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Abstract

The purpose of this paper is two fold. First to establish the Theory of discounted
constrained Markov Decision Processes with a countable state and action spaces with general
multi-chain structure. Second, to introduce finite approximation methods.

We define the occupation measures and obtain properties of the set of all achievable
occupation measures under the different admissible policies. We establish the optimality of
stationary policies for the constrained control problem, and obtain a LP with a countable
number of decision variables through which optimal stationary policies are computed.

Since for such a LP one cannot expect to find an optimal solution in a finite number of
operations, we present two schemes for finite approximations and establish the convergence
of optimal values and policies for both the discounted and the expected average cost, with

unbounded cost.

Sometimes it turns to be easier to solve the problem with infinite state space than the
problem with finite yet large state space. Based on the optimal policy for the problem with
infinite state space, we construct policies which are almost optimal for the problem with
truncated state space. This method is applied to obtain an e-optimal policy for a problem

of optimal priority assignment under constraints for a system of K finite queues.

Keywords: Constrained Markov Decision Problems, countable state space, Linear Pro-

gramming approach, Finite approximations.



1 INTRODUCTION

In recent years growing attention was given to solving constrained MDPs (Markov Decision
Problems). Such problems frequently arise in computer networks and data communications.
Lazar [22] and Spieksma and Hordijk [15] have considered flow control problems with constraints
in queuing networks, e.g. maximize throughputs, with constraints on delays of different traffic
types. Nain and Ross [23], Altman and Shwartz [1], Ross and Chen [29] considered optimal
priority assignment under constraints in communication networks; a typical problem there is
to minimize delay of non-interactive traffic, with constraints on delays of interactive traffic.
The theory for solving general constrained MDPs with expected average cost was developed by
Hordijk and Kallenberg [19], [20] who solve the case of finite state and finite action spaces using
methods based on Linear Programming (LP), and by Beutler and Ross [8] who considered a
single constraint for the case of compact action space. A LP approach for solving the discounted
problem is given in Kallenberg [20] and Altman and Shwartz [4]. The LP approach was gener-
alized by Altman and Shwartz [2] and Spieksma [31] to the countable state case, with expected
average cost. The Lagrange approach in [8] for treating the case of a single constraint was
generalised to the countable state space by Senott [24], [25] who considers both the expected

average and the discounted cost.

The first goal of this paper is to establish the theory of constrained MDPs with several
constraints for the discounted cost with general multi-chain structure, with a countable state
space. We show that an optimal stationary policy exists, and that the control problem can be
reduced to a LP with infinite number of decision variables and constraints. The second goal is

to obtain methods that enable the numerical solution of the control problem.

In order to reduce the control problem to a LP, we first establish the linear representation
of the cost as a function of the “occupation measure” (which generalizes the notion of “state-
action frequencies” [13] used for the expected average cost). Under some conditions, it is known
for the single chain case, that the set of occupation measures achieved by all admissible policies
is equal to the set of occupation measures achieved by the stationary policies. Moreover, it is
compact, convex, and its extreme points correspond to stationary deterministic policies (see

[13, 19], [2], [9]). We show that these properties also hold for the multi-chain case with a



countable state space and discounted cost. This allows us to establish the optimality of a

stationary policy.

Since the number of states and actions in the control problem (and the number of
decision variables in the corresponding LP) is not finite, the question of approximations arrizes.
If a finite approximation of the state is used, a finite LP can be applied to obtain an optimal
policy for the approximating model (e.g. [19, 4]). The issue of approximating MDPs by other
finite state MDPs was investigated in a few papers of White (e.g. [33]), Cavazos-Cadena [12],
Hernandez-Lerma [16] and Thomas and Stengos [32]. Since in our case additional constraints
are introduced in the control problem, the methods described in previous papers (e.g. [12, 16,
32, 33]) are not applicable, since they are all based on dynamic programming techniques. Unlike
the unconstrained problem it is known [19] that there may not exist an optimal deterministic
policy for the constrained problem. This, and the fact that constrained MDPs are usually solved
using LP methods, imply that new approaches for approximating constrained MDPs should be

used.

Finite state approximations techniques may serve other purposes than to solve a problem
with a countable number of decision variables. In some problems in queuing networks it is
possible to obtain optimal policies for the countable state case, whereas there are no explicit
solutions for similar finite state problems. This is the case e.g. in the problem of optimal
priority assignment where N infinite queues compete for the attention of a single server. A
simple index rule (the “uc” rule, see [7] and references therein) is known to minimize a given
weighted sum of the expected waiting times. When additional constraints are added, there exists
an optimal policy that multiplexes between different strict priority rules ([1], [23], [29]). The
theory on finite approximations of MDPs which we establish can thus be used to approximate
the solution to the case of large queues’ sizes by the known solution for infinite queues’ sizes.

We demonstrate that in Section 9.

We introduce in this paper two approximating schemes, for which we establish conditions
for the convergence of optimal values and policies. Moreover, we obtain conditions for the
stability of the (almost) optimal policy; i.e. we show that an (almost) optimal policy for the

original problem is almost optimal for a finite approximation of the problem.

The structure of the paper is as follows: after presenting the model notation and assump-



tions in Section 2, we present some properties of the occupation measures in Section 3, and
relate them to the cost. Conditions for existence of an optimal stationary policy are presented
in Section 4. In Section 5 we present the LP and establish the relation to the original control
problem. In Section 6 we obtain a key Theorem for approximation. In Section 7 we then present
a scheme based on replacing the countable state space with a finite state space. In Section 8 we
introduce another general scheme for finite approximations for constrained problems, based on
arbitrarily picking the probabilities of choosing the different actions in all but a finite number
N of states. Then the probabilities in the remaining N states are chosen so as to optimize the
restricted problem. The problem of optimal priority assignment for N competing finite queues

is finally treated in Section 9.

2 Model and Assumptions

2.1 The model

Let {X;}2, be the discrete time state process, defined on the countable state space X; the
action A; at time ¢ takes values in the countable action space A. However, we assume that at
each state y € X there is only a finite number of available actions, A(y). With some abuse
of notation, X x A will denote all possible pairs (y,a) : y € X,a € A(y). The history of the

process up to time ¢ is denoted by H; := (Xo, Ao, X1, 41, ..., X, A¢). The dynamics is given by
Pzay = P(Xt+1 =Y | Xy =z Ay = a) = P(Xt—i—l =Y | Hi1i=h, Xy =23 A = a)
A policy u in the policy space U is a sequence u = {ug, u1, ...}, where u;(- | Hi—1, Xy),

applied at time epoch ¢, is a conditional probability measure over A(X;). Denote the probability

measure corresponding to w and initial state z by PY, and the expectation by E}.

