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78153 Le Chesnay La Jolla, CA 92093
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Abstract:

Deterministic and non-deterministic extensions of Datalog with fixpoint semantics are
proposed, and their expressive power characterized. It is argued that fixpoint semantics
provides an elegant way to overcome the limited expressive power available with purely
declarative semantics. The Datalog extensions range from complete languages to languages
capturing interesting complexity classes of queries and updates: NPTIME and NPSPACE
in the non-deterministic case, and the fixpoint queries and while queries in the deterministic
case. The connection between the Datalog extensions and explicitly procedural languages,
as well as fixpoint extensions of first-order logic, is also investigated.

Résumé:

Des extensions déterministiques et non-déterministiques de Datalog avec des sémantiques
de point fixe sont proposées et leur puissance d’expression caractérisée. Il est montré qu'une
sémantique de point fixe procure une maniére élégante de surpasser les limitations de puis-
sance disponible dans des langages purement déclaratifs. Les langages obtenus vont de
langages complets 3 des langages correspondant a des classes de complexité intéressantes:
NPTIME et NPSPACE dans le cas non-déterministe, et les requétes de point fixe ou les
requétes while dans le cas déterministe. Le lien entre ces extensions de Datalog et des
langages procéduraux ou des extensions par des opérateurs de point fixe de la logique du
premier ordre est aussi étudié.

1 This work was performed in pant while the author was visiting at LN.R.LA. The author was supported in part by the National Science Foun-
dation under grant number IST-8511538.

0

M D PAPIER RECUPERE T RECYCLE
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78153 Le Chesnay La Jolla, CA 92093
FRANCE o USA .
(serge@inria.inria.fr) (vianu@sdcsvax.ucsd.edu)

INTRODUCTION

"The use of the logic programming paradigm in the context of data and knowledge bases has been a
primary focus of research in the last few years. Recently, much of that research revolved around
attempts to develop extensions of Datalog with increased expressive power, providing forms of
non-monotonic reasoning (see [Ap, Ka, U]). In this paper, we propose a variety of extensions of
Datalog with fixpoint semantics. We argue that fixpoint semantics provide an elegant way to
overcome the limited expressive power available with purely declarative semantics. The focus of
the results is on the expressive power of the languages, and on understanding the functionality and
interactions of the programming primitives used. In particular, we highlight the connection
between the Datalog extensions with fixpoint semantics and explicitly procedural languages.

The most popular extension of Datalog to date provides semantics to a class of Datalog
programs with negation, satisfying a syntactic criteria called "stratification” [ABW, CH2, N, VG,
BF, P]. Stratified Datalog constitutes a departure from traditional declarative semantics, which are
based exclusively on model theory. In contrast, the semantics of stratified Datalog specifies in
effect an order of evaluation of the rules, which results in the computation of a particular model
called "perfect”, which is one of several models of the corresponding sentences. Indeed, it appears
unlikely that purely declarative semantics can provide languages considerably more powerful than
Datalog. Thus, purely declarative semantics for expressive languages are likely to be rather
complicated and artificial. The Datalog extensions that we propose, like stratified Datalog, provide



semantics which involve a procedural component, in that the intended model is specified as the
result of computing a fixpoint associated with the program. We continue to call these languages
"declarative” because of the lack of explicit control.

The Datalog extensions that we define can be viewed both as query languages and as update
languages (to unify the discussion, we refer to queries or updates as database transformations and
to the languages as darabase languages). We consider a family of non-deterministic languages and
a family of deterministic languages. The choice between non-deterministic and deterministic
semantics results from the decision to consider one possible application of a rule at a time, or to
fire in parallel all rules that apply. Within each family, we provide complete languages and
restrictions of the complete languages which correspond to interesting complexity classes of
transformations. Completeness is achieved by providing a mechanism for introducing “invented"
values into the database. (With fixed schemas and without the ability to increase the active domain,
only transformations whose computation requires polynomial space can be computed.) Intuitively, a
variable occurring in the head of a rule and not in the body is interpreted as an invented value.
We also consider negations in heads of rules, interpreted as deletions. This allows invalidating a
previously asserted fact, which is a key aspect of database updates. Interesting classes of
transformations captured by the Datalog extensions include the NPTIME and NPSPACE
transformations (in the non-deterministic case), and the set of fixpoint queries and the
transformations corresponding to the while language of [Ch] (in the deterministic case).

We next illustrate informally the semantics and main primitives used in the various languages.
We start with determinism versus non-determinism. In the case of Datalog, a program can be
evaluated indifferently by applying one rule at a time, or by firing all rules that apply at once, until
a fixpoint is reached. When negation is allowed in bodies of rules, this is no longer the case. The
choice of firing all rules simultaneously results in deterministic semantics, whereas firing one rule
at a time yields non-determinism. Indeed, consider the program P
R(x) « S(x), =T(x)
T(x) < S(x), -~R(x).
Suppose that we apply this program to the instance I such that I(S)={1,2,3} and I(R)=I(T)=0.
With the non-deterministic semantics, we fire rules one at a time, in a non-deterministic manner.
We can derive several fixpoints, for instance 1(S)={1,2,3}, I(R)={1}, I(T)={2,3}, and I(S)=(1,2,3},
I(R)={1,2}, I(T)=(3}. Each of the fixpoints is a model for the set of rules. Other models can be
obtained as well. With the deterministic semantics, all possible applications of the rules are fired
simultaneously. Then P; applied to the same instance I yields the unique result
I(S)=I(R)=I(T)={1,2,3}, obtained in a single stage. This too is a model for the set of rules. Note



that this particular model cannot be obtained with the non-deterministic semantics.

Each of the deterministic and non-deterministic semantics is best suited to particular types of
applications. For instance, consider the well-known game of life, which is usually described by
several rules which are applied simultaneously to generate consecutive states. The parallel firing
of rules associated with the deterministic semantics is naturally suited for such an application (see
Example 4.6). Non-deterministic semantics resulting from firing rules one at a time is natural in
other applications, such as production systems [DE] or tutoring systems [SCG]. Non-deterministic
updates are discussed in [Ab,MS2,MW]. Of course, deterministic and non-deterministic semantics
coincide for Datalog. It is an interesting problem to find conditions under which this holds for
other languages.

Without deletions, both the deterministic and non-deterministic semantics are inflationary, i.e.
the database grows continuously throughout the computation. We also consider non-inflationary
languages by allowing negative literals in the heads of rules and interpreting them as deletions.
This is particularly well-suited for update languages, where the ability to retract a previously
asserted fact is crucial. To illustrate negations in heads of rules, consider the program P, (G
represents a graph):

=G(x,y) « G(x,Y), G(y,x)
With a non-deterministic semantics, P, brings G to a "triangular" form by removing non-
deterministically one edge <x,y> or <y,x> for each pair of edges <x,y>, <y, x> of G. With the
deterministic semantics, P, removes from G both <x,y> and <y,x> for each pair of edges <xy>
and <y,x> in G. Note that a "rriangularization" of G cannot be achieved by any deterministic
program. We lastly illustrate the use of invented values. Consider the following "unsafe" program
P, with non-deterministic semantics:
S(x,y), T(x,y,2) ¢ R(x,y), = S(x,y).

Variable z, which occurs only in the head, allows to "invent" new values. Suppose that K is an
instance such that K(R)={[1,2].[3,4]} and K(S)=K(T)=J. Then one possible computation derives
S(1,2) and T(1,2,171); then S(3,4) and T(3,4,5); this yields a model of the program. Intuitively,
each tuple in R is copied in S and T, and "marked" in T with an invented value.

The semantics of the Datalog extensions involve an implicit procedural element (the
computation of the fixpoint). It turns out that this limited procedurality is sometimes sufficient to
simulate languages with explicit, powerful control mechanisms like composition and iteration. This
issue is intimately connected with the expressive power of the Datalog - extensions, and is
highlighted throughout the paper. To illustrate the techniques involved in simulation of control,



consider Datalog programs with negations in bodies of rules and a deterministic fixpoint semantics

(Datalog™). (This language was independently proposed in [AV3,KP].) Suppose that we wish to
compose two programs Q, and Q,. The problem is to inhibit Q, until after Q; has been evaluated.

If Q, is recursion-free, Q; must be inhibited for a number of steps which is constant (input

independent). It is easy to do this using several O-ary control predicates which are fired in
sequence. If Q, is recursive the above technique does not apply, since Q, must be inhibited for a

number of steps that is data dependent. However, we will show how this can be achieved using a
"differential” technique which detects when the computation of the fixpoint of Q; is completed, by
keeping track of the facts newly inserted at consecutive iterations. This technique can be extended

to show that Datalog™ has the same power as a procedural language with composition and
iteration, and that it yields the fixpoint queries.

The non-deterministic semantics generally provides weaker control capability, due to the non-
deterministic firing of rules. The techniques used in the deterministic case must be augmented with
means to correct erroneous non-deterministic choices. In this context, deletions and invented values
contribute to the ability to simulate control.

To understand the issue of control, we consider the procedural languages studied in [AVI],
AV2], which are essentially the Datalog extensions with added explicit control. The procedural
languages use the elementary operations of tuple insertion and deletion, composition, a while
construct, and a with new construct for inventing new values. The connection between the Datalog
extensions and their procedural counterparts is underscored throughout the paper. In particular,
most proofs concerning expressive power of the Datalog extensions involve simulations of the
procedural languages. Thus, it becomes apparent which of the Datalog extensions can simulate
their procedural counterparts. In particular, the connection between various features of the Datalog
extensions (like invented values, or deletinns) and the ability to simulate explicit control, becomes
clear. Such results are of practical importance, since they suggest how explicit control mechanisms
can be used in conjunction with declarative languages. This added flexibility would result in
programs whose semantics are clearer to users than programs where intricate control is encoded
using weak implicit control.

Similar insights are obtained by examining the connections between the safe Datalog
extensions and fixpoint extensions of first-order logic. (Indeed, the fixpoint logics are similar to the
procedural languages: composition is analogous to nesting, and iteration is similar to an application
of the fixpoint operator.) We first consider first-order logic augmented with an inflationary fixpoint
operator (FO+IFP), which is known to define the fixpoint queries [GS]. We show the equivalence

of Datalog™ and FO+IFP. The simulation of the inflationary fixpoint logic by Datalog™ provides as
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a side effect some results on the inflationary logic: the collapse of the hierarchy based on the depth
of nesting of the fixpoint operators (which was a known result of [GS]), and a normal form. We
also provide other fixpoint extensions of first-order logic for the non-deterministic and non-
inflationary cases. The non-inflationary fixpoint logic is obtained using a partially defined fixpoint
operator PFP instead of the classical inflationary operator IFP. The non-deterministic one uses an
operator witness which yields formulas with several possible interpretations for a given structure.
Results like the collapse of the hierarchy and existence of normal forms are also exhibited.

The paper consists of six sections. Section 1 contains preliminaries, including a review of the
procedural languages investigated in [AV1,AV2]. (This makes the paper self contained.) In
Sections 2 and 3, the non-deterministic and deterministic extensions of Datalog are presented, and
their expressive power investigated; in particular, the connection with the procedural languages is
exhibited. The variations of the Datalog extensions allowing negations in heads of rules are
studied in Section 4. The connection between the Datalog extensions and fixpoint extensions of
first-order logic is studied in Section 5. Section 6 contains conclusions, including a summary of the
results.

The various languages are summarized at the end of the paper in Figure 1. Their expressive
power is given in Figure 2, and connections with procedural languages and fixpoint logics in
Figure 3. ’

1. BACKGROUND
We start by reviewing some basic database terminology and notation. We also recall the procedural
languages introduced in [AV1,AV2] and results on their respective power.

1.1 Preliminaries

We assume that the reader is familiar with the basic concepts and terminology of relational
database theory (see [U]). We also refer to [Ka] for a survey of the field. We review here some
database terminology and notation.

We assume the existence of three infinite and pairwise disjoint sets of symbols: the set att of
attributes, the set dom of constants, and the set var of variables. A relational schema is a finite
set of attributes. A tuple over a relational schema R is a mapping from R into dom U var. A
constant tuple over a relational schema R is a mapping from R into dom. An instance over a
relation schema R is a finite set of constant tuples over R. A database schema is a finite set of
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relational schemas. An instance I over a database schema R is a mapping from R such that for
each R in R, I[R] is an instance over R. In general, we use A, B, C,... for attributes, a, b, c,... or 0,
1, 2,... for constants, X, y, Z,... for variables, and T, ... for tuples. We usually denote relational
schemas by R, S...., database schemas by R, S.,..., and database instances by I, J,.... The set of all
instances over a schema R is denoted by inst(R). The set of all constants occurring in an instance
I is denoted by const(l).

We view updates and queries as transformations of database instances into other database
instances. While in some cases, the transformations considered will be mappings, in others, non-
determinism is allowed, and the transformation is described as a relation between database
instances. In a database context, such transformations are not arbitrary. Clearly, the relation
between instances has to be at least recursively enumerable (r.e.). It is usually required that
instances over a fixed schema be related to instances over another fixed schema. Finally, it is also
required that constants (except perhaps for a fixed number) be uninterpreted. The last property
has been introduced in [H, AU, CH1] under different names and with minor differences. We use
here the terminology of [H], where the property is called C-genericity. Formally, let R and S be
database schemas, and C a finite set of constants.

» A subset T of inst(R) x inst(S) is C-generic iff for each bijection p over dom which is the
identity on C, (I]) € 7 iff (p(I),p(3)) € .

e A mapping T from inst(R) to inst(S) is C-generic iff its graph is C-generic.

We now define three important classes of transformations. Let R and S be database schemas.

. A (non-deterministic) database transformation (from R to S) is a subset of inst(R) x inst(S)
which is r.e., and C-generic for some finite C.

. A finitely non-deterministic database transformation (from R to S) is a non-deterministic
database transformation 7T such that for each instance I over R, the set {J | (I)) € 1} is finite.

» A deterministic database transformation (from R to S) is a mapping from inst(R) into inst(S)
which is partial recursive, and C-generic for some finite C.

For conciseness, we usually refer to database transformations simply as "transformations".

Note that, although not allowed by traditional database systems, non-deterministic updates or
queries arise quite naturally (e.g., "Find one cafe’ at the intersection of Blvd. St. Michel and Blvd.
St. Germain"). To illustrate the three kinds of transformations defined above, consider the
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following operations: t, = insert(5), t, = delete_random_tuple, and t; = insert_random_tuple. The
first transformation is deterministic. The second one is finitely non-deterministic but not
deterministic. The last one is not finitely non-deterministic.

With the three classes of transformations defined above, we can introduce completeness
criteria for languages based on their -capability to express transformations in these classes.
Informally, a language L specifies a set of programs. The semantics of a program in L is given by
a transformation called the effect of the program, and denoted by eff; (t). Note that eff; (1) is a

mapping if the transformation is deterministic, and a relation otherwise. Now, a language L is
non-deterministic complete if it defines precisely the set of non-deterministic database
transformations; similarly for finitely non-deterministic complete and deterministic complete. The
concept of completeness is originally from [CH1]. The precise variations used here were
introduced in [AV2].

We will refer to the following well-known database languages:
e Relational calculus [C]: this is a first-order calculus without function symbols;

o  Datalog: a Datalog program consists of a set of rules (function-free Horn clauses) of the form
R(® « ¢, where ¢ is a list of positive atoms;

o FP [CH2): fixpoint formulas are obtained from the first-order constructors (4 ,V ,AV,—) and
a fixpoint constructor (that can be applied on "positive" formulas).

. while: the while language (which is the same as LE of [Ch] and RQ of [CH2]) uses ranked
variables that can hold relations of fixed arity. The constructors of the language are
composition, assignment of a relational algebra expression to a variable, a while construct
which permits to iterate a program until a variable holds an empty relation.

