N

N

Generalized cross-decomposition method: algorithm and
implementation
Jean Hilger, George Harhalakis, Jean-Marie Proth

» To cite this version:

Jean Hilger, George Harhalakis, Jean-Marie Proth. Generalized cross-decomposition method: algo-
rithm and implementation. [Research Report] RR-1055, INRIA. 1989, pp.19. inria-00075504

HAL Id: inria-00075504
https://inria.hal.science/inria-00075504
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00075504
https://hal.archives-ouvertes.fr

PROTH

5052h3

413

3£

Jean-Mar
Jui

RE]

Jean HILGER
George HARHALAKIS
ie

llet 1989

EALY

i

ALGORITHM AND
IMPLEMENTATION

SRS

Rapports de Recherche
Programme 5
GENERALIZED

JL U

-
S
=
-
=
>
Z
S
o
=
e
7p]
O
B
=
S
O
=
"
72}
N
O
2
&

NSRS e

Vo
: B

AR B
S

s 3 ; CS TS
S : : ATy ¥ 2 A
LA N ¢ i A OASNCS
G - o < J % =
BRI 3 i

»

GENERALIZED CROSS-DECOMPOSITION METHOD :
ALGORITHM AND IMPLEMENTATION

METHODE GENERALISEE DE CLASSIFICATION CROISEE :
ALGORITHME ET IMPLANTATION

Jean HILGER 1, George Harhalakis? and Jean - Marie PROTH!

IINRIA-LORRAINE, Projet SAGEP, Campus Scientifique, Vandoeuvre-les-Nancy, France

2Systems Research Center and Department of Mechanical Engineering, University of Maryland,
USA

Résumé

Nous présentons un algorithme qui considére un ensemble de types de produits et un ensemble
de types de machines. L'algorithme calcule une partition de p sous-ensembles de types de produits,
appelés familles de produits et une partition de q sous-ensembles de types de machines, appelés
flots de fabrication tel que :

ou bien p = q et il existe une relation bi-univoque entre familles de produits et ilots de
fabrication,

oubien p=q + 1 (ou q = p + 1) et il existe une relation bi-univoque entre r familles de
produits et ilots de fabrication ou r est le minimun de p et de q. Le sous-ensemble
supplémentaire de types de produits (ou machines) ne posséde pas de sous-ensemble
correspondant de types de machines (ou de produits).

Dans chaque cas les partitions obtenues maximisent un critére qui est la somme pondérée des
durées opératoires normalisées de chaque famille de produits dans 1'flot de fabrication
correspondant et des compléments des durées opératoires normalisées de chaque famille de
produits en dehors de I'ilot de fabrication correspondant. Dans le dernier cas le sous-ensemble
supplémentaire de types de produits (ou machines) ne contient que des types de produits qui ont
des durées opératoires non significatives (ou des types de machines qui n'interviennent que
rarement ou brie¢vement dans le processus de fabrication des produits). -

Nous prouvons la convergence de notre algorithme et nous donnons quelques exemples
numériques. Nous terminons cette présentation avec la description d'une implémentation de
l'algorithme pour des ensembles de données de grande taille.

MOTS-CLE: Gestion de Production, Technologie de Groupe, Classification Croisée.

Abstract

We present an algorithm which considers a set of product types and a set of machine types.
The algorithm works out a partition of p subsets of product types, called product families, and a
partition of q subsets of machine types, called production subsystems such that :

either p = q and there exists a one-to-one relationship between and product families
production subsystems ,

or p=q+ 1 (orq=p+ 1) and there exists a one-to-one relationship between r
product families and production subsystems where r is the minimum value of p and q.
The supplementary subset of product (or machine) types has no corresponding subset
of machine (or product) types.

In both cases the partitions obtained maximize a criterion which is the weighted sum of
normalized processing times of each product family in its related production subsystem and the
complements of normalized processing times of each product family outside its related production
subsystem. In the latter case the supplementary subset of product (or machine) types contains only
products which have insignificant processing times (or machines which are only rarely or briefly
involved by product transformation).

