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~-COMPUTATIONAL FLUID DYNAMICS WITH
IRREGULAR GRIDS ON THE CONNECTION MACHINE

Charbel FARHAT. Loula FEZOUI. Stéphane LANTERI

ABSTRACT : Here we report on our recent effort in solving two dimensional
Euler equations on the Connection Machine model CM-2. using a mixed fi-
uite volume/finite clement method on Inlly unstructured grids. Because the
tesh irregularities inhibit the use of the North-East-West-South (NEWS) fast
comuunication tmechanism, we focus on the development and implementation
of & communication efficicnt strategy for mapping thousands of processors ar-
ranged in a hypercube topology onto an arbitrary mesh. The main objective
is to minimize the interprocessor communication costs that are induced hy the
ROUTER. while still maintaining a high level of parallelisin and load balancing
in the computations. We report performance results for internal and external
flow problems which indicate that a 16K CM-2 with single precision floating
poiut arithmetic is at least as fast as one processor CRAY-2 and in some cases
twice as fast for solving such problems. and this for a virtual processor ratio
(VPR) as small as one.

CALCULS EN DYNAMIQUE DES FLUIDES AVEC DES
GRILLES IRREGULIERES SUR LA CONNECTION MACHINE

RESUME : Ou présente ici les résultars de notre travail pour résoudre les équa-
tions d'Euler bidimensionnelles sur la Connection Machine CM-2. en utilisant
une wéthode mixte déments/volumes finis sur des grilles irrégulicres. Le car-
actére non-structuré des maillages en ¢léments finis ne permet pas atilisation
des mccanismes de communication performants en grille (NEWS). Nous nous
concentrons done sur le développement d'une stratégie efficace pour appliquer
des milliers de processcurs arrangés cu une topologie hypereube. sur un maillage
arbitraire. Lobjectif recherché est la minimisation des cofits de communication
unduits par utilisation du ROUTEUR. tout en maintenant un haut degré de
parallélisme ot une répartition effcicace des caleuls locanx. Nous présentons des
résultats nmuériques pour des écoulements internes ot externes qui monrrent
quune CM-2 avec 16K processcurs physiques et des accélérateurs de caleuls
flottants en simple précison, est au woins aussi rapide qnun CRAY-2 mono-
processeur {double précision) et dans certaius cas deux fois plus rapide. et ceci
sans A mise en jen de processeurs virtuels.
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1 Introduction

In our previous study [15], we have reported on our first experiments on
Computational Fluid Dynamics on the Connection Machine CM-2. It has
been shown that the massively parallel CM-2 is particularly well suited to
structured computations. Communication steps on regular grids were per-
formed using the NEWS (North-East-West-South) fast communication mech-
anism. Consequently, at high virtual processor ratio (VPR), the communi-
cation part of the computations did not exceed 10% of the total CPU time;
moreover, high efficiency rates of 2 GFLOPS were deduced for the 64K pro-
cessors machine. We were also motivated by comparisons with a classical
supercomputer such as the CRAY-2. We have shown that for non-viscous
(Euler equations) and viscous (Navier-Stokes equations) computations on
structured grids, the CM-2 was respectively 16 and 24 times faster than the
CRAY-2 mono-processor (again these ratios were deduced for the complete
configuration).

In the present work we discuss our recent effort in solving two-dimension-
al Euler equations on the CM-2 using a mixed finite volume/finite element
methods on fully unstructured grids. We are interested in both steady and
unsteady simulations of two-dimensional compressible flows around arbitrary
geometries. The domain of interest is discretized using triangular finite ele-
ments yielding to completely unstructured grids. In section 2, we first recall
the mathematical modeling of the problem; we then derive first-order and
second-order spatial schemes that are characterized by an upwind integra-
tion of the convective fluxes. Second order accuracy is obtained through
a MUSCL (Monotonic Upwind Scheme for Conservation Laws) technique.
Finally time integration is obtained with an explicit (and therefore nicely
parallelizable) Runge-Kutta method.

Because the mesh irregularities inhibit the use of the NEWS mechanism,
we have to develop an efficient scheme for carrying out communications of
an arbitrary pattern. In section 3 we describe a strategy for mapping thou-
sands of processors, arranged in a hypercube topology, onto an unstructured
grid. The key elements of this strategy are given by the selection of an ap-
propriate parallel data structure, the partitioning of a given unstructured
grid into subgrids, and the mapping of each individual processor onto an en-
tity of these subgrids. The main objective is to minimize the interprocessor
communication costs that are induced by the general communication mech-
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anism (the ROUTER), while still maintaining a high level of parallelism and
load balancing in the computations. The principal difficulty relates to the
fact that the mesh topology is given only at run time (problem dependent)
-~ and can hardly be embedded ontn a hypercube. The parallel data struc-
ture is selected as to introduce a high level of parallelism in the selected
algorithm while minimizing the storage requirements per processor and the
overall number of redundant operations. Whenever the resulting communi-
cation patterns are compiled during the first iteration or time step, the total
time elapsed in interprocessor communication using the router is drastically
reduced to represent in some cases only 6% of the total CPU time of the
simulation.