Throughout the paper, we will refer to complexity classes of transformations. We use as
complexity measures the time (space) used by a Turing Machine to produce a standard encoding of
the output instance starting from an encoding of the input instance. The measures are functions of
the size of the input instance. Note that the complexity of a transformation is not expressed in
terms of the corresponding recognition problem. Thus, for each Turing Machine complexity class
C there is a corresponding complexity class of transformations denoted DB-C. In particular, the
class of database transformations which can be computed by a deterministic Turing machine in
polynomial time is denoted DB-PTIME. (Similarly, for DB-PSPACE.) The analog for non-
deterministic transformations are DB-NPTIME and DB-NPSPACE. Note that Savitch’s theorem
(PSPACE=NPSPACE) is not relevant in this context, since a PSPACE transformation is
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deterministic by definition, whereas NPSPACE contains non-deterministic transformations. (So,
DB-NPSPACE+DB-PSPACE.)

1.2 The TL and detTL languages
We now review the procedural languages studied in [AV1,AV2]. We do this in some detail, since
many proofs of the paper consist of simulations of these procedural languages.

In all the procedural languages, two basic operations (denoted, respectively, by i (¥ and
d, (D) allow the insertion or deletion of a tuple Pin a relation R. The content of a relation R can be

completely deleted by the operation erase,. Three constructs are used besides the basic operations:

composition (denoted by “;"), a construct to perform iterations (while), and finally one to randomly
assign a new domain value to a domain variable (with new). The last construct permits the
introduction in the database of values which were not originally part of the active domain. (Recall
that we assume an infinite domain.)

A while statement is of the form: while <condition> do t done. Domain variables are used in
the body of a while statement, and in its condition. The semantics attached to the while is based
on valuations of the variables to domain values. Two semantics can be given to a while statement:
a deterministic one and a non-deterministic one. With the non-deterministic semantics, a valuation
satisfying the condition is non-deterministically chosen. The program in the body of the while is
then applied for that valuation. This is iterated until no valuation satisfying the condition can be
found. Clearly, the choice of valuation introduces non-determinism. With the deterministic
semantics, all valuations satisfying the condition are considered simultaneously. The program of
the body is applied for each such valuation. The result of one iteration is then the union of the
results for each valuation. This is iterated until no valuation satisfying the condition can be found.

We now present the syntax and semantics of the language TL more formally. Let R be a
database schema. A condition over a database schema R is an expression Q; A- -+ AQ, where
each Q; is an atomic formula over R, i.e., an expression of the form R(®), - R(®), x =y orx #y,
for some R € R, some tuple T over R (possibly with variables), and x in var, y in (var U dom).
Intuitively, "parameterized" programs are programs with "free" variables (not bound to any
condition). Due to space limitations, we do not define here formally the notion of free variable of

a program. A parametrized program in TL over a database schema R is an expression obtained as
follows:



(1) for R in R, and for each tuple P over R (possibly with variables), ip(D), dy (@), and erase, are
parameterized programs, and

(2) ift, ¢ are parameterized programs over R, Q a condition over R, and z is a free variable in t,
then (t,t' ), while Q do t done, and with new z do t done are parameterized programs over R.

A program t in (TL) is a parameterized program with no free variables.

The semantics of a TL program t is defined as a binary relation between database instances,
denoted by effy; (t). Intuitively, insertions, deletions and erase are interpreted in the natural way.
The interpretation of the program (t;t’) is the product of the binary relations corresponding to t and
t’. Next, (L)) is in effy; (while Q do t done) if there is a sequence of instances I=I,....I =J such

that

o for each i (i < n), there exists a valuation v such that I & vQ and <L, I

> 18 in eff (vo),

and
. for all valuations v, J ¥ vQ.

Finally, (1)) is in effTL(with new z do t done) iff (1)) is in eff; (vt), where v is a valuation of z

such that v(z) is not in const(I) U const(t).

When a program is applied to a given database, its effect is often interpreted by identifying
some relations as input relations, and other relations as output relations. In addition to semantically
significant input and output relations, the programs may use "temporary"” relations. Thus, it
appears useful to also define the effect of a program with respect to specified input and output
database schemas. Given a program t and an input-output (i-o) schema <R,S>, t transforms
instances over R into instances over S as follows: relations which are not in the input schema are
assumed to be empty before the program is executed; after the program is run, the relations in the
output schema must contain the desired result. (The content of the other relations is immaterial.)
The effect thereby obtained is denoted by eff(R,S,t).

QOur definition of the language TL allows programs to produce domain values not present in
the original database or in the program, and which are thus "unsafe”. We recall here the definition
of safety of [AV1], and two syntactic criteria to guarantee safety introduced there. A program t is
safe with respect to an i-o schema <R,S> iff for each (LJ) in eff(R,S,t), the set of constants
appearing in J is included in those of I together with those of t. To achieve safety, the obvious
restriction is to completely forbid the invention of values. This yields strongly-safe TL (STL), the
language obtained from TL by removing the "with new" construct. An alternative is to allow the
use of invented values in the columns corresponding to some attributes that occur only in



temporary relations but not in relations of the i-o schema. This can be done in the following way.
A program has a safe-attribute-set 0 if

e O contains all the attributes of the input or output relations; and

o each occurrence of a variable in an insertion into a 6-column is "positively bound" by some
value in a 6-column (see [AV2]). ’ S ,

A program is weakly-safe if it has a safe-attribute-set. The corresponding language is called
weakly-safe TL (WTL). The connection between the various notions of safety is studied in [AV2].

We next consider the deterministic counterpart of TL (detTL), and its safe restrictions. TL
programs may be non-deterministic for two reasons: (a) they produce values which are arbitrary,
and (b) the choice of a valuation in a while loop is arbitrary. In order to obtain determinism, we
use a different semantics of the while, and also require weak safety. A detTL program is a
weakly-safe TL program. (Syntactically, there is no difference between WTL and detTL.) The
semantics of insertions, deletions and with new is like in TL. A statement while <cond> do t done
has the following semantics. One iteration is obtained by considering in "parallel” all the satisfying
valuations of <cond> in the active domain of the database, applying t for all these valuations, and
taking the union of the results. This is iterated until <cond> is not satisfied by any valuation. We
also require that two "branches" that are viewed as realized in parallel not invent the same new
value. With these restrictions, it can be shown that if t is a detTL program over some i-o schema
<R,S>, then eff(R,S,t) is a C-generic mapping.

As in the case of TL, we can require strong safety of programs in detTL. The language
thereby obtained from detTL by disallowing the "with new" construct is called strongly-safe
deterministic TL (SdetTL).

We next recall results on the power of the languages TL, detTL, WTL, STL, and SdetTL.

Theorem 1.1 [AV2]:

(@ TL is non-deterministic complete.

() WTL is finitely non-deterministic complete.
(¢) detTL is deterministic complete.

(@ STL computes DB-NPSPACE.

(¢) A transformation is computable by SdetTL iff it is computable by the while language
(extended with constants). []
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Finally, we mention another result (that we shall use) concerning a trade-off between negation
and deletion in some of the procedural languages. Specifically, under certain conditions, deletions
can be simulated using negation and invented values. For each procedural language L discussed
above, we denote by L* the language restricted by disallowing deletions.

Theorem 1.2 [AV2]: Each TL (detTL) program over disjoint i-o schemas is equivalent to a TLf
(detTL*) program. [] ' |

2 NON-DETERMINISTIC LANGUAGES

In this section, we define several non-deterministic extensions of Datalog which allow for
negations in bodies of rules. We consider both safe and unsafe variations and study the expressive
power of the languages that are obtained.

We first introduce the language DL. (Its procedural analog is TL.) The syntax of DL is the
syntax of Datalog extended by allowing (i) negative literals in the body, (ii) more than one positive
literal in the head and (iii) variables appearing in the head but not in the body. More precisely, we
have:

Definition: A Declarative Language (DL) program is a finite set of rules of the form
Al,...,Aq «B.....B

12098,

(q > 0, n 2 0) where each A, is a positive literal of the form Q(x,,...x ) (m 2 0), and each B, is a
positive literal of the form Q(x,,...,x ) (m 2 0) or x; = x, (the x;’s are domain variables or
constants), or the negation of such a literal.

The expression A,...,A a is called the head, and B,,...,B_, the body.

If P is a program, sch(P) denotes the database schema consisting of all relation schemas
occurring in P. The semantics of a program P is given by the effect eff(P) of P, which is a binary
relation on inst(sch(P)). Intuitively, DL programs work as follows. New facts are inferred by
repeated instantiations of rules in the program, in any order. Variables occurring in the head but
not in the body play the role of the with new construct in TL. Thus, instantiations of such variables
must be new constants, i.e. constants not appearing in the current database instance or in the
prografn. Facts are added to the database until no additional facts can be inferred, and no facts are
ever deleted. (In this respect the semantics is inflationary, since the database grows continuously.)
Of course, there is no guarantee of termination. The random assignment of new values to
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variables occurring only in the head, as well as the arbitrary choice of consecutive instantiations,
introduce non-determinism. The semantics of DL is formalized next.

Definition: The effect effy,, (P) (eff(P) when DL is understood) of a DL program P is the binary
relation over inst(sch(P)) consisting of all pairs (I,J) for which there is a sequence I=IO,...,Ip=J such
that ‘ , '
(1) for each k, 0 £ k < p, there is a rule Al,...,Aq ¢« B,,..,B, in P, and a valuation v of the
variables such that
(1-a) vx belongs to const(L,) U const(P) iff x is a variable occurring in the body,
(1-b) I, EvB, A.AVB,,

1oL ,= il...iq(Ik) where foreach j, 1 <j<gq, ij = iQ(vxl,...,vxm) if Aj = Q(xli,...,x ) and

(2) for each extension IO,...,I p+ of Io,...,Ip satisfying (1), Ip = Ip.

To distinguish a set of input relations and a set of output relations among relations in sch(P),
we sometimes say that a program P is over an i-o schema <R,S>, where R and S are subsets of
sch(P) (not necessarily disjoint). The effect eff(R,S,P) of a program P w.r.t. the i-o schema <R,S>
is the binary relation from inst(R) to inst(S), induced by eff, (P) as follows. A pair (L)) is in

eff(R,S,P) if for some pair (I',J’) in effp (P), I'ly =1, I’ is empty outside R, and J’lg = J.

We also consider weakly-safe and strongly-safe versions of DL (denoted WDL and SDL,
respectively). A DL rule is strongly-safe if each variable in the head occurs in the body. A
program in DL is strongly-safe if all its rules are strongly-safe. Note that this restriction is
analogous to disallowing the with new construct to obtain strong safety in procedural languages.

Weak safety is defined relative to a given i-o schema, as for TL, using the auxiliary concept
of "safe-attribute-set”. Let P be a DL program over some i-o schema <R,S> and 0 a set of
attributes. Then 0 is a safe-attribute-set w.r.t. <R, S> if

¢ O contains all attributes occurring in R or S, and

. for each rule r in P and each variable x, if x occurs in the head in some column A in 6, then
X occurs in a positive literal in the body in a column in 0.

A program is weakly-safe w.rt. <R,S> if it has a safe-attribute-set w.r.t. <R,S>. Thus,
"invented" values are allowed only in particular columns of the temporary relations (i.e., not input
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or output relations) in sch(P).

Note that by definition, a program P is strongly-safe iff the set of all attributes occurring in
sch(P) is a safe-attribute-set for P. Therefore, each strongly-safe program is also weakly safe.

We briefly show- that checking if a program is weakly-safe can be performed in polynomial
time. This is done by computing a minimal set of "unsafe” columns, and checking empty
intersection with the input and output schemas. The minimal set of unsafe columns is computed
using the notion of "migration" of a variable. Consider a program P. A variable x migrates (in P)
from a set I of columns to column D iff for some rule <head> ¢ <body> in P, (a) x occurs in
<head> in column D, and (b) all occurrences of x in positive literals in <body> are in columns in
I. A PTIME algorithm to check for weak safety is as follows. First, the attributes where new
values are inserted are marked as unsafe. Then, if some x migrates from the set of unsafe columns
to a column D, then D is added to the list of unsafe columns. This is iterated until a minimal set
of unsafe attributes is found. If this set does not intersect the input and output schemas, its
complement is a safe-attribute-set; otherwise, the program is not weakly safe.

Before turning to the study of the power of the languages, we make two remarks on the
above semantics: one on the connection with logic, and the other on alternative semantics.

Definition: To each rule A,,...,A e B,,...B, in P, we associate the first-order sentence
Y %3 7Y(B, AAB = A AA Aq)

where R is the vector of the variables occurring in the body, and ¥ is the vector of the variables
occurring only in the head. For a program P, let Z(P) be the set of sentences associated with the
rules in P.

Remark: given a program P, if <IJ> € effpy; (P) then J is a model of Z(P) containing I.

Remark: The non-standard part of the above definition concerns the handling of new values, which
allow the active domain to grow. It should be noted that variables occurring in bodies of rules are
valuated within the active domain while the others are valuated outside the active domain.
Variations could be considered such as: variables occurring in heads alone are interpreted freely
(i.e., within or outside the active domain); or, all variables are interpreted freely. Such variations
are minor, and do not affect the expressive power of the language. A more significant departure
would be to fire a rule only if the corresponding sentence is not satisfied. However, we conjecture
that the language obtained with this semantics has the same power as DL.
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We now study the power of the languages DL, WDL, SDL. It turns out that as long as
invented values are provided, the declarative languages have roughly the power of their procedural
counterparts. To prove this result, one has to simulate in a declarative language the control
mechanisms of procedural languages, using invented values. We also use the results stating that the
expressive power of TL is basically not affected if deletions are disallowed (Theorem 1.2).

2.1 The unsafe non-deterministic languages - DL and WDL

We first consider the unsafe case. Our main result is the non-deterministic completeness of DL.
To prove it, we use the following definition and notation:

Definition: Let y be a DL (resp. TL) program and X a vector of variables. The expression %(X) is
called a DL (resp. TL) procedure. If v is a valuation of the variables in X, then the program
obtained by replacing in ) each variable in X by its value is denoted ¥(vX). Two procedures (%)
and B(X) (over <R,S>) are equivalent with respect to <R,S> iff for each valuation v of the

variables in X, eff(R,S,x(vX)) = eff(R,S,B(vX)).

Notation: For each relational schema Q, let Q be a new relational schema with arity(Q) =
arity(Q)+1. If (=) Q(xl,...,xp) is a literal and z a variable not occurring in it, then (=)

Q(xl,...,xp)[z] denotes the literal (—) a(xl,...,xp,z). For each program P and variable z not
occurring in P, P[z] denotes the program obtained from P by replacing each literal A by A[z].

Let P be a program and Bl,...,Bq a list of literals, Then P // Bl,...,Bp is the program obtained by
appending B,,....B_ to the bodies of all rules in P.

To illustrate the previous notation, consider the program P consisting of the following two
rules: _
S(x,y) « R(x,y)
S(x,y) « R(x,z), S(z,y).
Then P[z] // = T(x,w,y) is:
S(x.y.2) & R(x,y,2), =T(x,w.y)
S(x,y,2) <« R(x,2,2), S(z,y,2), =T(x,w,y).

Now we have:
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Theorem 2.1: For disjoint input and output schemas?

(1) DL is non-deterministic complete; and
(if) WDL is finitely non-deterministic complete.

Proof: We only provide a proof of (i), since the proof of (ii) is a variation of it. In view of
Theorem 1.1, it clearly suffices to. show that:

(a) the effect of a DL program is a transformation, and

() for each TL procedure t(X) over <R,S>, where R and S are disjoint, there is a DL procedure
prog,(X) over <R,S> equivalent to t(X) w.r.t. <R,S>.

