows from Lemma 5.2(2). Assertion (1) is proved by induction on the structure of M.
The most interesting case is when M = (Az. My)My and N = M;{M2/z}. We have

E[(Ax. M)N]({p) —~ vz (E[M]{p) | '=(r). E[N](r)).
Then
v (E[M(p) | =(r). E[N](r)) 2 E[M{N /2}](p) 3)

can be proved proceeding by induction on the structure of M, and using the distributivity
properties of private replications in Lemma 3.14; alternatively, (3) can be inferred as an
instance of Lemma 6.3. O
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Proposition 5.4 (operational correspondence on the reductions of M)
1. If M = N, then E[M](p) =2 E[N](p).
9. If M = Az N, then E[M](p) "&L > e[N](q).
3. If M = x then E[M](p) 2y 2 0.

4 IfFM = aMy ... My, n > 0, then E[M](p) “LED > 0,.(¢, p, E[M]s, .. ., E[Ma]).-

PRrROOF: Assertion (1) is proved using induction on the number of steps made by M and
Lemma 5.3(1). The other assertions are consequences of (1) and Lemma 5.3(2-4). O

Proposition 5.5 (operational correspondence on the weak transitions of E[M](p))

1. If E[M]{p) = P, then there is N s.t. M = N and P 2 E[N](p).

2. If E[M]{p) = X5 P and p is an input action, then p = p(x,q) and there is N s.t.
M = Xz.N, P 2 E[N]{q).

3. If E[M](p) == P and p is a free output, then there is x s.t. p = T(p) and P > 0.

4. If E[M{p) == P and p is not a free output, then there are x and My, ..., M,, n >0,
st.p=wqz(q), M = xMy ... M,, and P 2 On{q,p,E[M]1,...,E[M.]).

ProOOF: By induction on the length of the transition of £[M](p). For the basic case, note
that for each M and p, process E[M]{p) has only one possible transition, and hence the
thesis follows from Lemma 5.3. O

6 A A-model from the process terms

A partial function ¢ from a set D1 to a set Dy can be undefined on some elements of D1; the
subset of D; on which ¢ is defined is dom(yp). If dom(yp) is finite, then ¢ is finite. We write
[do/d;]p for the function which maps d; to dy and which behaves like ¢ on the remaining
elements of D;. To ease readability, we sometimes abbreviate ¢(d) as ¢q.

There are simple syntax-free definitions of A-model. However, since we already have the
mapping from A to process terms, it is more convenient to use a definition where we can use
such a mapping explicitly. A finite valuation is a finite function from the set of A-variables
to the domain D of the A-model. Below, finite evaluations are enough because the set of free
variables of a A-term is finite.

Definition 6.1 (A\-model) A A-model is a triple < D,-, M >, where D is a set with at

[

least two elements, “’is a mapping from D x D to D and M is a mapping which assigns, to
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each A-term M and finite valuation p with fo(M) C dom(p), a member M[M], € D such
that:

1. M[z], = p(z) 4. M[M], = M[M], if p(z) = o(x) for all z free in M
2. M[MN], = M[M], - M[N], 5. M x.M], = M[ y.M{y/x}],, y not free in M
3.M|[)\.Z‘.M]]p -d = MﬂM]][d/z]p 6. if M[M]][d/z]p = M'[N]][d/z]p for all d € D,

for all d € D then M[Ax.M], = M[ z.N],.

We wish to construct a A-model using m-calculus agents and the encoding &£ of the
A-calculus into the m-calculus. It is reasonable that the model should respect observation
equivalence (=), which is the semantic equality adopted in the w-calculus. So, for a 7-
calculus agent A, let [ A] . be the equivalence class of A, namely

[A] . €'{4": A ePrrand A~ A'}.
The elements of the domain D of the model will be the equivalence classes of the w-calculus
agents with the same sort (sjoc) as the agents encoding A-terms:

D ¥ {[F], : FePr*and F has sort (sioc)} . )

The definition of application on these elements follows the translation of A-application in £:

(Gl [Fle € [@vre(GE) | Ta,p) | le()-Flg)] - (5)

for p,z,r,q not free in F,G.