A stationary policy g € U(S) is characterized by a single conditional distribution pf|z =
u(e | Xy = z) over A, so that prI = 1; under g, X; becomes a Markov chain with stationary

transition probabilities, given by PJ, =3 ,ca pg|z77my.

The class of stationary deterministic policies U(SD) is a subclass of U(S) and, with



some abuse of notation, every g € U(SD) is identified with a mapping ¢ : X — A, so that

pﬂz = 04(z)(+) is concentrated at the point g(z) in A for each .

For any (finite or countable) set B, let M(B) denote the set of probability measures
on B endowed with the topology of weak convergence 7(B). Note that U(S) can be identified
with the set [[,ex M(A(y)). Clearly U(S) is compact with respect to the product topology

HyEX T(A(y))

2.2 The constrained problem

Let C(z,u) and D(z,u) := {D*(z,u), 1 < k < K} be cost functions associated with each
policy w and an initial state z. The real vector V :={V; , k = 1,..., K} is held fixed hereafter.
Call a policy u feasible if

DF(z,u) < Vi, k=1,2,... K (2.1)
The constrained optimization problem is:

(COP): Find a feasible v € U that minimizes C(z,u).

C(z,u) and D*(x,u) will stand for either the discounted or the expected average cost,
defined below. Let ¢(z,a),d(z,a) := {d*(z,a), k = 1,..., K} be real (R¥) valued instantaneous
cost functions, i.e. costs per state-action pair. Let 0 < § < 1 be a discount factor. We assume
throughout the paper that Yu € U, = € X, E¥c(X,, A,) and EXd*(X,, A,), k = 1,..., K exist.

We shall use the following normalized discounted cost functionals from X x U to R (see [4]).

Chlau) 1= (ThooB°)7 EE [Tl Be( X, Ay)|

(2.2)
D' (,u) = (Tl AT IEE [Tl B dH(X,, Ay k=1,.,K
Ca(z,u) := Et_}OOCE(x,u)
(2.3)
Dg(a:,u) = Mt_}OODE’t(x,u) k=1,..,K

When § = 1, (2.2-2.3) reduce to the well-known definition of the expected average cost, since in

that case Y.._, 3° = t+ 1. For 8 < 1 the definition (2.3) are slightly different than the standard



expected discounted costs (see e.g. [27])

Cola,u) = EX[30Z8%(Xs, As)]
i (2.4)
Di(w,u) 1= EY D2 AdN X, A)]  k=1,.,K
If ¢(-,-) is bounded from either below or from above, then Cy(z,u) is well defined and
Cp(z,u)=(1- ﬁ)é’g(x,u) =(1-0) ZﬁsEgc(Xs,As) (2.5)
s=0

(and similarly for Dg(x,u)) However, the cost (2.3) is defined for cases for which the limit
as t — oo of the partial sums (till time ¢) in (2.4) does not exist. Another advantage of using
the new definition (2.3) is that it enables to obtain the same LP for both the discounted and
expected average cost for solving COP (see e.g. [4] for the finite case, and Section 5 in this
paper for the countable case). This enables to reduce problems of continuity, sensitivity [4] and
singular perturbations [5] of constrained MDPs in the discount parameter § as 3 — 1, to the

corresponding problems in Mathematical Programs for which the theory is well known [14].

2.3 Occupation measure

Given a discount factor 0 < 8 < 1, define the collections {f4’(z,u;y,a)}, . and {f25(z,u;y)},
by

t t
Tl usy, )= 817 Y B PHXs =y, Ay = a) (2.6)
s=0 s=0
- t t
JoP (@ usy) = (D BT Y BPH(X = y) (2.7)
s=0 s=0
By f2(z,u) = {f2(z,u;y,a)},. we denote a generic accumulation point of f47(z,u). Simi-

larly, we define f2(z,u) := {f?(z,u;y)}, to be a generic accumulation point of f&%(z,u). These

quantities are known as the “occupation measure” (see e.g. [9]) and for the case of § = 1 they



are also known as the stale-action frequencies. For § < 1 there is a single accumulation point

o0

(e ui,a) = [1— B3 BEPH(X, = y, Ay = a) (2.8)
FPle usy) = [1— B3 BPH(X, = y) (2.9)

For each 3, t, z and u, f4;°(z,u) can be considered as a probability measure over X x A.
For 8 < 1, f2 (z,u) and f(z,u) are also probability measures, and hence Yy Bz, u;y,a) =
2y ff(a@, u;y) = 1. In order to ensure that this property holds for the expected average case

i.e. B =1, we need assumptions A3(i) or A3(ii) defined below.

2.4 Assumptions and Notation

The following assumptions are used frequently in the paper:

A1l: Under any g € U(SD), X contains a single ergodic class, and absorption into the positive
recurrent class takes place in finite expected time.

A1’: Under any g € U(SD), X consists of a single ergodic class, (with no transient states).

A2: there exists some policy u (not necessarily an optimal policy) such that

DF(z,u)< Vi, k=1,2,...,K

A3(i) For a given initial state x, the set {f5l(z,u)}, u € U(S) is tight.

A3(ii) The family of stationary probabilities {7%(-)}, 7% € M(X), corresponding to policies
u € U(9),is tight.

It is known that {Al and A3(i)} imply A3(ii); moreover under A1l’, A3(i) and A3(ii) are
equivalent (see [2] Section 4, [18] Sections 10, and [31] p. 171). Other sufficient conditions for
tightness can be found in [18] Section 11 and [2] Section 4.

Let 0 € X be a recurrent state under g € U(S). With the convention that inf () = oo,

define 7(1) def inf{t >0: X; =0}, n(k+1) def inf{t > n(k): X; = 0}, where n(k) = oo implies



n(k + 1) = oco. Define the following assumption:

n(1)-1 n(2)-1
A4(u): E Z le( X5, As)| | = oo implies EY Z (X5, As)|| = oo,
s=0 s=n(1)

for a given u € U(S5);
A4: A4(u) holds for all uw € U(S5).

The following notation is used below: §,(z) is the Kronecker delta function. For any set

B, 1{B} is the indicator function of the set, |B| the cardinality of this set (if B is finite then

| B| is the number of elements in B). For vectors D and V in R¥, the notation D < V stands

for Dy, < Vi, k=1,2,..., K, with a similar convention for matrices. For two matrices (, Q) of

appropriate dimensions, ¢ - @ stands for summation over common indices (scalar product). QT

denotes the transposed of the matrix Q.

3 Occupation measures and cost

We relate below the cost to the occupation measure.

Lemma 3.1 For each instantaneous cost ¢(-,-),y € X,a € A, ue U

Cp(z,u) = E c(y,a)fP(z,u;y, a) (3.1)

yEX,aEA

holds for 3 < 1 provided that either
(i) ¢ is bounded from below or from above, or

(ii) {c(Xs, As)}s are uniformly integrable with respect to P“.