The performance of the resulting massively parallel schemes is assessed
in Section 4 on the Connection Machine CM-2 for various mesh densities
and various CM-2 sizes. Performance comparisons of the presented solu-
tion algorithms with vectorized versions where scatter/gather manipulations
are treated with a coloring technique (Farhat and Crivelli [5]) indicate that
for such irregular problems a 16K CM-2 with single precision floating point
arithmetic is at least as fast as one processor CRAY-2 and in some cases
twice as fast, and this for a VP ratio as small as one.

We also point out that additional work related to Computational Fluid
Dynamics (CFD) on the Connection Machine can be found in Jespersen and
Levit [14], Long [16], Egolf [4] and Clary, Howell and Karman [2].




2 Numerical solutions of the Euler equat-
ions

2.1 Mathematical modelling

In this section we recall the mathematical problem to be solved and set some
definitions and notations which are used in the sequel.

2.1.1 Governing equations

Let Q C IR? be the flow domain of interest and I’ be its boundary. The
conservative law form of the equations describing two-dimensional Euler flows
is given by :

oW OF(W)  3G(W)

(1) Bt Bz oy O
p
— | P _ e
W = v | T (W™ k=14
E
pu pv
A puf +p puv
1‘ W = 5 G VV = o
wy=| " wy=| &
u(E + p) v(E +p)

where p is the density, U = (u,v) is the velocity vector, E is the total energy
per unit of volume, and p is the pressure of the fluid, with the equation of
state given for a perfect gas as : '

1 S
(2) p=(v-1)(E-30[UIF)
7 is the ratio of specific heats (y = 1.4 for air). We introduce the vector

(3) Fw) = (Gow))

The conservative system (1) can be rewritten in the following vector form
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ow = -

(4) 5t VFW)=0

where ¥V = (-(%, (%)

We recall that system (1) is a hyperbolic system, so that for every couple
of real (a;,a;), the Jacobian matrix P(ay,a; W) = o F' (W) + ;G (W)
is diagonalizable in the diagonal matrix A(ay, az, W) = diagM**)(ay, az, W)
and its right eigenvector matrix is denoted by T(ay,az, W). For any real
function f, we can define :

J(P(ar, a2, W)) = T~ (o, a2, W)diag [f (A" a1, 00, W))] T, 0, W)

2.1.2 Boundary conditions

We are mostly interested in external flows around airfoils; then the domain
of computation 2 is delimited by the boundary I' = I’y U . Let 71 be the
outward unit normal at any point of the boundary I' (see Figure 1).

Ueo

Figure 1 : The computational domain

The flow is assymed to be uniform at infinitiy, and the variables to be
non-dimensionalized by the free-stream vector W, given by :
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= cosa 1
5 = .. = =
( .)) Poxc: ]. y [ ~o ( sina ) ’ poo ’7M°20

where « is the angle of attack and M, denotes the free-stream Mach number.
On the wall boundary Iy, we assume the slip condition :

(6) | U.it=0

2.1.3 Definitions

We assumie that Q is a polygonal bounded domain of IR®. Let 7, be a
standard triangulation of 2 and h the maximal length of the edges of the
triangles of 7). We need to introduce the following notations.

For every vertex Si(¢ = 1,...,ns) of 7, the cell C; is the union of the
subtriangles resulting from the subdivision by means of the medians of each
triangle of 7, and having S, as a vertex (see Figure 2). The boundary of
C; is denoted by 9C; and the unit vector of the outward normal to dC; by
Vi = (Via, Viy)- The union of all these cells constitutes a partition of domain
Q.

Figure 2 : Control volume in an unstructured grid
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For every vertex S;, K(¢) is the set of neighboring nodes of S;. We recall
that ¥, is the characteristic function of the cell C; defined as :

e 1 i Xec
Wi(X) = { 0 otherwise

We introduce the following discrete spaces (where P is the space of poly-
nomials in two variables of degrees 1) :

vh = {Uh , Up € C“(Q)7vh IT€ Pl)vT € 7;1}
W;, = {2);,} l vy € LZ(Q),’U;, IC'.: V; = const;i =1, ...,ns}

Any function ¢ belonging to V), is uniquely determined by its values o(S;)
at each vertex S; and if we note (N;)%¥, the basis set of V), we have :

p(X)= 3 (S)Ni(X)

1=1.ns

There exists a natural bijection between spaces Vj, and W), defined by :

Voe Vi, Se(X)= 3 »(S)¥(X)

1=1.ns

2.2 Upwind approximations

First. a systematic procedure is developed for extending any 3-point scheme
defined by a numerical flux function to the case of irregular mesh triangula-
tions. Next, an extension to high order approximations is proposed.