_We prove the convergence of our algorithm and give some numerical results. The presentation
is closed with the description of an implementation of the algorithm for large data sets.

KEY WORDS: Production Management, Group Technology, Cross-Decomposition.

Introduction

At the design stage of a manufacturing process, we usually know the set of product types we
have to manufacture along with their production process and the mean proportion of each type of
product we expect to manufacture in the future. The goal is to group the machines into cells in
order to reduce the production cost by designing an effective production system layout. Many
works have been done in this field (see [1], [4], [S], [6], [7], [9], [10], [11], [12], [13]). The
process of partitionning the set of machines into cells and the set of products into product families
is known as a cross decomposition process. Various approaches are available (see [2], [3], [8] for

instance).

This paper extends the result proposed in [3] which is known as the GPM algoritm. This
algorithm provides a partition of the set of machine types into manufacturing cells and a partition of
the set of product types into product families in such a way that:

- the number of subsets in both partitions is the same,

- a one-to-one relationship between the manufacturing cells and the product types is given.

The above so called cross-decomposition maximizes a criterion which is the weighted sum of
normalized processing times for each product family in its related production subsystem and the
complements of normalized processing times of each product family outside its related production
subsystem. The objective is to obtain a spatial decomposition of the production system into
subsystems. Each of these subsystems manufacture the most important part of the products
belonging to the corresponding product families. In addition, the operations performed outside the
corresponding subsystems are those which require the less important amount of time.

The GPM gives good results in a short computation time. With this algorithm we might have
product types with little machine type usage in a product family (as well as we might have machine
types in a production subsystem which are only briefly or rarely concerned with processing
product types of the corresponding product family). We call those product types (or machine types)
insignificant. Our aim is to improve the GPM by extracting product types or machine types which
are insignificant.

The first paragraph briefly exposes the GPM, the second gives the modified algorithm and
proves its convergence. The third proposes a numerical example. The last paragraph gives an
implementation of the algorithm for large data sets.

1. The Initial Algorithm

1.1. The Data

We consider a matrix A giving the processing times of n different product types on m different

machine types : A = [ai'j] ,i=1.nandj=1. m, where a, ; is the processing time of product

type i on machine type j. B = [b; ;1 18 the normalized matrix A, where b, §= &,;/ max (a;;). Note
ij

that a;; = 0 if the product type i does not require machine type j to be manufactured.
We assign to each product type i a weight u; which is the number of products of type i

manufactured during a given time period and we assign to each machine type j a weight w; which is

the number of machines of type j available for the period considered.

1.2. The Initial Algorithm and its Criterion
In this paragraph we briefly remind the GPM as well as the criterion it is based on.

We denote partitions of machine types by Y and partitions of product types by X. Partitions are
computed in the following sequence: X°, Y, X1, ., Y*, X!, ... where X° is the randomly chosen

initial partition of product types and Y'= { Y !, Y,t... Y .1}, Xt = { X, X,t..., X 1} are the sets

of r production subsystems and r product families available at computation step t (t > 0).

The initial algorithm presented in [1] constructs a partition Y* from a partition X*! and X! from
Y". It tries to maximize the criterion A(X', Y?) given by (1) (see [2]).

AXYY)= h T oy W bi,j7‘+ (1-h) ¥ uiwj(l-biJ)I”' (1)
k=r k=r

(e U XLYH (e U XLYH
k=1 k=1

where h e [0, 1]is a parameter which gives more or less importance to the values contained in
diagonal blocks and A €]0, [is a parameter which modifies the influence of high or low
processing times.

The algorithm converges with stable maximum criterion values [1] since the number of

4

partitions X and Y is finite and since we have non decreasing values of criterion A(X, Y) for each
successive couple of partition of r non empty subsets. Figure 1 illustrates the result of the heuristic
algorithm.

xb 0
X %

Figure 1. The diagonal blocks formed by one-to-one related subsets of product and machine types maximize the

criterion A,

Recall that the result of this algorithm not only depends on h and A but also on the initial
partition X°

2. The Generalized Algorithm

At each step of the previous algorithm, we compute the additionnal value to the criterion (1)
provided by the column (or the row) considered, assuming successively that this column (or row)
belongs to the subsets 1, 2, .., r of the partition. We assign the column (or the row) to the partition
which leads to the maximal adding value.

