\

Towards document engineering

Vincent Quint, Marc Nanard, Jacques André

» To cite this version:

Vincent Quint, Marc Nanard, Jacques André. Towards document engineering. [Research Report]
RR-1244, INRIA. 1990. inria-00075314

HAL 1d: inria-00075314
https://inria.hal.science/inria-00075314
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/inria-00075314
https://hal.archives-ouvertes.fr

N° 1244

Programme 8
Communication Homme-Machine

TOWARDS DOCUMENT

ENGINEERING

Vincent QUINT
Marc NANARD
Jacques ANDRE

Juin 1990

VR



] R l S a INSTITUT DE RECHERCHE EN INFORMATIQUE
ET SYSTEMES ALEATOIRES

Campus Universitaire de Beaulieu
35042 -RENNES CEDEX

iZQ;“h%Eezggsezooo Publication Interne n° 536

Télex: UNIRISA 950 473 F Mai 1990 - 20 Pages
Télecopie: 99 383832

Towards Document Engineering

Vincent QuintT, Marc Nanardi, and Jacques André*

t INRIA/Imag, 2, rue de Vignate, 38610 Gigres, France
1 CRIM, 860 rue de Saint Priest, 34090 Montpellier, France
* INRIA/Irisa, Campus de Beaulieu, 35042 Rennes, France

ABSTRACT: This article compares methods and techniques used in soft-
ware engineering with the ones used for handling electronic documents. It shows
the common features in both domains, but also the differences and it proposes
an approach which extends the field of document manipulation to document
engineering. It shows also in what respect document engineering is different
from software engineering. Therefore specific techniques must be developped
for building integrated environments for document engineering,.

KEY WORDS: software engineering, document engineering, structured
editing, integrated environments.

Vers le Génie Textuel

RESUME : On compare les méthodes et techniques utilisées en génie logi-
ciel avec celles utilisées en manipulation de documents. Il existe de nombreux
points de ressemblances, et on propose d’étendre la manipulation de document
au document engineering (génie textuel?). Mais on montre aussi que ce domaine
est différent du génie logiciel. Il faut donc inventer de nouvelles techniques pour
la construction d’environnements intégrés spécifiques aux documents.

Invited paper to EP90 (Electronic Publishing Conference, Washington, Septem-

ber 1990).
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE INSTITUT NATIONAL DE RECHERCHE
(L. A, 227) EN INFORMATIQUE ET EN AUTOMATIQUE

UNIVERSITE DE RENNES 1 i.N.S. A. OF RENNES {LABORATOIRE DE RENNES)



1 Introduction

Software engineering and document manipulation have strong resemblances.
Several attempts have been made to use software engineering tools for pro-
cessing documents. Some of them have been fruitful, others have shown some
inadequacies of the tools to the function. In this paper, we try to evaluate
the contributions that software engineering concepts and techniques can offer
to document processing, but also the limits of these contributions. Because of
these limits, we think that specific techniques must be developped for building
integrated environments that would allow documents to be produced with all the
necessary features. These reflections are based on our experience with different
types of systems, especially Grif [Quint86] and MacWeb [Nanard88].

The next section shows the resemblances between the domains of software
engineering and document manipulation. Section 3 points out the main differ-
ences, considering the semantics of documents and programs, their logical struc-
tures, their graphical aspect and the way to use tools for producing documents
and programs. Section 4 presents some contributions of software engineering
to document manipulation and conversely, and section 5 tries to indicate what
an integrated environment would be for professional publishing and desktop
publishing.

2 From software engineering to document engineer-

ing

Software engineering’ is concerned with commercial software production (as
opposed to programming as an academic exercise or a recreational hobby). In
the same way, document manipulation is concerned with the production of real
documents, such as technical documentation, books or magazines. In both cases,
the writing of small pieces of programs or texts, for personnal use, does not
require any software factory or any writer workbench. So, such programs or
texts are not relevant of the corresponding domains. On the other hand, small
pieces of programs or texts generated during research into program production

This term seems to have been first employed in 1969 [Buxton69] with a more pragmatic
meaning than the one used, e.g., in JEEE Transactions on Software Engineering.



or during research into writing process are concerned with the present papce.