2.2.1 First-order accurate scheme

Consider a 1-dimensional system of conservation laws with a flux function
given by F : IR™ — IR™, where m is the dimension of the system :

W oW .
(7) 5 TAW)Z==0 WeR

The matrix A(W) = dF/dW is the Jacobian matrix of the flux func-
tion. It is well known that a 3-points conservative finite difference scheme is
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characterized by its numerical flux function ® (U, V) which depends on two
variables U and V' and satisfying the consistency equation ®x(U,U) = F(U).
The expression of the semi-discretized approximation of (7) is given by :

ow, 1

(8) TN

with

(%41 - 1) =0

2 i-g

2

P, = O (Wi, Wis1)

&,y = dp(Wisy, W)

1— =

where W, is the value of the numerical approximation W), of the solution of
(7) at z = Az, Ax being the discrete spatial increment. A two-dimensional
extension of this class of schemes is constructed as follows. First, a variational
approach of equation (1) is derived as :

Find W, € (Vi)", Vor € W

(9) / / ‘9:" ondzdy + / / V. F(Wa)S(ea)dzdy = 0
Q Q

The above formulation can be called a finite volume Galerkin (FVG) ap-
proximation. Treating also the left-hand-side integral of (9) with the operator
S leads to a mass-lumped variant of the variational approach of equation (1).
Choosing the function ¢, as a shape function N; associated to the node S;
and integrating by parts the above equation on each cell C; transforms the
problem into :

Find Wh € (Wh)m

(10) /C/ B—Z—"idacdy - —0!' F(W,).7:do

Equality (10) above expresses the flux balance for the control volume C;.
Specifying the approximation for computing the right-hand-side integral in
(10) completes the description of the spatial integration scheme. For that
purpose, the boundary 0C; of the cell C; is split in bi-segments 0C;; which
join the middle point of the segment [S;S,] to the centroids of the triangle
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having S; and S; as common vertices (see Figure 3). Let us introduce the
notations :

GZ.iJ
—
Va2
I;

51 [ 4 —@ S]‘

—
vV,

Ghyj

Figure 3 : Definition of 9C;;

After the following quantities are defined :

F(U, ;) =FU). / 7, do

oC,,
A(U,5,) = F'(U) / vido + G (U) / V! do
oC,; oc,y,

0 = -
= S FW)). [ #ydo
ac,,

problem (10) becomes :

Find W, € (W,)™
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//%dd —Z/ (Wi)7ydo <15

J€kligC, y
(11) - / f(ﬁ";,‘).ﬁ,’dd <2>
' ac.nr,
- / FW,)mdo  <3>
9C,0T 5

Let H{}' denote the first term < 1 > of the right-hand side of (10). The
computation of this term will involve the numerical flux function & of a
first-order accurate upwind scheme described in (8) by :

HY) = &g, (W, W,,5,)

3]

where W, = W,,(S;) and W; = W,(S;). We recall the definition (by their
numerical flux function) of the first-order accurate schemes we have used in
this study :

o Van Leer’s flur vector splitting [20] (see also [11] for a complete descrip-
tion of this flux in the case of finite-elements mesh)

(12) oYL (U, v, ) =|| 71| Ry* (FH(U) + F~(0))

e Steger and Warming’s scheme [18]
(13) OV (U,V,7) = A* (U.7)U + A~ (V,7)V

2.2.2 A second-order extension

The numerical integration with an upwind scheme as descrided previously
leads to approximations which are only first-order accurate. We present a
modification of problem (11) in order to get a second-order accurate solu-
tion without changing the approximation space. The key ingredients fro
constructing such a second-order accurate approximation are :

(1) A dissipative first-order accurate (quasi-monotone) scheme,

(2) A second-order scheme derived from the previous one by using linear
interpolations in the computations of the fluxes,
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(3) A limiting procedure which reduces the oscillations of the solution.

A construction of this type is introduced in [19]; It is developed in the
present context as an extension of Van Leer’s M.U.S.C.L. (Monotonic Up-
wind Scheme for Conservation Laws) method [21] to the case of unstructured
meshes.

In the one-dimensional case, the method is based on a linear interpolation

1 1
of W in each interval [, = [(i — E)AI, (i + i)Ax] as :

W(x) =W, +(z—z,)P, for z €I

Wit — Win

F = 2Azx

The fluxes are computed with the values :

" Az
Wiy =Wt 55

, Az
Wi';y = Wz‘+1 - —2—P-i+1

of W at each side of the interface Tipy- The spatially second-order accurate
version of (8) is then given by :

<0Wh

1
(14) ﬁ_)fﬂ(@”% —@i_%)‘—‘o

with

@1«4_% :<I>F(Wi+%—,Wi+%+)

q)i—-l- = d)F'(W{._l'7W,'..l+)
2 2

2

2.2.3 Interpolation in the two-dimensional case

In the two-dimensional case, a second-order accurate approximation requires
the evaluation of the gradient of the solution at each vertex. Clearly, the
gradient of a function v, of V, is constant in each element is and discontinuous
in the domain. Following the M.U.S.C.L. method, one way to reach the
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second-order spatial accuracy is to evaluate fluxes with extrapolated values
Wi;, W;, at the interface 3C;NOC;. The resulting scheme is a direct extension
of the first-order accurate scheme (11) and is formulated as :

Find W), € (Wy)"

[ tinr= ~ 3
C,

- JEK ()
- (15) - [ FW)dido
' aoC, NIy,
- / F(\W).A.do
0C, Al
where
H’(.lz} :d)}-u(wij’”/jn 171])
1 = -
(16) Wy =W+ =(VW).5:S;

[V}

1 - -

and where the approximate nodal gradients (VW); are obtained from the
Galerkin gradients as follows :

. .1
(17) (W) = /C/ YW |7 dzdy

The outcome is a half-upwind (Fromm-like) scheme which is spatially
second-order accurate but may present spurious oscillations in the solutions,
expressing a loss of monotony. One way to circumvent this problem is to
apply a slope limitation procedure.