The definition of application is consistent since, by the congruence properties of =, the
result of the application does not depend upon the representatives G and F chosen from
the equivalence classes. We are left with the definition of M[M],. The valuation p maps
a A-variable z to p(z), which is a set of bisimilar 7-calculus agents. Given a valuation p,
we denote by p the “conversion” of p which operates on a m-calculus name z and selects a
representative out of the equivalence class of p(z); that is, p(z) € p(z) if z € dom(p), and
p(z) is undefined if z ¢ dom(p). Now, the mapping M of the A-model is defined in terms of
€ as follows:

MM, = [ )5 (E1M1)HT/7} | T] i) 22 () ] ©)

where ¥ and ¢ are fresh names, Z = dom(p), and z; (resp. y;) is the i-th component of Z
(resp. 7). The use of fresh names 7 in the outermost restriction — and hence the substitution
{¥/3} — is needed to avoid that free names of j,, become bound, for names # might occur
free in p,,. Definition (6) is independent of the representatives of the equivalence classes
selected by p, since = is a congruence.

Agent j,, is used in (6) as a private resource for E[M](p){¥/z}, accessible through name
;. Behaviourally, this amounts to replacing the translation of the A-calculus variable z; with
the agent p,,. This idea is formalised in Lemma 6.3 using the encoding & below.

Definition 6.2 Let ¢ be a finite function from trigger names to abstractions of sort (Sioc).
The mapping E[—],, from A-terms to w-calculus abstractions of sort (Sioc), s defined induc-
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tively thus:

EPpeMl, ¥ () p(e,q).E[M], (q)

fol, Pz if x € dom(y)
‘ (0)T(p) if x & dom(p)
EMN], = () vra(EM], (r) | 7(z,p) | '2(q)-E[N], (a))

where p,q,r and x are fresh.

Note that, since z is fresh w.r.t. ¢, in p(z, q). g[[M]]w (¢) we have x # a and = ¢ fn(yp,), for
all a € dom(y).

Lemma 6.3 If p is a finite evaluation with T = dom(p), and ¥, q are fresh, then

v (E[M](p){¥/7} | H'yz A0) 2 E[M];

Proor: By induction on the structure of M. We consider two cases and write P; for
I1;'9i(@)- p=.(a) as P;.
(1) M =y and y € dom(p). We have:
7(E[M)(p){¥/3} | P;) = (definition of £)
vy ([y(p)|P;) ~ (Lemma 3.14(5))
y(@p) | 'y(9)-po(a)) X (Lemma 3.14(6))
P (D) E[M]; ()

(2) M = NL. We have:

v (E[Mp){¥/7} | P;) (definition of &)
v (vr,z (EINW{T/3) |7z, | L2(0). (EILN){T/E))) | ;) ~ (law L1)
v, 2§ (EININT/7} | 7(2.0) | 12()- (LU {T/31) | Py) ~ (%)
vr,z (v (EINII/E} | Py) |7} | L2(a). v § (EILNaMF/3} | Py)) 2 (
vr,z (EIM1s () |7z, )| 12(0).E[L]; {a)) = EINLI; ()

where (x) is derived from the distributivity laws for private replications in Lemma
3.14. O

induction)

Corollary 6.4 shows the relationship between mapping M and encoding g.
Corollary 6.4 M[M], = [zz,’\|[M]],,]z

PROOF: From the definitions of £ and M, and Lemma 6.3. |

We can now define the A-model.

Definition 6.5 (model D) We set D I D, M >, for D,-, and M as given in (4), (5)
and (6).
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Lemma 6.6 If M[M] = M[[N]][E/Z]p for all d, then g[[M]]ﬁ ~ E[[N]]ﬁ.

[d/z]p
PROOF: Take F, ' (p)Z(p) and d, ' [ F, ] . . By Corollary 6.4, MIM] g 7, = MINL g 7,
implies
MY 7 5, = EINL R /305 (7)
Moreover, by definitions of £ and Fz,
for all I éA‘[[L]][ﬁ = E[L], - (8)
Now, (7) and (8) prove that E[M]; ~ E[N];. O

Corollary 6.7 E[M] ~ E[N] iff, for all p, M[M], = M[N],.

PRrROOF: The implication from left to right follows from the definition of M and congruence
of ~. Now, the implication from right to left. By Lemma 6.6, M[M], = M[N], for all p
implies £[M]y =~ E[N]y . This proves the result since, for all L, E[L]y = E[L]. O

Theorem 6.8 D is a A-model.

ProoF: We look at the main clauses of Definition 6.1.