Document manipulation follows, with a 10 years delay the same story as
programming languages. First, exotic codes (similar to machine languages) were
used to drive phototypesetters. Then, some higher level formatters (such as Troff
or even TgX) were designed with the same goal as Fortran: to allow machine in-
Jdependency. Going further in abstraction, as Algol 60, Pascal or Ada did earlier,
new formatters such as Scribe (and later on, RTEX) used structuration concepts
as well as compiling techniques. However, note that WYSIWYG systems have
no immediate equivalents in programming languages. At a lower level, one can
~ompare the C language which behaves like a machine independent language
wnd PostScript which becomes a printer independent page description language.

As software engineering is not restricted to the use of programming lan-
xzuages, neither i1s document manipulation restricted to the use of formatters.
Editing large documents requires the same matter as producing large programs.
Many of the key words apply to both domains, for instance modularity, con-
figuration management, user interface, reuse, life cycle or integrated environ-
ment. Even an aspect such as security (or reliability) is relevant to document
manipulation?. All of these considerations make it useful to extend to “Docu-
ment Engineering” what is usually called document manipulation.

Because software engineering is in advance of document engineering, ob-
vious and fruitful proposals have been made to use software techniques and
tools for text production. The type and structure concepts are the most com-
monly used®>. Among most promising techniques are the methods of stepwise
refinement and iterated enhancement, and the use of an integrated environment
[Hamlet86].

Syntax driven editors, such as The Synthesizer [Reps89], Mentor [Donzeau83]
or Centaur [Borras87], accept a formal description of the syntax and the seman-
tics of programming languages and handle programs written in the specified
language. The abstract syntax allows an abstract representation of the program
to be built, from which one or more graphical representations may automati-
cally be constructed. This technique applies similarly to a class of documents.

“A train crash has been quoted as caused by a typographic layout error [Andrég9].

THav.ev o aoti diat wilen se called “structured” editors are actually only “‘typed” editors:
saying 16 some style sheet that “a section is formatted in 12pt Helvetica. left justified, etc.”
f:as nothing to do with a hierarchical structure



Relevant concepts such as views, annotations, links, gates, etc. fit both program
models and text models.

Many other examples of reuse of software engineering techniques by docu-
ment engineering experts show that this is a good way to follow.

3 Document engineering beyond software engineer-

ing

Even if tools for handling documents and programs have much in common,
they also show many differences. One of these differences lies in the semantics,
which is not the same for documents and for programs. Other differences are
related to the logical structure and to the graphical aspect of documents and
programs. User interfaces of editors for documents and programs also are very
different. All these differences are presented in the next sections.

3.1 Different semantics

From a certain point of view, one can consider programs as a particular type of
document. Like other documents, programs are made of lines and characters.
They can be edited with text editors and be displayed and printed on the same
devices as other documents. But this comparison cannot be continued much
further, because the final uses of documents and programs are not the same. A
program is intended to be executed by a computer; a document is intended to
be read by a human reader, and that makes an important difference.

As stated above, until a certain step in the processing of a document by
computer, the analogy between a document and a program is obvious. But, after
the document has been printed, there is another step, with no equivalent for
programs: the document is processed by human readers, and all the semantics
of the document must be accessible during that step.

A document represented in electronic form may not only be formatted and
read. It has also often to be processed by several applications. A structured
document can be stored in a data base, it can be retrieved easier by information
retrieval systems, it can be transformed into several formalisms, it can be reor-
ganized, different forms can be extracted from it. etc. This is one of the reasons



why a logical (or abstract) structure is important for a document. If a document
is represented in an abstract form, this abstraction allows other applications to
process that document. Because of these many uses of a document, its seman-
tics are not as well defined as the semantics of a program, which is essentially
defined for its execution by a computer.