Proof: We first prove (i). Assume first that ¢(-,-) > 0. If we consider ¢(-,-) as a measure and

further consider (Zizoﬁ ) ftﬁ(x u) as a RV on X x A then we obtain from the Monotone

Convergence Theorem

lim (E ﬂs) E ,a)fh ﬁ(.r u)=(1-p3)" Zc(y,a)]?sﬁa(*rv“)

70‘ y7a



It then follows that
_ 1 § ' rt.B
Cﬁ($7 u) - th_}'([)lo C(y7 a)fsa (‘T7 u)

y7a‘

= (1) Jim (; ﬁs) Y ey )@ w) = Y ey a) fo e, w)

y7a y7a

If ¢(-,-) is bounded below (or above) then the Lemma follows by applying [28] Prop. 18 p. 232.

The proof of (ii) is the same as for the expected average cost, see [2] Lemma 2.2. [ ]

Next we quote a similar representation for the expected average case, which is known to
hold under condition similar to (ii) of the Lemma above, but in general need not hold under a

conditions similar to (i).

Lemma 3.2 (/2] Lemma 2.2 and 2.3) Let = 1. Let w € U be such that a single limil exists

to fil(z,u). Then for any instantaneous cost ¢(-,-), y € X,a € A, (3.1) holds provided that

A1 and A3(i) hold and one of the following is true:
(i) {c(Xs, As)}s are uniformly integrable with respect to P,
(i) A4(u) holds, ¢ is bounded from either below or from above, and uw € U(S).

Let L? denote the set { f2 (z,u)} achieved by all policies in U, LZ(S D) the set achieved by
all policies in U(SD) and L?(S) the set achieved by all policies in U(.S). The following Lemma
states the “completeness” of stationary policies i.e. L? = L?(S), as well as the compactness of

L? (with respect to the topology 7(X x A) defined in the previous section).

Theorem 3.1 For any 0 < 8 < 1, LY is conver. Assume either 3 < 1 or {Al and A3(i)}.

Then L2(S) = L? is compact and is equal to the convex hull of L2(SD).
For proving the theorem we need the following Lemma

Lemma 3.3 Choose some g € U(S) and a state y. Define g, € U(S) to be the policy that

chooses always action a when in state y, and otherwise behaves exactly like g. Then for every
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0 < B <1 there exists a probability measure o on A(y) such that
(i) For any cost function ¢ for which (3.1) holds for initial states x and y and all w € U(S5),

Colz,9)= Y, a(a)Cs(,9a)

aEA(y)

(i)

Proof: For § = 1 see e.g. Key Lemma in [31] p. 168.

Define the stopping times o(y) def infsso{Xs = y}, y € X, with the convention that
inf{0} = cc. Denote

7y (1- Egor)
Yo P, (1 = By BoW)

a(a) def

Consider an arbitrary immediate cost function ¢(-, ), and define

o(y)-1

> Be(Xs, As)

s=0

Wo(e,y) < (1 - B)E2

The cost Cg(z,g) can be expressed as

Cole,9) = W, (z,y)+(1—B)Ef lﬁa Zﬁs +o(y)> s+o<y))1:Wf(wyy)JrCﬁ(y’g)Eiﬁ"(y)

In particular, we have for z = y:

Co(y.9) = Wy, y) + Coly, ) ELp°W

Hence we obtain:

Wo(y,y) b, Wi(.y)
[ 250~ 55,47, (1= B§70)

Cs(y,9) =
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i 1 Egr)

- ;Cﬁ(y’ga)za' P, (1= By 3oty — E (@)C5(Y: ga)

which establishes the proof for the case z = y. For z # vy,
Cﬁ(xuq) = Wf($7 Z/) + Cﬁ(@hg)Eiﬁa(y)

= > ala) [W(z,y) + B287W Cp(y,94)] = 3 a(a)Cs(z, g4)

a a

since for © # y, W/ (z,y) = W/ (z,y). This establishes (i). (ii) is then obtained by choosing

the immediate cost to be ¢(y',a') = 1{y' = y,a’ = a} and applying (i). [

Proof of Theorem 3.1: The convexity of L? follows from the fact that for any sequence of
policies u(1),u(2),... € U, initial state z, time ¢ and any distribution a on the set of integers,

there exists a policy (“Markov” policy) v such that
S P (X, =0, Ay =0) = PY(X, = 0, A, = o)
k=1

(see e.g. Prop. 10.2 [31] p. 164).

Next we prove that LZ = L2(S§). For the case 3 = 1, the latter is given in [2] Cor.
3.3. Let 5 < 1. ([9] presents another more complex proof for the infinite case, but for a single

recurrent class).

Choose any policy « € U and define the set a € RIX*Al 35

oo det L, uiy,0)
Y Reuy)

a

y is any arbitrary real positive number

whenever the denominator is nonzero. When it is zero, a

such that 3, ay = 1. Define the stationary policy g as pzw def ay. We show below that

fB(xz,u) = f%(z,g). Note that Pg, = 3", Poayay.
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fla usy) = (1= 8)8a(y) + B(1 = B) 352, B PH(X, = y)
= (1= B)82(y) + B(1 = B) LoZo Loex Laea B PH(Xs = v, Ay = a) Pugy
= (1= 3)82(9) + BLvex Laca Poay for (2, w50, 0) (32)
= (1= B)8:(9) + BLvex Laca Poay I (2, u;0)a

= (1 - ﬁ)éx(y) + ﬁEvEX ng ;ﬁ('rv Uu; 'U)

In matrix notation the above equation yields

Jo (@, w)[I - BP] = (1 - B)é,

where ¢, stands for the row vector whose xth entry is equal to one and all other entries are

zero. Since § < 1, [I — P?] is invertible (see Appendix, Lemma 10.1) and hence
Jo@,u) = (1= Yol — P~ (33)
Since (3.3) clearly holds for the case u = ¢, we have
F(a,u) = f{(z,9)
It then follows that
Tz usy,a) = f(e,uiy)ay = (2, g;9)p)), = [h(z.9;y.a)
and hence L?($) = LP.