The proof of (a) is straightforward. We next show (b). The main difficulty is the simulation
of the explicit control of the procedural language TL. Intuitively, the non-deterministic nature of
DL provides very weak control, which makes it hard to simulate the steps of a TL program in the
right order, and to delay the simulation of one step until after the simulation of the previous step
has been completed. The simulation is achieved by keeping a frace of the computation in
auxiliary predicates; errors in the simulation are eventually detected by rules which observe the
traces. When an error is detected, the program enters an infinite loop. Thus, infinite loops make
up for the weak control capability of DL. Note that, even if a TL program always terminates, the
DL program simulating it may have non-terminating computations. We later discuss several ways
to avoid this drawback using additional constructs (e.g., universal quantification in bodies of rules)
which increase the control capability of DL.

We prove (b) by induction on It! (the length of t). By Theorem 1.2, we may assume without
loss of generality that the only elementary instructions of t are insertions, since we assume disjoint
input and output schemas. If t consists of a single insert iy (X), the DL program "R(X) <" has the
desired property. Now suppose that for some n, (b) holds for all t with itl < n. Let t(X) be a TL
procedure over some <R,S> such that R and S are disjoint and Itl = n. Three cases occur:

(i) t®) = with new z do s(X,z) done,

(ii) t(X) = while <cond> do s(Xy) done, and

(iii) t = t;5t,.
Since the third case is simpler than the second and requires similar techniques, we only consider
the first two cases.

2 This technical condition is forced by the absence of deletions in DL.
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Consider (i). By the induction hypothesis, there is a procedure prog (X,z) equivalent to s(X,z)
w.r.t. <R,S>. Let INVENTED and NEW be two new O-ary, respectively unary, predicates. Let
prog, be the program:

INVENTED , NEW(z) ¢« — INVENTED
prog_ // NEW(2).
It is easy to see that prog,(X) and t(X) are equivalent wr.t. <R,S>.

Now consider (ii). Let t(X) = while <cond> do s(Xy) done. Here ¥ is the vector of variables,
other than those in X, occurring in <cond>, i.e., the vector of variables which determine the choice
of the valuation for each iteration of s. By the induction hypothesis, there is a procedure
prog (Xy) equivalent to s(Xy). Clearly, we would like to use the procedure prog. However,
during an execution of t, s may be called several times. Therefore, stamps (which are invented
values) are used to distinguish the different iterations of s performed during a computation. We
next describe a program prog, which simulates t.

The following relations are used:
o five unary predicates STEP,, STEP,, STEP,, STEP, and DONE;

e for each predicate R used by prog,, two new predicates R and R such that arity(ﬁ) =
arity(R)= arity(R) + 1 (R corresponds to an extension R[z] of R);

e  a binary predicate NextStamp; and
o apredicate COND whose arity is the number of variables occurring in ¥ plus one.

The relation NextStamp holds the stamps used to mark the iterations, in order. (The first
stamp is always 0.) A tuple COND(Y,z) indicates that at iteration z, the valuation ¥ of the variables
in the condition was chosen. At the end of the computation, a tuple [¥,z] in relation R indicates
that ¥ is in R at the beginning of iteration z; and a tuple [¥,z] in relation R indicates that ¥ is in R
at the end of iteration z. Relations R and R are used to check that the simulation of the control of t
is correct. If the flow of control of t is erroneously simulated at any point, this is detected
eventually by rules inspecting R and R, and the program is prevented from terminating.

The program prog(X) is presented next. It is separated in two parts: the first allows the

simulation of t for some sequence of correct non-deterministic choices; the second detects non-
deterministic choices made in the first part which correspond to incorrect computations. In the
following, @ denotes a vector of distinct variables not occurring in prog, or iny, and w, z are two
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distinct variables not occurring in W@, ¥ or prog,.

Rules for valid computations

An iteration consists of three steps (1) copy, (2) choice of a valuation satisfying.the condition of
the loop, and (3) simulation of the body of the loop.

(0) start-up of first iteration;
STEP,(0) « .

(1-a) copy for ﬁrst iteration; for each R in R,
R(20), R@0) « STEP,(0), ~ STEP,(0), R(W).

(1-b) copy for other iterations: for each R occurring in prog, ,
R(@2), R@,z) « STEP,(2), - STEP,(2), R(@w), NextStamp(w,z).

switch from (1) to (2):
STEPZ(z) «— STEPl(z), - STEPz(z).

(2) choice of a valuation and switch from (2) to (3):
COND(Y,2), STEP,(z) ¢« STEP,(z), -~ STEP,(z), <cond>[z], -~ DONE(0).

(3) simulation of the body of the loop for the valuation chosen in (2):
prog [z] // STEP,(z), -~ STEP,(z), COND(¥,z).

switch from (3) to (1-b) - start next iteration
NextStamp(w,z), STEP,(w), STEP,(z) <~ STEP,(w), = STEP (w)

(4-a) Termination:
DONE(0) ¢ STEP,(z), — STEP,(z)

(4-b) Copy of the result: for each S in S,
'S(W) « DONE(0), STEP,(z), - STEP,(2), S(,2).
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Error handling rules

A rule

’ ERROR(z) «- ERROR(x)
is used to prevent termination of the program if an error is detected. Note that, with this rule, the
program does not terminate as long as a single value is inserted in the ERROR relation. The
following rules are used to detect erroneous transfer of control from (1) to (2) (i.e., before the copy
stage was completed), from (3) to (1-b) (i.e., before the simulation of the body of the loop was
completed), and premature termination at (4-a) (i.c., before the condition of the loop becomes
false). Note that the copying of the result in (4-b) is always completed, so this needs not be
checked.

e  (check 1-a) ERROR(0) « DONE(0), R(D), - R(&,0),
e (check 1-b) ERROR(0) « DONE(0), NextStamp(w,z), R(&,w), — R@@2).
o (check 3)
ERROR(0) « DONE(0), <body>, COND(Y,z), -~ &
for each safe rule <head> « <body> in prog [z] such that a is a literal in the head, and
ERROR(0) « DONE(0), <body>, COND(Y,z)
for each unsafe rule <head> ¢ <body> in progg[z].

The distinction between safe and unsafe rules comes from the fact that a safe rule is saturated
if all tuples that can be derived using it are already in the database, whereas an unsafe rule is
saturated only if it is not applicable.

e  (check 4-a) ERROR(0) <~ DONE(0), STEP,(z), - STEP,(2), <cond>[z].

To conclude, we sketch a proof that prog,(X) is equivalent to t(X). Let v be a valuation of X
and @ = v(X). We need to show that eff(R,S,t(@)) = eff(R,S,prog,(a)).

Let (II’) be in eff(R,S,t(@)). By definition, there is a pair of instances (J,J’) in eff(t(2)) such
that Jip = I, J is empty outside R, and J’lg = I'. Note that sch(s) < sch(t); if eff is the effect of a

program over sch(s), let eff be the effect extended to sch(t) by leaving unchanged all relations in
sch(t) - sch(s). By the semantics of the while construct, there are valuations A of the

variables in ¥ and instances Jy=J,....J,=I" over sch(t) such that for each i, (0<i<n),
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3. ,J) € eff(s@vy))
Now consider the DL program progt(Tz’). First apply (0), then (1-a), then the following instance of
(2): :
COND(v,7,0), STEP,(0) « STEP,(0), = STEP;(0), v,<cond>[0], ~DONE(0).
Note that R and R now contain copies of J, marked with the stamp 0. Since prog(Xy) and s(XY)
are equivalent, (J,J,) € eff(s@v,y)) = eff(sch(s), sch(s),prog (&v,¥)). Thus, by construction, some
applications of rules in (3) lead to J; marked with 0 in R. The switch from (3) to (I-b) can be

fired and a new stamp o is created. Using (1-b), the database state is copied in R and R with
stamp o and the computation can proceed. Finally, a copy of J_ is obtained and (4) fired. It is

easy to see that a fixpoint is reached. Clearly, this demonstrates that (J,J°) is in eff(sch(t), sch(t),
prog,(@), so (LI') is in eff(R,S,prog(a)). Thus, eff(R,S,4(@) < eff(R,S,prog ().

Conversely, let (II') be in eff(R,S,prog,(@)). Consider a terminating computation of prog ()
leading from I to I’. Observe first the consecutive states of STEP,, STEP2, STEP3, STEP,, DONE

throughout the computation. The facts derived are, in sequence:
STEP, (0), STEP,(0), STEP,(0), STEP(0),
STEP, (c)), STEP,(c)), STEP,(c,), STEP(c,),

STEP,(c ), STEP,(c),

DONE(Q0)
for some distinct values (stamps) c,,....c,. Observe also that the relation NextStamp contains the
tuples [0,c,] and [c;c;,;] for 1 < i < n. It is now easy to see that this corresponds to n+l
iterations. Since the program terminates, the error-handling rules were never fired. Thus, the copy

stages were all completed, and so were the simulations of s by prog. Therefore (II') €
eff(R,S,1(@)) and eff(R,S,prog@)) < eff(R,S,t@). []

The simulation of TL programs by DL programs in the previous proof has the serious
drawback of using non-terminating computations to simulate flow of control. In particular, even if
a given TL program always terminates, the corresponding DL program simulating it may have
non-terminating computations. We next show that this is a limitation of DL which cannot be
circumvented without additional constructs. Specifically, we show that there are TL programs
which always terminate, and cannot be simulated by any always terminating DL program.
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Proposition 2.2: Let R = {R(A),S(AB)}, T = {T(A)}. Then there is-a TL program which always
terminates on all inputs and computes R - &t A(S) in T. Each DL program with the same effect has

some non-terminating computations.

Proof: The following TL program always terminates on all inputs and computes R - & A(8) in T
(without deletions):

while S(x,y), = Q(x) do iQ(x) done;

while R(x), = Q(x), = T(x) do ip(x) done.
Let P be a DL program over <R,T> computing R - &t A(S). Let I be the instance defined by I(R) =
{[0]}, and I(S) = O&. Consider a computation of P on input I which terminates. In this
computation, an instantiation r, of a rule in P is fired first, then r,,..., finally some r . Observe that
since 0 € I(R) - n,(I(S)), (*) T(0) is derived in r,.r,. Let m be a constant not occurring in
{rl,...,rn}. Let J be the instance defined by J(R) = {[0]), and J(S) = {[0,m]}. Itis easy to see that
1.1, is the beginning of a computation of P on input J. (Since m does not occur in {rl,...,rn}, any
positive or negative ground literal that is used in Iy,....T, Temains valid.) Therefore, by (*), there is
a computation p = I;..T ... of P on input J, which infers the fact T(0). Since 0 is not in JR) -
T, (J(S)), p is infinite. []

We next exhibit two extensions of DL (DL | and DLV ) which can be used to increase its
control capability and thus enable simulation of TL without the use of non-terminating
computations. Similar extensions will be used in the context of the strongly-safe language SDL,
discussed in the next subsection. Intuitively, in DL 1, an "inconsistent” symbol | can occur as
head of a rule. The idea is that if such a symbol is derived, this particular computation is
abandoned. In DLV , universal quantification is allowed in bodies of rules. We first present DL_|_

and DLV .

DL with inconsistent symbol: DL |

The language DL is extended with the symbol _|_ that can occur only as a literal in the head of
rules. A pair (I)) is in the effect of a DL _I_ program iff J is obtained by a computation where |

is not derived.

DL with universal quantification: DLV
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The language DL is extended to allow rules of the form:

Al,...,Aq < ¥ X B,,...B,
where ® is a sequence of variables occurring only in the body of the rule. Let ¥ be the vector of
the variables occurring in B,,..,B, and not in X, and v be a valuation of . The rule is fired with

valuation v if for each extension V of v to the variables in ¥ (which valuates variables in ¥ in the
active domain), VB; A..AVB_ holds.

To illustrate these two languages, we show how to compute the query of Proposition 2.2 with
DLY or DL_| programs which always terminate.

Example 2.3: The mapping R - ,(S) is computed by the following TLV program:
T() « ¥ y R(x), = S(x,y).
The mapping R - x,(S) is computed by the following TL | program:
PROJ(x) & — done_with_proj, S(x,y)
done_with_proj «
|« done_with_proj, S(x,y), = PROJ(x)
T(x) « done_with_proj, R(x), = PROJ(x).

More generally, the following can be shown:

Fact: Each TL program t over some i-o schema with disjoint input and output can be simulated by
a DLV (resp., DL_1) program P without introducing additional non-terminating computations. In
particular, if t always terminates, then P always terminates. [ ]

Intuitively, in DLV, one can check that a stage is completed (using V ) before proceeding to
the next one; and in DL I, a detected error leads to the derivation of _| instead of leading to an
infinite loop. In Section 4, we consider a last extension of DL - DL* - obtained by allowing
negations in heads of rules, interpreted as deletions. As we shall see, DL* can also simulate TL
programs without introducing additional loops, but yet with another technique: a log of the updates
is kept, and when an error is detected backtracking is performed (using deletes) to the point in the
computation where the error occurred. The DL language could also be extended to allow set-
valued entries in relations in the spirit of the complex objects of [ABe]. In this context again, TL
programs could be simulated without using additional non-terminating computations: intuitively,
the universal quantification construct of DLV can be simulated using set equality. Finally, we note
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that DL itself can simulate TL without non-terminating computations on ordered databases, i.e.
databases where a successor function on the active domain of the database is provided. Again,
universal quantification can be simulated by an exhaustive search performed using the successor

function.

2.2 The strongly-safe non-deterministic language - SDL

The symmetry between procedural and declarative languages breaks down in the strongly-safe
case. Indeed, the strongly-safe declarative language - SDL - is weaker than its procedural
counterpart - STL. By Theorem 1.1, STL expresses exactly the DB-NPSPACE transformations.
This is in part due to deletions, which are allowed in STL. Clearly, one cannot expect the same
power from a language with inflationary semantics. (As we shall see in Section 4, SDL extended
with deletions in heads of rules - SDL* - does have the power of STL.) Indeed, it is easy to see
that each SDL transformation is in DB-NPTIME. It turns out that there are simple DB-NPTIME
transformations that cannot be expressed in SDL even for disjoint input and output schemas. We
show this next, and then show that SDL augmented with the | or ¥V constructs defined in the
previous subsection computes exactly DB-NPTIME. The precise characterization of the power of
SDL itself is still open.

We first consider SDL and show, in particular, that it is strictly weaker that DB-NPTIME
even over disjoint input and output schemas.

Proposition 2.4: For disjoint input and output schemas, the set of transformations computable by
SDL strictly contains the datalog mappings and is strictly included in DB-NPTIME.

Proof: The strict containment of the Datalog mappings is obvious. The inclusion in DB-NPTIME
follows from the "inflationary" character of SDL and the fact that only a number of tuples
polynomial in the size of the database can be derived. The proof that the inclusion is strict is
similar to the proof of Proposition 2.2: by the same argument, one shows that R - 1t A(S) cannot be

computed by an SDL program. []

Note that from the previous proof, SDL is not "closed under composition" since R - T, (S)

can be obtained as the composition of the mappings defined by the following two rules:
Q(x) « S(x,y), and
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T(x) « R(x), = Q(x).

As seen above, there are very simple transformations that SDL cannot compute. We now
show how this weakness of SDL can be corrected. More precisely, we consider the languages
SDL1 and SDLV obtained from SDL by adding; respectively the | and V constructs defined
earlier. We will show that both languages compute exactly DB-NPTIME. To prove this, we will
study first the power of SDL on "ordered" databases, mentioned informally at the end of the
previous subsection.