In the generalized algorithm, we consider one more case : the case when the column (or the
row) does not belong to any of the existing subsets of the partition. If this assumption leads for
some columns (or rows) to higher adding values to the criterion, then we assign them to a
supplementary subset. If we compute successively two identical partitions with the same
supplementary subset then we conclude that the vectors belonging to this subset are insignificant.
Insignificant vectors are excluded from the matrix under consideration and computation is restarted
with the remaining matrix.

In sub-section 2.1 we show how to assign a vector (column or row) to a subset of the
partition. Sub-seciion 2.2 is devoted to the generalized cross-decomposition algorithm. In
sub-section 2.3 we prove the convergence of the previous algorithm.

2.1. Assignment of Vectors to Subsets

Partitions are computed by assignment of vectors to subsets. For instance, the machine
partition Y* is computed starting from the product type partition X1 = { X1, . X t1}: we
assign each machine type j (j = 1, .., m) either to a subset Y, '(k=1,..r) related to X, 1 or to the
supplementary subset Y., ; as follows.

We evaluate by cly (k) the assignment hypothesis : " j is assigned to subset Y,t", fork =1, .. r.

dy@= w; h T u®M+ w(1-h) T oy (l-b) A)
ie X1 ie X1

We evaluate by cly (s) the hypothesis : "j is assigned to to subset Y!", withs=r+ 1.

n

dy() =w; 1-h) I oy (1-b) A (3)
i=1
Let LY,)= {1/ ¢y (1) =Max ciy (k) }. @)
k=1,.., s
We assign j to subset I*G, t) such that I*G, t) = Min | . | 5)
le L(YY))

If I'G, 1) = s then we assign j to a new supplementary subset of machine types Y!. Otherwise j is

assigned to a production subsystem I°, 1) related to a product family X, 1. Once all machine
assignments have been decided, we evaluate the resulting machine type partition Y' by a global

criterion Wit

m
Wyt= T dy(I%G,) (6)
j=1

Wyt is the value of the criterion and Wy!'= A(X"1,Y") when there is no supplementary subset
in Y! (ie. Yt=9).

L

v

Similary, we will use the following formulas to compute a partition X" of product types from a
partition Y* of machine types :

Cdy@ =y h X whr+uy (1-0) T wd-b) fork=1L..r (7
je th je th

m
ig(® =1u (1-h) T w(1-b)" wheres=r+1 (8)
j=1

The global criterion W' evaluates the partition X":
n
Wyl= I cy(*G, 1) e))
i=1
1¥(i, t) being defined in a similar way than 1'Gj, t). (10)

2.2. The Algorithm

Three different options are available to run the following algorithm :

» the o-option under which the algorithm behaves exactly as the initial GPM algorithm and
computes one-to-one related subsets,

» the B-option which allows supplementary subsets for product types and

» the §-option which symmetrically allows supplementary subsets for machine types.
In the following, we call D-subset the supplementary subset of vectors in the final layout.The
D-subset is the union of insignificant vectors encountered along the computation.

t t t 4
Yy Yh Ys Yh Y} Yy YS Y: D-subset

DA\
D\

X4 7///) 7

o-option result 3-option results

Algorithm:

X© is the initial product partition resulting from random assignment of product types to r
subsets, with r < min(n,m).

convergence = FALSE,

t=1,

nt=n, m'=m,

D'=¢, Wxt=0,Y=¢,X=¢,

choose between the options a, B, 8.

dg .
s = Card(X*1)+1
forj=1.mt I* machine partitionning Y* from Xt */
if (8) then L(YY, j) = {1/ Jy (1) = Max diy (k) }. |
k=1,..s
else L(YYj) = {1/ cly (1) =Max cly (k) }.
k=1,.,(-1)

assign j to subset Y%« such that I* = Min |
le L(Y%))

if (@) or (8) then decide_convergence_machine ()

s = Card(Y")+1
fori=1.n ! * product partitionning X'form Y'*/
if (B) then L(XY, i) = {1/ ¢ix (1) = Max cix (k)).