The compactness of L? is established by showing that f2(z,u): U(S) — L? is contin-
uous (since U(S) is compact in [[,cx 7(A(y))). To show that, note first that for u € U(5),

Pr, =2 Pzaypg|$ is continuous in w and hence the transition probability matrix P* is con-

tinuous in w. (P* is an element of the space [N[(X)]X endowed with the product topology
[7(X)]%X). We claim that ff(z,u) : U(S) — L is continuous in u. For the case of § < 1

this follows from Lemma 10.2 in the appendix since fZ(z,u) = (1 — )22, #[PY]". For
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8 =1, Al and A3(i) imply A3(ii) (see [2] Lemma 4.1), and so indeed the steady-state prob-
ability f}(z,u) = 7%, u € U(S) is continuous in u ([18] Lemma 10.2 p. 83). Finally, since

Bz, usy,a) = fO(z,u; y)pzw it follows that f2 (z,u): U(S) — L? is continuous, which estab-

lishes the compactness of LZ.

Next we show that LZ(.9) is equal to the convex hull of L(S D). Since it is compact, by
the Krein-Milman theorem it is the convex hull of its extreme points. Choose some g € U(.9).
Suppose that g is not deterministic. Then there exists a state y where at least two different

actions have positive probabilities to be chosen by g. But then by Lemma 3.3, g is not an

extreme point of L2, [ |

Remarks:

(i) For the case 3 = 1, all the statements in Theorem 3.1 for L(9) except for L1(S) = L}
remain valid with A3(ii) replacing assumption A3(i).
(ii) For the case g = 1, Theorem 4 is proven in [2] Thm 5.1 under the stronger assumptions

A1’ and A3(i) using a different approach.

4 Optimality of Stationary Policies

Theorem 4.1 Assume either § < 1, or A1, A3(i) and A4 holds. Further assume that the

immediate costs are bounded below. Then

(i) for each policy w € U which is feasible for COP, there exists a feasible stationary policy g
such that
Cﬁ(-ﬁ,g)g Cﬁ(.T,U), DE(@”’!])S Dg(%“% k=1,2..K (41)

and hence the stationary policies are “sufficient” for COP.

(ii) if COP is feasible then an optimal policy for COP exists within U(S).

Proof: For the case § = 1 Altman and Shwartz establish (i) in [2] Thm. 2.8 (and its proof).

Borkar prooves in [10] that when restricting COP to U(5), there exists an optimal stationary
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policy, if COP is feasible. (An alternative proof is given in Cor. 5.4. in [2] with A1’ replacing
Al). Combining these facts establishes (ii).

For the case of § < 1, (i) follows from Lemma 3.1 and Theorem 3.1. The proof of (ii)

is exactly the same as the proof for the case § = 1, see [2] Cor. 5.4. (which is based on

the fact that L7 is compact and on showing that the costs Cjs(z,u) and Dg(ac,u) are lower

semicontinuous functions of fZ(z,u)). |

In the expected average case, the tightness assumption A3(i) in Theorem 4.1 can be
replaced by some structure on the immediate costs, that makes it optimal to use policies for
which tightness holds. ¢(-,-) is said to be “V-almost monotone” if there exists a collection of
compact (finite) subsets K; of X x A such that U; K; = X x A, and such that the cost function

c(y, a) satisfies

lim inf{c(y,a);(y,a) ¢ Ki} > V.
Theorem 4.2 Assume Al and A4, and = 1. Assume c(-, ) is Vo-monotone for some constant
Vo, and d*(-,-) is Vy-monotone, 1 < k < K. If there exists a policy u' € U’ such that C(z,u') <

/o and D¥(z,u') < Vi, 1 <k < K, then an optimal policy for COP exists within U(S).

Proof: The sufficiency of the stationary policies under the conditions of the Theorem is es-
tablished by combining Theorem 3.2 and Lemma 4.6 in [2]. Borkar prooves in [10] that when
restricting COP to U(5), there exists an optimal stationary policy, if COP is feasible. Com-

bining these facts establishes the Theorem. [ ]

Remarks:

(i) Borkar [10] has established recently under general ergodic conditions that the policy that
is optimal among U(S) can be chosen such that the number of randomizations is not greater

than the number of constraints.

(ii) A sufficient condition for a cost ¢ to be V-almost monotone for all V, is that for any V,

there exists a finite set Wy C X x A such that ¢(y,a) >V for all (y,a) ¢ Wy.
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5 Equivalent Infinite Linear Programming

We show below for the discounted cost criteria that COP is equivalent to a LP with countable
number of decision variables and a countable number of constraints. Such equivalence is known
in the finite case (see [19] for § = 1 and [4] for § < 1), and it is then used as a method for
computing optimal stationary policies. A similar equivalence was shown to hold also for the
countable case with § = 1, see [2], [31]; moreover the LP for solving that case is obtained from

the LP below just by substituting in it g = 1.

Consider the following LP:
LPg : Find the infimum of C(2) := °, , ¢(y, a)2(y, a) subject to:

> 2y, 0) [6u(y) — BPyu] = [1- fl6u(x)  veX (5.1)
DF(2) = de(y,a)z(y,a) <V 1<E<K (5.2)

Zz(y,a) = (5.3)

y7a

2(y,a) >0 (5.4)

Define g(z) to be any stationary policy such that p,, = 2(y,a)[3, z(y,a)]™! whenever

the denominator is nonzero.

Theorem 5.1 Assume that 3 < 1 and let ¢ and d*, k = 1,..., K be bounded from below or

from above.

(1.1) For every policy u, ¢ def IB (z,u) satisfies (5.1), (5.3) and (5.4).
(1.2) C(¢) = Cs(z,u) and DF(() = Dg(x,u) 1 <k < K. Consequently, if u is feasible for
COPg then ¢ satisfies (5.2).

(2) Choose any ¢ that satisfies (5.1) (5.3) and (5.4). Then
(2.1) [z, 9(Q) = (.
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(2.2) C(¢) = Cp(2,9(¢)) and D*(¢) = Dfj(z,9(¢)) 1<k < K.
(2.3) Assume that ¢ salisfies also (5.2). Then g(() is a feasible policy for CO Pg.

(3.1) COP is feasible iff LPg is.
(3.2) If LPg is feasible then there erists some z* that achieves the optimal value of LPg; the

optimal value for COP is equal to C(z*); g(2*) is an optimal policy for COP.

« def 7

(3.3) Suppose that g* is an optimal policy for COP. Then z* = f5 (z,g*) is an optimal solution
for LPg (and thus achieves its infimum).

Proof: (1.1) follows immediately from (3.2). Lemma 3.1 then implies (1.2).

def

To prove (2.1), define the vector (s € Rl by Cs(y) = >.C(y,a). (5.1) implies (in

vector notation) that
G= (1= B),[1 - pPote]! (55)

where 6, stands for the row vector whose xzth entry is equal to one and all other entries are
zero. (It is shown in Lemma 10.1 that indeed I — S P is invertible for any stochastic matrix P

defined on X x X).