Definition: An ordered database instance is an instance over a database schema containing a
binary relation NEXT and two unary relations MIN and MAX, such that

(i) every value occurring in the instance also occurs in NEXT, and
(i) NEXT = { [a,a,,,] I'1 i< n} for some finite sequence a ,a,,....a of distinct values , MIN =
{[a;]}, and MAX = {[a,]}.

The effect of a program on ordered instances is the restriction of the effect to ordered instances
only.

Different variations of the notion of ordered database can be considered. One might use an
order relation (<) instead of NEXT and/or not know in advance the minimum and maximum
elements of the order. Proposition 2.7 below may not be true for all these variations.

Our first result concerns ordered instances. We will show that, on ordered instances, SDL
computes the DB-NPTIME transformations. To prove it, we use one lemma concemning STL and
one dealing with the simulation of STL by SDL. Recall that a TL program runs in NPTIME if on
each input, each computation stops after a number of steps polynomial in the size of the input, a
step being the execution of a tuple insertion or deletion (regardless of whether the tuple is actually
inserted/deleted.) A similar definition can be given for DL, a step in a DL execution being a tuple
insertion.

Now we have:

Lemma 2.5: Let STL* be the language consisting of all STL programs without deletions or erases.
For disjoint i-o schemas, the following are equivalent: (i) T is a DB-NPTIME transformation, and
(i) T is the effect of an STL* program.



Proof: (Sketch) By its inflationary nature, every STL* program runs in NPTIME, so (ii) implies (i).
Conversely, let T be a transformation in DB-NPTIME over disjoint i-o schemas. By Theorem 1.1,
STL computes the DB-NPSPACE transformations. By inspection of the proof of this result in
[AV2], one can see that the simulation by STL of a Turing machine corresponding to a: DB-
NPTIME transformation also runs in NPTIME. Thus, there is an STL program computing T, which
runs in NPTIME. Next, by Theorem 1.2, there is an equivalent TL program t without deletions or
erases (but with invented values). By construction, the TL program also runs in NPTIME. In
particular, every computation uses a number of invented values bounded by a polynomial, say nk,
in the size n of the active domain of the input database. Finally, we will show that the invented
values are not necessary, since the n* invented values can be simulated using k-tuples formed
using the n constants available in the active domain.

Two k-ary relations, VALUE, and OLD; are used to keep track of the current invented value.
(The last value used is in VALUE, - OLD,.) The simulation proceeds as follows:

(i prefix t by a program constructing non-deterministically in a binary relation NEXT an order
of the active domain of the database, and storing the minimum (maximum) elements min
(max) in two unary relations MIN (respectively, MAX).

(i) to simulate t without invented values, each relation R of t is extended to accommodate the k-
tuples representing invented values. Let m be the value in MIN. For each R in t, let R bea
new relation with arity(R,) = arity(R) - (k+1). Intuitively, each attribute A of R corresponds to
k + 1 auributes A, A,,..,A, in R,. A tuple u over R is represented by a tuple u, over R, as
follows: for each A
¢ if u(A) is not an invented value, u, (A) = u(A) and for each i, u(A) =m.

* if u(A) is an invented value simulated by the k-tuple the tuple 3, u(A) = m and
u (A A =7,

(The k-tuple with all values m is not used to represent an invented value, but as a marker for
non-invented values.)

To simulate t, the R, corresponding to each R in the input schema is first constructed. Then t

is simulated with k-tuples in place of invented values. Each time a new invented value is needed,
the successor (in the lexicographic order induced on k-tuples by NEXT) of the current invented
value is computed and used in place of the invented value. VALUE, and OLD, are updated so that
VALUE, - OLDy contains the value currently used. Finally, each output relation S is decoded from
the corresponding S,.

Thus, t can be simulated without invented values, so T is computed by an STL* program. []
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~ Lemma 2.6: For each STL* program over disjoint i-o schemas, there is an SDL program equivalent
to it on ordered instances.

Proof: (Sketch) Let t be an STL* program over disjoint i-o schemas. Since t is in particular a TL
program, by Theorem 2.1, there is a DL program P equivalent to it. However, the DL program has
non-terminating computations, and uses invented values in the simulation. To prove the lemma, we
show that, on ordered database instances:

(i the construction of the DL program corresponding to t can be modified so that the control of t
is simulated without introducing non-terminating computations, and

(i) invented values are not needed.

We first show (i). Consider the construction of the DL program P corresponding to t, in the
proof of Theorem 2.1. To avoid using non-terminating computations in the simulation, we have to
make the switch from (1) to (2) and (3) to (1) more complex. Intuitively, a switch is enabled if
the previous stage is completed, i.e. a fixed-point has been reached for the subprogram
corresponding to the previous stage. We show how to enforce the correct switch from (3) to (1).
(The other is treated similarly.) Let {r, | i in [1..n]} be the set of rules of (3). For each i, let k, be
the number of variables occurring in T, Intuitively, we will first construct, for each i, an ordered
list of all possible valuations of k; variables in the active domain. To check that a fixpoint for {r; |
i in [1..n]} has been reached, one starts by verifying that r; can no longer be applied and produce
new tuples. This is done by checking all possible valuations for the variables in 1y, in order; ry is
fired if possible, and the process re-starts. If r; cannot be fired for any valuation, the process
continues for r,. Eventually the process terminates at r,. Then stage (3) is completed and the
switch to (1) is enabled. Note that, since the process can be re-started several times, the different
trials must be distinguishcd using an invented value. However, termination is guaranteed after
polynomially many re-starts, since at each trial at least one new tuple with values from the active
domain of the input database is inserted.

We omit the details and only describe the construction of the ordered list of valuations for k
given variables.

The ordered list of valuations for k variables is constructed in a relation NEXT, of arity 2k.
The list is constructed starting from the given relations NEXT, MIN, and MAX, which order the
active domain of the input database. We use the rules: '

NEXTk(?k_j_l,y,ﬁj,?k_j_l,z,ﬁij) — NEXT(y,z), NEXTk(?k,Tc’k_j_l,y,Mj), MIN(m), MAX(M)

for each j, 0 < j < k, where



* ¥ is a vector of k distinct,

o Ry is a vector of k-j-1 distinct variables,

e M and m are two new distinct variables and ﬁj (resp., r‘ﬁj) is a j-vector where all entries are
M (resp., m).

Note that it is easy to detect when NEXT, has been completely computed: this occurs when

"NEXTk(gk,Mk), MAX(M)" holds for some k-vector B’k This can be used to delay the remainder

of the computation until after NEXT, has been constructed.

Finally, consider (ii). Note that the DL program obtained in (i) always terminates, and uses a
number of invented values polynomial in the size of the input database. The simulation of the
polynomial number of invented values using vectors of values from the active domain is similar to
that in the proof of Lemma 2.5, with the distinction that relations NEXT, MIN, and MAX are
provided and thus do not have to be constructed. []

From Lemmas 2.5 and 2.6, we have:

Proposition 2.7: On ordered instances and for disjoint input and output schemas, SDL computes
exactly the DB-NPTIME transformations. [ ]

Finally, we use the above result to show that SDL augmented with the construct | or ¥V
computes all DB-NPTIME transformations over disjoint i-o schemas.

Theorem 2.8: Let <R,S> be an i-o schema with R and S disjoint, and T a transformation from
inst(R) to inst(S). The following are equivalent:

e Tis a DB-NPTIME transformation,
e  Tis the effect of an SDL_| program over <R,S>, and

e  1tis the effect of an SDLV program over <R,S>.

Proof: In view of Proposition 2.7, it suffices to show that SDL_1 and SDLV programs can
construct relations NEXT, MIN, MAX provided in ordered databases, and delay the firing of other
rules until after these relations have been constructed.

First consider SDLY . For simplicity, we assume that the active domain of the input database
does not consist of a single value (the special case of the one-constant domain is dealt with by
minor additions to the program that we exhibit). The program uses two unary predicates, ordered
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- - rules:

and old, and one O-ary predicate start. Intuitively, a value in the active domain is in ordered if its
!

rank in the total order that is constructed has been chosen. During the construction of NEXT, a

unique value is in ordered - old: the "greatest" ordered value so far.

For each input predicate R, and each i, 1 £ i < arity(R), the program contains the following

(1) MIN(x,), ordered(x;), start « P(...x;...), —start
) NEXT(z,x,), ordered(x;), old(z) « P(...x;...), = ordered(x;), ordered(z), —old(z)
(3 MAX(z) « ¥V y [ ordered(y), ordered(z), —old(z) ].

Note that rule (3) is fired only when all y have been ordered. Thus the condition MAX(m) signals
the completion of the ordering procedure and can be used to delay the remainder of the
computation.

Now consider SDL_I. Consider the program obtained by replacing in the above program rule
(3) by the two rules:

(3-a) MAX(z), old(z) « ordered(z), —old(z)
3-b) |« MAX(z), P(...x;...), ~ordered(x;)

Again, condition MAX(m) signals the completion of the computation. However, there is a
possibility that rule (3-a) was fired too early, i.e. before all values were "ordered". If such is the
case, this is detected eventually by rule (3-b) which invalidates the computation. Thus, correct
computations yield complete orderings in NEXT. []

3. DETERMINISTIC LANGUAGES

In this section, we define several deterministic counterparts of the non-deterministic languages
investigated in the previous section. These languages, detDL and SdetDL, are declarative analogs
of the procedural languages detTL and SdetTL. In particular, SdetDL (which we also denote
Datalog™) is of particular interest since it is a strongly safe, deterministic language which provides
a new, appealing semantics for Datalog with negation.

3.1 A deterministic-complete language

In this subsection, we discuss the syntax and semantics of the deterministic language detDL, and
prove that it is deterministic complete. One could use the same syntax for the deterministic
lénguagcs as for their non-deterministic counterparts. However, due to the deterministic semantics
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that we shall describe, the syntax can be simplified without loss of power (this is explained further
after the definition of the deterministic semantics). Spc;ciﬁcally, no multiple heads and no explicit
equality are required in the deterministic case. In order to obtain deterministic semantics, we also
place the syntactic restriction that programs be weakly safe (so, invented values are not allowed in
the result). Thus, the syntax of detDL is a special case of the syntax of WDL. More precisely, we
have: '

Definition: A Deterministic Declarative Language (detDL) program over an i-o schema <R, S> is a
WDL program over <R, S> such that:

(i) all heads of rules consist of single literals, and

(i) equality does not occur in the program.

Note that the above syntax is that of Datalog augmented with negation in bodies of rules, and
variables which may occur in heads of rules without occurring in their bodies.

We next discuss the semantics for detDL programs. The semantics is analogous to that of
detTL. As in the procedural case, we use a "parallel” saturation semantics. Specifically, each
iteration of the program adds all facts which can be inferred by considering simultaneously all
possible instantiations of the rules. However, for each instantiation of the variables in the body of
a rule, only one extension assigning invented values to the variables occurring only in the head of
the rule is considered. Furthermore, the simultaneous instantiations must observe the restriction
that the values "invented” by the different instantiations are distinct. This is repeated until no new
facts can be added to the database. (Termination is not guaranteed). Clearly, the above semantics
retains a non-deterministic aspect, due to the arbitrary choice of invented values. However, the
non-determinism affects only temporary relations. To define the semantics of detDL, we use the
auxiliary notion of "valuation-set", which concerns instantiations of the variables in rules.

Definition: Let P be a detDL program and I an instance over sch(P). A valuation-set for P and 1 is
a mapping I' such that
(1) the domain of I' is the set of all pairs (r,v) where r = A « B,...B, isarulein P, and v a

valuation of the variables occurring in the body of r within the current active domain, such
that I k& vBl ALA an;

(2) for each (r,v) in the domain of I', I'(r,v) is a valuation which extends v to the variables
occurring only in the head of r, such that these variables are mapped to distinct values not
occurring in I or P; and



@3) for each (r,v), (*’,v’) in the domain of I, (r’,v’) # (r,v), and each variable z (resp. 2’)
occurring in the head of r (resp. r’) and not in its body, I'(r,v)(z) # I'”’,v’)(2°).

Intuitively, each valuation-set for P and I provides one extension for each possible
instantiation v of the variables in the body of a rule of P, such that variables occurring in heads of
rules alone are assigned distinct new values.

We now have:

Definition: The effect eff(P) of a detDL program P is the binary relation on inst(sch(P)) defined by:
<LJ> is in eff(P) iff there exists a sequence I;...,I ; of instances over inst(sch(P)) such that

P+
(@) IO=I,Ip+1=Ip=J,and ,
‘() for each i < p, there is a valuation-set I'; for P and Ii such that
L, =L u {TIv)(A) | (r,v) € dom(T}), A is the head of r}.
The effect eff(R,S,P) of a detDL program P over an i-o schema <R , S> is the binary relation from
inst(R) to inst(S) such that (1)) e eff(R,S,P) if there exists <I',J”> in eff(P) such that I’ agrees with
I on R and is empty everywhere else, and J’ agrees with J on S.

The following fact can easily be verified:

Fact: The effect eff(R,S,P) of a detDL program P over an i-o schema <R , S> is a mapping, that
is, the semantics is indeed deterministic.

Intuitively, the determinism is due to the fact that the different possible valuation-sets for
given P and I are isomorphic and agree on the active domain. Furthermore, the relations of the i-o
schema always contain just constants from the active domain. Thus, the choice of one valuation-set
over another does not affect the final result, although it does introduce the appearance of non-
determinism in the computation. We shall denote by eff(R,S,P)(I) the image of an instance 1.

By definition of the semantics of detDL, the evaluation of a detDL program P on an instance
I consists of several iterations (each of which consists of firing simultaneously all rules with all
valid valuations of the bodies). One-such iteration is also referred to as a stage in the evaluation of
P on I In particular, each terminating evaluation has a last stage, which is the last iteration
- resulting in the addition of new tﬁples in the database.
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Remark: For each detDL program P over an i-o schema <R,S>, let Z(P) be the set of sentences
associated with P, (as in Definition, Section 2). If J = effy.;p; (R,S,P)(I), then J is the restriction to
S of a model of X(P).

The definition of detDL procedures is analogous to that of DL procedures.

A strongly safe restriction of detDL is obtained by requiring that all variables occurring in the
head of a rule also occur in the body. The resulting language is strongly-safe deterministic DL
(SdetDL). The same language has been independently proposed in [KP] under the name Datalog™.

Remark: As noted earlier, under deterministic semantics, the syntax used for DL is no more
powerful than the simpler syntax used for detDL. To see that explicit equality can be eliminated,
note that a predicate EQ = {<c,c> | ¢ occurs in the database or in the program} can be constructed
in a first stage; the computation of the program can be easily delayed until after EQ has been
constructed. Next, multiple-head rules of the form

Ap.uAg € Byl By
can be simulated by k single-head rules

A; « By,...,.B,

if no variable corresponding to an invented value occurs several times in the head. If such a
variable exists, then the invented value is first created using a single-head rule and the firing of all
other rules is delayed by one step, at which time the invented value can be used as a regular
database value. Note that the above simulations cannot be carried out with the non-deterministic
semantics. [ ]

We now study the expressive power of detDL.
Theorem 3.1: For disjoint input and output schemas, detDL is deterministic complete.

Proof: As in in the case of DL (see Theorem 2.1), the proof of completeness for detDL involves a

-simulation of its procedural counterpart detTL, which is known to be deterministic complete.

Furthermore, we will use the fact that detTL remains deterministic complete over disjoint input and
output schemas when deletions are disallowed (see Theorem 1.2).

We will show that every detTL program (over disjoint input and output schemas and without
deletions) can be simulated by a detDL program. In order to prove this, we will show by
induction the following:



(*) for each detTL procedure (%) without deletions, there exists a detDL procedure prog,(X) such
that:
(1) sch(t) < sch(prog,), sch(prog,) contains a special 0-ary predicate done,,
(2) for each valuation v of the variables in ®, eff(t(vX)) is the restriction of
eff(prog,(vX)) to sch(t), and
(3) for each instance I over sch(t), done, becomes true only at the last stage of the
evaluation of prog, on L.