. k=1,..,s
else LX%) = {1/ ¢ix (1) =Max iy (k) }.
k=1, .., (s1)
assign j to subset X"+ such that I* = Min |
le L(X4Y 1)
if (o) or (B) then decide_convergence_product ()
t=t+1
until convergence = TRUE

i

/]

decide_convergence_machine ()
if Y'e Y* then
ifYt €Y then
m**!=m'- Card (Y,!)
remove all column vectors [j] € Y ! from B
D'= D'UYLY = ¢
elsse Y=YUY

else mitl = mt
if t>1 and (X*2, Y1) = (X*1, Y!) then convergence = TRUE

decide_convergence_product ()
if X 'e X' then
if X' € X then
n*1=n'- Card (X;!)
remove all row vectors [i] e X! from B
D'= D'UX!, X= ¢
else X=X UX!

else ntt! = nt
if t>1 and (Y"1, X*1) = (Y%, X%) then convergence = TRUE

Let us consider a set of partitions obtained as shown in the previous algorithm. Suppose that
two of them, say Y*' and Y! (t < 1), are identical and contain the same supplementary subset Y!(=

Ys'). In that case, the supplementary subset is cancelled and the computation restarts with the

remaining matrix. The cancelled subset is called a D-subset. Several supplementary subsets can be
found in the computation . They are grouped in the final D-subset.

2.3. Convergence
We prove the convergence of our aigorithm for all three options.

n Lemma 1 Assuming that a-option has been chosen the following property holds:
card(X%) = card(Y?) > card(X1) 2 ... > card(Y") 2 card(X") ... a ¢9))

The first lemma says that the number of subsets in the partitions does not increase along with the

computation.

Proof a. Let us start from X' (t 2 0). In order to compute partition Y**1, the algorithm computes
for each column as many values of the criterion as the number of subsets in X*and assigns the
column to the k-th subset if the k-th value corhputed is one of the highest values of the criterion.
Thus, there are at most as many subsets in Y**! as in X*. In other words, card(X*) > card(Y**).
b.We can use a similar argument to show that card(Y*) 2 card(X") for t > 0.
c. Combining results a. and b., we obtain relation (11). Q.E.D.

Lemma 2 Assuming that a-option has been chosen the following property holds :
if we have card(X") = card(Y"*?), t > 0, p > 0 then

Wytr] € Wyl S Wyti2 < LS Wytip < Wyt a (12)

Lemma 2 shows that, if the number of subsets in the partition remains unchanged along with some
consecutive steps, then the value of the criterion does not decrease.

Proof .

a. According to lemma 1, card(X*) = card(Y*'*P) leads to:

card(X") = card(Y*!) = card(X**!) = ... = card(Y**P) = card(X'*P) = ... (13)
b. Because a-option has been chosen :

Wk = A (XK, Y for k = t, t+1, ..., t4p-1 (14)
On the other hand A (X¥, Y1) <A (Xk+1, Yk+1) because partition X**! is computed so
that: A (Xk+1, Yk+1) =)1(Vla)é A (X, Ykt1) ' (15)

€

where E is the set of all partitions of the matrix rows whose dimension is card(Xk*!).
But A (XKL Ykt = Wk - (16)
We derive from (14), (15) and (16):

Wikl < Wyk+l for k =1t, t+1, ..., t+p-1. ‘ 17)
c. We can use a similar argument to prove that

Wxk< Wykst for k = t+1, ..., t+p-1. (18)
d. Finally, we derive from (17) and (18):

Wyti1 < Wytt1 S Wyti2 € L S Wytp < Wyt Q.E.D.