Hence for each y, (3.3) implies that
S8 (2, 9(Oya) =Y ((y,0)

(2.1) is then established by the definition of g(¢). Lemma 3.1 now implies (2.2) and (2.3).
Finally, statements (3) of the Theorem follow from statements (1) and (2) and Theorem 4.1. W

6 Key Theorems for Approximation

In this Section we discuss approximations of constrained Markov Problems. Assume that for
any initial state # and policy u we have a sequence of approximations C,(z,u) and D% (z,u),

n =1,2,... of the costs C(z,u) and D*(z,u) with k = 1,2,..., K. Below C(z,u) and D*(z, u)
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will stand for either the expected average cost 3 = 1 or for the discounted cost 8 < 1, where as
Cp(z,u) and DE(z,u), may be arbitrary functions from X x U to R*. (They could be e.g.
finite horizon costs, they could be defined as discounted costs with discount factor that changes

in time, or costs related to other transition probabilities and immediate costs).

Consider the following sequence of problems:
COPy, : Find C,(z) which is given by:
Con(2) = inf,ep{Cp(z,u); DE(z,u) < Vi, k = 1,2,..., K}. Let C(z) be the optimal value

of COP. Assume that lim,_.., C,(z,4) = C(z,u) and lim, .., D¥(z,u) = D¥(z,u) for every
stationary policy w and a given initial state z. We are interested in the following three questions.
1. convergence of optimal values: When does lim,,_.., Cy,(z) = C(z)?

2. convergence of optimal policies: When is the limit of the policies which are optimal
(or “almost” optimal) for COP,, optimal for COP? This question is related to the problem
of approximating the optimal policy for COP by a policy which is (almost) optimal for some
COP,.

3. Stability of the optimal policy When is an (almost) optimal policy for COP almost
optimal for COP,?

Note that C'OP,, may not have any optimal policy even if it is feasible. Moreover, there
may not exist any e-optimal stationary policy for COP,. In Theorem 6.1 below, we answer
the two first questions. Its proof is based on ideas from Theorem 6.1 in [4] (which deals with
sensitivity of COP to the discount factor § in the finite case). In Theorem 6.2 we then use
the optimal policy for COP to construct almost optimal policies for COP,. We apply these

Theorems in the following section to obtain an Algorithm for finite state approximations of

COP.

Theorem 6.1 Assume

(1) A2 and that c(-,-) and d*(-,) are bounded below.

(2) lim,, oo Cr(z,u) = C(z,u) and lim,_o, DE(z,u) = D¥(z,u) for every stationary policy u
and a given initial state x, uniformly in v € U(S5).

(3) <1, or{f=1and A1, A3(i) hold as well as A }.

Then (i) lim, ., Cp(z) = C(z).
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(ii) Choose a sequence £, — 0. Let r(n) be a &,-optimal policy for COP, if COP, is feasible,

otherwise let it be an arbitrary stationary policy. Let w(n) be a stationary policy that satisfies

Ca(z,w(n)) < Cgz,r(n)), Dg(x,w(*n)) < Dg(x,r(n)), E=1,2,.. K. (6.1)

Let w be an arbitrary accumulation point of w(n), n = 1,2,... i.e. there exists a subsequence

{ni}52, such that for all z € X,a € A,

hm p,;j(nl) =

w
12— 00 y pa|y'

Then w is optimal for COP.

Proof: We begin by establishing (i). We first show that

lim Cp(z) > C(x) (6.2)

n—oo

Assume (6.2) does not hold. Then there exists some ¢ > 0 such that for every N > 0

there exists some m > N and a policy r” which is feasible for COP,, and
Cp(z,r™) < C(z) —¢€ (6.3)
According to Theorem 4.1 there exists a stationary policy u,,, feasible for C'O P, that satisfies
Clz,u™) < C(z,r™), Dg(af,um) < DF(z,r™), k=1,2,.., K (6.4)

Theorem 4.1 and A2 imply that there exists a policy v € U(5) and some positive real number 7

such that D¥(v) < Vy—n,forall 1 < k < K. Choose some 0 < a < 0.5 such that aC(z,v) < €/4,

and ¢ > 0 that satisfies 0 < 6 < min{5 ,na}. Fix N such that for all u € U(S) and for all
m >N

|Cr(z,u) — Cz,u)| < & (6.5)

|DE (z,u) = DF(z,u)| <6 k=1,2,.,K (6.6)

We then obtain
Clz,u™)<C(z)+6—¢ (6.7)



DF(z,u™) < DF (z2,u™) + 6 <V}, + 6 (6.8)

From Theorem 3.1 it follows that there exists some stationary policy u’ such that

Jsalz,w') = (1= @) foa(z, u™) + a fsa(z, v) (6.9)
It follows from (6.8) and (6.9) that ' is feasible for COP since by Lemma 3.1 or Lemma 3.2

DA, ') = Fua(,0') - @ < (1= @) (Ve +6) + (Ve — )

=Vi+t(l-a)f—an<Vi+6—an<V

From (6.7) and (6.9) we obtain by Lemma 3.1 or Lemma 3.2
C(z,u) = faalz,u') - c = (1-a)C(z,u™) + aC(z,v)

<(l-a)(Cz)+0—€e)+e/4<(1—-—a)C(z)+ (6 —€¢)/24+¢/4 < (1 —-a)C(x)

Since a can be chosen arbitrarily small, it follows that C'(z,u") < C'(z). But this contradicts

the definition of C'(z), which proves (6.2).

Next we prove that

Iim C"(z) < C(x) (6.10)
Let u* be a policy which satisfies
C(z,u)=c- fsalz,u), Dk(x,u) =d*. fsalz,u), k=1,.., K, (6.11)

and is e-optimal for CO P (its existence follows from Theorem 4.1 when choosing a stationary

policy). Choose a policy u(¢) that satisfies the linear representation (6.11) and such that

fsa(:v,u(e)): (1_€)fsa(x7U*)+€fsa(xav) (612)

(the existence of a stationary policy satisfying these requirements follows from Theorem 3.1,

and Lemma 3.1 or Lemma 3.2). It follows that

im DF(z,u(e)) = D*(z,u(€)) = (1 — €)D*(z,u*) 4+ eD*(x, v)

n—oo

<A—e)Vi+e(Ve—1n)=Vi—en (6.13)
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for all 1 < k < K. Therefore there exists some integer N (¢) such that for every € and n > N(e),
u(¢) is feasible for COP,. Since u(¢) may not be optimal for COP,, we clearly have

lim Cp(z) < lim Cp(z,u(e)) = C(z,ule)) < (1 - €)(C(z) —€) + eC(z,v) (6.14)

n—oo n—oo

where the last inequality follows again from (6.12) and the linear representation of the cost.

Since this holds for every €, (6.10) follows. This completes the proof of (i).