(Clause 2) We have:

M[MN], = (Corollary 6.4)
[E[MN];]. = (definition of £)
[(pvr,x (gﬂM]]p (r) | 7(z,p) | 'z(q)- g[N]],; (q)) ]~ = (definition of application
in the model)
[EIM];1~ - [E[N];]1. = (Corollary 6.4)

M[M], - M[N],
(Clause 3) Let d = [F'] .. By Corollary 6.4,

MDaM],-d = [(pvr.z (6D Ml () |70 | 12(0). Flg)) ] . .

~

and MIMYaep = [EIMIir/e15] « -
We have
vr,z (E[\e. M]; (r) | | 7(z,p) |'z Flg)) =
vr,z (r(z,q).E[M]; (q) | 7(z,p) | 12(q).- Flg)) =~ (laws L1,L2)
vz (E[M], (==} | 12(0)- Fla) ~ (%)
5[[M]] [F/z]p

where (x) is obtained using Lemma 6.3 to expand the definition of £.

(Clause 6) By Lemma 6.6, if M[M](4/x1, = M[N]ia/a), for all d, then E[M]; ~ E[N],.
Since = is a congruence, we get

() p(z,9)-E[M]; (@) = () p(@,q).EINT; () -

By Corollary 6.4 and the definition of £, this means M[Iz.M], = M[Az.N],. O
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We could have tried to be more selective in the definition of model D, and take D* =
{[€[M]]~ : M € A} as its domain; then D* =< D*,-, M > represents the interior of
D [HS86]. But it turns out that D* is not a A-model. Clause (6) in Definition 6.1 fails. As
counterexample, take the terms Az. zx and Az. (zAy. (xy)). Their encodings into w-calculus
are not behaviourally equivalent (see Lemma 7.5). Hence M[Az. zz]g # M[Az. (xAy. (zy))]g
However, for all closed N, if d = [E[N]] ., we have

Mlzzlias) = [EINN]] . = [EINQAy. (Ny)]] & = MIz(Ay. (29)]ia/a)-

Therefore D is an example of a \-model whose interior is not a A-model; see [HL80] for more
examples.

Since D is a A-model, we can infer all properties of A-models for it and, hence, the
two corollaries below (for the proof of the first, one also needs Corollary 6.7). We write
AMBF M = N if M = N is an equation in the formal theory given by the alpha and beta
axioms plus the rules of inference for equivalence and congruence.

Corollary 6.9 (validity of beta equality for £) IfA3+ M = N, then we have E[M] =
E[N]. O

Corollary 6.10 < D,- > is a combinatory algebra where the two distinguished elements k
and s can be defined as k = [E[Azy.2] [, and s = [E[Axyz.(z2(y2))] ]~ - O

However model D is not extensional, i.e. it is not a An model. As counterexample, take
Q and Az.(Qz). Then E[Q]{p) % E[Az.(Qz)]{p), since E[Q](p) = 0, whereas E[Az.(Qz)]{p)
can perform a visible action at p. This failure is not too surprising, since our encoding mimics
the lazy A-calculus, in which the 5 rule is not valid. However, as in the lazy A-calculus, the
7 rule holds if M is convergent:

Theorem 6.11 (conditional extensionality) Ifx & fu(M ), then M | implies
E[ . (Mzx)] ~ E[M].

Proor: If M |}, then M = Az. N, for some z and N. Therefore also Mx = N{Z/z}. By
validity of beta equality for £ (Corollary 6.9)

E[M] ~ E[Xz. N] 9)
and E[Mz] = E[N{%/z}]. Applying the latter equality in E[Az. (Mz)] one gets
E[Az. (Mz)] =~ E[Mz. N{=/z}] ~ E[Az. N]. (10)

Equalities (9) and (10) prove the theorem. O

7 Full abstraction

Full abstraction, first studied by Milner [Mil77] and Plotkin [Plo77], is the problem of finding
a denotational interpretation for a programming language such that the resulting semantic
equality coincides with a notion of operational indistinguishability.

Inspired by the work of Milner and Park in concurrency [Par81, Mil89], Abramsky [Abr89]
introduced an operational equivalence on closed lazy A-terms called applicative bisimulation.
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Definition 7.1 A symmetric relation R C A X A is an applicative bisimulation if M R N

and M = \z. M' imply that there is an N' such that N = Az. N’ and M'{L/z} R N'{L/z},

forallL € A. Two terms M, N € AXA are applicative bisimilar, written M ~ N, if M R N
holds, for some applicative bisimulation R .