Lemma 3 Assuming that a-option has been chosen and that:
card(X") = card(Y*P),t20,p >0 (19)

and Wytel = Wxt+p, t20,p>0 (20)

10

then I'G, k+1) <1°G, k), forj=1, ., mand t+1 <k <t+p-1 - (21)
and I*G, k+1) €I"G, k), fori=1,.,nand t+1 <k S t+p-2. a (22)

As a consequence, if (19) and (20) hold, then :
- either (Xt, Y**1) = (Xt#P-1, Yt*P)
- or (X!, Y1) /= (X**P-1, Y*P) and in that case (X', Y1) cannot be obtained again in the

following.
‘ Proof

a. From lemma 1 and 2, relations (19) and (20) lead to:

card(X") = card(Y**!) = card(X*1) = ... =card(X"*P) (23)
and Wytrl = Wyt = .= Wytip-1 = Wytep (24)
b. Because the a-option has been chosen and (23) holds:

Wkl = A (XK, YD) for k =1, t+1, ..., t+p-1 (25)
and Wyk+1 = A (YK, XK¥1) for k = t, t+1, ..., t+p-2 (26)
Taking into account (24), relation (25) and (26) lead to:

A (Xk, Yk+1) =A(Yk+1, Xk+l) (27)

Thus, partitions X¥*! and X¥ lead to the same value of the criterion when YX*! is fixed. But
according to (5), Xk*1 is obtained by assigning the rows of the matrix to the subsets at the lowest
rank.

It can be written : I*(i, k+1) < I*G, k), fori=1,..nand t+1 £k < t+p-2, which is relation (22).

c. Using a similar proof, we can write successively:

Wyk+ = A (YK, XK for k =t, t+1, .., t+p-2
and Wyke2=A (Xk*1, YK*2), fork = t-1, t, t+1, .., t+p-1
Consequently (see (24)):
AXEFL YK+2) = A(XK+L YK+1) for k = t, t+1, ..., t+p-2
Remember that Y¥*2 is derived from X¥*! in the algorithm.
Thus: I*(, k+2) € I'(§, k+1), for k=t, t+1, .., t+p-2
or then I'G, k+1) <I’G, k), for k=t, t+], .., t+p-1, which is relation (21).
d. Let us first assume that
I*G, k+1) = I'G, k) forj=1,..mand k =t, t+, ..., t+p-2

and I'(G, k+1) =1"(G, k) fori=1,..nand k =t, t+1, ..., t+p-1.

In that case (X!, Y**1) = (X471, Y!*P),

Assume that 1*(j, k+1) < I*(j, k) for at least one j e {1,...m}and one k e {t, t+1, ..., t+p-2)}

or I'(Q, k+1) < I*(i, k) for at least one i € {1,...n}and one k e {t, t+1, ..., t+p-1}.
Thus there exists at least one column or/and one row of the matrix classified in a subset of the

[al

' 11

partition Y*P (or Xt*P-1) whose rank is lower than the one of the subset containing the same
column (or/and row) in partition Y**! (or X*). Knowing that the rank of the subset of a partition
containing a given row (or column) does not increase along with the computation when (19) and

(20) hold, the proof is completed. Q.E.D.

. [
Theorem 1 Algorithm converges when a-option is chosen. m)
Proof ¥

The algorithm ends with Wyk-1=Wykor Wyk= Wyk+1, fork > 1.

We call step of the algorithm the computational process which leads from a couple (XX, Y¥*1) to the
next one (X¥*1,YK*2), At each step of the algorithm, the number of subsets in the partition either
remain unchanged or is changed.
a. In the first case, the value of the criterion either increases or not
a1.When the value of the criterion increases, it increases by a strictly positive value.
a2.When the value of the criterion remains unchanged, partitions do or do not change.
a11. When partitions change, theorem 1 shows that it is impossible to find again the
same couple of partitions in the future.
a12. When partitions remain unchanged the algorithm stops.
b. If the number of subsets in the partition changes, it decreases because we are in the .
a-option situation.
Remembering that the value of the criterion is bounded and the number of different partitions with
a given number of subsets is limited and we always reach the state described in a12, the previous

items show that the algorithm converges when the a-option is chosen. Q.E.D.
Theorem 2 Algorithm converges when the B and 8-options are chosen. O
Proof

We have the following two cases :
a. Two consecutive couples of partitions are found to be identical. The algorithm stops.
b. Else, since the number of couples of partitions is finite, we necessarily find two identical

couples (X!, Y and (X", Y (1> t) containing a supplementary subset. In that case, we cancel

the supplementary subset and continue the computation. The number of rows and columns bein g

finite, the algorithm stops either because we reach the above case a or because the matrix vanishes.
Q.E.D.