Semantics of a program may be represented in a computer. In addition,
it 1s often elicited by the programmer during the specification phase, before
the program is written. It is not the case for documents, except for very rare
exceptions.

3.2 Logical structure

Logical structures for documents [Furuta89] are different from those for pro-
grams. The syntactical structure of a program is represented by a tree and most
syntax driven editors use only this structure, although some structural aspects of
programs are not strictly hierarchical, like relationships between modules.

Documents need more complex structures. At a first glance, their logical
structure can be considered as a tree: a book contains chapters, a chapter con-
tains sections, a section contains paragraphs, and so on. But documents also
use many non hierarchical relationshijs: all kinds of cross references, indexes,
etc. The experience shows that the most interesting features of a document
production system like Grif come from the non hierarchical structures. They
allow the system to compute and automatically update all numbers, not only
section or chapter numbers but also references to sections and chapters. They.
are very useful for browsing through a document. They allow users to establish
relationships between documents or to share some (parts of) documents.

Another type of structure, very important for documents, is represented by
hypertexts, where tree structures are less important than non herarchical links.
As an example, the primary structure of Concordia [Walker88a} is made of
hypertext links.

Documents need more various structures than programs. A tree structure
may be used for representing the higher level structure (or primary structure),
but some components of a document cannot be represented that way. A ta-
ble, for instance, i1s a two-dimensional object that is better represented by a



matrix than by a tree.* Therefore, several systems use a special structure for
tables [Cameron89]. Structured graphics cannot be naturally described by tree
structures and need a non hierarchical representation.

The structure of a program is completely defined by a grammar and it must
be strictly consistent with that grammar. On the contrary, the structure of a
document must tolerate an incomplete definition and must allow some flexibility
with respect to the model. All types of documents cannot be completely defined
in a formal way. Some parts, which are not supposed to be computed, may be
less precisely defined.

3.3 Limitations of a logical structure

In a program, the separation between syntactical structure, graphical aspect
(sometimes called pretty printing) and free text (comments, identifiers,...) is very
clear and stable. In a structured document, logical structure, physical structure
and contents can be considered as equivalent to syntactical structure, graphical
aspect and free text respectively, but the boundaries between these levels of rep-
resentation are not so well defined as they are in programs. There are interactions
between the three representations [Southall§9]. So, a long paragraph, originally
written with small characters, is often divided into two paragraphs when it is
displayed in large characters: the logical structure is modified for physical rea-
sons. Another example is given by footnotes: in order to limit the number of
pages, an author can transform some parts of a paragraph into footnotes.

When defining a generic logical structure for documents, the difference be-
tween contents and logical structure is not easy to make. Depending on the
document type or the intended use of the document, one can consider a para-
graph either as a terminal in the logical structure or as a structured component
containing sentences, phrases or words playing different roles (key word, entry
in the index or in the glossary, reference to a figure or to a section...). This
shows that the boundary between logical structure and contents is not fixed and
must be set in accordance with requirements.

A program follows basically one grammar, that which defines the program-
ming language in which it is written. If it contains parts written in different

“Nevertheless, some proposals have been made for representing a table as a tree, but with very
strong constraints [Furuta88].



languages, it follows different grammars, but all are of same type. A document
follows at least two grammars, very different from each other: the grammar
defining its logical structure and the grammar defining the natural language in
which it is written. This paper, for instance, follows both the WTEpX grammar
(article style) and the grammar of English (it is supposed to...). That implies
that a document processing system should be able to handle at the same time
computer languages and natural languages, or at least some aspects of natural
languages, like spelling, punctuation, style, etc.

For reasons related to semantics (see section 3.1), the process followed by an
author when writing a document leads him to often change the logical structure
or even to add the logical structure after the contents has been written. This
raises problems which are not often encountered when editing programs. Syntax
driven editors generally provide parsers for automatically structuring text when it
is typed without structure. The structuring of a document is somewhat different,
since it is done manually by the user who indicates the structural components
which organize a text that has already been entered in the system.