Applicative bisimulation can then be extended to open terms: If M, N € A° with fo(M,N) C
{2}, then M ~ N if for all L C A, we have M{L/z} ~ N{L/z}.

Applicative bisimulation has been extensively studied by Abramsky and Ong [AO93]; in
particular, they have showed that it is a congruence relation.

The classical setting in which the full abstraction problem has been developed is the
simply typed A-calculus. With the introduction of the operational equivalence resulting from
applicative bisimulation, it can be neatly transferred to the untyped A-calculus and it has
motivated elegant works by Abramsky, Ong and Boudol ([AO93, Bou94]). A denotational
interpretation is said to be sound if it only equates operationally equivalent terms, complete
if it equates all operationally equivalent terms, and fully abstract if it is sound and complete.

We call the equality on A-terms induced by model D of the previous section A-observation
equivalence.

Definition 7.2 ()\-observation equivalence) For M,N € A°, we say that M and N
are \-observationally equivalent, written M =) N, if for all valuation p with dom(p) =
fo(M,N), it holds that M[M], = M[N],.

By Corollary 6.7, A-observation equivalence coincides with the equivalence induced, via
encoding &£, by m-calculus observation equivalence:

Proposition 7.3 For all M,N € A°, it holds that M ~, N iff E[M] ~ E[N]. O

Model D of Definition 6.5 is sound but not complete w.r.t. applicative bisimulation. To
show this, we prove that bisimilarity between the encoding of two A-terms implies (applica-
tive) bisimilarity between the two original A-terms, whereas the opposite implication fails;
similar results have been proved by Milner in [Mil90].

Proposition 7.4 (soundness of D w.r.t. ~) M =, N implies M ~ N.

PROOF: It suffices to show that for all M, N € A, E[M] ~ E[N] implies M ~ N.

Abramsky and Ong have proved that applicative bisimulation can be described in terms
of the convergence predicate M |}: For terms M, N € A, the property

“in all closed A-context C, C[M] |} iff C[N]|”

holds if and only if M ~ N.

Let us first extend the convergence predicate to m-calculus processes: We set P |} if P
can perform a visible action, i.e., there is p # 7 and P’ s.t. P =% P’. Propositions 5.4 and
5.5 show that for all closed A-terms and names p,

My it E[MIp) ¥ (11)
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Now, E[M](p) =~ E[N]{p) implies that E[M](p) | iff E[N](p} {. Therefore, since £ is
compositional and = is a congruence, E[M](p) = E[N](p) also implies that for all closed
A-calculus contexts C, E[C[M]]{p) | iff E[C[N]]{p) . This and (11) give M ~ N. O

Proposition 7.5 (non-completeness of D w.r.t. ~) There are My, Ms € A s.t. M7 ~
M2 but M1 $>\ MQ.

PRroOF: Take M; 4 Nz, 2z and Mo 4\ (zAy. (zy)). We have My ~) My ifforall N € A,
NN =~ N)y.(Ny). If N is convergent, then, by conditional extensionality, N ~ Ay.(Ny)
and hence, since ~ is a congruence relation, NN ~ N\y.(Ny). If N is not convergent,
then NN ~ Q ~ N\y.(Ny).

On the other hand, we have E[M;] %, E[M2]; the difference between the two processes
can be detected by an external observer after 5 interactions. |

However, model D is fully abstract on the affine A-calculus, which collects those A-terms
in which a variable may occur free at most once in any subterm. This is a consequence of
results in the next section and of results by Boudol and Laneve [BL94].

Theorem 7.6 (full abstraction for D on the affine A-calculus) If M and N are af
fine A-terms, then M ~x N iff M ~ N.

PrOOF: Boudol and Laneve [BL94] have proved that on the affine A-calculus applicative
bisimulation coincides with the Lévy-Longo Tree equality (see below). Then the result follows
from Corollary 7.16. |

But we seek full abstraction on the whole class of A-terms. Given a denotational interpre-
tation which is not fully abstract, there are two natural directions to achieve full abstraction:

¢ to cut down the existing “over-generous” semantic domain (restrictive approach);

e to enrich the language (expansive approach).

The two approaches are exemplified by the solutions to the full abstraction problem for PCF
(a typed A-calculus extended with fixed points, boolean and arithmetic features) proposed
by Milner [Mil77] and Plotkin [Plo77]; in the latter, PCF is augmented with a ‘parallel or’
operator.