3. Numerical examples

In this section, we compute witi daia generaied at random. The values of the elements of the

o)

12

I8l

matrix belong to [0, 1] . They are randomly generated with a probability of 0.5 that the value of the
element is O. Thus, the number of 0 values is close to the number of 1 values in the matrix.

We solve this problem using the a-option and the §-option for various values of parameters h
and A. For each couple of values, we generate a random initial partition and compute the number
of one-to-one related subsets (column P) and the criterion value (column A) obtained with the
a-option, as well as the number of one-to-one related subsets (column Q), the size of the D-subset
(column D) and the criterion value (columns W, CR and T) obtained using the §-option. In column

A we find criterion A (X,Y) defined by relation (1). In column W we find criterion Wy (see relation

6). In column CR we introduce the values of the criterion for the D-subset computed as follows

md nd
CRD)=(1-h) £ X uw;(-d;)" (28)
=1 =l
where D = [di_j ,i=1.ngandi= 1. myis the matrix reduced to the D-subset. Column T

concerns the sum W+CR.
Results computed for a matrix with 100 rows and 45 columns:

a-—option P._ option I

h A P A Q D w CR T

0.2 0.2 20 2136.0 20 1 2084.4 51.6 2136.1
0.2 0.5 24 2424.6 24 0 2424.6 0 2424.6
0.2 0.8 21 2614.7 21 4 2375.2] 2416 2616.8
0.2 1.1 21 2752.7 0 45 0] 27440 | 27440
0.2 1.4 1 187.0 a 45 0| 2851.1 2851.1
0.2 1.7 1 166.2 0 45 0] 2934.3 2934.3
0.4 0.2 15 1666.6 15 0 1666.6 0 1666.6
0.4 0.5 24 1860.6 24 0 1860.6 0 1860.6
0.4 0.8 26 1998.0 27 1 1951.9 44.8 1996.7
0.4 1.1 29 2097.8 29 0 2097.8 0 2097.8
0.4 1.4 26 2171.1 25 2 2070.7 99.7 2170.4
0.4 1.7 24 2226.3 22 7 1874.3] 350.5 2224.8
0.6 0.2 7 1262.5 7 0 1262.5 0 1262.5
0.6 0.5 13 1326.0 13 0 1326.0 0 1326.0
0.6 0.8 21 1386.4 21 0 1386.4 0 1386.4
0.6 1.1 24 1453.9 24 0 1453.9 0 1453.9
06 1.4 24 1495.5 24 0 1495.5 0 1495.5
0.6 1.7 24 1526.5 24 0 1536.5 0 1526.5
0.8 0.2 1 1508.3 1 0 1508.3 0 1508.3
0.8 0.5 1 1201.2 1 0 1201.2 0 1201.9
0.8 0.8 3 920.5 3 0 920.5 0 920.5
0.8 1.1 9 853.7 9 0 853.7 0 853.7
0.8 1.4 12 849.1 12 0 849.1 0 849.1
0.8 1.7 14 851.9 14 0 851.9 0 851.9

13

4. Implementation of the Algorithm

In this paragraph we present a dynamic storage technique for the processing time matrix as
well as the required data structure for simultanous computation of S solutions.

4.1. Data
4.1.1. Dynamic storage technique v

The storage technique of the processing time matrix permits dynamical growth of the matrix,

allows rapid access to vector data and limits overdimensioning of the stored matrix to a constant

factorr.