The main difference with the simulation of TL by DL (Theorem 2.1) is that, due to the
deterministic semantics which_allows more accurate timing, simulation of control can be achieved
without introducing additional non-terminating computations. We now provide the simulation. For
conciseness, we allow rules with several literals in heads, which can be easily converted to rules
with single-literal heads (see earlier remark).

Let t(X) be a detTL procedure without deletions. The base case is obvious and is omitted.
Suppose the induction hypothesis holds for each detTL procedure of length less than t(X). There
are three cases to consider:

@) tX) = Y(M;t”(@. Then prog, is the following:
progy
prog,- // doney
done, ¢ done .

(ii) t(X) = with new z do s(¥) done. Then prog, consists of:
INVENTED , NEW(z) < —~INVENTED
prog, // NEW(z)
done, ¢ doneg .

where INVENTED and NEW are two new predicates.

(iii) t(X) = while <cond>(¥) do s(X}y).

Here ¥ contains the variables in <cond> but not in X. By the induction hypothesis, there exists a
detDL procedure progy(X}y) corresponding to s(X;y) and satisfying (1)-(3). The detDL procedure
prog,(®) corresponding to t(X) is given below. Informally, an iteration (identified by a stamp o) is
simulated as follows: first, all valuations ¥ satisfying <cond> at the beginning of iteration o are
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stored in relation COND(Y,0t); next, program prog, is run for each such valuation V. The end of the
iteration o is detected using three relations, try-end-iteration, maybe-end-iteration, and not-end-
iteration. Each time the simulation of s for a given valuation ¥ is completed, a trial marked with f§
(recorded in try-end-iteration(o,B)) is carried out to check if the entire iteration has been
completed, i.. the simulations of s on all valuations ¥ in COND(Y,&t) have been completed. If for
some 'w‘/ah‘xation, the simulation has not yet been completed, not-end-iteration(a,) becomes true.
Thus, the end of the iteration is detected when, for a trial B, not-end-iteration(c,3) does not
become true. At that point, the results of the iteration for the different valuations are collected and
the condition of the loop re-evaluated. Finally, the end of the simulation of the loop is detected by
a technique similar to that for detecting the end of an iteration, using three relations try-end-loop,
maybe-end-loop, not-end-loop. When the end of the simulation of the loop is detected, the 0-ary
predicate done, becomes true. We assume without loss of generality that the auxiliary predicates
used in prog; are new, i.e. they do not occur in prog,. The description of prog, follows.

initialization: find all valuations ¥ satisfying <cond>(y) and prepare input for iteration O (i.e., mark
all relations with the valuations ¥ and stamp 0).

initialized, COND(Y, 0) « <cond>(y), —initialized

initialized, R(Z, ¥, 0) « R(2), <cond>(¥), —initialized
for each R in sch(prog,)

iteration a: call progg with stamp a for each ¥; when the computation of prog, for Y terminates,
check whether iteration o is over.

prog[¥, o] // COND(Y, o), —OLD(c)

try-end-iteration(a,B) « done(y , o), ~OLD(cx)

maybe-end-iteration(a,B) « try-end-iteration(ct,B)

not-end-iteration(a.,B) « try-end-iteration(a,B), COND(Z,ax), —~done,(Z , o)

done-iteration(t) «— maybe-end-iteration(a.,f3), —not-end-iteration(ct,B)

loop control: at the end of an iteration, collect the results and check whether this is the end of the
loop.

R(2) « done-iteration(cr), ~OLD(a), R(Z, ¥, o) for each R in sch(prog,),
try-end-loop(¢) ¢« done-iteration(c), ~OLD(ot)

maybe-end-loop(ar) « try-end-loop(Q)

not-end-loop(a) ¢ <cond>(y), try-end-loop(ct)
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done; « maybe-end-loop(ar), —not-end-loop(c)

prepare next iteration: if the end of the loop was not detected, prepare the next iteration 7y. In

particular, record valuations ¥ satisfying <cond>(y) at beginning of iteration Y and prepare input for
the iteration (i.e., mark all relations with the valuations ¥ and stamp 7).

OLD(wv), new-iteration(y) < not-end-loop(a), “OLD(c)

COND(Y , ) ¢« <cond>(y), new-iteration(y), —done-iteration(y)

R ,'Sr‘ ,Y) « —done, R(2), <cond>(y), new-iteration(y), ~done-iteration(y)

By inspection, one can verify that (a) prog, is weakly safe (invented values are entered in
particular columns) and (b) prog, satisfies (1)-(3). Thus, the induction is complete. [

As seen above, the simulation of detTL by detDL can be achieved without the use of infinite
loops for control, unlike the simulation of TL by DL programs. Intuitively, this is due to the
additional control available in detDL which comes from the fact that all ground instances of rules
(modulo invented values) must be applied at the same time.

The strongly-safe restriction of detDL is SdetDL (Datalog™). The semantics is defined as for
detDL, although some simplifications are possible due to the restricted form of the language.
Indeed, we will see in Section 5 that the semantics of SdetDL can be defined easily using an
inflationary fixpoint operator. We will show there that the transformations corresponding to
SdetDL programs are the fixpoint queries (FP). As a side effect, we obtain results on inflationary
fixpoint logic. We postpone the study of SdetDL to Section 5, where the connection between our
languages and fixpoint extensions of first-order logic is discussed at length.

The results on the simulation of procedural languages by extensions of Datalog provide, as a
side effect, a normal form for the procedural languages. This is described next.

Remark 3.2: We have shown that the procedural languages TL and detTL can be simulated by DL
and detDL, respectively. Conversely, it is easy to see that each DL (detDL) program can be
simulated by a TL (detTL) program consisting of one main while loop whose body contains only
insertions, deletions, and statements of the form if <cond> then <body>, where <body> contains
only insertions and deletions. (The if-then construct is used in [AV2]; we did not consider it here
since it does not modify the power of TL or detTL.) This provides a normal form for (det)TL
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programs: each (det)TL program is equivalent to a (det)TL program consisting of a while statement
with no inner while, but possibly with inner if-then statements. Note that normal forms also hold
for the safe languages STL and SdetTL (which are shown in Section 4 to be equivalent to Datalog
extensions with deletions).

4. NEGATIONS IN HEADS OF RULES

In this section, we consider extensions of the languages considered so far, which allow for negative
literals in heads of rules. The negative literals are interpreted as tuple deletions. We consider such
extensions for two reasons. First, a construct allowing explicit deletions appears desirable in an
update language. Thus, such a construct provides variations of our Datalog extensions, which are
more update oriented. Second, the extended languages are interesting with respect to expressive
power. Indeed, with the deletion construct, the Datalog extensions have precisely the same
expressive power as their procedural counterparts.

We first consider extensions DL* and SDL* of the non-deterministic languages (DL and
SDL), then extensions detDL* and SdetDL* of the deterministic ones (detDL and SdetDL).

4.1 Non-deterministic languages with negations in heads
In this section, we show the non-deterministic completeness of DL*. We also prove that SDL*
yields the DB-NPSPACE transformations, i.e., has the same expressive power as STL.

We now consider the extension DL* of DL, which allows negative literals in heads of rules.
Earlier, we proved that DL is non-deterministic complete for disjoint i-o schemas. We will show
that (not surprisingly) DL* is non-deterministic complete for all i-o schemas. First, we present the
syntax of DL*,

Definition: A Declarative Language* (DL*) program is a finite set of rules of the form

Al,...,Aq < B,..B,
(q > 0, n = 0) where each Ai is a positive or negative literal of the form (=) Q(xl,...,x o) (m20),
and each B, is a positive literal of the form Q5% ) (m 2 0) or x, = X, (the x.’s are domain

variables or constants), or the negation of such a literal.

The semantics of DL* is similar to that of DL. As for DL, rules are fired non-
deterministically. When a rule is fired, a positive literal in the head is interpreted as an insertion
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and a negative one as a deletion. Additionally, the ground rule which is fired must be "consistent”,
i.e., it may not require both the insertion and deletion of the same tuple. Formally, the definition

of eff) , is like that of effj;; except that (1-c) is replaced by:

a* L, = 81...£q(Ik) where for each j, 1 <j < q, g = iQ(vxl,...,vxm) if Aj = Q(Xy5eeX )5 g =
dQ(vxl,...,vxm) if Aj = —Q(x5...X,); and

if Q(x,,....x)) and QY y5e-¥ ) both occur in Al,...,Aq, VX, % vy; for some j.

Remark: The above definition does allow a negative literal in the head of a rule to contain some
variable not occurring in the body of the rule. However, such a negative literal is vacuous, since it
can never result in a deletion being performed.

Remark: For each DL* program P, let X(P) be the set of sentences associated with P (as in
Definition, Section 2, extended in the obvious way to allow for negative literals in the heads). If
<LJ> € effp;«(P), then J is a model of Z(P).

Now we have:
Theorem 4.1: DL¥* is non-deterministic complete.

Proof: Clearly, the effect of every DL* program is a transformation. Conversely, let T be a
transformation over an i-o schema <R,S> (with R, S not necessarily disjoint). For each attribute A
occurring in §, let A_ be a new attribute. Let S_ be obtained from S by substituting each A by A .

For each instance J over S, let J be the comesponding instance over S_. Consider the
transformation T, over <R,Sc> defined by t = {<[J>I(I,J))et}. Clearly, t_ is a transformation
over <R,S>, i.e., over an i-o schema with disjoint input an output schemas. By Theorem 2.1,
there is a DL (so a DL*) program P_ over <R,S:>, with effect T.. The computation of T by a
DL* program proceeds in two phases: (1) given some input I, run P; and obtain an instance J
over S, and (2) copy J_ to the relations of the output schema S. The only difficulty of the proof is

to guarantee that the first phase is completed before the second starts. Like in the proof of
Theorem 2.1, we can let the second phase start too early and use error handling rules based on
non-terminating computations. (A more complicated proof not based on non-terminating

computations is also possible. See Remark 4.2 below.) To simplify the presentation, we assume
| that S consists of a single relation S. We use two temporary relations S, and S, of the same arity
as S. Intuitivély, a tuple in S, (respectively S) indicates that during the second phase, a tuple has

been effectively inserted in (deleted from) S. These relations serve to recover the value of S at the
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end of phase one, and allow the detection of errors arising from premature switches from phase
one to phase two. The following rules are used:
P_// — phase2

phase2 «
S®), §,X) « Sc('x’), -S(X), phase2
- SR, S d(‘)?) « =S _(%), S(X), phase2.

An error is detected (and leads to an infinite loop) if the instance at the end of phase one is
not saturated w.r.t. P.. Observe that phase two only changes S, , S, (originally empty) and S.

Note that, at any point after the switch from phase one to phase two, S - §; U S, equals the value

of S at the end of phase one. It is clear thus that error handling can be achieved in DL (and so in

DL*). []

As mentioned in the beginning of the section, deletions provide additional control capability
in our languages. This is discussed next.

Remark 4.2: In the simulation of TL by DL (for disjoint input and output), and in the previous
proof, non-terminating computations were introduced to simulate explicit control. This was done by
allowing non-deterministic transfer of control from one step to the next, then using error handling
rules to detect premature transfers and prevent termination of the program. The deletions available
in DL* provide the added capability to correct errors once detected, using a roll-back mechanism,
rather than entering an infinite loop. Intuitively, separate journals of the updates are maintained for
each point where an error can potentially occur. Each journal consists of an ordered record of all
tuple insertions and deletions effectively performed. (The representation of the order is similar to
that used in relation NEXT, in the proof of Lemma 2.6.) When an error is detected (i.e., it is
determined that a transfer of control was performed too early), the corresponding journal is used to
recover the state of the database at the time of the error. This is done by traversing the journal of
~ updates in reverse order, undoing each update and removing it from the journal. Note that the
completion of the roll-back can be enforced and detected due to the fact that the journal keeps
records of updates in order. When the roll-back has been completed, the computation is re-started,
with the transfer causing the error disabled for one step. (This guarantees termination.) This roll-
back technique can be used to show:

Fact: Each TL program t can be simulated by a DL* program P without introducing additional
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non-terminating computations. In particular, if t always terminates, then P always terminates. [ ]

We next consider SDL*, i.c., a safe and non-deterministic language with deletions. In the
unsafe case, the issue of the expressive power of DL* is almost vacuous, since DL is complete to
start with (for disjoint i-o schemas). The safe case is more interesting, since the expressive power
of SDL stops short of DB-NPTIME, and so SDL is much weaker than its procedural counterpart
STL, which expresses DB-NPSPACE. It can therefore be expected that SDL* provides more
power than SDL. Indeed, we next show that SDL* can compute exactly DB-NPSPACE, so it has
precisely the same expressive power as STL. Before turning to the proof, we note a key difference
between SDL* and the safe languages previously encountered, which is due to its capability to
delete tuples. An SDL* computation does not always terminate, as shown by the following simple
program:

Ae A

- A« A

Theorem 4.3: The set of transformations expressible in SDL* is DB-NPSPACE.

Proof: (Sketch) Clearly, each transformation corresponding to an SDL* program is in DB-
NPSPACE because of the safety. By Theorem 1.1, it therefore suffices to show that each STL
program can be simulated by an SDL* one. Recall that SDL can simulate STL* on ordered
instances (Lemma 2.6). A straightforward variation of the same proof shows that SDL* can
simulate STL on ordered instances. Thus an STL program P can be simulated by an SDL*
program as follows. First, the SDL* program computes an ordering of the active domain. Next, P
is simulated on an ordered instance. The necessary control to guarantee that the first phase is
completed before the second starts is provided using infinite loops. (To avoid the use of non-
terminating computations, see Remark 4.4 below.) '

The construction of the ordering is similar to that used for SDL | (Theorem 2.8):
(1) MIN(x;), ordered(x;), start « R(...x;...), —start '
(2) NEXT(z,;), ordered(x;), old(z) « R(...x;...), — ordered(x;), ordered(z), —old(z)
(3-2) MAX(2), 0ld(z) < ordered(z), —old(z)

The application of rule (3-a) makes MAX non-empty and ends the first phase. Clearly, this
constructs an ordering; however, if rule (3-a) is applied prematurely, only a subset of the active
domain is ordered. We will see below how this can be detected. Now, suppose that P is
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simulated by some program Q on ordered instances. Once the ordering was computed in the first
phase, we use the program Q // MAX(z) where z is a variable not occurring in Q, to simulate P.

We finally add rules to detect premature termination of the first phase. There is a subtlety due
to the fact that Q may delete tuples. The program Q // MAX(z) is modified in such a way that, for
each relation R, the.-tuples that are deleted from R are recorded in a relation' R d (like in the proof
of Theorem 4.3). If (3-a) was started too early, the following rules invalidate the computation:
(3-b’) loop « MAX(z), R(...x;...), —ordered(x;),

loop ¢~ MAX(2), R (...x;...), —ordered(x;),

— loop « loop

(where loop is a 0-ary predicate). [ ]

Remark 4.4: The simulation of STL by SDL* in the proof of Theorem 4.3 uses infinite loops.
However, as in the case of DL*, the use of infinite loops can be avoided by the roll-back technique
described in Remark 4.2. Note that the technique described there does not involve invented values,
so it applies to SDL* as well.

In view of the above, we have:

Fact: Each STL program t can be simulated by an SDL* program P without introducing additional
non-terminating computations. In particular, if t always terminates, then P always terminates. [ |

4.2 Deterministic languages
In this section, we introduce the extensions detDL* and SdetDL* of our deterministic languages,
and consider their expressive power.