Also in the case of our model D we can attempt both directions. In this paper we
examine the expansive approach. We first summarise the study of the restrictive approach,
reported in [San92] (but the process calculus used is the Higher-Order w-calculus rather
than m-calculus). Two cuts of the model are made: Only the interior of the model is used;
the behavioural equivalence on process terms is weakened. Intuitively, the latter is achieved
by restricting the class of contexts in which two terms can be tested: As A-terms are only
used in A-calculus contexts, so we require that their encodings be used only in encodings
of A-calculus contexts. Technically, this is expressed using barbed bisimulation [MS92], a
bisimilarity equivalence which can be relativised on a class of contexts. Barbed bisimulation
coincides with = if powerful enough contexts are allowed, but it is coarser otherwise. The
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model finally obtained is not only fully abstract, but also fully expressive, in the sense that
all objects of the domain of interpretation are A-definable.

7.1. Expansive approach In the expansive approach, we study A-observation
equivalence, i.e, the equivalence induced on A-terms by model D and, hence, by the 7-calculus
encoding. The goal is to derive a direct characterisation of A-observation equivalence, i.e. a
characterisation not mentioning the encoding.

Propositions 7.4 and 7.5 show that applicative bisimulation is strictly coarser than A-
observation equivalence. The counterexample in Proposition 7.5 indicates that there is struc-
ture in a A-term which is observable in a concurrency setting but not in a purely-functional
setting. In particular, in concurrency we can observe when the input of a function is used
in its body. To achieve the same discrimination, we refine applicative bisimulation. The new
relation, called open applicative bisimulation, represents perhaps the simplest way to extend
applicative bisimulation to open terms.

Definition 7.7 A symmetric relation R C A° X A° is an open applicative bisimulation if
M R N implies:

1. if M = Az. M’', then there exists N' s.t. N = Az. N’ and M’ R N’;

2. if M = xM;y ... M,, for some n > 0, then then there exrist N1,...,N, s.t. N =
Ny ...N,, and M; R N, for oll 1 <1 < n.

Two terms M,N € A° are open applicative bisimilar, written M ~° N, if M R N, for
some open applicative bisimulation R .

Clause (2), which takes care of terms with a variable in head position, was not present in
the definition of applicative bisimulation, where all terms are closed. Moreover, by contrast
with applicative bisimulation, in clause (1) no term instantiation on A-abstractions is requi-
red. This simplification is possible because we work on open terms and can be justified with
the congruence of ~°. (A straightforward proof of the congruence of ~° utilises the full
abstraction Theorems 7.14 and 7.15 and the congruence of 7-calculus bisimilarity ~.) Two
useful facts to know are:

Lemma 7.8 If M = N, then M ~° N. d

Lemma 7.9 Let p be a substitution from A-variables to A-variables. If M ~° N, then
Mp ~° Np. d

Open applicative bisimulation is reminiscent of a tree representation of A-terms. Indeed,
it is easy to prove that it coincides with the Lévy-Longo Tree equality, which equates two
terms M, N € A° if they have the same Lévy-Longo Tree; see [San94a] (which gives a direct
proof) or [Ong88] (which goes through preorders).

Lévy-Longo Tree (briefly LT) are the lazy variant of Béhm Trees (briefly BT), the most
popular tree structure in the A-calculus. BT’s only correctly express the computational
content of A-terms in a “strict” regime, while they fail to do so in a lazy regime. For instance,
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in a lazy scheme, the terms Az.Q and Q are distinguished, but since unsolvable [Bar84],
they have identical BT’s. These terms have different LT’s, because LT’s take into account
the order of unsolvability of a term, i.e., the maximal number of A-abstractions which the
term can exhibit. LT’s were introduced in [Lon83] — where they were simply called trees
— developing an original idea by Levy [Lev75]; see [Lon83, San94a, Ong88] for a precise
definition. We write LT (M) for the Lévy-Longo Tree of M.

Theorem 7.10 (correspondence with Lévy-Longo Trees, from [San94a])
For all M,N € A°, we have M ~° N iff LT(M) = LT(N). O

7.2. The full abstraction theorems We need a few lemmas before tackling the full
abstraction theorems. Lemma 7.11 shows a decomposition property for weak bisimulation;
Lemmas 7.12 and 7.13 show properties of the processes On (7o, 7n, F1, ..., Fy), introduced
in Section 5 to represent the encoding of A-terms with a variable in head position.