The processing time matrix A = [a; ‘j], withi=1..nand j..m is subdivided into blocks. Let

us call P the matrix of blocks where each block has r rows and r columns:

P=[p1'k] with 1=1..In, k=1..km, In =n/r and km =m/r

PR Rs| PR

logical subdivision of matrix A

PlPJ PP

2,2 1,3 2,3 3,1

> <4 >4

e | Pusl P

,2 4,3 4
> < > <4 > ~

r> U
o
~ 0

growing data file

"
14

At the beginning of data storage we create block p ; in the disk-file. A matrix of r rows and
columns is now available. If we add columns to the data set and pass beyond the limit of the r

available columns then block p, , is added to the file. An overstepping of the limit of r available

rows implies the creation of two successive blocks, p, ; and p, , in order to complete the matrix.

The above figures show the logical subdivision of matrix A and its storage in a disk file when
columns and rows are added to the matrix in an arbitrary order. The series 1, 2, 3, 4, §, 6, 7 of
¥ blocks are created in order to complete the matrix, when overstepping of limits of available vectors

occurs.
3.1.2. Data Access

In order to work efficiently the algorithm needs direct access to row and column vectors of
the matrix. Each block of r2 elements is first stored first row-wise then column-wise.

L —

— o L @ B ¢

b 1
—
— i
s -
) w—
e 4
— 4

< >

’ block_adr[l,k] ROWS_OFFSET

The location of a block p, , in the file is a relative address block_adr(], k] from beginning of

block series. The location of the columns of block p, , is given by the sum of the block address
(block_adrf{l, k]) and the storage size of rows in the block (ROWS_OFFSET).

We define:
- 1if block p,, does not exist
block_adr [1, k]

else relative address of block Pix

The relative address block_adr [1, k] is known at block creation at the end of the file. Relative
block addresses are stored in a matrix of addresses stored in the file header. Beneath the addresses
of blocks the file header contains the following information : a data identifier, the last obtained
partition and its parameter values, the number of rows and columns of matrix A, the maximum
processing time, the machine and product type names, the machine and product type weights and

comments cn the data set.
During computation the header data are loaded into memory.

15

P
— header-\ Lk TN

§ -
HEADER_SIZE ROWS_OFFSET
- block_adr[l,k] v
—start
We define : - ELE_SIZE : storage size of floating point numbers

-COLUMN_SIZE : r+*ELE_SIZE
-ROWS_OFFSET : r?=*ELE_SIZE

-HEADER _SIZE : storage size of file header
Access to column j of matrix A is performed by the following algorithm.

k=j/r,1=1
column_offset = ((j mod r) * COLUMN_SIZE)+ ROWS_OFFSET
while block_adr(l, k] # - 1do
position_in (block_adr{l, k] + column_offset + HEADER_SIZE)
read_vector (column_vector[r* (1-1) ..r*1])
I=1+1
done

The presented data access method permits the reading of a vector by direct access to vector
pieces stored at constant offset in blocks in the disk file. By choosing factor r such that r *
ELE_SIZE corresponds to the size of system input / output buffers as well as to the file system
block size, we are able to optimize data access under the given constraints of data representation,

4.2. The Implemented Algorithm
The implemented algorithm computes first S different initial product partitions X°. Row

vectors of matrix A are randomly assigned to p subsets, where p is either user defined or equivalent
to the minimum dimension of matrix A.

16 ¢

~ intial_partition()

/* no row vector is marked */

fori=1ltop
choose randomly je [1 .. n] ‘
if jismarked then choose nextj which is not marked
mark j byi

forj=1ton
if j is not marked then choose randomlyre [1..p] markj by r

/* all row vectors are assigned to subsets, none of the p subsets are empty */

Then we simultaniously run S computations of partitions on choice under o, B or 3-option.
For each vector read from the disk-file we compute its criterion values for the S different
partitionnings.

run [k].mach_suppressed

g b I:I part [k].n_partitions
= o s = [] partikl.criterion

s 2 B2 % ¢

3 2% 5, 3 3 [| run [K]. r_mach |

Q x . —

e & 1: = 20 | part [Kl.ex_par_mach []
c oy o o - -3

?D B % b 5 % L | part_[k].part_mach []
©® 2 8 8 8§ @ column_weights []

® O S

Q 3 = = = f o] 1

e onerd el

Required data structures for S simultanious computations

The data structures represented in the above figure are defined as follows :
For each partition k =1 ... S we define:

part [k].n_partitions number of existing one-to-one related subsets
run [k].prod_suppressed number of rows belonging to the D-subset