3.4 Graphical aspect

The graphical structure of programs is usually made up of a sequence of indented
lines with some variations of character style for indicating key words, variables
or comments. Actually, programs have a linear graphical structure which is
divided into lines.

Documents, or at least some of their parts, have more complex, really bidi-
mensional graphical structures. Examples of these complex structures are news-
papers, tables, mathematical or chemical formulae and drawings. Formatting
languages used in most syntax driven editors usually cannot describe this kind
of graphical structures.

As a consequence of the importance of the graphical aspect, document pro-
duction systems usually have two types of users: a graphic designer and an
author. The former is responsible for the graphical appearance of documents,
the latter for the logical structure and contents. These two users use the system
in completely different ways, and take advantage of different functionalities. In
software engineering, a single type of user, “the programmer”, is involved in
writing a program.



The essential purpose of a document is to be read, what puts a strong em-
phasis on its visual aspect. The importance of this aspect leads many writers to
consider the graphical appearance of a document before its abstract or logical
representation. Therefore many document production systems handle a docu-
ment as a graphic object rather than a logical object.

In order to illustrate the importance of the graphical aspect in a document
production system, some figures are given, taken from Grif. The grammar of
the language for describing graphical structures is twice the size of the grammar
of the language for describing logical structures. In the Grif editor, the part of
the code handling the graphical structure is about three times the size of the
code handling the logical structure. This indicates that, in a system using a
direct manipulation style of interaction, the most important and complex part is
dedicated to handling the physical appearance of documents. Manipulating the
logical structure, even with a sophisticated model, is much simpler than generat-
ing and handling the graphical aspect of a complex document. As programs do
not contain the most complex objects encountered in documents, the graphical
part of syntax driven editors is not suited for handling these objects.

3.5 The process of writing

Not only are uses of programs and documents different, but so are design meth-
ods. Most programs are designed in a top-down manner, with successive re-
finements. Very few documents can be written that way. Even when the final
form of a document must be strongly structured, the author starts often with
unstructured text, just for capturing his thoughts. The structuring phase comes
later.

On the other hand, some techniques of software engineering may be trans-
posed to documents. Modularity is an example: generic structures of documents
can be defined in small, self-contained modules rather than in large monolithic
programs. This approach gives to documents the same advantages as to pro-
grams: clarity, reusability, maintainability, sharing, etc. Nevertheless, it is diffi-
cult to specify modules as rigorously as for programs and encapsulation cannot
be as complete [Quint89].

Another approach to modularity is presented in [Walker88b]. Here, modu-
larity is not considered at the generic level, where formal languages are used,



but at the specific level: documents themselves are built from modules. That
approach has also been taken in MacWeb [Nanard88]. These two examples of
modularity in document production systems show that the concepts of software
engineering can be transposed in different ways to document engineering.

3.6 User interface

In this section only a direct manipulation interface is considered, as it seems to
be the only style of interface users want to use. Concerning the user interface,
the basic difference between editors for documents and editors for programs
comes from the users themselves. In the case of a program editor, the user is a
programmer. That means that he knows about the syntactic structure of the pro-
gram and that the notion of a tree structure representing the program is familiar
to him. Then it is natural to propose commands that explicitly make reference
to that structure, for instance for moving across the tree. For a document editor,
the situation is completely different. As it must be supposed that the user does
not know what an abstract tree is, a different style of interface is needed. The
logical structure is useful for enabling the system to make computations on the
document, but it must not burden the user with an unnatural model. For that
reason, user interface issues in structured document manipulation systems have
to be studied further.

Users of systems for the production of structured documents do not only see
the user interface under the form of editing commands. They are also faced with
the languages that define the logical structure and the graphical appearance of
documents. The style of these languages must be adapted to non programrmners.
Declarative languages seem to be better accepted by users than procedural ones:
they allow the user to express what is required rather than the way to get it. But
most users ask for no language at all, at least for describing the appearance of
documents. So a graphical language would certainly be the best choice.