For a process P, we let N'p be the set of names along which P can perform an action,
ie.,
Np ={a : for some and P’ and p with subject a, P == P'}.

Lemma 7.11

1. Suppose fn(Py, Py)N (/\le UNQz) =0. Then P, |Q1 = Py | Q2 implies P, = P.

2. Let x,q & fn(F,G). Then 'x(q). F{q) ~'z(q). G{q) implies F =~ G.
PRrOOF: We first prove (1). Relation

R ={(P,P) : P|Q1 =~ P,| Q-
for some Q1, @, with fn(Py, P) N (Ng, UNg,) =0 }

is a weak bisimulation. The proof is straightforward: Since fn(Py, P,) N (Ng, UNg,) =0, no
interaction between P; and @); is possible, ¢ = 1, 2. Moreover, if all bound names of actions
of P; and P, are fresh, then the side condition of R is preserved.

Now assertion (2). We have to show that F'(¢) ~ G(g). We can assume, without loss of

generality, that ¢ is different from z. Since !z(q).F{q) =~ !x(q).G(q) and !z(q).F(q) =)
F(q)| 'z(q).F{q), we have, for some P,

12(g).Gla) 24 P ~ F(q) | a(g).F(q) . (12)

Since z does not occur in G{(g), no interaction between G(g) and !z(q).G{(g) may have
occurred; therefore P is of the form Pg | !z(g).G{q), for some Pg s.t.

G{q) = Pg. (13)
Thus (12) can be written as Pg | '2(q).G{q) =~ F{q) | 'x(q).F{q). From this, we get

Po =~ F(q) (14)
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using the assertion (1) of the lemma, since N (q).c(q) = N12(q).F(q) = {2} and z is not free
in F{q) and Pg. In a symmetric way (just exchange F' and G), we can derive, for some Pp,

F{¢) = Pr, and Pp ~ G(q). (15)
Now, we exploit (13-15) to show that F{q) ~ G(q): For this, we take

R =A{(F(q),G{0),(Gla), Fla))} U ~

and show that it is a weak bisimulation. Suppose F(q) -+ Qr. We show how G(g) can

match this move: Since F(q) ~ Pg, we have Ps = Q¢ =~ Qp; therefore, using (13),

G{q) = Pg =5 Q¢ ~ Qp, which closes the bisimulation. The case in which G(q) moves
first is analogous. d

Lemma 7.12 If O, (10,70, F1, ..., Fp) & On{r6,7m,G1,-..,Gn), then n = m.

Proor: If n # m, then one of the two processes can perform more consecutive output
actions than the other. |

Lemma 7.13 It holds that
Onlro, Ty Fiy oo oy ) = Op{ro,7n,G1,...,Gp) iff F; = G; for all1 <i < n.

PRrROOF: The implication from right to left can be inferred from the congruence properties
of =. Thus, we only have to consider the implication from left to right. We proceed by
induction on n. We only consider the inductive case. Let

P dZEf On<T07TTL7F17 e ,Fn>7 Q d=ef On<T0’Tn7G17 e ’Gn).

By Lemma 5.2(1), the only transitions they can perform are

(v z1,71)7To({z1,71)
-

P
Q (v ml,'rﬂ(mlﬂ‘l) ~

On_1<T1,Tn,F2,. .- 7Fn) | ‘xl(Q)F1<q)7
One1{r1,7n, G2y ..., Gpn) | '21(q). G1{q).

Let P, def On—1{r1,7n, Fa,..., F,), and Q1 def On-1(r1,7n,G2,...,Gyp). The only actions
that !z (q). F1{q) and !z1(q). G1{q) can perform are at x; and, by Lemma 5.2(1), the only
actions that P, and @i can perform are at r1. Since r; is not free in !z1(q). F1{q) and
'21(q). G1{q), and z; is not free in P; and @, using Lemma 7.11(1) twice we infer

'z1(q).F1{q) =~ 'z1(¢).G1{(¢) and P, =~ Q1

Now from the former we get F; ~ G1 using Lemma 7.11(2); from the latter we get F; ~ G,
2 <1 < n using the inductive assumption. O

We are now ready to prove that open applicative bisimilarity coincides with A-observation
equivalence.