Next we prove (ii). From Lemma 10.3 in the appendix we have lim;_ ., fso(7,w(i,)) =
fsa(®,w). Hence for any k = 1,..., K,

0 = lim [D (e, w(in) — D, i)

1—00

= lim [D¥ (2, w(in)) = foa(z, w(in)) - d*]

1—00

IN

lim [DF (2, w(ir)) = foa(z, w) - d*]

1—00

= lim [k (@, 0(in)) - D¥(a, )]

< [V — Dk(x,w)]
where the first inequality follows from Fatou’s Lemma, and the second one follows from the

fact that COP, is feasible for all large enough n (this follows from (6.13)). Hence w is feasible

for COP. From the same argument it also follows that

0 < lim [CF (2, w(in)) = Cla,w)] = C(x) = C(,w)

1—00

Since C'(z) is the optimal value of COP, it follows that C'(z,w) = C(z).

Remarks: (i) The role of the uniform convergence of the cost (assumption (2) of the theorem)

in approximation methods appears already in previous literature on approximating models of
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non-constrained MDPs (see e.g. Lemma 5.4 in [17]).

(ii) Note that the convergence of the costs need not be uniform for (6.10) to hold.

Next we construct a policy which is almost optimal for CO P, for all n large enough.

Theorem 6.2 Let —M, M > 0 be a lower bound on the immediate costs c. Under the con-
ditions of Theorem 6.1, u(€) defined in (6.12) is é-optimal for COP, for all n large enough,
where ¢ = €[C(z,v) + M + 3].

Proof: For all n large enough, COP, is feasible (this follows from (6.13)); moreover,

Cu(z,u(e)) < Cz,u(e)+e<(1—-€¢)(C(z)+¢)+ eC(z,v)+ ¢ (6.15)
< Cu(z)+2e—eClz)+ eC(z,v)+ € < Cp(z) + €[C(z,v) + M + 3] (6.16)

where the second inequality in (6.15) follows from (6.14), and (6.16) follows from Theorem 6.1
(). m

7 Approximating the dynamics, finite approximations

In this Section we consider the problem of approximating the Controlled Markov Chain (CMC)
which is characterized by the dynamics (i.e. the transition probabilities) Pe, by a sequence
of Controlled Markov Chains C'MC), governed by the dynamics {Pyqy(n)}, n = 1,2,.... We
denote by CP(z,u) and DZ(z,u) the costs (given in (2.3)) under policy u and initial state x
corresponding to C'MC,, and discount factor 5 (0 < § < 1). We shall construct the CMC),
such that for all z,y € X, ¢ € A lim,_.oq Pray(n) = Pray. We then show that the construction
ensures that lim, ., C2(z,u) = CP(z,u) and lim,_., DEP(z,u) = D*P(z,u), k = 1,..., K
uniformly in w € U(S) and hence by Theorem 6.1 lim,,_.., C2(z) = C#(z). We shall often use
the notation CMC\, for CMC.

Introduce the following approximation scheme FA:
(i) For each n = 0, ... the state space is decomposed in two disjoint classes of states: E™, which

contains a finite number of states, and T7.
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(ii) Under any stationary policy u, E™ is a recurrent class, 7" is a transient class, and absorption
into the positive recurrent class takes place in finite expected time from any initial state.

(iii) B C Epg1,n=1,...; By :={0}; B = X.

(iv) The following holds:

Z Pﬂl?] z,y € En
Pzay(n) =0 TeEn,y € En (71)
=y =1} z ¢ By

(v) There is some partial order on X. For any , Py,qe(n) are stochastically non decreasing in
n, n = 1,2,...,00. This is equivalent to the following (see e.g. [26] p. 256): for any function

h: X — IR which is non decreasing w.r.t. the partial order, we have for 1 < n < m < oc:

> Poay(m)h(y) < Paay(m)h(y) (7.2)

yeX yeX

(vi) For any n, Ppqe(n) are stochastically non decreasing in z, n = 1,2, ..., 00. This is equivalent
to the following (see e.g. [26] p. 256): for any function i : X — IR which is non decreasing

w.r.t. the partial order, we have for < z (w.r.t. the partial order):

> Pray(m)h(y) < Y Pray(n)h(y) (7.3)

yeX yeX

There are two general applications of finite approximations, where FA is used:
First application: the objective is to construct approximating CMC,,. In that case FA(v)

can be achieved by choosing

= Po;ay rve kb, ye by
Z Pzay HANS En7 ) € En\En—l
=y =1} v ¢ En

FA in general, and (7.4) in particular, imply that an optimal stationary policy can be found

for the approximating dynamics using a finite LP [19], where the state space is composed of
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{z}U{l1,...,n}.

Second Application: the objective is to use the original CMC in order to approximate C M C),
for n large enough. This is useful in control of queueing networks, where often the control
problem with infinite buffers is much easier than the control problems with finite buffers. The

state space in problems with infinite buffers is typically multi-dimensional with elements x =
{z1,...,21} € IN* representing the vector of queues’ length, where as for the case of finite buffers
of sizes R = {Ry, ..., R} the state space is X(R) = Hle{(), 1,...,Rr}. FA is then typically
satisfied, and Prqy(n) has the form of (7.4). In that case, (v) is typically satisfied since the
finiteness of the buffers inhibits in some states to go to larger states, where as transitions to
lower states stay unchanged. (vi) is also quite natural in queueing systems, and its intuitive

meaning is that if in system 1 there are at least as many customers than in system 2, which is

identical, then after one transition we still have at least as many customers in system 1 as in 2.

For u € U(S), denote P} (n) := 37, Pray(n)py, and let fP(n;z,u) denote the corre-

sponding occupation measure.

Theorem 7.1 Consider a sequence of finite approximations C'O P, obtained by applying FA.
Assume A2, and { Al, A3(i) and A4 } or B < 1. Assume moreover that (i) both c(-,-) and
d*(-,), k= 1,..., K are bounded below and non decreasing in X; (ii) C(z,u) and D*(z,u), k =
1,..., K are continuous in u € U(S). Then

(1) lim,,_,o, Cp(z) = C(z).

(2) Choose some € > 0. Let u* be an c-optimal (or optimal) policy for COP that satisfies (6.11)
(e.g. any e-optimal stationary policy). There exists some N(€) such that for all n > N(€), the
policy u(e€) satisfying (6.11) and (6.12) is é-optimal for CO P,,, where é is given in Theorem 6.2.
(3) Choose a sequence &, — 0. Let r(n) be a &,-optimal policy for COP, if COP, is feasible,
otherwise let it be an arbitrary stationary policy. The stationary policy w obtained by applying

the limiting procedure in Theorem 6.1 (it) to the policies r(n) is optimal for COP.