Most document production systems use extensively modern user interface
techniques, especially direct manipulation. Moreover, many user interface tech-
niques have been developped according to the requirements of these systems. On
the other hand, the part dedicated to logical information is often less developped.



4 Cross fertilization

Because of the differences presented in the previous section, tools designed
for programs are generally not usable for producing documents, even logically
structured documents. It is thicn necessary to develop tcols specifically adapted
to documents. Nevertheless, programs and structured documents have com-
mon features that suggest that some concepis and techniques used in software
engineering could be used in dccument production too, and conversely.

Programming environments are used Zor producing not only programs, but
also many types of documsznts related to programs, lile specifications, documen-
tations, manuals, helps. All thesc docume.ts are generally structured according
to some well defined model and therefore ihey are good candidates for structured
document editors. Instead of trying to cembine in a unique tool all of what is
needed for handling programs ard docut.:znts at the same time, it seems more
interesting to use complementary tools: some dedicated to programs, others to
documents. That leads to light tools, well suited to the function they have to
perform.

Separating programming tools aud documentation tools also allows to use the
latter in various applications, not only 1n srogramming environments. Actually,
software enginecring is only ciw. of the passible fields of application for struc-
tured document systeins. Aincng other elds are technical documentation or
specialized publishing (law, medicine, teaching, dictionaries and encyclopediae,
etc.).

A typical use of documient processing tools in software enginesring is the
display of complex pictures. Like many document production systems, Grif
contains an important component that allows it to display the graphical appear-
ance of a logical structure according to a set of presentation rules. In addition,
this component maintains the correspondance between the logical structure and
the graphical appearance, so that each change made on one representation is
immediately reflected on another. This mechanism has been extracted from the
document editor and it is now used by various graphical tools in programming
znvironments. An example is given by the debugging tool presented in [Seze89].
‘n a programming environment, tools handle abstract objects (in that case the
control paths of an ADA program) and use the display component for handling
the graphical representation of these objects {trees and graphs in thai case) and



the interaction with the user on the picture.

A concept of software engineering worth being considered for documents is
reusability. In software engineering this concept poses two problems: (1) how
to find existing pieces of codes that can be reused in new applications, or even
how to know that they exist, and (2) how to integrate these pieces in different
contexts. Concerning the first problem, information retrieval tools are available
for documents [Salton89], but there is no equivalent tool specifically designed
for programs. In documents, a logical structure is a help for solving this problem.
The types of components, the attributes (in the SGML sense), the structure itself
help to locate the parts that one wants to reuse. In hypertexts, links are also
useful for locating pieces of text. Concerning the second problem, the situation
is exactly the opposite: programs take advantage of techniques such as object
oriented or modular programming. With these techniques, reusing some parts of
a program in new programs is made easier. Documents, on the other hand, cannot
so easily be reused in different contexts, except for some types of documents,
such as technical manuals [Walker88b]. In general, pieces written independently
can rareiy be merged in a new consistent document without rewriting some parts.
But the logical structure may help. Numbers of sections, figure, notes, etc, are
computed by the system, based on the logical structure. They can be updated
automatically according to the new context. References can also be updated if
they are part of the logical structure.

S Document engineering environments

The previous section has shown that the technology of software engineering is
not directly usable for producing documents. This section focuses on some of
the functionalities a document engineering environment must provide the user
with.

Due to the specificity of document life cycle, the design of such an envi-
ronment should be task driven. That is a consequence of the non sequential
structure of writing, which has been studied in [Hayes80]. For documents, there
is no equivalent to the well known specification step, or to the classical sequen-
tial approach of software development. Producing a document results in free,
non ordered (and often unpredictable) commutations between a set of processes.
The most important of them are: producing sentences and paragraphs, gather-

10



ing ideas and data, reviewing, organizing ideas at semantic level, formatting,
logically structuring the document, managing the produced documents.