The language detDL* is obtained from detDL by allowing the heads of rules to be negative
literals. Again, negative literal are interpreted as deletions. If, on a given input, the parallel
semantics requires a tuple to be both inserted and deleted at some stage, the computation blocks,
and the effect is undefined for that input. More formally, the definition of the effect is like that for
detDL except that (b) is replaced by (b*):

®*) for each i < p, there is a valuation-set T; for P and L such that
Iy =L U (A+) - (A—), where
A+; = {T'y(r,v)(A) ! for some (r,v) € dom(T}), A is the positive head of r}, and
A-; = {T'i(r,v)(A) | for some (r,v) € dom(T;), —A is the head of r}, and
A+) N (A-) = D. |
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Remark: For each detDL* program P over an i-o schema <R,S>, if <LJ> e effy p; +(R,S,P), then
J is the restriction of a model of Z(P) to S.

The completeness proof for detDL* is straightforward.
Theorem 4.5: detDL* is deterministic complete.

Proof: (Sketch) Clearly, the effect of every detDL* program is a deterministic transformation.
Conversely, let <R,S> be an i-o schema (R and S not necessarily disjoint) and t a deterministic
transformation over <R,S>. The proof that there is a detDL* program P such that T =
eff dctDL,.‘(R,S,P), is similar to the proof of Theorem 4.1, with the difference that the control of the
switch from phase one to phase two can be accomplished in a straightforward manner without

infinite loops, using the increased control provided by the deterministic semantics. Details are
omitted. []

We now consider the extension SdetDL* of SdetDL (Datalog™), which we also denote
Datalog™. Again, in the safe case, deletions provide additional expressive power. Indeed, while
SdetDL could express just the transformations in FP, it turns out that SdetDL* has the same power
as the procedural language SdetTL (or, equivalently, the while language of Chandra). Before
turning to the proof, we illustrate the language SdetDL* by the following program, which
simulates a version of the game of life.

Example 4.6: Let G be a binary relation representing a graph G, and CELL a relation representing
the vertices of the graph hosting a live cell. The rules are that a cell is created at a vertex if the
vertex has two neighbours (living cells in an adjdcent vertex); and a cell dies if it has 3 or more
neighbours. We next present a Datalog™* program corresponding to this. Two unary relations are
used (compute and update). Intuitively, the computation alternates compute and update phases
until a fixpoint for CELL is reached (if there is one). The control is given by the rules:

compute ¢ — compute, — update

— compute, update ¢~ compute.
The compute rules are:

3neighbours(x) «

G(x,y), G(x,2), G(x,w), y#z, z#w, w#y, CELL(y), CELL(z), CELL(w), compute,

2neighbours(x) « G(x,y), G(x,2z), y#z, CELL(y), CELL(z), compute.

The update rules are:
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—CELL(x), compute, — update « CELL(x), 3neighbours(x), update

CELL(x), compute, — update <~ — CELL(x), 2neighbours(x), ~3neighbours(x), update
—3neighbours(x) ¢ 3neighbours(x), update

—2neighbours(x) < 2neighbours(x), update.

It is easy to see that some inputs lead to non-terminating computations. [_]

fndeed, we have:

Theorem 4.7: A transformation is computable by an SdetDL* program iff it is computable by an
SdetTL program.

Proof (sketch): Clearly, each SdetDL* program can be simulated by an SdetTL program.
Conversely, let t be an SdetTL program. The simulation can be reduced to the case when t is over
disjoint i-0 schemas, using a two-phase simulation similar to that in the proof of Theorem 4.1.
Thus, assume t is over disjoint i-o schemas. In particular, t is a TL program so, by Theorem 3.1, it
can be simulated by a detDL program. However, the detDL program uses invented values in the
simulation to distinguish current from outdated content of some relations. To complete the proof,
it is easy to verify that deletions can replace the use of invented values in the simulation. |

The above result shows that three of the languages we considered so far - SdetTL, SdetDL*, -
and the while language of [Ch] - have equivalent expressive power. In Section 5, we provide one
more characterization of these languages based on a fixpoint extension of first-order logic.

S. THE CONNECTION WITH FIXPOINT EXTENSIONS OF FIRST-ORDER LOGIC

In this section, we investigate the connection between the extensions of Datalog presented so far

and fixpoint extensions of first-order logic. In a first subsection, we consider Datalog™, and in a.
second Datalog™*. Lastly, we define fixpoint extensions of first-order logic corresponding to the
non-deterministic languages.

5.1 Inflationary fixpoint logic and Datalog™

In this section, we focus on our strongly safe, deterministic Declarative Language (Datalog™, i.e.,
SdetDL). This language is of special interest, since it is a tractable language that provides a new,
simple semantics for Datalog with negation. Furthermore, the language is strictly more expressive
than Datalog with stratified negation [ABW, CH2, N, VG]. Indeed, we show that this language'
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expresses exactly the fixpoint queries. Since the predominant notation for Datalog with negation is
Datalog™ (e.g., see [KP, Ka]), we will also use this notation in the following.

As stated in Section 3, the syntax of Datalog™ is that of Datalog extended with negation in
bodies of rules, i.e., the syntax of detDL with the restriction that all variables occurring in the head
of a rule also occur in the body of the rule. The semantics of Datalog™ programs is a special case
of the "parallel saturation" semantics of detDL programs, described in the previous section.
However, it turns out that the same semantics can be expressed in a much simpler way for
Datalog™ due to the absence of invented values. Indeed, the semantics can be expressed
straightforwardly using the notion of inductive fixpoint [GS]. We recall here the definitions of
inflationary operator and inductive fixpoint for convenience.

Definition: Let R be a database schema. An inflationary operator over inst(R) is a total mapping
y on inst(R) such that I ¢ y(I) for each I in inst(R) (the inclusion is pointwise). The inductive
fixpoint operator IFP(y)(I) defined by v is the limit of the sequence \Vi(I), where \VO(I) =1, and
\;/i“(I) = \y(\yi(I)). (Note that, if the domain is finite, the sequence always converges.)

Each Datalog™ program P defines an inductive fixpoint operator in a natural manner, as
follows. '

Definition: The inflationary operator defined by a Datalog™ program P is the operator yp on
inst(sch(P)) such that, for every instance I over sch(P), yp(l) is the instance over sch(P) defined as
follows. A ground literal A is true in yp(I) if A is true in I or for a ground instance

A < B .., B,
of some rule in P, each B, is true in I. The inductive fixpoint operator defined by P is IFP(yp)(I).
(Note that, due to the absence of invented values, IFP(yp)() is finite for every instance 1.)

The semantics of Datalog™ can now be eésily expressed using the inductive fixpoint operator
defined by programs, as stated next.

Fact: For each Datalog™ program P, effpy,50,-(P) = (<L, IFP(yp)(D)> | T over sch(P)}. []

We next examine the expressive power of Datalog™. We will show that Datalog™ expresses
exactly the well-known class of fixpoint queries (FP). In particular, this in conjunction with recent
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results by Kolaitis [Ko] and Dahlhaus [D] showing that Datalog with stratified negation is strictly
included in FP, implies that Datalog™ is strictly more expressive than Datalog with stratified
negation. Before presenting the proof, we briefly review some definitions and results related to the
fixpoint queries.

Fixpoint queries are the queries definable in fixpoint logic (FO+FP), which is first-order logic
augmented with a least fixpoint construct on positive formulas [GS, CH1]. Our proof will use a
result of [GS] showing that the fixpoint queries can also be defined in inflationary fixpoint logic
(FO+IFP), which is first-order logic extended with an inductive fixpoint operator.

Inflationary fixpoint (FO+IFP) formulas are defined next.

Definition: Inflationary fixpoint formulas are obtained by repeated applications of first-order
operators and the inductive fixpoint operator starting from atoms. We omit the definitions of atoms
and first-order operators (—,AV,],V ), which are standard. The inductive fixpoint operator is
defined as follows. Let ¢(S) be an FO+IFP formula with n free variables, where S is an n-ary
predicate occurring in ¢. Then IFP($(S), S) denotes the n-ary predicate which is the limit of the
sequence defined by: J, = S and for eachi> 0, J, = o3, PV, If Tisa sequence of n variables

or constants, IFP(¢(S), S)(—ﬁ is a formula.

Example 5.1: Let G be a binary relation schema. Consider the query “"find all good nodes in the

graph represented by an instance I of G, i.e. the nodes such that all their incoming edges originate

from other good nodes”. Note that a node is good iff it does not belong to a cycle in the graph

represented by G. The query can be expressed in FO+IFP by the formula IFP(¢, good)(x), where
¢={x1¥y (G(y,x) > good(y)) }

(good is initially empty). []

Intuitively, IFP(¢(S), S) can be viewed as an inductive definition of the predicate S, starting
from some initial value (usually &). Note that this mechanism can be extended straightforwardly to
define inductively several predicates simultaneously. Indeed, k relations Rj, ..., Ry can be defined
inductively by a system of k recursive equations of the form

R, = 0;(R;..RyY) ,1 <1<k,

where the ¢; are formulas such that the arity of R; equals the number of free variables of ¢;. The
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Simultaneous Induction Lemma for FO+IFP, proven in [GS], shows that no power is gained by
simultaneously defining by induction several relations rather than just one at a time. More
precisely, it is shown that each predicate R, defined by a system of equations as above can also be
defined as IFP(y;, T)(T}, for some ;. We refer the reader to [GS] for the precise definitions and
the proof.

We will prove that Datalog™ computes the queries definable by FO+IFP formulas. As a side
effect, we also obtain some interesting results concerning inflationary fixpoint logic itself. First, an

alternate proof of the collapse of the FO+IFP hierarchy? is obtained (the original proof appears in
[GS]). The collapse of the FO+IFP hierarchy means that each query in FO+IFP can be defined
using a first-order formula and a single application of the IFP operator. The second result on
FO+IFP provides an existential normal form for FO+IFP formulas.

The more complicated aspect of the proof of equivalence of Datalog™ and FO+IFP is the
simulation of FO+IFP formulas by Datalog™. Intuitively, the simulation involves two main
difficulties. The first involves delaying the firing of a rule until the completion of a fixpoint by
another set of rules; intuitively, this is hard because checking that the fixpoint has been reached
involves checking the non-existence rather than the existence of some valuation. The second
concerns keeping track of iterations in the computation of a fixpoint. Before stating formally the
result and providing the complete simulation, we illustrate these two main difficulties using two
examples. (The second was suggested by Kanellakis.) '

Example 5.2: The following Datalog™ program computes the complement of the transitive closure
of a binary relation R. The example illustrates the technique used to delay the firing of a rule
(computing the complement) until the fixpoint of a set of rules (computing the transitive closure)
has been reached. The idea is that, as the transitive closure of R is computed in relation S, the
result is duplicated in relations previous and previous-unless-last, but with a delay of one iteration.
However, the result of the previous iteration is copied in previous-unless-last, only if the current
iteration is not the last. Thus, previous and previous-unless-last differ only at the last iteration,
which allows recognizing when the fixpoint has been reached, and firing the rule computing the
complement. The program consists of the rules:

S(x,y) < R(x.y)

S(x.y) ¢ R(x,2), S(z,y)

previous(x,y) < S(x,y)
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’

previous-unless-last(x,y) ¢« S(x,y), R(X’,2),S(z’,y"),=S(x’,y’)
Sx,y) « —S(x,y), previous(x’,y’),—.previous—unlcss—last(x’,y').

(It is assumed that R is not empty.) []

Example 5.1 (continued): Let G be a binary relation schema. Consider the query of Example 5.1,
expressed in FO+IFP by IFP(¢, good)(x), where
¢={xIV y(Gyx) - good(y)) },

and good is initially empty. The following Datalog™ program P computes IFP(¢, good)(x) in
relation good. Intuitively, the program P simulates consecutive iterations of ¢. In order to
distinguish between different iterations, we use timestamps to mark each iteration after the first.
The timestamps used to mark iteration i are the values newly introduced in relation good at
iteration i-1. The process continues until no new values are introduced in an iteration. Relations
delay and delay-stamped are used to delay the derivation of new tuples in good until bad and bad-
stamped (respectively) have been computed in the current iteration.

{perform first iteration)
bad(x) « G(y,x), = good(y)
delay «
good(x) « delay, — bad(x)

{iteration with timestamp t}
bad-stamped(x,t) « G(y,x), mgood(y), good(t)
delay-stamped(t) « good(t)
good(x) ¢ delay-stamped(t), — bad-stamped(x,t). []

We next show formally the equivalence of FO+IFP and Datalog™. Due to the interest of the
result independently of rest of the development in the paper, we provide a direct proof. However,
we note that a simpler proof is possible, based on our procedural languages: first, show that the
language SdetTL without deletions can simulate FO+IFP (which is straightforward due to the
procedural control available); next, show that SdetTL without deletions can be simulated by
Datalog™, using a variation of the proof of Theorem 3.1.

In order to state the result precisely, we must view formulas in FO+IFP as defining mappings

*The FO+IFP hierarchy is based on the depth of nesting of the IFP operator in a formula.



from database instances to database instances. To formalize this point of view, we use the
following notation and definition.

Notation: With each variable x occurring in some FO+IFP formula is associated a unique attribute
denoted A,. We also assume that each attribute is A, for some x. For each FO+IFP formula ¢, the

database schema consisting of one relation of appropriate arity for each predicate symbol in ¢ is
denoted by in-sch(¢), and the database schema consisting of the single relation {A | x is a free

variable in ¢} is denoted by out-sch(¢).

Definition: Each FO+IFP formula ¢ defines a transformation over (in-sch(4)),out—sch(¢)), also
denoted ¢ for simplicity, as follows. For each instance I over in-sch(¢), ¢(I) is equal to the
predicate defined by ¢ for the interpretation of the predicates occurring in ¢ given by L

Note that in the previous definition, the out-schema has a single relation. For simplicity, the
equivalence result is also stated for single-relation output schemas. However, both the definition
and result can be extended easily to multiple target schemas.

Theorem 5.3: Let <R,S> be an input-output schema where S contains a single relation schema not
in R, and 1 be a transformation over <R,S>. Then <t is definable by an FO+IFP formula iff it is
definable in Datalog™.

Proof: (if) Let P be a Datalog™ program over the i-o schema <R,S>. It is easy to see that P is
equivalent to a system of FO+IFP equations with simultaneous induction - one for each carrier.
By the Simultaneous Induction Lemma for FO+IFP from [GS], the effect of P can be defined using
a single FO+IFP formula ¢. To ensure that out-sch(¢p) = S, one has to use variable names
corresponding to the attributes in S.

(only-if) The proof is by induction on the depth of the FO+IFP formula. The core of the proof
involves a control mechanism which delays firing certain rules until other rules have been
evaluated. Therefore, the induction hypothesis involves the capability to simulate the FO+IFP
formula using a Datalog™ program, as well as to concomitantly produce a predicate which only
becomes true when the simulation has been completed. More precisely, we will prove by induction
the following: for each FO+IFP formula ¢, there exists a Datalog™ program prog(¢) over the
predicates in in-sch(¢), a predicate result, over (A, 1 x occurs free in ¢}, a O-ary predicate done,,

and possibly other predicates, such that:
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(i for every instance I over in-sch(¢) (extended with @& to the other relations of sch(prog(¢)),
IFP (Y rog0y) Dlresulty] = (D),

(i) for every instance I over in-sch(¢) (extended with & to sch(prog(¢))), the O-ary predicate
done, becomes true at the last stage in the evaluation of prog(¢) on I, and

(iii) prog(¢) does not modify any relation in in-sch(¢).