17

(idem for run [k].mach_suppressed)

part [k].criterion value of working criterion W

run [k].r_prod [i} = 0 if product type i Belongs to the D-subset, 1 else
(idem for run [k].r_mach [i]) _

part [k].ex_par_prod [i] = 1 if product subset i exists, O else

(idem for part [k].ex_par-mach [i])

part [k].part_prod [i] = r > 0 if product type i belongs to subset r, 0 if
(idem for part [k].part_mach [i]) product type does not belong to any existing subset

4. Conclusion

In this paper we have proposed a method providing a set of machine subsets and a set of
product type subsets as well as a one-to-one relationship between these subsets. Insignificant
machines or product types are isolated in a so-called supplementary subset.

This aim of this algorithm used in group technology is to simplify scheduling problems by
dividing these problems into smaller subproblems.

The following two issues are subject to further study. The simplest issue is to acquire a
machine as many times as it is used by different computed product families. Otherwise we have to
look for a way to integrate information about processing sequences of products in the criterion
evaluation such that links between production subsystems are minimized.

References

[1] ASKIN R. and SUBRAMANIAN S.B., "A Cost-Based Heuristic for Group Technology
Configuration", International Joumnal of Production Research, 25, 1, pp- 101-113, 1987.

[2] GARCIA H. and PROTH J.M,, "A New Cross-Decomposition Algorithm : the GPM.
Comparison with the Bond Energy Method", Control and Cybernetics, n° 2, vol. 15, pp.
115-165, 1986.

[3] GARCIA H. and PROTH J.M., "Group Technology in Production Mangement : the Short
Horizon Planning Level", Applied Stochastic Models and Data Analysis, n°® 1, pp. 25-34,
198s.

18

).j

]

(4]

[5]

[6]

(7]

(8]

[9]

KING J.R., "Machine-Component Group Formation in Group Technology", OMEGA The
International Journal of Management Science, 8, 2, pp. 193-199, 1979.

KUMAR R.K,, KUSIAK A. and VANNELLI A., "Grouping of Parts and Components in
Flexible Manufacturing Systems", European Journal of Operations Research, 24, pp.
387-397, 1986.

KUSIAK A., "The Part Families Problem in Flexible Manufacturing Systems", Annals of
Operations Research, 3, pp. 279-300, 1985.

Mc AULEY J., "Machine Grouping for Efficient Production", The Production Engineer,
pp. 53-57, Feb. 1972.

Mc CORMICK W.T., SCHWEITZER P.J. and WHITE T.E., "Problem Decomposition and
Data Reorganization by a Cluster Technique", Operations Research, 20, 1972.

HARHALAKIS G., NAGI R. and PROTH J.M,, "An Efficient Heuristic in Manufacturing
Cell Formation for Group Technology Applications”, proposed for publication to the Journal
of Engineering Costs and Production Economics.

[10] PORTMANN M.C. and PROTH J.M,, "Spatial and Temporal Decomposition Methods in

Production Management", International Conference on Computer Integrated Manufacturing,
CMP/CIM Computer Society of the IEEE, May 23-25, 1988.

[11] PORTMANN M.C. and PROTH J.M., "A Cross-Decomposition Method for Layout

Systems and Scheduling Problem”, Third International Conference on CAD/CAM, Robotics
and Factories of the Future, CARS and FOF Conference and Exhibits, August 14-17, 1988,
Southfield, Mich.

[12] PORTMANN M.C.,"Methodes de décomposition spatiale et temporelle en ordonnancement”,

These d'Etat &s-sciences mathématiques, Université Nancy I, sept. 1987.

[13] HARHALAKIS G., HILGER J., NAGI R., PROTH J.M., "Formation of Manufacturing

Cells : an Algorithm for Minimizing Inter-cell Traffic", proposed for publication to the
Journal of Applied Stochastic Models and Data Analysis.

Imprimé en France
par ‘ .
I’ Institut National de Recherche en Informatique et en Automatique