Another important point the desigr has to take into account is that the target
of a document is twofold: both the reader who perceives it through its visual
structure, and the machine which manages the document base and makes its
retrieval possible.

Thus, the design of an efficient document engineering environment is today
more concerned with integration problems than with the development of new
elementary tools for document manipulation.

Environments for professional publishing and environments for desktop pub-
lishing have slightly different typical problems. The firsts are concerned with a
problem of amount of data, and of long life of these data. The others are more
concerned with a problem of user friendliness and of immediate efficiency. Each
of these two areas have their own economic interest and scientific problems. In
each of them, the amount of produced texts and the nhumber of users concerned
make it impossible to ignore their specificity.

An exhaustive list of suitable functionalities for a document engineering
environment is of no interest here. Only some of them will be considered. In
particular, the importance of structured editors and formatters has already been
discussed [Furuta88] and will no longer be considered here.

5.1 Professional publishing

When producing large quantities of documentation (technical documents, price
lists, travel brochures, etc.), some part of the information is already available.
The most important problems are to access 1t, to convert it, to adapt it to the
context of the intended document and to organize it. Even when a document
is produced by a single professional writer, the information handled often has
several sources and several authors. For instance, a technical document includes
pictures, data collected from databases and shared portions of texts. A given
piece of information may be shared by many documents such as preliminary
specifications, an implementation reference book and a user’s guide.

In that context, information retrieval tools are needed for reusing texts as
well as programs. Compatibility between information sources and document
engineering environment is also necessary. Standards are the key for this com-

11



patibility. Auatomatic structure recognition is an important complement to docu-
ment recognition systems. Structure recognition is needed when dealing with old
documents which have been produced out of any standard. For instance, most of
the documentation of nuclear power plants was produced in the seventies and is
unstructured. Even tables have often been typed line by line in a typewriter like
style! Restructuring this documentation is an important challenge for making its
evolution more efficient.

Flexible approaches make it possible to express at low cost the access path
and the structure and type conversions which are needed. As a consequence,
the major problems when producing large documents concern the automatic
integration of various data sources.

Professional publishing is often a collaborative work. It requires the col-
laboration of various human expertises (authors, specialists of specific domains,
professional writers, typographers, reviewers...). The system is responsible for
the ease of communication between these partners and should provide tools for
ensuring the consistency of their work.

A document engineering environment should allow the user to “work on”
as well as to “edit” a document. Adding and consulting private notes is one of
these useful features. A note dynamically linked to some part of a document
is fundamentally different from a comment present in a source program. It is a
typical problem for hypertext technique. Some software development environ-
ments such as HyperCentaur [Vercoustre90] also use hypertext approaches for
managing the documentation attached to programs.

Another important part of a document engineering environment should con-
cern the help to the reviewing process too. The most classical of these helps
is the spelling checker. Tools such as IBM Critique also provide some simple
style checking. The main problem remains that semantics of text are rarely
explicit, thus making far more difficult the auntomatic checking of documents
than the checking of programs specifications. Only very specific applications
such as deeds produced by sollicitors can take advantage of their strong and
explicit semantic. The semantic structure of such documents can be processed
and makes their automatic generation possible.



5.2 Desktop publishing

Most desktop publishing systems are today designed for dealing only with the
editing and formatting steps. But they actually are being used from the flow of
ideas through the production of the camera ready copy. Since desktop publishing
users are not professional writers, it is very important both to provide them with
simple and efficient tools and to take into account their own natural behavior.
A user centered design is required for these tools and their level of integration
into a coherent system is the key issue of such environments.

End users rarely are used to deal with abstractions: they “think as they
see” and it is not possible to change this fact! This is the reason for the suc-
cess of WYSIWYG systems. There is, of course, no basic opposition between
WYSIWYG and structuration or abstraction. It is just a matter of man-machine
interface and of incrementally computing the relevant information to be provided
to the user with a correct feedback [Chen88]. A page editor fully integrated with
a structured document editor is still the basic need of most users.