2.2.4 The limiting procedure

In order to measure the upstream and downstream variations of the unknown

on the segment .Q:Sj, fictitious values W , W}, are introduced in addition

to the nodal values W; , W;. These fictitious values are indeed nodal values
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at points ¢ + 1, ¢ — 2 if a structured grid is used (j = ¢ — 1). W}, and W,
are derived from the nodal gradients (17) as follows :

W =W, - 2(VW).55; + (W, - W,)
(18)
Wi =W, = 2(VW),.5;S; + (W, - W})
The limited slopes are obtained using the van Albada limiter which can
be written as :

dW; = Awverage <Wj - W, W, - W,;)

(19)
dW, = Average (Wi - W,, W, - W},)
where
b2 2 bla® 2
A+ e) T UTHE) it a0
a? + b% + 2:-
(20) Average (a,b) =
0 otherwise

Finally the limited arguments for the numerical flux function ® are com-
puted as :

Wg'" =W, + %dWi
(21)
Wi =W, + 3dW,

The resulting scheme (15) is now second-order accurate (except at the
extrema) and the solutions it generates are oscillation-free in most cases
(transonic flows). Howevcer, positiveness may be lost with more severe con-
ditions such as high Mach numbers. More details about such techniques for
unstructured grids and other limitations procedure may be found in [10].

2.2.5 Boundary conditions

The second term < 2 > and the third term < 3 > of the right-hand side of
(15) contain the physical boundary conditions. These are represented by the
vector W, which involves quantities that depend on the interior value W,
and quantities that are determined by the physical boundary conditions.
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Wall boundary : the vector W), is assumed to satisfy the slip condition
thus term < 2 > is computed as :

0
(22) / F(W,).Aido = / P | do
ac.nry, ac.AT, '0 t

where p 1s taken as the interior pressure. (Note that in this procedure, the
slip condition is applied in a weak variational way, as in cell-centered finite
volume formulations).

Inflow and outflow boundaries : at these boundaries, a precise set of
compatible exterior data which depend on the flow regime and the velocity
direction, is to be specified. For this purpose a plus-minus flux splitting
is applied between exterior data and interior values. More precisely, the
boundary integral < 3 > is evaluated using the flux-splitting of Steger and
Warming [18] :

(23) / FW,)dido = A (Wi, 5ioa). Wi + A~ (Wi, Tios) Wee

0C, Nl «

2.3 Time integration

Once the spatial discretization is accomplished we obtain the following sys-
tem of ordinary differential equations :

dW
7+¢(W) = 0

Because it lends itself to massive parallelism, the explicit Runge-Kutta
method is selected for integrating the above equations. A 3-step variant is
used here. It is summarized as :
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W(()) — Wn.
At
WA =W (W)
T )
! W@ =W - %'II)(W“’)
W@ = WO - Atygp(W?)
W-n.+l — W(S)

The above scheme is often referred to as the low-storage Runge-Kutta
method as only the solution at substep a — 1 is used to compute the one at
substep a. It is third-order accurate in the linear case but only second-order
accurate in our case.
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3 Parallel implementation on the CM-2 .

Clearly, discrete expressions from the previous section, reveal that both the
spatial and temporal integrations are in principle nicely parallelizable. In this
section, our interest lies in investigating the most efficient way to implement
these computations on a massively parallel Single Instruction Multiple Data
(SIMD) computer such as the Connection Machine CM-2. Here, efficiency
relates to both performance and software architecture flexibility issues. In
particular, we would like to implement all of first and second-order schemes
for inviscid and viscous flows, within the same code. Special care is given
to interprocessor communication because mesh irregularities inhibit the ex-
ploitation of the NEWS grid and require the use of the relatively slow router.

3.1 The parallel data structure on the CM-2

Behind the performance of any parallel algorithm lies the choice of the cor-
responding parallel data structure. The latter is closely related to both the
entity and the task to be assigned to each processor. Therefore, all of the
computational, communication and mewmory requirements should be consid-
ered before the distributed data structure is determined. For the mixed finite
volume/finite element computations presented here, the node (vertex, grid
point), element, edge, and cell data structures are all possible candidates.