Theorem 7.14 (soundness of D w.r.t. ~°) M =) N implies M ~° N.
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PRrOOF: By Proposition 7.3, it suffices to prove that E[M] ~ E[N] implies M ~° N. If
E[M] = E[N] then, for any p, E[M]{p) =~ E[N](p). We prove that

R = {(M,N) : E[M](p) ~ E[N](p), for some p}

is an open applicative bisimulation. First, suppose M =—> Az.M’'. We have to find N’ s.t.
N = Xz.N'" and (M',N') € R.From M = Az.M' and Proposition 5.4(2), we get

EIMY(p) 29 > e[M'](q) .

Since E[M|{p) =~ E[N]{p), there is P" s.t.
EINT(p) "2 P ~ E[MY(g). (16)

We can decompose E[N](p) "ed) pringo E[Np) = "o pr— P for some P'.
Then, using Proposition 5.5(1-2), we infer that there are N’ and N” s.t. N = Az. N’ and
N' = N" with P' 2 £[N']{q) and
P" 2 E[N"](g) - (17)
Moreover, by validity of beta equality (Corollary 6.9),
EIN'Ip) ~ EIN"](p) . (18)

Since SC =, we can combine (16), (17) and (18) and derive E[M']{¢) = E[N']{g); hence
(M',N") € R, which concludes the case.

Now, suppose M = M, ... M, for some = and M,,..., M,. We suppose n > 0; the
case n = 0 is simpler. We have to find Ny,...,N, s.t. N = zN;...N, and M; R N;, for
all 4.

From Proposition 5.4(4), we get

eMYp) Y229 > 0,4g,p, E[M], .., E[M.])

and, from E[M](p) ~ E[N]{p) and Proposition 5.5(4), for some m and Ny, ..., Ny,
ENT(p) YL 2 0,(g,p, EINIL - .. E[Nw]) (19)

with On{q,p,E[M1],...,E[M,]) =~ Oml{q,p,E[N1],-..,E[Nm]). From this and Lemmas
7.12 and 7.13 we infer that m = n and that £[M;] ~ E[N,], for all i. Moreover, from (19)
and Proposition 5.5(4) we infer that

N = 2a2N;...N,.
Since E[M;] = E[N;], for any p, E[M;](p) =~ E[N;](p); hence (M;,N;) € R. O
Theorem 7.15 (completeness of D w.r.t. ~°) M ~° N implies M =, N.
ProOF: We show that

R = JUEIM(p), EINp)) : M =° N}.

P
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is closed under substitutions and is a weak bisimulation up-to context and up-to 2. By
Theorem 3.13, this implies R C=.

First, we show that R is closed under substitutions. The free names of a process
E[M](p) are {p} U{z : =z € tv(M)}. Therefore, for all name substitution o there is a
variable substitution p s.t.

E[M](p)o = E[Mp)(o(p)) -
Lemma 7.9 shows that ~° is closed under variable substitutions; hence R is closed under
name substitutions.

Now we show that R is a weak bisimulation up-to context and up-to 2. Suppose that
(E[M](p),E[N](p)) € R and E[M](p) - P; there are four cases to consider, according
to whether p is a silent, an input, a free output or a non-free output. The first three cases
are simpler, so we only show the argument for the last case (to handle the last case we shall
need both up-to context and up-to =, whereas for the first three cases up-to 2 is enough).

Thus, suppose 4 is a non-free output. By Proposition 5.5(4), u = (v q) Z{q), and there
are ¢ and My,...,M, st. M = aM;...M, and P 2 O,(q,p,E[Mi],...,E[M,]). Since
M ~° N, there are Ny,..., N, s.t.

N=— 2N;...N, (20)

and
M; ~° N;, foralll<i<n. (21)

Now, from (20), by Proposition 5.4 we get
EINYp) B 2 0,(,p.E[N, .. ENA])

and from (21) we get
(EIM:]{r),E[N:](r)) € R,

for all r. Summarising, we have obtained that

(v9)z(q)
SHM]KP) q:_>q Z On(QapagﬂMl]]vagl[Mn]Da
gﬂN]Kp) ("%@) Z On(QapagﬂNl]]aaglan]Da and
(EIM;){r), E[N:](r)) € R, for all r and 1 < i < m.
This is enough, because R is a bisimulation up-to context and up-to 2. a

The “up-to context and up-to 2” technique simplifies a lot the proof of Theorem 7.15,
which would have been almost untreatable otherwise.

We can summarise the results of Proposition 7.3, Theorems 7.10, 7.14 and 7.15:

Corollary 7.16 For all M, N € A° it holds that

M m, N iff E[M] =~ E[N] iff M ~° N iff LT(M) = LT(N). O
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