A document engineering environment cannot be a collection of independent
tools, but must be integrated as much as possible. The fast, frequent and un-
predictable commutation between the various tasks involved when producing
a document requires a very fast commutation time between the facilities pro-
vided. For instance, the capability of handling personal notes linked to document
parts is of no help if the notes cannot be added on the fly when working on a
document, or if they cannot be reused by other components.

In document manipulation systems, the friendliness of the user interface
is more important than anything else. A feature would not be helpful if the
cognitive load for its use is not very low compared with its benefit. It is not
surprising that much progress in human computer interaction have been initiated
by document manipulation problems. Many scientists working in one area are
today interested in the other.

Anyhow, there is no fundamental difference between desktop publishing
oriented environments and professional publishing oriented environments. In
the long term, the professional document engineering environment will surely
focus more on integration and desktop publishing will integrate more concepts
and abstractions.

13



6 Conclusion

Although there are some resemblances between documents and programs, we
have put the emphasis on the differences. Pointing out these differences will
help in designing new tools, better suited to their role and offering more and
more services to users.

14



References

[André89] J. André, “Can structured formatters prevent train crashes?”, Elec-
tronic Publishing — Origination, Dissemination and Design, vol. 2, no. 3,
October 1989, pp. 169-173.

[Borras87] P. Borras, D. Clément, Th. Despeyroux, J. Incerpi, G. Kahn, B.
Lang, and V. Pascual, Centaur: The system, Research Report 777, INRIA,
December 1987.

[Buxton69] J.N. Buxton and R. Randell, Software Engineering Techniques, Re-
port on a Conference sponsored by the Nato Scientific Committee, Rome,
Italy, 27th-31st October 1969, published by Nato, Brussels, 1970.

[Cameron89)] J. P. Cameron, A Cognitive Model for Tabular Editing, Research
Report no. OSU-CISRC-6/89-TR 26, The Ohio State University, Colom-
bus, Ohio, June 1989.

[Chen88] P. Chen, M.A. Harrison, and I. Minakata, “Incremental Document

Formatting”, Proceedings of ACM Conference on Document Processing
Systems, ACM Press, December 1988, pp. 93-100.

[Furuta88] R. Furuta, V. Quint, and J. André, “Interactively Editing Structured
Documents”, Electronic Publishing — Origination, Dissemination and De-
sign, vol. 1, no. 1, April 1988, pp. 19—44.

[Furuta89] R. Furuta, “Concepts and Models for Structured Documents”, Struc-
tured Documents, J. André, R. Furuta, and V. Quint, eds., Cambridge Uni-
- versity Press, 1989, Elsevier Science Publishers B. V., 1983, pp. 7-38.

[Donzeau83] V. Donzeau-Gouge, G. Kihin, B. Lang, B. Mélese, and E. Morcos,
“Outline of a tool for document manipulation”, IFIP 83, R. F. A. Mason,
ed., pp. 615-620.

[Hamlet86] R. Hamlet, “A Disciplined Text Environment”, Text Processing and
Document Manipulation, J.C. van Vliet ed., Cambridge University Press,
1986, pp. 78-89.

15



[Hayes80] J. R. Hayes and L. S. Flower, “Identifying the Organization of Writ-
ing Processes”, Cognitive Process in Writing, L. W. Greeg and E. R.
Steinberg, ed., Lawrence Erlbaum Associates Publishers, 1980.

[Nanard88] J. Nanard, M. Nanard, and H. Richy, “Conceptual Documents: a
Mechanism for Specifying Active Views in Hypertext”, Proceedings of
ACM Conference on Document Processing Systems, ACM Press, Decem-
ber 1988, pp. 37-42.

[Quint86] V. Quint and I. Vatton, “Grif: An Interactive System for Structured
Document Manipulation”, Text Processing and Document Manipulation,
J.C. van Vliet ed., Cambridge University Press, 1986, pp. 200-213.