Note that (i) establishes the only-if part of the theorem. We will assume, without loss of
generality, that no variable of ¢ occurs free and bound, or bound to more than one quantifier, and
that ¢ contains no universal quantifier or V operand. Suppose first that ¢ is an atom R(_t’). Let ®
be the vector of distinct variables occurring in the T. Then prog(¢) consists of the rules:

resultq,()‘c’) - R(?)

done,, «

Suppose now that ¢ has depth more than one, and that (i), (ii) and (iii) are verified for each
FO+IFP formula of depth less than that of ¢. There are four cases to consider:

(1) ¢ = o« A PB. Without loss of generality, we assume that [sch(prog(a)) - in-sch(®)] N
[sch(prog(P)) - in-sch(B)] = @. Thus, there is no interference between prog(c) and prog(B). Let R
and ¥ be the vectors of distinct free variables of o and B, respectively, and T the vector of distinct
free variables occurring in X and ¥. Then prog(¢) consists of the following rules:

prog(o)

prog(P)

resultq,(_f)) < done,, doneg, resulty(X), result(y)

done, < done,, doneg

(2) ¢ = 1 x(y). Let W be the vector of distinct free variables of v, and T be the vector obtained
from ¥ by removing the variable x. Then prog(¢) consists of the rules:

prog(y)

resulty( ?) < doney, result,, (@)

done,, « done,,

(3) & = —(y). Let T be the vector of distinct free variables occurring in . Then prog(¢) consists
of:

prog(y)
- -
result¢( t) « done“,, -ﬂresultw( t)



done¢ «— done“,

(4) ¢ = IFP(y, S)(@), where S is a relation schema in sch(y), of the same arity as resulty, This
case is the most involved, since it requires keeping track of the iterations in the computation of the
fixpoint, as well as bookkeeping in order to control the value of the special predicate done,.
Intuitively, each iteration is marked by timestamps. The current timestamps consist of the tuples
newly inserted in the previous iteration. The program prog(¢) uses the following new auxiliary
relations:

» arelation old contains the timestamps introduced in the previous stages of the iteration.
e  arelation run contains the timestamps. An active timestamp is in run - old.

o the relation not_last is used to detect the last iteration. A timestamp marks the last iteration if
it is in old - not_last.

o the relation fixpoint contains IFP(y, S) at the end of the computation, and result, contains
IFP(y, S)@).

« relations delay and not-empty are used for timing and to detect an empty result.

In the following, ¥ and T are vectors of distinct variables with the same arity as S. We first
have particular rules to handle the first iteration and the case of an empty result (S is empty and
the first iteration returns an empty result):

prog( v )

delay « doney,

not_empty « resulty,(y)

done, < delay, — not_empty

The remainder of the program contains the rules:

stamping of the database and starting an iteration: for each R in sch(prog(y)) - {S}, and a vector ¥
of distinct variables with same arity as R,

R(?,—f)) « ﬁxpoint(?), R®)

run(T) « fixpoint(T)

S('ﬁ,_f} « fixpoint(X), ﬁxpoint('ts

timestamped iteration:
prog(y)[ T // run(T), —old(T)
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maintain fixpoint, not-last and old:
fixpoint(y) « S
fixpoint(y) « result,,(y)
not_last(?), fixpoint(y) « rcsultw(?,—t)), - fixpoint(y)
old( ) « done,(1)

produce the result and detect termination

resulty(¥) « fixpoint(2) where ¥ is the vector of distinct variables in Z
done, « old(—t)), - not_last(?)

By inspection, it is seen that prog(¢) satisfies (i)-(iii) under the induction hypothesis. This
concludes the induction. [ ]

As seen from the above construction and the examples, the programs used to simulate
FO+IFP queries use some temporary relations in addition to the input and output relations.
However, the simulation can also be achieved using a single carrier which encodes the temporary
and output relations, the result being obtained through a selection and a projection of the final
value of the carrier. The selection is simple, i.e. the selecting condition is a conjunction of
conditions of the form A = v, where A is an attribute and v is a constant or another attribute.
Thus, the following can be easily verified (the proof is similar to that of the Simultaneous
Induction Lemma of [GS] and is omitted).

Corollary 5.4: Let ¢ be a FO+IFP formula with k free variables. Then there is a Datalog™
program P with a single carrier relation T, such that for each instance I of R (extended with @ to
T) the formula IFP(9, S)(YS defines A, A (CIFP(yp)DIT])), for some attributes Ap...A,, and a

simple selection 6. []

Remark (noted by Kolaitis): The use of the selection as in the above corollary is indispensable in
general, when an FO+IFP formula is simulated by a Datalog™ program with a single carrier. To
see this, consider the complement of the transitive closure CTG of a binary relation G. Suppose
that there exists a Datalog™ program P with a single carrier T, such that CTG =
Ta,.A(FP(Wp)G)[T]). Then, CTG is empty iff T is empty. Next, note that T is empty iff it is
empty after the first iteration of P. It follows easily that there is a first-order sentence stating that T
is empty. Therefore, there is a first-order sentence stating that CTG is empty. But emptiness of
CTG is equivalent to the strong connectivity of the directed: graph represented by G. However,
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strong connectivity is not definable in first-order logic (e.g., see [F,AU]), contradiction. []

It is easy to see that Datalog™ programs with a single carrier can actually be simulated using
the existential fragment of FO+IFP alone, since Datalog™ programs do not involve universal
quantification. This, in conjunction with Theorem 5.3 and Corollary 5.4, shows that FO+IFP has an
existential normal form (see also Remark Section 6 of [G]). Note that the normal form implies the
collapse of the FO+IFP hierarchy. More precisely, we have:

Corollary 5.5: For every FO+IFP formula ¢, there exists an FO+IFP formula IFP(v, T)(@) such
that v is an existential first-order formula and ¢ is equivalent to IFP(v, T)@). []

5.2 Partially-defined fixpoints and Datalog™*

In the previous section, we showed the equivalence of Datalog™ and inflationary fixpoint logic
(FO+IFP). In this section, we show that Datalog™ is equivalent to another fixpoint extension of
first-order logic, called partial fixpoint logic (FO+PFP). The main difference with FO+IFP is that
the semantics of the fixpoint operator is not inflationary. Intuitively, this is the analog of the
ability to perform deletions in Datalog™*. Consequently, the fixpoint operator is partially defined,
so interpretations of sentences in the logic are partially defined. This corresponds naturally to
non-terminating computations in Datalog™. The results are similar to those obtained in the
previous section. Therefore, the presentation here will be briefer and will focus on the differences
with the previous results.

We first introduce the notion of "partial fixpoint operator”, which is used to define partial
fixpoint logic.

Definition: Let R be a database schema and  partially defined mapping over inst(R). The partial
fixpoint operator PFP(y)(I) defined by y is the limit, if it exists, of the sequence (I), where
vo@) = I, and y*(@) = wy'(D) ( ¢ (D) is undefined if y is undefined on y'(T), in which case
PFP(y)(I) is also undefined).

Note that the semantics of Datalog™ program can be defined naturally using the partial
fixpoint operator. First we define the partial operator corresponding to a Datalog™* program.

Definition: The partial operator defined by a Datalog™ program P is the operator yp on
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inst(sch(P)) defined as follows. Let I be an instance over sch(P) and y(P,I) be the set of all
(positive or negative) ground literals (—) A such that for some B,...B ,

(=) A « By ,..., B,
is the ground instance of some rule of P and each B, is true in I. Then
o yp(I) is defined if x(P,I) is consistent (i.e., there is no A such that A and —A are both in
x(P.D);
e and a positive ground literal A is true in yp(I) if A is in ¥(P,I), or A is in I and —A is not in
x(P,D).
The partial fixpoint operator defined by P is PFP(yp)(I).

Similarly to the case of Datalog™, we have:

Fact: For each Datalog™ program P,
effDmlogﬁ,.(P) = {<I, PFP(yp)(D> | I over sch(P), PFP(yp)(I) is defined}. [ |

We next discuss partial fixpoint logic, which is first-order logic extended with a partial
fixpoint operator.

Definition: Partial fixpoint formulas are obtained by repeated applications of first-order operators
(—=AV,4,V ) and the partial fixpoint operator starting from atoms. The partial fixpoint operator is
defined as follows. Let ¢(S) be an FO+PFP formula with n free variables, where S is an n-ary
predicate occurring in ¢. Then PFP(¢(S), S)(_ﬁ is a formula, where Tis a sequence of n variables or
constants. The interpretation of PFP(¢(S), S) is the following. PFP(¢(S), S) denotes the n-ary
predicate which is the limit, if it exists, of the sequence defined by: Jo =S and for eachi> 0, J, =

¢, ;) Gf ¢ is undefined on J;_;, then J; and the interpretation of PFP(¢(S), S) are undefined).

It is important to note that, unlike traditional fixpoint extensions of first-order logic (FO+FP
and FO+IFP), sentences in FO+PFP do not generally have interpretations for all structures
(instances). Hence, the transformations defined by FO+PFP formulas are partial mappings.

As we shall see, most properties of FO+IFP which we discussed carry to FO+PFP. As was
the case for the IFP operator, the PFP operator can be extended straightforwardly to define

inductively several predicates simultaneously. The Simultaneous Induction Lemma carries over to
FO+PFP.
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We next show the equivalence between Datalog™ and FO+PFP. Since we have already
shown that Datalog™* is equivalent to the languages SdetTL and while of [Ch], this will provide a .
four-way characterization for the same class of transformations.

The proof of the equivalence is very similar to the proof for FO+IFP and Datalog™.

Theorem 5.6: Let <R,S> be an output schema where S contains a single relation schema not in R,
and T a transformation over <R,S>. Then t is defined by an FO+PFP formula iff it is the effect of
a Datalog™* program.

Proof: (if) Similar to the if-part of the proof of Theorem 5.3. The difference concerns the
simulation of deletions by FO+PFP. Specifically, a Datalog™* rule of the form

—R(X) « body(®)
gives rise to an equation of the form

R(®) = R(®) A —body(®)
This is illustrated in Example 5.7 below.

(only-if) The proof is similar to the only-if part of the proof of Theorem 5.3. The induction is the
same and so are the proofs for cases (1),(2) and (3). Now consider case (4). The simulation works
as follows:

(@) evaluate prog(y),

() if resulty, is equal to S, the fixpoint is reached and resulty is produced; otherwise

(c) assign resulty, to S, empty the temporary relations of prog(y) and go to (a).
Clearly, (a-c) can be realized in Datalog™*. []

The simulation of Datalog™* by FO+PFP is illustrated next.

Example 5.7: Consider again the game of life Datalog™* program presented in Example 4.6.
Consider the rules defining relation CELL:
—CELL(x), compute, — update < CELL(x), 3neighbours(x), update
CELL(x), compute, — update < — CELL(x), 2neighbours(x), —3neighbours(x), update.

The equation corresponding to relation CELL in the system of PFP equations defining the carriers
of the program is: .
CELL(x) = [ CELL(x) V [ CELL(x) A 2neighbours(x) A —3neighbours(x) A update] ]
A =[CELL(x) A 3neighbours(x) A update].
[
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The following summarizes the characterizations available for the class of transformations
defined by Datalog™*.

Corollary 5.8: Let <R,S> be an output schema where S contains a single relation schema not in R,
and T a transformation over <R,S>. The following are equivalent:

(i) 1 is the effect of a Datalog™ program,

(ii) 7 is the effect of an SdetTL program,

(iii) T is the effect of a while program (allowing constants), and

(iv) T is definable by an FO+PFP formula.

Proof: Let T be a transformation over <R,S>, as in the statement of the corollary. By Theorem
5.6, T is expressible in FO+PFP iff 1 is expressible in Datalog™*. By Theorem 4.7, 7 is expressible
in Datalog™ iff T is expressible in SdetTL. Finally, T is expressible in SdetTL iff T is expressible
in the while language (extended with constants), by Theorem 1.1(e). []

The simulation of FO+PFP formulas by Datalog™* programs provides as a side effect some
interesting results on FO+PFP itself: the collapse of the FO+PFP hierarchy, and an existential
normal form for FO+PFP formulas. This is analogous to Corollary 5.5:

Corollary 5.9 For every FO+PFP formula ¢, there exists an equivalent FO+PFP formula
PFP(v,T)(@) such that v is an existential first-order formula.

Proof: The proof is the same as for Corollary 5.5. []

Note that the above normal form for FO+PFP implies the collapse of the FO+PFP hierarchy.

5.3 Variations of fixpoint logic for non-deterministic languages

In this section, we consider fixpoint extensions of first-order logic which correspond to non-
deterministic languages. Such extensions must allow formulas that define several predicates for
each given structure. This is achieved by a non-deterministic operator on formulas, called the
witness operator. Informally, given a formula ¢(x), the witness operator Wx applied to ¢(x)
chooses an arbitrary witness x which makes ¢ true. The extension based on the witness operator is
orthogonal to the fixpoint extensions of first-order logic corresponding to the deterministic
languages. Thus, we will consider inflationary and non-inflationary versions of fixpoint logic with
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the W operator, corresponding to non-deterministic languages without or with deletions,
respectively. The inflationary W-extension is denoted FO+W+IFP; the non-inflationary, W-
extension is denoted FO+W+PFP,

. We note that each "deterministic” logic has a natural W-extension. Thus, one can consider
W-extensions of first-order logic, Horn clause logic (Datalog), etc. This yields a family of "non-
deterministic” logics parallel to the traditional logics used for query languages. This raises several
interesting questions of semantics, expressive power, and complexity, which will be explored in a
separate paper. Here we focus on the W-extensions of fixpoint logic of interest in the context of
the non-deterministic languages discussed earlier.

We now define the syntax of FO+W+IFP and FO+W+PFP formulas.

Definition: FO+W+IFP (FO+W+PFP) formulas are obtained by repeated applications of first-order
operators, the inductive fixpoint operator IFP (the partial fixpoint operator PFP), and the witness
operator starting from atoms. The syntax of atoms, first-order operators, and the IFP (PFP) operator
are as before. The syntax of the W operator is defined next: if ¢(X) is a formula, where X is a
vector of distinct free variable in ¢, then WR(¢(X)) is a formula (all free variables of ¢, mcludmg
X, remain free in WR(O(X)).

We next describe informally the semantics of FO+W+IFP (FO+W+PFP) formulas. The
semantics of a formula ¢ is given by the set of predicates defined by ¢ for each given structure.
We start with the W operator. In this context, a formula defines a set of predicates, i.e., the set of
possible interpretations of the formula. Let WX(¢(XY)) be a formula, where ¥ is the vector of
variables other than ® which are free in ¢. The set of predicates defined by WX(¢(XY)) is the set of
I such that for some J defined by ¢,

o Icl,

o  for each ¥ for which <Xy> is in J for some =, there exists a unique X, such that <R,.y> is in
L

Intuitively, one "witness" X, is chosen for each ¥ satisfying JR¢(Xy). It is also possible to
describe the semantics of the W operator using functional dependencies: for each instance J defined
by o®Yy), WX(RXY)) defines all maximal sub-instances I of J such that the attributes
corresponding to the variables in ¥ form a key in L

Note that Wx(Wyé(x,y)) is not equivalent* to Wxyd(x,y); also, Wx(Wyéd(x,y)) is not

4Two formulas are equivalent iff they define the same set of predicates for each given structure.
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equivalent to Wy(Wx¢(x,y)). To see the latter, let ¢ = R(x,y), where R is interpreted as
{<0,1>,<2,1>,<2,3>}. Note first that {<0,1>,<2,1>} and {<0,1>,<2,3>} are the only possible
interpretations of WyR(x,y), and {<0,1>}, (<2,1>} and ({<0,1>,<2,3>} the only possible
interpretations of Wx(WyR(x,y)). It is easily seen that {<2,3>} belongs to the set of predicates
defined by Wy(WxR(x,y)), so Wx(WyR(x,y)) and Wy(WxR(x,y)) are not equivalent.