While regular grids are most often characterized by their number of nodes,
irregular grids can be characterized also by their number of elements or edges.
Here, we assume for simplicity that 7}, is characterized by its number of nodal
points. Euler’s relations for a triangulation state that :

number_of nodes +number_of_elements
—number_of _edges = 1
2 x number_of _edges —number_of_boundary_nodes
= 3 x number_of_elements

which leads to :

2 x number_of_nodes
3 x number_of_nodes

number_of_elements
number_of _edges

2 &

Therefore, if 7, is designed, for example, so that its number of nodes
matches a given Connection Machine size, the VP ratio, operation count and
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communication requirements associated with each possible data structure are
as follows :

l ] Node [ Element ] Edge l Cell—l

VPR 1 2 3 1
Operation count | 2x 2x X 2x
Communication y y 2y y

Table 1:Parallel data structures

In Table 1 above, z and y are introduced only to highlight the relative re-
quirements associated with the candidate data structures. Clearly, only the
edge-based one does not generate redundant flux computations. However,
this data structure and the node-based one are not practical, and there-
fore unacceptable, because they do not accommiodate the evaluation of the
Galerkin gradients (17) and would not handle future extensions to viscous
flow computations. Moreover, the edge-based distribution requires twice as
much communication as the other choices. On the other hand, the cell-based
and element based data structures are suitable for all components of the
first-order and second-order calculations and involve a minimum amount of
communication. They do however result in redundant computations as each
flux across an edge [S;S;] shared by two triangles would be computed twice,
once in the cell center: d on S; and once in the cell centered on S;. Finally, the
cell parallel data structure is preferred over the element-based one because
it requires a smaller VP ratio.

It should be noted that in theory, it is possible to select a cell-based
data structure and yet avoid some of the redundant flux computations. Ba-
sically, one could label the edges that are shared by more than one cell so
that their corresponding fluxes are computed by an appropriate processor
in one and only one cell. However for highly irregular meshes, the solution
of the labeling problem may introduce a load unbalance, that is, it may as-
sign a different number of edges to each processor that is mapped onto a
cell. More importantly, the fluxes which would not be computed in a cell
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would need to be communicated to that cell. Therefore, redundant com-
putations can be avoided only at the expense of additional communication
that is characterized by an irregular pattern, which is not necessarily ben-
eficial on a massively parallel processor such as the CM-2. Consequently,
we have chosen the cell-based parallel data structure and have decided to
accept the additional cost of redundant flux computations. The members
of this parallel data structure are the coordinates of the cell center and cell
nodes, the connectivity of the cell elements, the state variables at the cell
center, the addresses of neighboring cells for guiding the router during irreg-
ular interprocessor communication, and various other cell related attributes.
At each step, all computations are performed in parallel and only the state
variables at the center of neighboring cells are communicated between their
assigned processors (for a second order scheme, the nodal gradients at the
center of neighboring cells are also communicated). The optimization of the
communication phase is carried out in a two-step approach as follows.

3.2 The grid decomposition for the CM-2

Efficiency in arbitrary communication on the CM-2 requires the minimization
of both the “hammering” on the router, that is, wire contention, and the
distance that information has to travel, that is, the number of hops between
the sender and receiver processors. Here, this implies that :

e adjacent cells must be assigned, as much as possible, to directly con-
nected processors or processors that are lying in directly connected
chips,

e contention for the wire connecting neighboring chips must be reduced.

In a first step, the unstructured grid is decomposed into a series of sub-
grids each containing 16 adjacent numerical cells. Each subgrid is assigned
to a certain CM-2 chip that is subsequently identified, so that adjacent cells
within a subgrid are assigned to directly connected processors lying in the
same chip. As a result, off-chip communication is needed only across the sub-
grid boundaries. Wirc contention is reduced if each of the defined subgrids is
surrounded by the largest possible number of neighboring subgrids. Indeed,
wherever a subgrid boundary is shared with several other subgrids, off-chip
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communication is split between distinct chips and 1s distributed across sev-
eral of the availab'» inter-chip wires (see Figure 4). On the other hand, if
for example a subgrid is adjacent only to two other subgrids, a maximum of
two wires can be used during off-chip communication, which may create a
severe wire contention that would serialize communication and significantly
increase its cost. Herc, we use the mesh decomposer of Farhat [6] which has

proven to be very effective at reducing wire contention on the CM-2 (Farhat,
Sobh and Park [7]).

WIRE 1

WIRE §

Figure 4 : Grid decomposition with reduced wire-contention

Next, we address the problem of mapping a specific chip onto a specific
16-cell subgnd.
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3.3 Mapping and compiling

The next step is to reduce the distance that information has to travel during
off-chip communication, that is when data is exchanged between centers of
cells that are assigned to processors lying on different chips. This can be
achieved by assigning adjacent subgrids as far as possible to directly con-
nected chips. A combinatorial optimization-like procedure known as Simu-
lated Annealing (see, for example, Flower, Otto and Salama [12]) is probably
the most popular technique for tackling this mapping problem. However,
it is a very expensive procedure which has often proved to be impractical.
Alternative heuristic-based schemes have been developed by several authors
including Bokhari [1], Farhat (8], and recently Hammond and Schreiber [13].
In this work, we have adopted the mapper of reference (8]. It is based on a
combined greedy/divide and conquer approach and is tuned for hypercube
topologies.