[Quint89] V. Quint and 1. Vatton, “Modularity in structured documents,” Wood-
man’89, J. André & J. Bézivin, eds., Bigre num. 63-64, IRISA, Rennes,
May 1989, pp. 170-177.

[Reps89] T. W. Reps and T. Teitelbaum, The Synthesizer Generator: A System

Jor Constructing Language-Based Editors, Springer Verlag, New York,
1989.

[Salton89] G. Salton, Automatic text processing, Addison-Wesley, Reading,
Mass., 1989.

[Seze89] P. de Seze, C. Bonnet, J.-F. Caillet, and B. Raither, “A Graphical Trace
Analysis Tool for Ada Real-Time Embedded Systems”, Proceedings of the
Sixth Washington Ada Symposium, Washington D. C., June 1989, pp. 47—
52.

[Southall89] R. Southall, “Interfaces Between the Designer and the Document,”
Structured Documents, J. André, R. Furuta, V. Quint, eds., Cambridge
University Press, 1989, pp. 119-131.

[Vercoustre90] A.-M. Vercoustre, “Structured Editing—Hypertext Approach:
Cooperation and Complementarity”, EP90, R. Furuta ed., Cambridge Uni-
versity Press, (these proceedings), 1990.

[Walker88a] J. H. Walker, “Supporting Document Development with Concor-
dia,” Computer, vol. 21, no. 1, January 1988, pp. 48-59.

16



[Walker88b] J. H. Walker, “The Role of Modularity in Document Authoring
Systems,” Proceedings of ACM Conference on Document Processing Sys-
" tems, ACM Press, December 1988, pp. 117-124.

17



Pl

Pl

Pl

Pl

Pl

Pl

Pl

Ha

1

528

529

-

534

Ji
[}
it}

536

LISTE DES DERNIERES PUBLICATIONS INTERNES

CONDITIONAL REWRITE RULES AS AN ALGEBRAIC SEMANTICS
OF PROCESSES

Eric BADOUEL

Mars 1990, 46 Pages.

RESEAUX SYSTOLIQUES SPECIFIQUES A BASE DU PROCESSEUR
API115C

Patrice FRISON, Eric GAUTRIN, Dominique LAVENIER,

Jean-Luc SCHARBARG

Mars 1990, 26 Pages.

SEMI-GRANULES AND SCHIELDING FOR OFF-LINE SCHEDULING
Bernard LE GOFF, Paul LE GUERNIC, Julian ARAOZ DURAND
Avril 1990, 46 Pages.

DATA-FLOW TO VON NEUMANN : THE SIGNAL APPROACH
Paul LE GUERNIC, Thierry GAUTIER
Avril 1990, 22 Pages.

OPERATIONAL SEMANTICS OF A DISTRIBUTED OBJECT-ORIENTED
LANGUAGE AND ITS Z FORMAL SPECIFICATION
Marc BENVENISTE

Avril 1990, 100 Pages.

ADAPTATION DE LA METHODE DE DAVIDSON A LA RESOLUTION
DE SYSTEMES LINEAIRES : IMPLEMENTATION D'UNE VERSION
PAR BLOCS SUR UN MULTIPROCESSEUR

Miloud SADKANE, Brigitte VITAL

Avril 1990, 34 Pages.

DIFFUSE INTERREFLECTIONG. TECHUNIQUES FOR FORM-FACTOR
COMPUTATION

Aavier PULRYC

Mat 1990, 28 Pages.

A NOTE ON GUARDED RECURSION
LEric BADOUEL, Philippe DARONDEAU
Mai 1990, 10 Pages.

TOWARDS DOCUMENT ENGINEERING
Vincent QUINT, Marc NANARD, Jacques ANTDIRE
My 180, 20 Pages.

mprime en France
Ar

Viigeritgt Mationd de Recherchie en lnpermatique et en Automatique



ISSN 0249 -6399