Proof: Let 2 : X — IR be an non decreasing function. (7.2) and (7.3) imply that for any
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we U(S)and N =2,

S OPUmINAy) < D[P m) - (PU(n) N ayh(y)
yeX yeX
< Z [P"(m) é\;h(y), 1<n<m<oo,VzeX (7.5)
yeX
S P )SAy) < 3PN Ay), 2 <5 Vne N (7.6)
yeX yeX

This easily extends to any N € IN. It follows that for any 0 < 3 < 1, fZ (n;z,u)is stochastically

non decreasing in 7, and so f2(n;z,u)- ¢ are non decreasing in n. In particular,
Jim. B (nyz,u)-e < f2(x,u) ¢ (7.7)

and similarly with d*, k = 1, ..., K. We shall show that in fact these inequalities are achieved

with strict equality. For any finite set K € X x A, Let h : X Xx A — 1R be given by h =
1{(y,a) € K}. Tt follows that f2(n;z,u)-h < f2(x,u)-h and hence f2 (n;z,u) are tight.

Therefore lim,,_.o, f2(n;z,u) = f2(z,u) By Fatou’s Lemma we thus obtain
lim f2(n;z,u)-c¢> f2(x,u)-c (7.8)

and combining that with (7.7) yields lim, ., f2(n;z,u)-c = f2(z,u) - c and similarly with
d*, k = 1,...,K. Next we show that this convergence is uniform in U(S). ¢ - f2(n;z,u) is
continuous in u € U(S) (for n = oo this follows from assumption (ii)). Since LZ(9) is compact

(Theorem 3.1), and since f2(n;z,u)-c is monotone in n, the uniform integrability follows (see

[30] p. 150 Thm. 7.13). The Theorem now follows from Theorems 6.1 and 6.2. [

Remarks: (1) The restriction that the immediate cost are non decreasing is quite natural in
queueing systems whenever the cost represents quantities as delays and blocking probabilities.
(2) A sufficient condition for Assumption (ii) in the theorem is the uniformly integrability of
the immediate costs ¢ and d* w.r.t. f2(z,u), u € U(S). Indeed, it follows from Lemma 10.3 in
the appendix that for every 1 < n < 0o, f2(n;z,u) is continuous in u € U(S). This implies by
the uniform integrability, that ¢ - f2 (n;z,u) is also continuous in u € U(S). Other sufficient

conditions for this continuity can be found in [31] p. 97-98.
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8 Second approximation scheme

We present below a general scheme for finite approximations for constrained problems, based on
arbitrarily picking the probabilities of choosing the different actions in all but a finite number
N of states. Then the probabilities in the remaining N states are chosen so as to optimize the
constrained problem. We present conditions under which this scheme indeed approximates the

optimal policy for the original constrained problem.

Without loss of generality, we shall assume that the state space is given by X =
{0,1,2,....}. Let w be any stationary policy. Let U™ be the set of stationary policies that
behave exactly like w in states y > n, i.e. pgw = p;ﬂy for all y > n, @« € A and uw € U™. Denote

by C'OP, the restriction of COP to U™.

Theorem 8.1 Assume A2 and that both c(-,-) and d*(-,-), k = 1,..., K are bounded below and
uniformly integrable w.r.t. f2(z,u), uw € U(S). If either (a) B < 1 or (b) Al, A3(ii), A} hold,
then lim,,_,o, Cp(z) = C(z).

Proof: Clearly lim, . C,(z) > C(x). We prove below that lim,_., C,,(z) < C(z) which

establishes the proof.

Let w* be any policy which is optimal for COP. It follows from A2 that there exists a
stationary policy v and some positive real number 7 such that Dk(v) <Vi—n,foral 1 < k< K

(see proof of Theorem 6.1). Choose a stationary policy u(e) such that
Fua,0()) = (1= ) Foa (2, 0) + a2, ) (8.1)
It follows from (8.1) and the linear representation of the cost that
Cla,u(e)) = (1 - C(x) + «C(z,v)

and

Dz, u(e) < (1= Vi 4+ e(Ve — 1) = Vi — en, 1<k<K. (8.2)
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u(e,n) u(e)

aly | = Paps Y <My @€ A. Since

Let u(e,n) € U(n) be the stationary policy given by p

u(e,n) — u(e), it follows from the uniform integrability of the immediate cost and from Lemma
10.3 in the appendix that
lim C(z,u(e,n)) = C(z,u(e))

n—oo

and

lim D*(z,u(e,n)) = D*(z,u(e)), k=1,..,K

n—oo

Choose some 0 < ¢ < en. Hence we see from (8.2) that there exists an integer N (¢, §) such that
for any n > N(¢,6),
Clz,u(e,n)) < C(z,u(e))+ 6

DF(z,u(e,n)) < Vi+6—en, k=1,..,K

and hence u(e, n) is feasible for COP. But then, since u(e,n) € U™, we have
Cu(z) < C(z,ule,n)) < C(z,u(e)+ 6 = (1 —€)C(z)+ eC(z,v)+ 6 (8.3)

Since € and § can be chosen arbitrarily small, we obtain lim,,—, C(z) < C(z), which establish

the proof. [ ]

Theorem 8.2 Assume thal the conditions of Theorem 8.1 hold. Then for any n, there exists
an optimal stationary among U™ (defined above Theorem 8.1) for COP,. Choose a sequence
&, — 0. Let r(n) be a &,-optimal policy for COP, if COP, is feasible, otherwise let it be an
arbitrary stationary policy. Let w be an arbitrary accumulation point of r(n) (see Theorem 6.1

(i7)). Then w is optimal for COP.

Proof: Since lim,_.., C,(z) = C(z), it follows that for all large enough n, COP, is feasible.
r(n) are thus feasible policies for both COP,, and COP. It follows from the uniform integrability
and from the continuity of f2(z,u) in u € U(S) (see Appendix, Lemma 10.3) that C(z) =
lim, oo Cp(z) = lim, o C(z,7(n)) = C(z,w) which establishes the Proof. [ |
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9 Application to a queueing model

Consider the following discrete time system ([1], [2] Section 6, [23], [29], [31]). Packets of
information of N different types, such as data files, video and voice signals, compete for access
to some shared resource. Each type of arriving packets waits in a large buffer till it gets access
to the resource. At the beginning of each time slot, priority is given to one of the traffic
types according to some prespecified decision rule, and the packet is served for one unit of
time. Service problems and errors due to noises are modeled by allowing the service to fail
with positive (class dependent) probability. If the service is successful, the packet disappears
from the system; otherwise, it remains in the queue. The problem CO P, cyes is to find a
scheduling policy that minimizes a linear combination of the average delays of some types of
traffic (typically, of the noninteractive types) subject to constraints on (linear combination of)

average delays of other types (typically the interactive traffic).