A detailed analysis of interprocessor cominunication on the CM-2 for un-
structured grids can be found in Farhat, Sobh and Park [7] and [9]. In these
references, it is shown that mesh irregularities induce an MIMD (Multiple In-
struction Multiple Data) style of programming for the communication phase
which dominates the cost of communication. It is also suggested that since
the irregular pattern of communication is fixed in time, a considerable im-
provement can be achieved if that pattern is evaluated during the first time
step (iteration), then compiled or stored in the CM-2 for re-use in sbsequent
time steps (iterations). However, no software was available at that time for
validating the proposed communication strategy. Recently, a communication
compiler prototype has become available (see Dahl [3]) and can be used for
storing the routing pattern. In Section 4, we report on its performance.
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4 Performance results

Four test cases corresponding to two different problems are considered. Prob-
lem P/ corresponds to a simplified modeling of the strong acoustic waves that
may occur during an engine knock. The flow domain D is a [0,1] %[0, 1] square
with adiabatic slipping walls (see Figure 5). Different initial conditions are
imposed in the 0.4 X 0.4 subdomain D, and in the remaining part Dy of D.
These are :

Po — l Uy = Vy = O p()‘= 0375
p1=1 U1=’01=0 p1=1.0

D(l Dl

Figure 5 : Flow domain for problem P1

This test case has already been considered in [15]; Two test cases, T1.1
and T1.2 are associated with problem PI. Case T1.1 corresponds to a mesh
triangulation which results in 8192 grid points and case T1.2 corresponds to
a finer triangulation which delivers 16384 grid points. Both triangulations
are regular but do not fit in a NEWS grid. Moreover, the regularity in the
trianeulation 1s not explicitly exploited in the parallel code.

Problem P2 is associated with the simulation of a transonic flow around
a NACAO0012 airfoil at M. = 0.85 and @ = 0°. Cuses T72.1 and T72.2
correspond to two irregular triangulations which result in 3114 (Figure 6)
and 12284 grid points, respectively. Note that neither the first mesh nor the
second one are optimnal for any size of the CM-2. These meshes were designed
for earlier simulations on a CRAY-2 processor.

fe
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Figure 6 : Irregular triangulation for a NACA0012 flow domain

This test case results in a steady transonic flow; the steady iso-mach lines
are depicted in Figure 7.

40 [T] [¥] 2
MNe 010 MAX= 1330 DLTA = 00%0 ‘

Figure 7 : Iso-mach lines for the NACA0012 flow

All computations on the CM-2 are performed with 32-bit Weitek floating
point accelerators. The code is implemented using the new version of the C*
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language; some routines involving intensive computation steps are written
in PARIS. The first set of performance results are given in Table 2 for the
first-order accurate algorithm, and in Table 3 for the second-order version.
For each case, the timings correspond to 200 iterations on an 8K CM-2
using a random processor mapping. “Comm.” and “Comp.” refer to the
communication and computation elapsed time, respectively, “Tot.” being
the total CPU time.

| Case | VPR | Tot. time | Comp. time | Comm. time | Comm./Tot. |

T1.1 1 22.8 sec 12.1 sec 10.7 sec 47%
Tr.2| 2 48.8 sec 22.7 sec 26.1 sec 54% |
T2.1 1 23.8 sec 12.1 sec 11.7 sec 49%
T2.2| 2 47.4 sec 21.2 sec 26.2 sec 55%

Table 2 : Performance results on an 8K CM-2
First-order algorithm - Random mapping

[ Casa VPRLTot. timiL Comp. time LComm. time—rComm./Toﬂ

T1.1 1 192 sec 95 sec 97 sec 51%
T1.2] 2 407 sec 169 sec 238 sec 59%
T2.1 1 201 sec 94 sec 107 sec 54%
T2.2 2 401 sec 168 sec 233 sec 58%

Table 3 : Performance results on an 8K CM-2
Second-order algorithm - Random mapping

The above results indicate that the total clapsed time is almost equally
split between computations and interprocessor communications, with com-
munication being slightly dominant for the second-order accurate algorithm.
Next, we report the performance results that are achieved when the decom-
poser/mapper module summarized in Section 3 is used.

<

[



| Case | VPR [ Tot. time | Comp. time | Comm. time | Comm./Tot. |

T1.1 1 20.9 sec 12.1 sec 8.8 sec 42%
T1.2 2 40.7 sec 22.7 sec 18.0 sec 44%
T2.1| | 17.7 sec 12.1 sec 5.6 sec 32%
T2.2 2 34.6 sec 21.2 sec 13.4 scc 39%

23

Table 4 : Performance results on an 8K CM-2
First-order algorithin - Our mapping

| Case | VPR | Tot. time | Comp. time | Comm. time | Comm./Tot. |

T1.1 1 175 sec YhH sec 80 sec 45%
TL.21 2 327 sec 169 sec 158 sec 48%
T2.1 1 145 sec 94 sec 51 sec 35%
T2.2 2 296 sec 168 sec 128 sec 43%

Table 5 : Performance results on an 8K CM-2
Second-order algorithm - Our mapping

The effect of our mapper on the performance results is illustrated in Table
6 and Table 7 below.