The semantics of the IFP and PFP operators are similar to the ones for the deterministic case,
with the complication that each stage of the iteration has several possible outcomes. We outline the
semantics for IFP (the one for PFP is analogous). Let ¢(S) be an FO+W+IFP formula with n free
variables, where S is a predicate of arity n occurring in ¢. Then IFP(0(S),S) defines all n-ary
predicates J for which there exists a sequence Jy,..., J where J, =S, J, = J, for each i, 0 <i <k, J,
is the union of J. , with one predicate defined by ¢(J; ,), and each predicate defined by ¢(J,) is

included in J,.

The definitions of the in-schema, out-schema, and transformation defined by an FO+W+IFP
(FO+W+PFP) formula are analogous to those for FO+IFP (FO+PFP) and are omitted. Of course,
the transformations defined by FO+W+IFP (FO+W+PFP) formulas are non-deterministic. Note that
two formulas are equivalent iff they define the same transformation.

The following illustrates the use of the W operator.

Example 5.10: (i) Consider two relations
bonus(passenger-name) and
records(passenger-name, flight#, day, month, year)
of an airline database. Relation bonus holds the names of all passengers who have been given a
bonus for which it is necessary to have flown in March 1988. The following (FO+W) formula
defines a relation verification which exhibits a qualifying flight (flight# and day) for each passenger
given the bonus:
verification(n,f,d) = bonus(n) A Wfd(records(n,f,d,"March","1988")).
(i) Let G be a symmetric, binary relation. The FO+W+PFP formula PFP(¢(G),G)(x,y), defines a
"triangular" representation G” of G, where one edge <x,y> is retained for each <x,y> and <yx> in
G: '
o(xy) = [Gxy) A =Wxy(G(x,y) A G(y,x))].
This has the effect of removing from G one "redundant” edge at each stage. Also note that such G’
cannot generally be defined without the witness operator (or by any deterministic and generic

means). []



As earlier, the definitions of the IFP and PFP operators can be extended to allow the
definition of several predicates by simultaneous induction. Again, the Simultaneous Induction
Lemma carries over.

It turns out that FO+W+IFP (FO+W+PFP) correspond naturally to some of the safe non-
deterministic extensions of Datalog considered in the previous sections. Specifically, we show that
FO+W+IFP is equivalent to SDLV , and to SDL on ordered databases. Thus, FO+W+IFP defines
the DB-NPTIME transformations. Also, FO+W+PFP is equivalent to SDL*. Thus, FO+W+PFP
defines the DB-NPSPACE transformations.

Theorem 5.11: For each i-o schema <R,S>, where S consists of a single relation, the following
hold:

(i) FO+W+IFP expresses the same transformations over <R,S> as SDL on ordered databases,

(ii) FO+W+IFP expresses the same transformations over <R,S> as SDLV (i.e., DB-NPTIME),

(iii) FO+W+PFP expresses the same transformations over <R,S> as SDL* (i.e., DB-NPSPACE).

Proof: Clearly, every transformation defined by a FO+W+IFP (FO+W+PFP) formula is in DB-
NPTIME (DB-NPSPACE). Since SDL on ordered databases and SDLY on arbitrary databases
express DB-NPTIME (Proposition 2.7 and Theorem 2.8), and SDL* expresses the DB-NPSPACE
transformations (Theorem 4.3), it is clear that the formulas can be simulated by the corresponding
Datalog extensions. The converse is straightforward, and similar to the simulation of Datalog™ and
Datalog™* by FO+IFP and FO+PFP, respectively. [ ]

The above result is illustrated by the following.

Example 5.12: (a) Consider the FO+W+PFP formula of Example 5.10 (ii). A corresponding SDL*
program is:

G’(x,y) « G(x,y), —erased(x,y)

—G’(x,y), erased(x,y) « G’(x,y), G’(y,x).

Note that a simpler program can be obtained if G’ is computed in-place, by modifying G:
—G(x,y) « G(x,y), G(y,x).

(b) Consider the SDL* program above. Although Example 5.10 (ii) provides a simple
FO+W+PFP formula equivalent to it, we will construct a second equivalent FO+W+PFP formula to
illustrate the simulation of SDL* by FO+W+PFP in the general case. First, we construct an SDL*
program with a single carrier T encoding G’ and erased: T(x,y,1) means that <x,y> is in G, and
T(x,y,0) means that <x,y> is in erased. This yields the following program:
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T(X,y,l) « G(X,Y), _'T(X9Y7O)
=T(x,y,1), T(x,y,0) & T(x,y,1), T(y,x,1).
The result is obtained by decoding G’ from T by a simple ‘selection and a projection:

71, 2(013=1(T)). The SDL* program over one carrier is now transformed into an equivalent
FO+W+PFP formula:

PFP(y(T), T)(x,y,1), with

y(xy,o) = Jz{ (Wz((z=1) V (z=2)) ) N[ (=D Ay V((z=2) Ayr) V ((z=2) Ay3) ] ),
where:

vy = Ty, V[ (a=1) A Wxy(G(x,y) A = T(x,y,0)) ],

Yy = - XLy’ [T(x’y’,1) AT’ x*,1)] A T(x,y,o),

y3 = 3xLy[T%y’,1) ATy’ x", 1)1 A

{ [(@=0) N Ty, 0] V [(@=0) A (x=x’) A (y=y)] V [a=1) A T(xy1) A

=((x=x")Ny=y’))] }.

In v, the choice of a value of z (1 or 2) simulates the non-deterministic choice of firing the first or
second rule. The formula y; corresponds to the first rule of the program. (It is "active" if z=1 was
chosen.) The formulas y, and y; correspond to the second. (They are "active" if z=2 was
chosen.) The presence of an insertion and a deletion in the second rule forces us to distinguish two
cases:

» the second rule is not applicable (y,) and the database is just copied; and

» the second rule is applicable (y3), tuples [x,y,0] are kept, the tuple [x’,y’,0] is derived, and
tuples [x,y,1] are kept if (x,y) # (x’,y’). '

(¢) We finally illustrate the straightforward simulation of SDL programs by FO+W+IFP
formulas. Consider the following SDL program computing the transitive closure of G in T:
T(xy) « G(x,y)
T(x,y) « T(x,z), T(z,y).
The equivalent FO+W+IFP formula is IFP(v(T),T)(x,y), where
vix,y) = Wxyd z[G(x,y) V (T(x,2) A T(z,y))].

Note the form of v, where all free variables are preceded by the W operator, and the others are
existentially quantified. []

The simulations of FO+W+IFP and FO+W+PFP by the Datalog extensions, and the converse
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simulations, provide some interesting results on FO+W+IFP and FO+W+PFP themselves (as in the
case of FO+IFP and FO+PFP). The results concern normal forms (implying the collapse of the
respective hierarchies). In particular, it is shown that FO+W+IFP has a "W" normal form and a
"W-] " normal form on ordered databases.

Corollary 5.13:

(i) For each FO+W+IFP formula ¢, there exists a first-order formula y whose free variables are X,
such that ¢ is equivalent to

IFP(WRY (), T)()

for some t and predicate T of .

(i) For each FO+W+IFP formula ¢, there exists an existential first-order formula y with free
variables X, such that ¢ is equivalent on ordered databases to

IFP(WRY (), T)(®

for some T and predicate T of .

(iii) For each FO+W+PFP formula ¢, there exists a FO+W formula y such that ¢ is equivalent to
PFE(y, T)(®

for some T and predicate T of .

Proof (sketch): To see (i), note that each FO+W+IFP program can be simulated by a SDLV

program (Theorem 5.11); and, each SDLY program can be simulated by a FO+W+IFP formula of
the stated form. Note that y may contain universal quantification inherited from the SDLV

program. Next, (i) follows from the fact that SDL alone is sufficient to simulate FO+W+IFP on
ordered databases (Theorem 5.11). Since SDL does not contain V , it is easily seen that y of the
corresponding FO+W+IFP formula is existential. Consider (iii). By Theorem 5.11, each
FO+W+PFP formula has an equivalent SDL* program. Conversely, each SDL* program has an
equivalent FO+W+PFP formula PFP(E,T)(1), where & is in FO+W. |

Remark: It turns out that FO+W+PFP has an existential normal form. The proof is non-trivial. To
see the origin of the problem, consider the formulas y; above. Universal quantification is used in
y; to check the non-existence of an applicable valuation of the corresponding SDL* rule. This is
due to the difference in the semantics of SDL* and the PFP operator: if an SDL* rule is not fired,
the database is left unchanged; on the other hand, if an iteration in the computation of the PFP
operator yields the empty sct, the database becomes empty. However, the use of the universal
quantifier can be avoided by "decomposing” the evaluation of y;3 into two stages: one to check the
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existence of a valuation (and mark this in the carrier), the second to actually evaluate s if such a

valuation exists. [ ]

6. CONCLUSION

The Datalog extensions discussed in this paper are summarized in Figure 1. They are classified
according to three orthogonal characteristics: determinism, safety, and inflationary character. The
expressive power of the languages is summarized in Figure 2. Note that we obtained deterministic
and non-deterministic complete languages, as well as languages capturing important classes of
database transformations. Thus, in the non-deterministic case, we obtained DB-NPTIME (captured

by SDLV, SDLI, SDL on ordered instances, the procedural STL* and the fixpoint logic
FO+W+IFP) and DB-NPSPACE (captured by SDL*, the procedural STL, and the fixpoint logic
FO+W+PFP). In the deterministic case, we obtained the fixpoint queries (SdetDL or Datalog™, the

procedural SdetTL*, and the fixpoint logic FO+IFP) and languages equivalent to the while
language of [Ch] (SdetDL* or Datalog™, the procedural SdetTL and the fixpoint logic FO+PFP).
(Note that the while language yields DB-PSPACE on ordered databases.) Thus, the class of
transformations computed by the while language has a four-way characterization and emerges as an
important class of deterministic transformations together with the fixpoint queries. The problem of
capturing precisely the DB-PTIME transformations remains open.

Note that some results on expressive power are subject to the disjointness of the input and
output schemas. This is not a significant restriction. Indeed, the intuitive meaning of a relation R
present in both the input and output schema of a program is that R is being updated. Then one can
force disjointness of the input and output schemas by referring to the original relation R as oldR,
and to the updated R as newR.

The connection between the Datalog extensions and the corresponding procedural languages is
summarized in Figure 3. In particular, this provides some intuition on the impact of various
features of a language on its ability to simulate explicit control. The features relevant to the
simulation of control are:

e invented values.

As long as invented values are available, the Datalog extensions are equivalent to their procedural
counterparts. inuwiiiveiy, invented values can be used to timestamp tuples controlling the firing of
rules. This allows to simulate iterative control.

o determinism.
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The deterministic semantics provides additional control capability over the non-deterministic one,
since all rules of a program are forced to fire simultaneously for all applicable instantiations. While
with non-deterministic semantics explicit control is simulated at the cost of introducing additional
non-terminating computations, this disadvantage can be avoided with the deterministic semantics.
Note that all deterministic Datalog extensions considered are equivalent to their corresponding
procedural languages. (See Figure 3.)

. negations in heads (deletions).

Intuitively, the use of deletions to simulate control is similar to the use of invented values:
deletions allow the repeated use of tuples controlling the firing of rules. Thus, all languages with
deletion can simulate their procedural counterparts. Also, non-deterministic languages with
deletions do not require additional non-terminating computations for the simulation. (As noted
above, this is not an issue for the deterministic languages.)

Figure 3 also exhibits the connection between the safe Datalog extensions and various fixpoint
extensions of first-order logic. (We did not provide fixpoint extensions corresponding to the unsafe
languages, although this could be done by providing in the logics a mechanism for introducing
new constants in the universe, in a manner similar to [HS].) The fixpoint logic FO+IFP is well
known (see [GS]), while the other three variations we consider are new. The new fixpoint
extensions, particularly the "non-deterministic” ones, are interesting in their own right from a logic
point of view. However, we focus here on the connection with the Datalog extensions, and leave
the more detailed investigation of the logics for a separate paper. Intuitively, the fixpoint logics
are similar to the procedural languages with respect to control capability: composition is equivalent
to nesting in the logics, and iteration is equivalent to an application of a fixpoint operator. Not
surprisingly, the safe languages which can simulate corresponding fixpoint logics are precisely
those which can simulate their procedural counterparts.

The simulation of the fixpoint logics by the Datalog extensions, and conversely, provided as a
side-effect several normal forms for the fixpoint logics. In all cases, the normal forms imply the
collapse of the respective hierarchies (based on the depth of nesting of the fixpoint operator). Some
of these results are new; the collapse of the FO+IFP hierarchy was known ({GS]), but our
simulations provide a simple alternate proof.' Analogous normal forms are obtained for the
procedural languages. (The analog of the collapse of the fixpoint hierarchies is a normal form
without nested while loops.)

The ability of some of the Datalog extensions to simulate explicit control has practical
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significance: if users are given the option of using a hybrid language mixing explicit control and
"declarative” pieces, the resulting programs can still be interpreted within the "declarative”
language. This may be preferable to encoding complicated control using the limited control
capability of the Datalog extensions. For example, consider Datalog™. The use of explicit
composition in conjunction with Datalog™ provides a straightforward way to specify stratified
semantics for a program (as the composition of the Datalog™ programs for each stratum); without
explicit control, the simulation of the stratified semantics with the inflationary semantics of
Datalog™ is much more complicated (e.g., see Example 5.2 on the computation of the complement
of transitive closure). We note that mixing procedural and "declarative” constructs to obtain
programs with clean semantics is also suggested in [IN], where a "rule algebra” similar to our
procedural language SdetTL" is proposed.

Finally, we review some of the recurring techniques for simulating control in the Datalog
extensions:

e  the use of control predicates to trigger or inhibit rules;

e  the use of timestamps;

» the use of non-deterministic switches and error handling for them,;

the use of copies of relations, offset by one stage, to detect the end of an iteration;

e the use of done predicates to indicate the end of the computation of a fixpoint for a
subprogram,;

*  maintaining a journal and the use of roll-backs when deletions are available; and

e the use of a (provided or constructed) ordering of the active domain to replace non-
deterministic transfer of control by an exhaustive search of the active domain.

The results of this paper concern primarily the expressive power. Other issues of interest
remain to be investigated. We mention briefly a few:

optimization of such programs, parallelization,
*  conditions guaranteeing deterministic effects for non-deterministic programs
»  verifying termination, and conditions for termination.

An investigation relevant to the second topic was conducted in [MS3] for a language similar
to SDL*,
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INFLATIONARY NON-INFLATIONARY
non-deterministic | deterministic || non-deterministic | deterministic

semantics semantics semantics semantics
unsafe DL DL*
weakly detDL detDL*
safe
safe SDL SdetDL SDL* SdetDL*

Datalog™ : Datalog™*

Figure 1: DL Languages
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LANGUAGE POWER RESTRICTIONS
Non-deterministic
DL Complete Disjoint i-o
Non-deterministic
DL* Complete
Deterministic
detDL complete Disjoint i-o
Deterministic
detDL* Complete
. Ordered instances
SDL DB-NPTIME Disjoint i-o
SDDv& SDL.L DB-NPTIME Disjoint i-o
SDL* DB-NPSPACE
Datalog™ Fixpoint queries
Datalog™* While language

Figure 2: Expressive power




LANGUAGE PROCEDURAL FIXPOINT LOGIC
DL TL (disjoint i-0)
DL* TL
detDL detTL (disjoint i-0)
detDL* detTL
SDLY& SDL.L STL* FO+W+IFP
SDL* STL FO+W+PFP
Datalog™ SdetTL* FO+IFP
Datalog™* SdetTL FO+PFP

Figure 3: Connections with procedural languages

and fixpoint logics
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