All previous research on this constrained model assumed infinite buffers, for which opti-
mal policies with a simple structure exist ([1], [2] Section 6, [23], [29], [31]). There is however no
known solution for this constrained problem in case that the buffers are finite. In that case, an
arriving packet that finds its buffer full is lost. Our finite approximations techniques developed
in previous sections enable to obtain almost optimal policies for the case that the finite buffers

are large enough.

We begin by considering the model with infinite buffers. At time ¢, M} customers arrive
to queue i, 1 < i < N. Arrival vectors M; = {M}, ..., M} are independent from slot to slot
and form a renewal sequence with finite means A;. During a time slot (t,t+1) a customer from

any class i, 1 <7 < N may be served, according to some policy, which is a prespecified dynamic

priority assignment. If served, with probability u; it completes its service and leaves the system;
otherwise it remains in its queue. A generic element of the state is given by z = {z', 22, ..., 2V}
and it represents an N dimensional vector of the different queues’ sizes. Throughout we restrict

to non-idling policies.

We assume the standard stability condition on the traffic intensity p := SN, A /s < 1.
Consider the linear cost function ¢(z,a) := SN, ¢;z° and d*(z,a) = YN, d¥ai for 1 <k < K,

where ¢; and d¥ are non-negative constants. Thus the costs C(z,u) and D*(z,u) are related to
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linear combinations of expected average length of the different queues, and C'O P,ycyes has the
form: find v € U that minimizes C(z,u) s.t. D*(z,u) < Vi, k = 1,..., K, where V}, are given
constants. Consider the expected average cost. By Little’s law these quantities are proportional

to the respective waiting times in the different queues.

Let G = {g;} be the set of all strict priority policies, i.e. each type of customer has
an index, and a customer of a given type is served only if there are no customers with lower
priority in the system, and if it is the first in its buffer. Let |G| = L. For the unconstrained
control problem, there exists an optimal policy within G; it is the so called “pc rule, for which
the priorities are set according to increasing order of the yu;c; (see [7]). Thus, the queue for
which p;c; is the largest has the highest priority, and so on. Optimal policies for CO Pyyeyes
are obtained by time multiplexing between the different g;’s. More specifically, define an L
dimensional vector parameter @ = {ay,aq,...,ar}, where a is a probability measure. Define
a “cycle” as the time between two consecutive instants that the system is empty. During any
cycle, a fixed g; is used. A PTS policy & is defined as a policy that chooses different policies g;
in such a way that the relative average number of cycles during which g; was used is equal to

a;, as t goes to infinity. (The exact definition can be found in [1]). It is shown in [1] that

75111(1‘7 d) = Z ajfsla('r7gj)
and

L L
Ci(z,a) = c- f,(z,6) =Y aje- fi,(e,95) = Y a;jCi(z, g)).
7=1 7=1

For a given § > 0, consider the following LP: find a € M ({1, ..., L}) that

L
minimize Z a;Cy(z,9;)
j=1

L
subject to Zaij(x,gj) < Vi — 6, k=1,...,K
J=1

The quantities Cy(z,g;) and Df(z,g;) can be obtained as in [23]. Let a*(6) be the solution of

LP with a given 6. Then &*(0) is an optimal policy for CO Pyyeyes. Under A2, it can be shown
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that there exists some 6* > 0 such that a*(8) is feasible for C'O Pyyeyes (this follows from the

fact that the PTS policies are sufficient for C'O Pjyeyes, see [1]).

In the following Theorem we consider a sequence of problems CO Py, ., for the systems

with buffers of sizes R" = {RY, ..., R}}, 1 < n < oo, where CO Py is the one with all buffers

UEUES
infinite, and R™ C R™*! (where the inclusion is strict). Assume without loss of generality that

the initial state z satisfies z € NS, R".

Theorem 9.1 . Assume A2 and 3 =1. Then
(i) im,, o Cp(z) = C(x).
(ii) Choose some 0 < € < 1. Let u(€) be the PTS policy with

a=ca*(6%) + (1 —€)a™(0).
Then for all n large enough, u(e) is é-optimal for COP}, .., where € = €[C(z,a*(6*)) + 3].

(7i1) In case that there are no constraints, for every € > 0 there exists some N (¢) such that the

“we” rule is e-optimal for COPy,.,.s for all n > N(e).

Proof: It is shown in [2] p. 804 that Al and A3(i) hold. It follows from [21] Corollary 5.1.1
that ¢(z) and d*(z), k = 1,..., K are uniformly integrable w.r.t. f,(z,u), v € U(S). Hence
C(z,u) and D*(z,u), k = 1,..., K are continuous in v € U(S). (An alternative proof of this
continuity is obtained by combining Thm. 9.1 p. 143 in [31] and the first line in [31] p. 98).
The conditions of FA are easily seen to hold for this problem. The proof of (i) and (ii) then

follows from Theorem 7.1. Note that A4 is satisfied since there are no transient states under

any u € U(5) (see [21]). In the absence of constraints, a*(6*) = o*(0) is the “uc” rule and thus

(ii) implies (iii). |

Remark: It follows from Theorem 4.1 that the stationary policies are optimal for C'O Pyyeyes
with infinite buffers also for the case that 8 < 1. Since the “uc rule is known to be optimal
for the discounted unconstrained problem with infinite buffers, it seems that by appropriately
multiplexing between policies in G, using randomization, one can obtain an optimal policy for
CO Pyyeues for B < 1 using a similar LP as above. An e-optimal policy can then be obtained

for the case of finite buffers and 8 < 1, as in Theorem 9.1.
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10 Appendix

We present below three Lemmas. The proof of the first two is given in [6].

Lemma 10.1 Let P be a stochastic matriz on X x X. Then (I — 3P)™1 = 352,87 P?, i.e.

o0 o0

OB P)I-pP)=T=(I-pP)y FP (10.1)

=0 i=0
where PO %' [ is the identity matriz.

Lemma 10.2 Let P,, n = 1,.... and P be stochastic matrices on X x X such that lim,_.., P, =

P (the convergence is componentwise or equivalently in the product topology T(X)X). Then

Tim (1-8) Y FIRY = (1-8) Y F(PY
7=0 7=0
Lemma 10.3 Assume either Al and A3(ii), or § < 1. Let w(n) and w be stationary policies

such that lim,, . w(n) = w. Then

lim foo(z,w(n)) = fs(z,w). (10.2)

n—oo

Proof: It easily follows that the transition probabilities converge pointwise: lim,,_, pun) =

PY. For 3 < 1, (10.2) then follows from Lemma 10.2. For § = 1, this follows from the continuity
of 7 in uw € U(5), which holds by A3(ii) see [18] p. 82. [ |
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