LCase [ Unmap. Comm. ] Map. Comp. [ Unmap. Tot. ] Map. Tot. }

T1.1 10.7 sec 8.8 sec 22.8 sec 20.9 sec
11.2 26.1 sec 18.0 sec 48.8 sec 40.7 sec
T2.1 11.7 sec 5.6 sec 23.8 sec 17.7 sec
72.2 26.2 sec 13.4 sec 47.4 sec 34.6 sec

Table 6 : Mapped/Unmapped performance results on an 8K CM-2

First-order algorithm
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[ Case { Unmap. Comm. l Map. Comp. [ Unmap. Tot. LMap. Tot. ]

T1.1 97 sec 80 sec 192 sec 175 sec
T1.2 238 sec 158 sec 409 sec 327 sec
T2.1 107 sec 51 sec 201 sec 145 sec
T2.2 233 sec 128 sec 401 sec 226 sec

‘l'able T : Mapped/Unmapped performance results on an 8K CM-2
Second-order algorithm

Clearly, the decomposer/mapper discussed in Section 3 decreases com-
munication costs by 20 to 33% in Problem P71 (regular triangulation) and by
roughly 50% in problem P2 (irregular triangulation). For a VP ratio of one,
we were able to successfully use the communication compiler FASTGRAPH
(FG) written by Dahl [3]. For higher VP ratios, FG constantly caused the
system to crash. We hope that future releases of the communication compiler
will resolve this problem. The improvement in communication performance
due to FG and our mapper are highlighted in Table 8 below.

LCase | VPR [ Random | Mapper [ FG [ FG + MapperJ

"T1r] 1 ] 10.7sec | 88sec | 2.70 sec 1.32 sec
T2.1 1 11.7 sec | 5.6 sec | 1.64 sec 0.82 sec

Table 8 : Communication performance results on an 8K CM-2
First-order algorithm

Clearly, the improvements due to FASTGRAPH are quite impressive.
Basically, the cost of interprocessor communication is reduced by a factor of
4 in problem PI (regular triangulation) and by a factor of 7 in problem P2
(irregular triangulation). The superposition of our mapper to FG results in
an improvement factor of 8 for P/ and in an improvement factor of 14 for
P2. Table 9 suinmarizes the best performances for cases T1./ and T2.1.

[
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[ Case ] VPR| Tot. time | Comp. time | Comm. time | Comm./Tot. |

T1.1 1 13.4 sec 12.1 sec 1.32 sec 10%
T2. 1 1 12.9 sec 12.1 sec 0.82 sec 6%

Table 9 : Performance results on an 8K CM-2
First-order algorithm - Our mapper + FASTGRAPH

Finally, the performance of the proposed parallel algorithms on the CM-
2 is compared to that of a highly vectorized CRAY-2 version wlere scat-
ter/gather manipulations are preprocessed with a coloring scheme. The
CRAY-2 code is identical to that of the CM-2 except for the fact that no
redundant flux computation is performed; all fluxes are computed on an
edge-by-edge basis. Performance results are compared for a 16K CM-2 us-
ing 32-bit arithmetic, our mapper and FASTGRAPH, and a mono processor
CRAY-2 using 64-bit arithmetic (see Table 10).

LCase [ VPR | CM-2 Total time l CRAY-2 Time]
T1.2 1 112 sec 204 sec
72.2 1 110 sec 130 sec

Table 10 : Performance comparisons : 16K CM-2/CRAY-2
Second-order algorithm
CM-2: Our mapper + FASTGRAPH
CRAY-2 : Highly vectorized

By comparing the respective costs of test case 7'2.2in Tables 3 and 10, it
can be seen how crucial is the problem of the optimization of the communica-
tion part when one want to get the best efficiency for finite element compu-
tations on fully unstructured grids. Moreover, the above results demonstrate
that for a VPR as small as one, a 16K CM-2 is at least as fast as a mono
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processor CRAY-2, and in some cases twice as fast. However as stated ear-
lier, these results are for a single precision CM-2 (which is the only machine
that was available to u»).

1%
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5 Conclusion

In this report, we have described the implementation on the Connection Ma-
chine CM-2 of a parallel mixed finite volume/finite element method for solv-
ing the two-dimensional Euler equations on fully unstructured grids. Second-
order accuracy is achieved through a Monotonic Upwind Scheme for Conser-
vation Laws (MUSCL) technique. The resulting semi-discrete equations are
time integrated with an explicit Runge-Kutta method.

Even though the results of our previous study on massively parallel Com-
putational Fluid Dynamics (see [15]) have shown that the CM-2 was well
suited to structured computations, it was not obvious that this will yet be
true in the more general case of unstructured computations. Moreover, the
mesh irregularities arc now inhibiting the use of the fast NEWS communica-
tion mechanism. Therefore, if one want to obtain the best performance when
using a massivelly parallel computer for such computations, it becomes essen-
tial to reduce the communication costs. For this purpose, we have developped
a strategy for mapping thousands of processors onto an unstructured grid.
Its key elements are given by the selection of an appropriate parallel data
structure, the partitioning of a given unstructured grid into subgrids. and
the mapping of each individual processor onto an entity of these subgrids.
Whenever the conmmunication patterns are compiled during the first iteration
or time step, the total time elapsed in interprocessor communication using
the router is drastically reduced to represent in some cases only 6% of the
total CPU time of the simulation.

The performance of the proposed massively parallel schemes is assessed
on various C'M-2 sizes for various mesh d¢nsities. Performance comparisons
of the presented solution algorithms with vectorized versions where scat-
ter/gather manipulations are treated with a coloring technique indicate that
a 16K CM-2 with single precision floating point arithmetic is at least as fast
as one processor CRAY-2 and in some cases twice as fast, and this for a
virtual processor ratio (VPR) as small as one.

Finite element methods on unstructured grids are well suited to the simu-
lations of flows around or inside complex geometries such as the ones involved
in real life problems. On the other part, the Navier-Stokes equations rep-
resent the more general model for Computational Fluid Dynamics as they
introduce diffusive and heat conducting effects. Future extensions of our
work will include the resolution of full Navier-Stokes equations; according to
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our choice for the data parallel structure (the cell) we can now and henceforth
say that no more communication steps will be needed to take into account
the diffusive fluxes. Therefore the resulting algorithin is suppose to be more
efficient.

e

(v



1 1%

References

[1]

2]

[3]

[4]

(6]

8]

19)

[10]

BOKHARI S. H., On the Mapping Problem, IEEE Trans. Comp., Vol
C-30, No 3, pp. 207-214, (1981).

CLARY J. S. - HOWELL G. A. - KARMAN S. L., Benchmark Calcu-
lations with an Unstructured Grid Flow Solver on a SIMD Computer,
ACM pp. 32-41, (1989).

DAHL E. D., Mapping and Compiled Cornmunication on the Connection
Machine System, Proceed. of Distr. Mem. Comp. Conf., Charleston,
(1990). '

EGOLF T. A., Scientific Applications of the Connection Machine at the
United Tcchnologies Research Center, Scient. Applic. of the Connection
Machine, ed. by SIMON H., pp. 38-63, (1988).

FARHAT C. - CRIVELLI L., A general Approach to Nonlinear Finite El-
ement Computations on Shared Memory Multiprocessors, Comp. Meth.
Appl. Mech. Eng., Vol 72, No 2, pp. 153-172, (1989).

FARHAT C., A Simple and Efficient Automatic Finite Element Mesh
Domamn Decomposer, Comp. and. Struct., Vol 28, No 5, pp. 579-602,
(1988).

FARHAT C. - SOBH N. - PARK K. C., Transcient Finite Flement
Computations on 65536 Processors : The Connection Machine, Intern.
Journ. Numer. Meth. Eng., Vol 30, pp. 27-55, (1990).

FARHAT C., On the Mapping of Massively Parallel Processors Onto
Finite Element Graphs, Comp. and. Struct., Vol 32, No 2, pp. 347-354,
(1989).

FARHAT C. - SOBH N. - PARK K. C., Dynamic Finite Element Sim-
ulations on the Connection Machine, Scient. Applic. of the Connection
Machine, ed. by SIMON H., pp. 217-233, (1988).

FEZOUI L. - DERVIEUX A., Finite Element Non Oscillatory Schemes
for Compressible Flows, Comp. Math. and Applic. 8th France-U.S.S.R.-
Italy Joint Sympos. Pavia, (1989).



i

[12]

(13]

[14]

[15]

FEZOUI L. - STEVE H., Décomposition de Fluz de van Leer en éléments
fints, INRIA Report No 830, (1988).

FLOWER J. W. - OTTO S. W. - SALAMA M. C., A Preprocessor
for Irregular Finite Element Problems, CalTech/JPL Report C3P-292,
(1986).

HAMMOND 8. - SCHREIBER R., Mapping Unstructured Grid Prob-
lems to the Connection Machine, RIACS Technical Report 90.22, (1990).

JESPERSEN D. - LEVIT C., A Computational Fluid Dynamics Al-
gorithm on a Masswely Parallel Computer, AIAA Paper 89-1936-CP,
ATAA 9th Comp. Fluid Dynam. Conf, pp. 79-88, (1989).

LANTERIS. - FARHAT C. - FEZOUI L., Structured Compressible Flow
Cumputations on the Connection Machine, INRIA Report Ne 1322,

~ (1990).

[16)

[17]

(18]

19

[20]

[21]

LONG L. N.; A Three-Dimensional Navier-Stokes Method for the Con-
nection Machine, Scient. Applic. of the Connection Machine, ed. by
SIMON H., pp. 64-93, (1988).

ROE P. L., Approrimate Riemann Solvers, Parameters Vectors and Dif-
ference Schemes, Journ. of Comp. Phys., 43, pp. 357-371, (1981).

STEGER J. - WARMING R.F.| Fluz vector splitting for the inviscid gas
dynamic with applications to finite-difference methods, Journ. of Comp.
Phys., 40, (2), pp. 263-293, (1981).

FEZOUI L. - STOUFFLET B., A Class of Implicit Upwind Schemes for
FEuler Stmulations with Unstructured Meshes, Journ. of Comp. Phys., 84,
pp. 174-206, (1989).

VAN LEER B., Fluz-Vector Splitting for the FEuler Fquations, Lect.
Notes in Phys., Vol 170 (1982).

VAN LEER B., Towards the Ultimate Conservative Difference Scheme
V :a Second-Order Sequel to Gudonov'’s Method, Journ. of Comp. Phys.,
Vol 32, (1979).

Imprimé en France
par
.V Institut National de Recherche en Informatique et en Automatique.

[T



ISSN 0249 - 6399



